

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region 1 5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

CERTIFIED MAIL RETURN RECEIPT REQUESTED

NOV 0 1 2013

Matthew Young Senior Project Manager Cumberland Farms, Inc. 100 Crossing Boulevard Framingham, MA 01702

Re: Authorization to discharge under the Remediation General Permit (RGP) – MAG910000. Cumberland Farms Station#1286 site located at 324 Marrett Road, Lexington, MA 01518, Middlesex County; Authorization # MAG910599

Dear Mr. Young:

Based on the review of a Notice of Intent (NOI) submitted by Aaron Kaczowka from Environmental Compliance Services, Inc. (ECS) on behalf of Cumberland Farms, Inc. (CFI), for the site referenced above, the U.S. Environmental Protection Agency (EPA) hereby authorizes you, as the named Owner and Operator, to discharge in accordance with the provisions of the RGP at that site. Your authorization number is listed above.

The checklist enclosed with this RGP authorization indicates the pollutants which you are required to monitor. Also indicated on the checklist are the effluent limits, test methods and minimum levels (MLs) for each pollutant. Please note that the checklist does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of this permit, including influent and effluent monitoring, narrative water quality standards, record keeping, and reporting requirements, found in Parts I and II, and Appendices I – VIII of the RGP. See EPA's website for the complete RGP and other information at: http://www.epa.gov/region1/npdes/mass.html#dgp.

Please note the enclosed checklist includes parameters that exceeded Appendix III limits. The checklist also includes other parameters for which your laboratory reports indicated there was insufficient sensitivity to detect these parameters at the minimum levels established in Appendix VI of the RGP.

Also, please note that the metals included on the checklist are dilution dependent pollutants and subject to limitations based on a dilution factor range (DFR). With the limited dilution at Beaver Brook the receiving water, EPA determined that the DFR for each parameter is in the one and five (1-5) range. (See the RGP Appendix IV for

Massachusetts facilities) Therefore, the limits for lead of 2.28 ug/L and iron of 1,750 ug/L, are required to achieve permit compliance at your site. Please note that these metal limitations for your site have increased to a Factor Range above the established 0-5 dilution factor range. The reason for the increase has to do with the new RGP regulations which allows for a limit increase based on the metal limit times the available dilution of the receiving stream provided it does not exceed the 5 DFR. The available dilution in this case is 1.75. See footnote eleven at the end of the "Summary of Monitoring Parameters" listed below for further explanation.

Finally, please note the checklist of pollutants attached to this authorization is subject to a recertification if the operations at the site result in a discharge lasting longer than six months. A recertification can be submitted to EPA within six (6) to twelve (12) months of operations in accordance with the 2010 RGP regulations.

This general permit and authorization to discharge will expire on September 9, 2015. You have reported that this project will terminate on October 23, 2014. You are required to submit a Notice of Termination (NOT) to the attention of the contact person indicated below within 30 days of project completion.

Thank you in advance for your cooperation in this matter. Please contact Victor Alvarez at 617-918-1572 or Alvarez.Victor@epa.gov, if you have any questions.

Sincerely,

elma Murphy.

Storm Water and Construction Permits Section

Enclosure

cc: Robert Kubit, MassDEP Bill Hadley, Town of Lexington PWD

2010 Remediation General Permit Summary of Monitoring Parameters^[1]

NPDES Authorization Number:	1 (100) (100)	MAG910599
Authorization Issued:	Octob	er, 2013
Facility/Site Name:		verland Farms Station#1286
hguði		larrett Road, Lexington, MA 01518
Facility/Site Address:	Email 01702	address of Owner: 100 Crossing Boulevard, Framingham, MA 2, Middlesex County
Legal Name of Operat		Cumberland Farms, Inc.
Operator contact name and Address:	e, title,	Matthew Young, Senior Project Manager, 100 Crossing Boulevard, Framingham, MA 01702, Middlesex County
101	IS HARD	Email: myoung@cumberlandgulf.com
Estimated date of Com	pletion	October 23, 2014
Category and Sub-Cate	egory:	Category I. Petroleum Related Site Remediation. Subcategory A. Gasoline Only Sites.
RGP Termination Date:	100 0.70	September 10, 2015
Receiving Water:	tren al	Beaver Brook
	234114	

Monitoring & Limits are applicable if checked. All samples are to be collected as grab samples

	Parameter	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
\checkmark	1. Total Suspended Solids (TSS)	30 milligrams/liter (mg/L) **, 50 mg/L for hydrostatic testing ** Me#160.2/ML5ug/L
	2. Total Residual Chlorine (TRC) ¹	Freshwater = 11 ug/L ** Saltwater = 7.5 ug/L **/ Me#330.5/ML 20ug/L
\checkmark	3. Total Petroleum Hydrocarbons (TPH)	5.0 mg/L/ Me# 1664A/ML 5.0mg/L
	4. Cyanide (CN) ^{2,3}	Freshwater = 5.2 ug/l ** Saltwater = 1.0 ug/L **/ Me#335.4/ML 10ug/L
\checkmark	5. Benzene (B)	5ug/L /50.0 ug/L for hydrostatic testing only/ Me#8260C/ML 2 ug/L
\checkmark	6. Toluene (T)	(limited as ug/L total BTEX)/ Me#8260C/ ML 2ug/L
\checkmark	7. Ethylbenzene (E)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L
\checkmark	8. (m,p,o) Xylenes (X)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L

	Parameter	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
\checkmark	9. Total Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) ⁴	100 ug/L/ Me#8260C/ ML 2ug/L
\checkmark	10. Ethylene Dibromide (EDB) (1,2- Dibromoethane)	0.05 ug/l/ Me#8260C/ ML 10ug/L
\checkmark	11. Methyl-tert-Butyl Ether (MtBE)	70.0 ug/l/Me#8260C/ML 10ug/L
\checkmark	12.tert-Butyl Alcohol (TBA) (TertiaryButanol)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
\checkmark	13. tert-Amyl Methyl Ether (TAME)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
\checkmark	14. Naphthalene ⁵	20 ug/L /Me#8260C/ML 2ug/L
	15. Carbon Tetrachloride	4.4 ug/L /Me#8260C/ ML 5ug/L
edia () 01.60	16. 1,2 Dichlorobenzene (o- DCB)	600 ug/L /Me#8260C/ ML 5ug/L
	17. 1,3 Dichlorobenzene (m- DCB)	320 ug/L /Me#8260C/ ML 5ug/L
	18. 1,4 Dichlorobenzene (p- DCB)	5.0 ug/L /Me#8260C/ ML 5ug/L
	18a. Total dichlorobenzene	763 ug/L - NH only /Me#8260C/ ML 5ug/L
	19. 1,1 Dichloroethane (DCA)	70 ug/L /Me#8260C/ ML 5ug/L
	20. 1,2 Dichloroethane (DCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
nd o	21. 1,1 Dichloroethene (DCE)	3.2 ug/L/Me#8260C/ ML 5ug/L
	22. cis-1,2 Dichloroethene (DCE)	70 ug/L/Me#8260C/ ML 5ug/L
	23. Methylene Chloride	4.6 ug/L/Me#8260C/ ML 5ug/L
14	24. Tetrachloroethene (PCE)	5.0 ug/L/Me#8260C/ ML 5ug/L
-	25. 1,1,1 Trichloro-ethane (TCA)	200 ug/L/Me#8260C/ ML 5ug/L
	26. 1,1,2 Trichloro-ethane (TCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
1.2	27. Trichloroethene (TCE)	5.0 ug/L /Me#8260C/ ML 5ug/L
	28. Vinyl Chloride (Chloroethene)	2.0 ug/L /Me#8260C/ ML 5ug/L
	29. Acetone	Monitor Only(ug/L)/Me#8260C/ML 50ug/L
0.1	30. 1,4 Dioxane	Monitor Only /Me#1624C/ML 50ug/L
19	31. Total Phenols	300 ug/L Me#420.1&420.2/ML 2 ug/L/ Me# 420.4 /ML 50ug/L
N. S.	32. Pentachlorophenol (PCP)	1.0 ug/L /Me#8270D/ML 5ug/L,Me#604 &625/ML 10ug/L
1.0	33. Total Phthalates (Phthalate esters) ⁶	3.0 ug/L ** /Me#8270D/ML 5ug/L, Me#606/ML 10ug/L& Me#625/ML 5ug/L
00	34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	6.0 ug/L /Me#8270D/ML 5ug/L,Me#606/ML 10ug/L & Me#625/ML 5ug/L

	Parameter	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
	35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)	10.0 ug/L
t	a. Benzo(a) Anthracene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	b. Benzo(a) Pyrene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	c. Benzo(b)Fluoranthene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	d. Benzo(k)Fluoranthene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	e. Chrysene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	f. Dibenzo(a,h)anthracene 7	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	g. Indeno(1,2,3-cd) Pyrene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML5ug/L
F	36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)	100 ug/L
	h. Acenaphthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	i. Acenaphthylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	j. Anthracene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
11	k. Benzo(ghi) Perylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	I. Fluoranthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	m. Fluorene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
40	n. Naphthalene ⁵	20 ug/l / Me#8270/ML 5ug/L, Me#610/ML 5ug/L & Me#625/ML 5ug/L
- 1	o. Phenanthrene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	p. Pyrene	X/Me#8270D/ML5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
Ma	37. Total Polychlorinated Biphenyls (PCBs) ^{8, 9}	0.000064 ug/L/Me# 608/ ML 0.5 ug/L
\checkmark	38. Chloride	Monitor only/Me# 300.0/ ML 100 ug/L

5

	Vile CLER Materials (1997) A standard (1997) and the standard standard (1997) and the standard (1997) and the standard (1997) and	<u>Total Recov</u> <u>MA/Metal</u> <u>H ¹⁰ = 50</u> <u>CaCO3, Ur</u> ug/l ⁽¹¹⁾	Limit mg/l	Minir level	
5	Metal parameter	Freshwater Limits			north 1
	39. Antimony	5.6	-	ML	10
	40. Arsenic **	10	- pilling	ML	20
	41. Cadmium **	0.2	N.Coll	ML	10
	42. Chromium III (trivalent) **	48.8	- britten	ML	15
	43. Chromium VI (hexavalent) **	11.4	ราชศรีกิดกร อาจกร้างกระเ	ML	10
	44. Copper **	5.2	'nnaddrara	ML	15
V	45. Lead **	2.28	-	ML	20
	46. Mercury **	0.9		ML	02
	47. Nickel **	29		ML	20
	48. Selenium **	5	nontraciona	ML	20
	49. Silver	1.2		ML	10
	50. Zinc **	66.6	2019 (D2=	ML	15
\checkmark	51. Iron	1,750	Variation II	ML	20

Other Parameters	Limit
52. Instantaneous Flow	Site specific in CFS
53. Total Flow	Site specific in CFS
54. pH Range for Class A & Class B Waters in MA	6.5-8.3; 1/Month/Grab13
55. pH Range for Class SA & Class SB Waters in MA	6.5-8.3; 1/Month/Grab13
56. pH Range for Class B Waters in NH	6.5-8; 1/Month/Grab13
57. Daily maximum temperature - Warm water fisheries	83°F; 1/Month/Grab ¹⁴
58. Daily maximum temperature - Cold water fisheries	68°F; 1/Month/Grab14
59. Maximum Change in Temperature in MA - Any. Class A water body	1.5°F; 1/Month/Grab ¹⁴
60. Maximum Change in Temperature in MA - Any Class B water body- Warm Water	5°F; 1/Month/Grab ¹⁴
61. Maximum Change in Temperature in MA – Any Class B water body - Cold water and Lakes/Ponds	3°F; 1/Month/Grab ¹⁴
62. Maximum Change in Temperature in MA – Any Class SA water body - Coastal	1.5°F; 1/Month/Grab ¹⁴
63. Maximum Change in Temperature in MA – Any Class SB water body - July to September	1.5°F; 1/Month/Grab ¹⁴
64. Maximum Change in Temperature in MA – Any Class SB water body - October to June	4°F; 1/Month/Grab ¹⁴
	 52. Instantaneous Flow 53. Total Flow 54. pH Range for Class A & Class B Waters in MA 55. pH Range for Class SA & Class SB Waters in MA 56. pH Range for Class B Waters in NH 57. Daily maximum temperature - Warm water fisheries 58. Daily maximum temperature - Cold water fisheries 59. Maximum Change in Temperature in MA - Any Class A water body 60. Maximum Change in Temperature in MA - Any Class B water body- Warm Water 61. Maximum Change in Temperature in MA - Any Class B water body - Cold water and Lakes/Ponds 62. Maximum Change in Temperature in MA - Any Class SA water body - Coastal 63. Maximum Change in Temperature in MA - Any Class SB water body - Coastal 64. Maximum Change in Temperature in MA - Any Class

Footnotes:

¹ Although the maximum values for TRC are 11ug/l and 7.5 ug/l for freshwater, and saltwater respectively, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., Method 330.5, 20 ug/l).

² Limits for cyanide are based on EPA's water quality criteria expressed as micrograms per liter. There is currently no EPA approved test method for free cyanide. Therefore, total cyanide must be reported.

³ Although the maximum values for cyanide are 5.2 ug/l and 1.0 ug/l for freshwater and saltwater, respectively, the compliance limits are equal to the minimum level (ML) of the Method 335.4 as listed in Appendix VI (i.e., 10 ug/l).

⁴ BTEX = sum of Benzene, Toluene, Ethylbenzene, and total Xylenes.

⁵ Naphthalene can be reported as both a purgeable (VOC) and extractable (SVOC) organic compound. If both VOC and SVOC are analyzed, the highest value must be used unless the QC criteria for one of the analyses is not met. In such cases, the value from the analysis meeting the QC criteria must be used.

⁶ The sum of individual phthalate compounds(not including the #34, Bis (2-Ethylhexyl) Phthalate . The compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measurement of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁷ Although the maximum value for the individual PAH compounds is 0.0038 ug/l, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

⁸ In the November 2002 WQC, EPA has revised the definition of Total PCBs for aquatic life as total PCBs is the sum of all homologue, all isomer, all congener, or all "Oroclor analyses."Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measure of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁹Although the maximum value for total PCBs is 0.000064 ug/l, the compliance limit is equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., 0.5 ug/l for Method 608 or 0.00005 ug/l when Method 1668a is approved).
¹⁰ Hardness. Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc are Hardness Dependent.

¹¹ For a Dilution Factor (DF) from 1 to 5, metals limits are calculated using DF times the base limit for the metal. See Appendix IV. For example, iron limits are calculated using DF x 1,000ug/L (the iron base limit). Therefore DF is 1.5, the iron limit will be 1,500 ug/L; DF 2, then iron limit =1,000 x 2 =2,000 ug/L., etc. not to exceed the DF=5.

Minimum Level (ML) is the lowest level at which the analytical system gives a recognizable signal and acceptable calibration point for the analyte. The ML represents the lowest concentration at which an analyte can be measured with a known level of confidence. The ML is calculated by multiplying the laboratory-determined method detection limit by 3.18 (see 40 CFR Part 136, Appendix B).

¹³pH sampling for compliance with permit limits may be performed using field methods as provided for in EPA test Method 150.1.

Temperature sampling per Method 170.1

September 25, 2013 Project No. 03-50098.13

Mr. Victor Alvarez U.S. Environmental Protection Agency EPA-Region 1 5 Post Office Square Mail Code OEP06-4 Boston, MA 02109-3912

RE: Notice of Intent for Remediation General Permit Cumberland Farms Store #1286 324 Marrett Road Lexington, MA 01518 RTN 3-15876

Dear Mr. Alvarez:

Environmental Compliance Services, Inc. (ECS) is pleased to provide supporting documentation for the Notice of Intent (NOI) for the Remediation General Permit (RGP) on behalf of Cumberland Farms, Inc. (CFI), for the above-referenced property. The property is a retail gas station, automotive repair and convenience store and has been a gas station since 1935. No information on the prior use of the Site has been obtained. This NOI is being submitted in order to obtain a permit for the operation of a temporary groundwater recovery and treatment system (GWTS) at the Site. The GWTS is required to be operated at the Site in order to allow for the removal and replacement of petroleum underground storage tanks (USTs) during site redevelopment. A Site Locus is provided as Figure 1 and a Site Plan is provided as Figure 2. A Flow Schematic of the dewatering treatment plan is included as Figure 3. A Dewatering Discharge Location Plan of existing features has been attached as Figure 4. The A copy of the NOI form is provided as Attachment I.

System Design

Groundwater treatment will occur prior to discharge to the storm water manhole located at the southwest corner of the intersection of Marrett Road and Waltham Street. According to the Lexington Department of Public Works Engineer (Dave Pavlik), the storm water manhole drains to the south, at emerges at the outfall designated OF2-21, which joins the Cleamatis Brook, which joins Beaver Brook and ultimately becomes part of the Charles River. Please refer to Figure 4 for the estimated storm drain path running toward Beaver Brook.

The groundwater treatment system located on the Site will be composed of the following:

Submersible pneumatic pumps will collect groundwater from the UST excavation area, then recovered groundwater will be pumped into a 20,000 gallon frac tank (to settle out solids and

metals) and then processed through through particulate filters and two-1,000 lbs. liquid phase granular activated carbon (GAC) units for the removal of volatile organic carbons and iron. A line diagram of the groundwater treatment system is provided as Figure 3.

Average flow rate of discharge of treated groundwater from the system to the storm water line is expected to be approximately 50 gallons per minute (gpm). The design capacity of the groundwater treatment system is 75 gpm based upon data collected from comparable systems installed at other remedial sites operated/designed by ECS.

Influent Sample Analysis

Groundwater samples were collected from monitoring well MW-2 on August 27, 2013 to evaluate groundwater quality. These samples were submitted to Spectrum Analytical, Inc. of Agawam, Massachusetts under standard chain of custody protocol for analysis of total petroleum hydrocarbons (TPH), volatile organic compounds (VOCs), total metals (iron and lead), and total suspended solids. A copy of the laboratory reports and chains of custody record are provided as Attachment II.

Appendix III of the 2010 RGP under NPDES sets the effluent limitations for treatment system discharges. Groundwater analytical results of the samples collected from MW-2 have been compared to the Appendix III effluent limitations (www.epa.gov/region1/npdes/rgp.html). These results indicate that the petroleum constituents (i.e., benzene, total benzene, toluene, ethylbenzene, and xylenes (BTEX), methyl tert butyl ether (MTBE), and naphthalene) and iron were detected in the samples at concentrations above the applicable Appendix III effluent limitations for Subcategory A-gasoline only sites.

Receiving Waters Information

According to the Lexington Town Engineer, the receiving water for the treated groundwater discharge is the Cleamatis Brook, which Google Maps identifies as Beaver Brook and is located approximately 2,000 feet south of the Site. ECS consulted the online United States Geological Survey (USGS) Streamstats program to determine the 7Q10 flow rate at the discharge location (<u>http://ma.water.usgs.gov/streamstats/</u>, accessed September 24, 2013). Data obtained from the online resource indicated that the 7Q10 flow rate for the drainage basin which includes the discharge point and outfall south of the Site is 0.0083 cubic feet per second (cfs). Data obtained from the Streamstats program have been attached as Attachment III.

Receiving Water Classification

ECS consulted the Massachusetts Department of Environmental Protection (MassDEP) Division of Water Pollution Control (http://www.mass.gov/dep/water/laws/tblfig.pdf) to determine the classification for the receiving waters. The Charles River is listed as Class B surface water.

<u>Evaluation of Threatened or Endangered Species or Critical Habitat Located within</u> <u>Receiving Waters</u>

According to Massachusetts Geographic Information Systems (MassGIS) online maps for the Natural Heritage Endangered Species Program (NHESP) (2008), no Priority Habitat of Rare

Species or Estimated Habitats of Rare Wildlife are located within the proposed at or immediately adjacent to the work zone area. The closest NHESP Estimated Habitats of Rare Wildlife is located approximately 3.2 miles south/southwest of the Site. A copy of the MassGIS Resource Priority and NHESP Maps of the Site area is included in Attachment IV.

Review of National Register of Historic Places

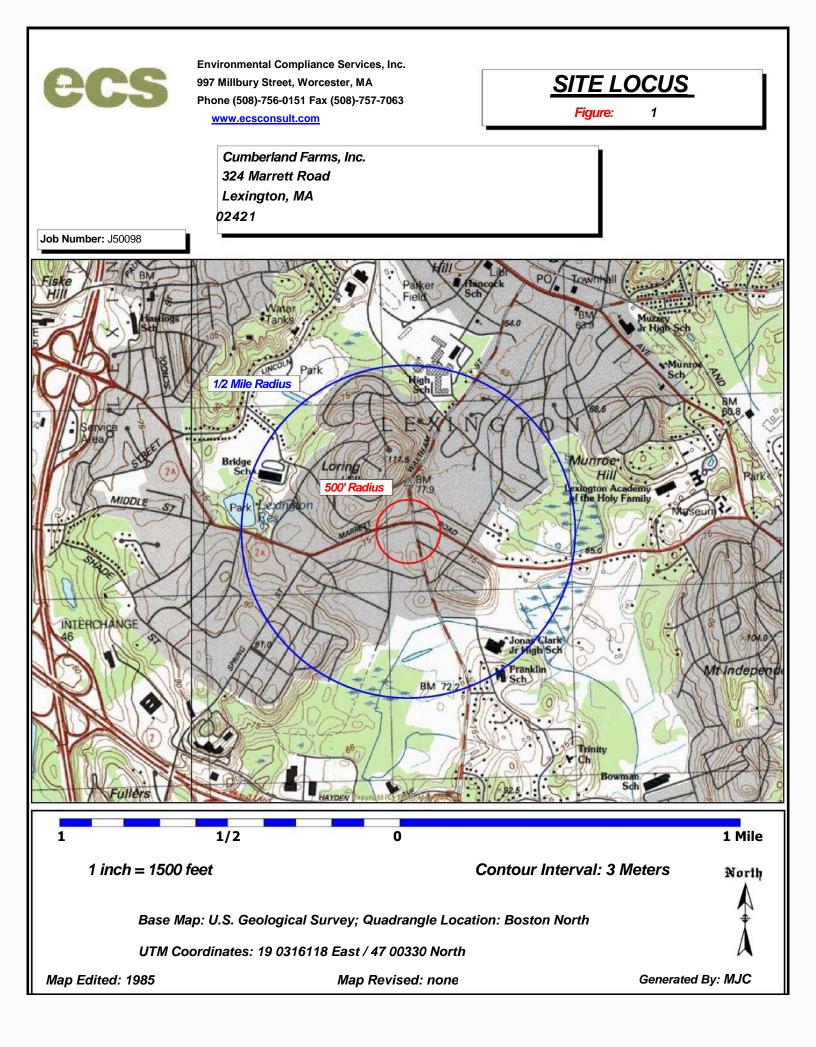
Listings of Historic Places within the Town of Lexington in the vicinity of the Site were obtained from the Massachusetts Cultural Resources Information System (MACRIS) online database at http://mhc-macris.net/towns.aspx (accessed September 23, 2013). Copies of the MACRIS report are provided as Attachment V. The database indicated that there are no historic places located in close proximity to the Site and proposed discharge area. This project does not involve the demolition or rehabilitation of historic properties.

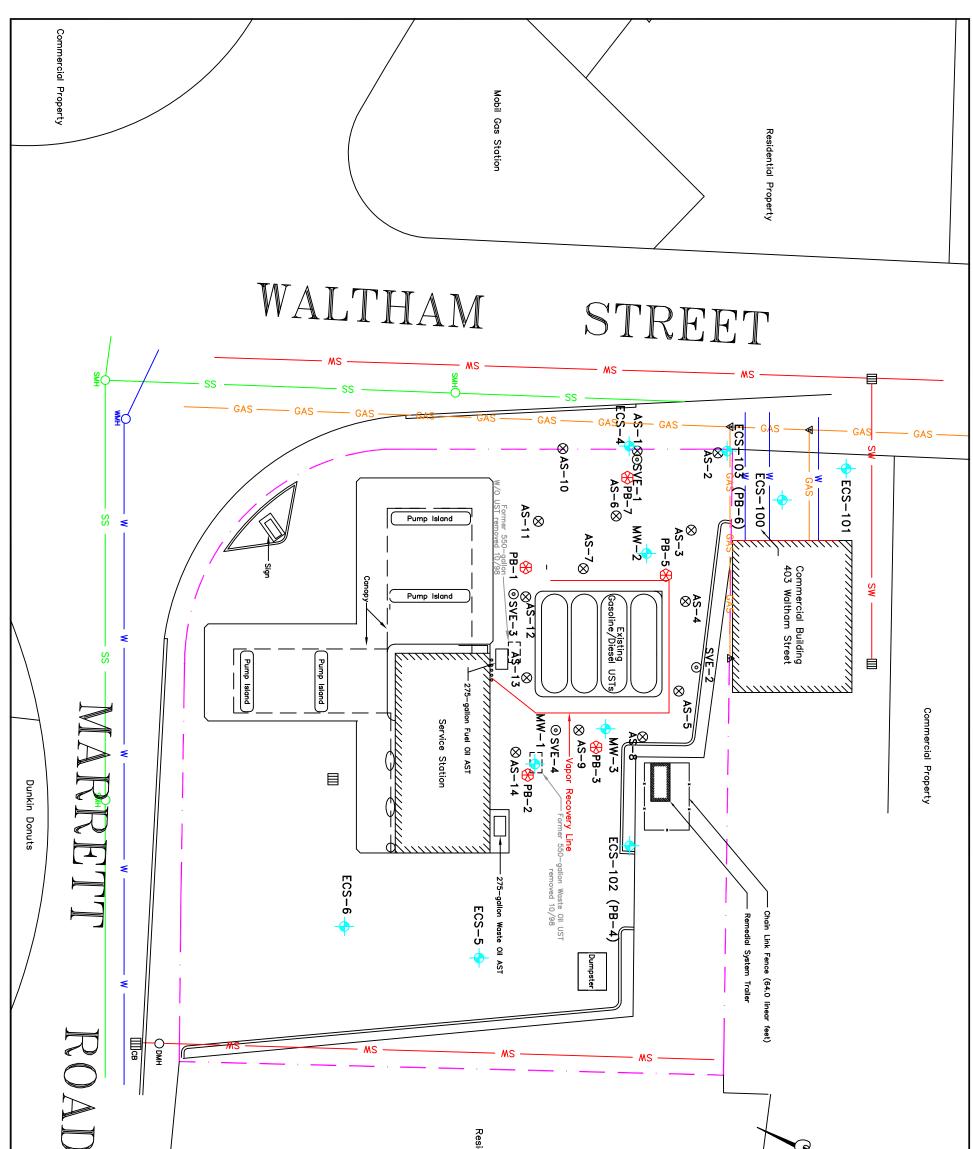
Should you have any questions or concerns regarding the contents of this letter or the NOI for the RGP, please do not hesitate to contact the undersigned at (508) 756-0151.

Sincerely, ENVIRONMENTAL COMPLIANCE SERVICES, INC.

aaron Kacjowka

Aaron Kaczowka Project Manager

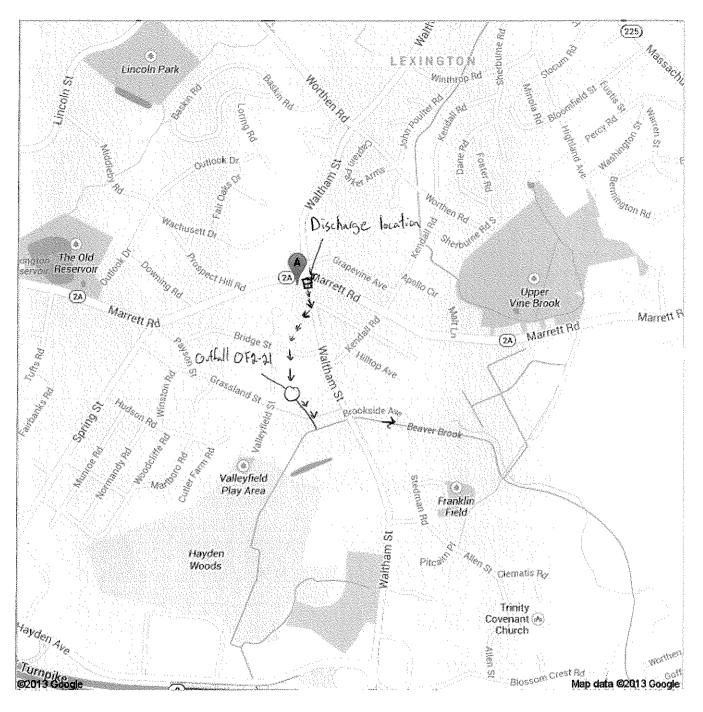

 Matthew Young, Cumberland Farms, Inc., 100 Crossing Blvd, Framingham, MA 01702 Robert Kubit, MassDEP, Division of Watershed Management, 627 Main Street, Worcester, MA 01608
 William Hadley, Lexington Department of Public Works, 201 Bedford Street, Lexington, MA, 02420
 Karen Mullins, Lexington Conservation Commission, 1625 Massachusetts Avenue, Lexington, MA 02420


LIST OF ATTACHMENTS

Figures Figure 1: Site Locus Figure 2: Site Plan Figure 3: Flow Schematic Figure 4: Dewatering Discharge Location Plan

Attachment I: NOI for the RGP Attachment II: Laboratory Analytical Reports and Chain of Custody Records Attachment III: StreamStats Site Report Attachment IV: On-line MassGIS Resource Priority & NHESP Maps Attachment V: MACRIS Database Search Results

FIGURES



		sidential Property	
TITE SITTE PLAN COMPTIE SALE COMPTIE SAL	ENVIRONMENTAL COMPLIANCE SERVICES, INC. 10 State Street * Woburn, MA 01801 MOLECI CUMBERLAND FARMS, INC. 324 MARRETT ROAD LEXINGTON, MA	General Notes: Site plan prepared from town of Lexington Assessors Maps and measurements obtained during site reconnaissance by ECS, Inc. All locations, dimensions, and property lines depicted on this plan are approximate. This plan should not be used for construction or land conveyance purposes. Horizontal, and vertical locations of wells, and selected site features determined through measurements made by representatives of ECS.	Legend Approximate Property Line Sanitary Sewer Line Storm Sewer Line Water Line Matural Gas Line Overhead Electric Line ● Manhole ■ Catchbasin → Fire Hydrant → Utility Pole ⊗ Air Sparge Well ● Soil Vapor Extraction Well ECS-1 Well I.D. ⊗ Soil Boring

ていかん (Towarte Ţ たちょうとの下午に でいくい Z Ø 100 r S N N N S S S S 2 P

Address 324 Marrett Rd Lexington, MA 02421

ATTACHMENT I

NPDES Permit No. MAG910000 NPDES Permit No. NHG910000

Remediation General Permit Appendix V

Notice of Intent (NOI) Suggested Forms & Instructions

I. Notice of Intent (NOI) Suggested Form and Instructions

In order to be covered by the remediation general permit (RGP), applicants must submit a completed Notice of Intent (NOI) to EPA Region I and the appropriate state agency. The owner or operator, as defined by 40 CFR § 122.2, means the owner or operator of any "facility or activity" subject to regulation under the NPDES program.

The following are three general "operator" scenarios (variations on any of these three are possible, especially as the number of owners and contractors increases):

► "Owner" as "Operator" - sole permittee. The property owner designs the structures and control systems for the site, develops and implements the BMPP, and serves as general contractor (or has an on-site representative with full authority to direct day-to-day operations). Under the definition of operator, in this case, the "Owner" would be considered the "operator" and therefore the only party that needs permit coverage. Everyone else working on the site may be considered subcontractors and do not need to apply for permit coverage.

"Contractor" as "Operator" - sole permittee. The property owner hires a company (e.g., a contractor) to design the project and oversee all aspects, including preparation and implementation of the BMPP and compliance with the permit (e.g., a "turnkey" project). Here, the contractor would likely be the only party needing a permit. Similarly, EPA expects that property owners hiring a contractor or consultant to perform groundwater remediation work (e.g., due to a leaking fuel oil tank) would come under this type of scenario. EPA believes that the contractor, being a professional in the industry, should be the responsible entity rather than the individual. The contractor is better equipped to meet the requirements of both applying for permit coverage and developing and properly implementing the plans needed to comply with the permit. However, property owners would also meet the definition of "operator" and require permit coverage in instances where they perform any of the required tasks on their personal properties.

► "Owner" <u>and "Contractor" as "Operators" - co-permittees</u>. The owner retains control over any changes to site plans, BMPPs, or wastewater conveyance or control designs, but the contractor is responsible for conducting and overseeing the actual activities (e.g., excavation, installation and operation of treatment train, etc.) and daily implementation of BMPP and other permit conditions. In this case, <u>both</u> parties need to apply for coverage.

Generally, a person would not be considered an "operator," and subsequently would not need permit coverage, if: 1) that person is a subcontractor hired by, and under the supervision of, the owner or a general contractor (e.g., if the contractor directs the subcontractor's activities on-site, it is probably not an operator); or 2) the person's activities would otherwise result in the need for coverage under the RGP but another operator has legally assumed responsibility for the impacts of project activities.

A. Instructions for the Suggested Notice of Intent (NOI) - At a minimum, the Notice of Intent must include the following for each individual facility or site. Additional information may be attached as needed.

1. General facility/site information.

a) Provide the facility/site name, mailing address, and telephone and fax numbers. Provide the facility Standard Industrial Classification (SIC) code(s), which can be found online at <u>http://www.osha.gov/pls/imis/sic_manual.html</u>. Provide the site location, including longitude and latitude.

b) Provide the facility/site owner's name, address, email address, telephone and fax numbers, if different from the site information. Indicate whether the owner is a Federal, State/Tribal, private, or other entity.

c) Provide the site operator's (e.g., contractor's) name, mailing address, telephone and fax numbers, and email address if different from the owner's information.

d) For the site for which the application is being submitted, indicate whether:

1) a prior NPDES permit exclusion has been granted for the discharge (if so, provide the tracking number of the exclusion letter);

2) a prior NPDES application (Form 1 & 2C – for reference, please visit <u>http://www.epa.gov/region1/npdes/epa_attach.html</u>) has ever been filed for the discharge (if so, provide the tracking number and date that the application was submitted to EPA);

3) the discharge is a "new discharge" as defined by 40 CFR 122.2; and

4) for sites in Massachusetts, is the discharge covered under the Massachusetts Contingency Plan (MCP) 310 CMR 40.0000 and exempt from state permitting.

e) Indicate whether there is any ongoing state permitting, licensing, or other action regarding the facility or site which is generating the discharge. If "yes," provide any site identification number assigned by the state of NH or MA, any permit or license number assigned, and the state agency contact information (e.g. name, location, telephone no.).
f) Indicate whether or not the facility is covered by other EPA permits including:

- the Multi-Sector General Permit (MSGP) http://cfpub.epa.gov/npdes/stormwater/msgp.cfm;
- the Final NPDES General Permit for Dewatering Activity Discharges in Massachusetts and New Hampshire http://www.epa.gov/region1/npdes/dewatering.html;
- the EPA Construction General Permit http://cfpub.epa.gov/npdes/stormwater/cgp.cfm;
- 4) an individual NPDES permit; or
- 5) any other water quality-related individual or general permit.
- If so, provide permit tracking number(s).

g) Indicate if the site/facility discharge(s) to an Area of Critical Environmental Concern

(ACEC), as shown on the tables and maps in Appendix I.

h) Based on the nature of the facility/site and any historical sampling data, the applicant must indicate which of the sub-categories within which the potential discharge falls.

2. Discharge information.

a) Describe the discharge activities to be covered by the permit. Attach additional sheets as needed.

b) Provide the following information about each discharge:

1) the number of discharge points;

2) the maximum and average flow rate of the discharge in cubic feet per second. For the average flow magnitude, include the units and appropriate notation if this value is a calculated design value or estimate if technical/design information is not available;3) the latitude and longitude of each discharge with an accuracy of 100 feet (see

EPA's siting tool at: http://www.epa.gov/tri/report/siting_tool);

4) the total volume of potential discharge (gal), only if hydrostatic testing;

5) whether the discharge(s) is intermittent or seasonal and if ongoing.

c) Provide the expected start and end dates of discharge (month/day/year).

d) Attach a line drawing or flow schematic showing water flow through the facility including:

1) sources of intake water;

2) contributing flow from the operation;

3) treatment units; and

4) discharge points and receiving waters(s).

3. Contaminant information.

In order to complete the NOI, the applicant will need to take a minimum of one sample of the untreated water and have it analyzed for the parameters applicable to the sub-category into which the discharge falls, as listed in Appendix III of the permit and selected in Part 1 of the NOI form, except as noted below.

Permittees shall provide additional sampling results with the NOI if such sampling already exists, or if the permittee has reason to believe the site contains additional contaminants not listed in Appendix III for that sub-category or contains additional contaminants not included in Appendix III.

The applicant may use historical data as a substitute for the new sample if the data was collected no more than 2 years prior to the "Submittal of the NOI" and if collected pursuant to:

i. for sites in Massachusetts, 310 CMR 40.0000, the Massachusetts Contingency Plan ("Chapter 21E");

ii. for sites in New Hampshire, New Hampshire's Title 50 RSA 485-A: Water Pollution and Waste Disposal or Title 50 RSA 485-C: Groundwater Protection Act;

a) Based on the analysis of the untreated influent, the applicant must indicate whether each listed chemical is believed present or believed absent in the potential discharge. Based on the required sampling and analysis, the applicant must fill in the table, or provide a narrative description, with the following additional information for each chemical that is believed present (chemical that violate EPA's criteria limitations):

1) the number of samples taken (minimum of one sample for applicable parameters per Appendix III);

2) the type of sample (e.g. grab, composite, etc.);

3) the analytical method used, including the method number;

4) the minimum level (ML) of the method used (based on Appendix VI);

5) the maximum daily amount (concentration (ug/l) and mass (kg)) of each pollutant, based on the sampling data

lb/day (pounds per day) equals flow (in million gallons per day, MGD) times concentration in milligrams per liter (mg/l) times 8.34. Example: 2.5 MGD x 30 mg/l TSS x 8.34 = 625.5 lb TSS/day MGD = gallons per minute (gpm) x 0.00144 1 kg = 2.2 lbs

And;

6) the average daily amount (concentration and mass) of each pollutant, based on the sampling data.

If the results of any sampling indicate that pollutants exist in addition to those listed in Appendix III of the RGP of the permit, the applicant must also describe those contaminants on the NOI in boxes in section I.3.c.)on the line marked "Other," or use additional sheets as needed. Subsequently, EPA may require monitoring for such parameters or will decide if an individual permit is necessary.

c) Determination of Reasonable Potential and Allowable Dilution for Discharges of Metals:

If any *metals* are believed present in the potential discharge to freshwater¹, the applicant must follow the procedures below to determine the dilution factor for each metal.

Step 1: Initial Evaluation

1) The applicant must evaluate all metals believed present in the discharge subject to this permit, including "naturally occurring" metals such as dissolved and/or total Iron. Applicants must enter the highest detected concentration of the metal at zero dilution in the "Maximum value" column of the NOI.

2) Based on the maximum concentration of each metal, the applicant must perform an initial evaluation assuming zero dilution in the receiving water. The applicant must compare the metals concentrations in the untreated (intake) waters to the effluent limits contained in Appendix III.

¹Dilution factors may be available for discharges to saline waters but only with approval of the flow modeling information from the State prior to the submission of the NOI.

i. If potential discharges (untreated influent) with metals contain concentrations above the concentration limits listed in Appendix III, applicant must proceed to step 2.

ii. If potential discharges (untreated influent) with metals contain concentrations below the concentrations listed in Appendix III, the applicant may skip step 2 and those metals will **not** be subject to permit limitations or monitoring requirements.

Step 2: Calculation of Dilution Factor

1) For applicants in NH: If a metal concentration in a potential discharge (untreated influent) to freshwater exceeds the limits in Appendix III with zero dilution, the applicant shall evaluate the potential concentration considering a dilution factor (DF) using the formula below. For sites in New Hampshire, the applicant must contact NH DES to determine the 7Q10 and dilution factor.

 $DF = [(Qd + Qs)/Qd] \ge 0.9$

Where:	DF	= Dilution Factor
	Qd	= Maximum flow rate of the discharge in
		cubic feet per second (cfs) (1.0 gpm = .00223 cfs)
÷	Qs	= Receiving water 7Q10 flow, in cfs, where 7Q10 is the annual
		minimum flow for 7 consecutive days with a recurrence interval
		of 10 years
	0.9	= Allowance for reserving 10% of the assets in the receiving
		stream as per Chapter ENV-Wq 1700, Surface Water Quality
		Regulations

i. Using the DF calculated from the formula above, the applicant must refer to the corresponding dilution range column in Appendix IV. The applicant then compares the maximum concentration of the metal entered on the NOI to the corresponding total recoverable metals limits listed in Appendix IV. Please note that for this reissuance the applicant will be permitted to determine a limit using any fraction within the 1-5 dilution factor range times the metal limit (for all regulated metals). For example: if the DF is 1.5, the Iron limit is 1,500 ug/L; if the DF is 1.5, the antimony limit is 8.4, etc. All limits above a dilution factor of 5 are maintained.

1. If a metal concentration in the potential discharge (untreated influent) is less than the corresponding limit in Appendix IV, the metal will **not** be subject to permit limitations or monitoring requirements.

2. If a metal concentration in the potential discharge (untreated influent) is equal to or exceeds the corresponding limit in Appendix IV, the applicant must reduce it in the effluent to a concentration below the applicable total recoverable metals limit in Appendix IV prior to discharge. ii. In either case, the applicant must submit the results of this calculation as part of the NOI. EPA and NH DES will review the proposed effluent limitations for each metal and approve or disapprove the limits in the notification of coverage letter to the applicant.

2) For applicants in MA: If a metal concentration in a potential discharge (untreated influent) to **freshwater** exceeds the limits in Appendix III with zero dilution, the applicant must evaluate the potential concentration considering a dilution factor (DF) using the formula below.

DF = (Od + Os)/Od

Where:	DF	= Dilution Factor
	Qd	= Maximum flow rate of the discharge in cubic feet per second
		(cfs) (1.0 gpm = .00223 cfs)
	Qs	= Receiving water 7Q10 flow (cfs) where 7Q10 is the minimum
		flow (cfs) for 7 consecutive days with a recurrence interval of
		10 years

i. The applicant may estimate the 7Q10 for receiving water by using available information such as nearby USGS stream gauging stations directly or by application of certain "flow factors," using historic streamflow publication information, calculations based on drainage area, information from state water quality offices, or other means. In many cases Massachusetts has calculated 7Q10 information using "flow factors" for a number of streams in the state. The source of the low flow value(s) used by the applicant must be included on NOI application form. Flow data can also be obtained from web applications such as the one located at: http://ma.water.usgs.gov/streamstats/.

ii. Using the DF calculated from the formula above, the applicant must refer to the corresponding dilution range column in Appendix IV. The applicant then shall compare the maximum concentration of each metal entered on the NOI to the corresponding total recoverable metals limit listed in Appendix IV. Please note that for this reissuance the applicant will be permitted to determine a limit using any fraction of the 0-5 of DF times the metal limit (for all regulated metals). For example: if the DF is 1.5, the Iron limit is 1,500 ug/L; if the DF is 1.5, the antimony limit is 8.4, etc. Not to exceed DF of 5.

1. If a metal concentration in the potential discharge (untreated influent) is less than the corresponding limit in Appendix IV, the metal will not be subject to permit limitations or monitoring requirements.

2. If a metal concentration in a potential discharge (untreated influent) is equal to or exceeds the corresponding limit in Appendix IV, the applicant must reduce it in the effluent to a concentration below the applicable total recoverable metals limit in Appendix IV prior to discharge.

iii. The applicant must submit the results of this calculation as part of the NOI. EPA (and MassDEP where the discharge is not covered by 310 CMR 40.0000) will review the proposed effluent limitations for each metal and approve or disapprove the limits in the notification of coverage letter to the applicant.

4. Treatment system information.

a) Provide a written description of the treatment train and how the system will be set up for each discharge and attach a schematic of the proposed or existing treatment system(s).
b) Identify each major treatment unit (e.g. frac tanks, filters, air stripper, liquid phase/vapor phase activated carbon, oil/water separators, etc.) by checking all that apply and describing any additional equipment not listed. Attach additional sheets as needed.
c) Provide the proposed average and maximum flow rates (in gallons per minute, gpm) for the discharge and the design flow rates (in gpm) of the treatment system. Clearly identify the component of the treatment with the most limited flow, i.e., the part of the treatment train that establishes the design flow.

d) Describe any chemical additives being used, or planned to be used, and attach MSDS sheets for each. EPA may request further information regarding the chemical composition of the additive, potential toxic effects, or other information to insure that approval of the use of the additive will not cause or contribute to a violation of State water quality standards. Approval of coverage under the RGP will constitute approval of the use of the chemical additive(s). If coverage of the discharge under the RGP has already been granted and the use of a chemical additive becomes necessary, the permittee must submit a Notice of Change (NOC).

5. Receiving surface water(s) information.

a) Identify the discharge pathway by checking whether it is discharged: directly to the receiving water (river, stream, or brook), within the facility (e.g., through a sewer drain), to a storm drain, to a wetland, or other receiving body.

b) Provide a narrative description of the discharge pathway, including the name(s) of the receiving waters into which discharge will occur.

c) Provide a detailed map(s) indicating the location of the site and outfall(s) to the receiving water(s):

1) For multiple discharges, the discharges should be numbered sequentially.

2) In the case of indirect dischargers (to municipal storm sewer, etc) the map(s) must be sufficient to indicate the location of the discharge to the indirect conveyance and the discharge to the state classified surface water. The map should also include the location and distance to the nearest sanitary sewer as well as the locus of nearby sensitive receptors (based on USGS topographical mapping), such as surface waters, drinking water supplies, and wetland areas.

d) Provide the state water quality classification of the receiving water and the basin (for Massachusetts, the Surface Water Quality Standards (314 CMR 4.00) are available at <u>http://www.mass.gov/dep/water/laws/regulati.htm#wqual</u>) (for New Hampshire, contact the NH DES at (603) 271-2984).

e) Specify the reported seven day-ten year low flow (7Q10) of the receiving water (see Section I.A.3) c. above). In New Hampshire, the 7Q10 must be provided by to the applicant by the New Hampshire Department of Environmental Services.

f) Indicate whether the receiving water is a listed 303(d) water quality impaired or limited water and if so, for which pollutants (see Section IX of the Fact Sheet for additional information).

For MA, the most updated integrated list of waters (CWA 303(d) and 305(b)) is available at <u>http://www.mass.gov/dep/water/resources/tmdls.htm#info</u>.

For NH, the most updated integrated list of waters (CWA 303(d) and 305(b)) is available at <u>http://des.nh.gov/organization/divisions/water/wmb/swqa/index.htm</u>.

Also, indicate if there is a final TMDL for any of the listed pollutants. For MA, final TMDLs can be found at: <u>http://www.mass.gov/dep/water/resources/tmdls.htm</u> and for NH, final TMDLs can be found at

http://des.nh.gov/organization/divisions/water/wmb/tmdl/index.htm. For more information, contact the states at: New Hampshire Department of Environmental Services, Watershed Management Bureau at 603-271-3503 or the Massachusetts Department of Environmental Protection at 508-767-2796 or 508-767-2873.

6. ESA and NHPA Eligibility.

As required in Parts I.A.4 and Appendix VII the operator of a site/facility must ensure that the potential discharge will not adversely affect endangered species, designated critical habitat, or national historic places that are in proximity to the potential discharge. If the potential discharge is to certain water bodies, the applicant must also submit a formal certification with the NOI that indicates the consultation, with the U.S. Fish and Wildlife Service and National Marine Fisheries Service (the Services), resulted in either a no jeopardy opinion or a written concurrence on a finding that the discharge is not likely to adversely affect any endangered species or critical habitat. Facilities should begin the consultation as early in the process as possible.

a) Using the instructions in Appendix VII and information in Appendix II, indicate under which criterion listed you are eligible for coverage under this general permit.

- b) If you selected criterion D or F, indicate if consultation with the federal services has been completed or if it is underway.
- c) If consultation with the U.S. Fish and Wildlife Service and/or NOAA Fisheries Service was completed, indicate if a written concurrence finding that the discharge is "not likely to adversely affect" listed species or critical habitat was received.
- d) Attach documentation of ESA eligibility as described below and required in Appendix VII, Part I.C, Step 4.
- Criterion A No federally-listed threatened or endangered species or federally-designated critical habitat are present: A copy of the most current county species list pages for the county(ies) where your site or facility and discharges are located. You must also include a statement on how you determined that no listed species or critical habitat are in proximity to your site or facility or discharge locations.
- Criterion B Section 7 consultation completed with the Service(s) on a prior project: A copy of the USFWS and/or NOAA Fisheries, as appropriate, biological opinion or concurrence on a finding of "unlikely to adversely effect" regarding the ESA Section 7 consultation.
- Criterion C Activities are covered by a Section 10 Permit: A copy of the USFWS and/or the NOAA Fisheries, as appropriate, letter transmitting the ESA Section 10 authorization.

Remediation General Permit Appendix V - NOI

- Criterion D Concurrence from the Service(s) that the discharge is "not likely to adversely affect" federally-listed species or federally-designated critical habitat (not including the four species of concern identified in Section I of Appendix I): A copy of the USFWS and/or the NOAA Fisheries, as appropriate, letter or memorandum concluding that the discharge is consistent with the general permit's "not likely to adversely affect" determination.
- Criterion E Activities are covered by certification of eligibility: A copy of the documents originally used by the other operator of your site or facility (or area including your site) to satisfy the documentation requirement of Criteria A, B, C or D.
- Criterion F Concurrence from the Service(s) that the discharge is "not likely to adversely affect" species of concern, as identified in Section I of Appendix I: A copy of the USFWS and/or the NOAA Fisheries, as appropriate, concurrence with the applicant's determination that the discharge is "not likely to adversely affect" listed species.

e) Using the instructions in Appendix VII, identify which criterion listed in Part C makes you eligible for coverage under this general permit.

f) If Criterion 3 was selected, attach all written correspondence with the State or Tribal historic preservation officers, including any terms and conditions that outline measures the applicant must follow to mitigate or prevent adverse effects due to activities regulated by the RGP.

<u>7. Supplemental information.</u> Applicants should provide any supplemental information needed to meet the requirements of the permit, including any analytical data used to support the application, and any certification(s) required.

<u>8. Signature Requirements</u> - The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit

1. General facility/site information. Please provide the following information about the site:	provide the	e following information al	oout the site:	
a) Name of facility/site : Cumberland Farms # 1286		Facility/site mailing address:	Iress:	
Location of facility/site : Fac longitude: <u>[7114620</u> cod latitude:[4226937 5541	Facility SIC code(s): 5541	Street: 324 Marrett Road		
b) Name of facility/site owner:		Town: Lexington		
Email address of facility/site owner:	sananya kata kata kata kata kata kata kata ka	State:	Zip: County:	ity:
myoung@cumberlandgulf.com			01 61 Q	
Telephone no. of facility/site owner: 508-270-4477	77			sser
Fax no. of facility/site owner: 781-459-0454		Owner is (check one): 1	Owner is (check one): 1. Federal O 2. State/Tribal O	ibal O
Address of owner (if different from site):		3. Private 🕲 4. Other 🔘 if so. describe:	O if so. describe:	
Street: 100 Crossing Boulevard				
Town: Framingham Sta	State: MA	Zip: 01702	County: Middlesex	
c) Legal name of operator: Op	erator tel	Operator telephone no: 508-270-4477		
Cumberland Farms, Inc.	erator fax	Operator fax no.:781-459-0454	Operator email: myoung@cumberlandgulf.co	@cumberlandgulf.co
Operator contact name and title: Matthew Youn	g, Senior P	Matthew Young, Senior Project Manager	and a second	
Address of operator (if different from Strowner):	Street:			
Town: State:	te:	Zip:	County:	

Remediation General Permit Appendix V.- NOI

Page 10 of 22

NPDES Permit No. MAG910000 NPDES Permit No. NHG910000

d) Check Y for "yes" or N for "no" for the following: 1. Has a prior NPDES permit exclusion been granted for the discharge? Y \odot N \odot , if Y, number: 2. Has a prior NPDES application (Form <u>1 & 2C) ever been filed for the discharge?</u> Y \odot N \odot , if Y, date and tracking #:	ne discharge? Y O N O, if Y, number:
3. Is the discharge a "new discharge" as defined by 40 CFR 122.2? Y \odot N \odot 4. For sites in Massachusetts, is the discharge covered under the Massachusetts C permitting? Y \odot N \odot	" as defined by 40 CFR 122.2? Y \odot N \odot discharge covered under the Massachusetts Contingency Plan (MCP) and exempt from state
 e) Is site/facility subject to any State permitting, license, or other action which is causing the generation of discharge? Y O N O If Y, please list: 1. site identification # assigned by the state of NH or MA. 	f) Is the site/facility covered by any other EPA permit, including: 1. Multi-Sector <u>General Permit?</u> N O, if Y, number: 2. Final Dewatering <u>General Permit?</u> Y O N O, if Y, number: A PDA Construction General Dermit? Y O N O
 2. permit or license # assigned: 3. state agency contact information: name, location, and telephone number: 	if Y, number: A. Individual NPDES permit? Y O N O, if Y, number: 5. any other water quality related individual or general permit? Y O N O, if Y, number: A. Individual or general permit? Y O
g) Is the site/facility located within or does it discharge to	g) Is the site/facility located within or does it discharge to an Area of Critical Environmental Concern (ACEC)? Y O N O
h) Based on the facility/site information and any historica discharge falls.	h) Based on the facility/site information and any historical sampling data, identify the sub-category into which the potential discharge falls.
Activity Category	Activity Sub-Category
I - Petroleum Related Site Remediation	A. Gasoline Only Sites B. Fuel Oils and Other Oil Sites (including Residential Non-Business Remediation Discharges) C. Petroleum Sites with Additional Contamination
II - Non Petroleum Site Remediation	A. Volatile Organic Compound (VOC) Only Sites B. VOC Sites with Additional Contamination C. Primarily Heavy Metal Sites
III - Contaminated Construction Dewatering	A. General Urban Fill Sites

Page 11 of 22

Remediation General Permit Appendix V - NOI

IV - Miscellaneous Related Discharges	charges	 A. Aquifer Pump Testing to Evaluate Formerly Contaminated Sites B. Well Development/Rehabilitation at Contaminated/Formerly Contaminated Sites C. Hydrostatic Testing of Pipelines and Tanks D. Long-Term Remediation of Contaminated Sumps and Dikes E. Short-term Contaminated Dredging Drain Back Waters (if not covered by 401/404 permit)
2. Discharge information. Pleas	Please provide information	e provide information about the discharge, (attaching additional sheets as necessary) including:
The petroleum station is upgrading their these upgrades. The discharge will be	ng their underground fuel storage tanks and dra will be associated with the dewatering activities.	The petroleum station is upgrading their underground fuel storage tanks and drainage system and dewatering will be necessary to perform hese upgrades. The discharge will be associated with the dewatering activities.
b) Provide the following information about each discharge:	rmation about each discharg	
1) Number of discharge points:	2) What is the maximum and ave Max. flow ¹⁶⁸ Is maxi Average flow (include units) ^{0.168}	2) What is the maximum and average flow rate of discharge (in cubic feet per second, ft^3/s)? Max. flow ¹⁶⁸ Is maximum flow a design value? Y \bigcirc N \bigcirc Average flow (include units) ^{0.168} Is average flow a design value or estimate?
3) Latitude and longitude of each discharge within 100 feet:	e <u>ach discharge wi</u> thin 100 fe	et:
pt.1: lat <u>42.435718</u> long pt.3: lat long	2 71.234714 pt.2: lat.	long.;
		long
testing, he	 Is the discharge Is discharge ongo 	N © or sea
c) Expected dates of discharge (mm/dd/yy): start 10/23/2013	ge (mm/dd/yy): start 10/23/2013	end [1/23/2014
u) ricase auach a mile urawing or i 1. sources of intake water. 2. contri waters(s). Flow Schematic is attached.	IS OF LIOW SCHEMAUC SHOWIN contributing flow from the c	u) rease autom a merometer at the charmed of now sementatic showing water now incougn the facility including: 1. sources of intake water. 2. contributing flow from the operation. 3. treatment units, and 4. discharge points and receiving waters(s), Flow Schematic is attached.

Remediation General Permit Appendix V - NOI

Page 12 of 22

NPDES Permit No. MAG910000 NPDES Permit No. NHG910000

i,

3. Contaminant information.

a) Based on the sub-category selected (see Appendix III), indicate whether each listed chemical is believed present or believed absent in the potential discharge. Attach additional sheets as needed.

	<u>CAS</u> Number	<u>Believed</u> <u>Absent</u>	<u>Believed</u> <u>Present</u>	<u># of</u> Samples	<u>Sample</u> Type <u>(e.e.</u>	<u>Analytical</u> <u>Method</u> <u>Used</u> (method #)	Minimum Level (ML) of Test Method	Maximum daily value concentration mass (ug/l) (kg)	ly value mass (kg)	Average daily valueconcentrationmass(ug/l)(kg)	value mass (kg)
1. Total Suspended Solids (TSS)				2	grab	SM2540D		60,000	54	60,000	54
2. Total Residual Chlorine (TRC)											
3. Total Petroleum Hydrocarbons (TPH)					grab	SM846 35100200		6,500	5.85	6,500	5.85
4. Cyanide (CN) 5	57125										
5. Benzene (B) 7	71432				grab	8260	6.69	42	0.0378	42	p.0378
	108883						8.12	¢10	0	<10	0
7. Ethylbenzene (E) 10	100414				10111111111111111111111111111111111111	A CONTRACT OF A	7.32	174	D.1566	174	0.1566
8. (m,p,o) Xylenes (X) 10 10 9	108883; 106423; 95476; 1330207				grab	8260	25.2	158.1	0.1423	158.1	0.1423
9. Total BTEX ²	n/a	.			grab	8260	47.33	374.1	0.3367	374.4	D.3367
de	106934				grab	8260	3.27	45 5	Ō	< 5 25	0
11. Methyl-tert-Butyl 16 Ether (MtBE)	1634044				grab	8260	23.9	0.02151	23.9	0.02151	23.9
12. tert-Butyl Alcohol 7 (TBA) (Tertiary-Butanol) 7	75650				grab	8260	86.4	132	0.1188	132	0.1188

* Numbering system is provided to allow cross-referencing to Effluent Limits and Monitoring Requirements by Sub-Category included in Appendix III, as well as the Test Methods and Minimum Levels associated with each parameter provided in Appendix VI. ² BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes.

³ EDB is a groundwater contaminant at fuel spill and pesticide application sites in New England.

Remediation General Permit Appendix V - NOI

Page 13 of 22

NPDES Permit No. MAG910000 NPDES Permit No. NHG910000

		- - - -	-	-	Samule	Analytical	Minimum	<u>Maximum daily value</u>	<u>ly value</u>	Average daily value	value
Parameter *	<u>CAS</u> Number	<u>Believed</u> <u>Absent</u>	<u>Believed</u> Present	<u># of</u> Samples	<u>Type</u> (e.g.,	Method Used (method #)	Level (ML) of Test Method	<u>concentration</u> (ue/)	mass (kg)	<u>concentration</u> (<u>us/l</u>)	mass (kg)
13. tert-Amyl Methyl Ether (TAME)	9940508				grab	8260	7.19	<10	0	<10	
14. Naphthalene	91203				grab	8260	5.79	74.9	D.06741	74.9	0.06741
15. Carbon Tetrachloride	56235		North Contraction		grab	8260	5.49	k10	0	<10	0
16. 1,2 Dichlorobenzene (o-DCB)	95501	D			grab	8260	7.81	k10	0	<10	0
17.1,3 Dichlorobenzene (m-DCB)	541731				grab	8260	7.12	<10	0	<10	0
18.1,4 Dichlorobenzene (p-DCB)	106467			1	grab	8260	6.24	<10	ō	<10	a
18a. Total dichlorobenzene					grab	8260	13.36	<20	0	<20	0
19.1,1 Dichloroethane (DCA)	75343				grab	8260	6.80	<10	0	<10	0
20. 1,2 Dichloroethane (DCA)	107062			1	grab	8260	7.81	<10	0	<10	0
21. 1,1 Dichloroethene (DCE)	75354				grab	8260	4.88	<10	0	<10	o
22. cis-1,2 Dichloroethene (DCE)	156592				grab	8260	7.16	<10	q	<10	0
23. Methylene Chloride	75092	1			grab	8260	6.90	K2 0	þ	<20	0
24. Tetrachloroethene (PCE)	127184			1	grab	8260	<mark>7</mark> .43	<10	0	<10	0
25. 1,1,1 Trichloro-ethane (TCA)	71556			1	grab	8260	5.82	<10	¢	<10	0
26. 1,1,2 Trichloro-ethane (TCA)	79005				grab	8260	6.42	<10	0	<10	0
27. Trichloroethene (TCE)	79016			1	grab	8260	7.55	<10	0	<10	

Page 14 of 22

Remediation General Permit Appendix V - NOI

Vo. MAG910000	No. NHG910000
NPDES Permit N	NPDES Permit N

value mass (kg)	0	0	0													
Average daily value concentration mas (ug/l) (kg)	<10	K100	<200													
ly value mass (kg)	0	0	0													
Maximum daily value concentration mass (ug/l) (kg)	k10	≿100	<200													
Minimum Level (ML) of Test Method	8.07	25.6	140													
Analytical Method Used (method #)	8260	8260	8260													
Sample Type (e.g.: grab)	grab	grab	grab													
<u># of</u> Samples				0	0	0	0	0	0	0		0	0	0	0	0
<u>Believed</u> <u>Present</u>														Ċ		
<u>Believed</u> <u>Absent</u>					Ξ	Ξ							-	Ð		
CAS Number	75014	67641	123911	108952	87865		117817		56553	50328	205992	207089	21801	53703	193395	
Parameter *	28. Vinyl Chloride (Chloroethene)	29. Acetone	30. 1,4 Dioxane	31. Total Phenols	32. Pentachlorophenol (PCP)	33. Total Phthalates (Phthalate esters) ⁴	34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)	a. Benzo(a) Anthracene	b. Benzo(a) Pyrene	c. Benzo(b)Fluoranthene	d. Benzo(k)Fluoranthene	e. Chrysene	f. Dibenzo(a,h)anthracene	g. Indeno(1,2,3-cd) Pyrene	36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)

⁴ The sum of individual phthalate compounds.

Remediation General Permit Appendix V - NOI

Page 15 of 22

NPDES Permit No. MAG910000 NPDES Permit No. NHG910000

Seent Samples (Lype Care Care Care Care Care Care Care Car	
	<u> </u>
	<u> </u>
	<u> </u>
	<u> </u>
	<u> </u>
	<u> </u>
	g
	٩
	0
	٩
9rab 6010C	i .
	<u>.</u> .
	.0.
	لم.
	0
	ما
grab 6010C	
	<u>.</u>

Page 16 of 22

Remediation General Permit Appendix V - NOI NPDES Permit No. MAG910000 NPDES Permit No. NHG910000

value mass (kg)	
Average daily concentration (ug/l)	
um daily value ration mass D (kg)	
1 Maximum da concentration (ue/l)	
Minimum Level (ML) of Test Method	
Analytical Method Used (method #)	
Sample Type (e.g., grab)	
<u># of</u> Samples	
<u>Believed</u> <u>Present</u>	
Believed Absent	
<u>CAS</u> Number	
Parameter *	

b) For discharges where metals are believed present, please fill out the following (attach results of any calculations):

<i>Step I</i> : Do any of the metals in the influent exceed the effluent limits in Appendix III (i.e., the limits set at zero dilution)? Y \odot N \odot	If ves. which metals? ron
<i>Step 2</i> : For any metals which exceed the Appendix III limits, calculate the dilution factor (DF) using the formula in Part I.A.3.c (step 2) of the NOI instructions or as determined by the State prior to the submission of this NOI. What is the dilution factor for applicable metals? Metal: DF how to break the DF. DF how tails the dilution break the DF. Etc.	Look up the limit calculated at the corresponding dilution factor in Appendix IV. Do any of the metals in the influent have the potential to exceed the corresponding effluent limits in Appendix IV (i.e., is the influent concentration above the limit set at the calculated dilution factor)? Y O If Y, list which metals:

4. Treatment system information. Please describe the treatment system using separate sheets as necessary, including:

A description of the treatment system, including a schematic of the proposed or existing treatment system: a)

The water from the UST excavation will be pumped into a frac tank for setting, then through two bag filter units in parallell, two 1,000 lbs liquid granular activated carbon vessels in series, and a flow meter prior to discharge to a MassDOT storm drainage manhole. The storm drain located adjacent to the Site on Waltham Street.

					and and the first of the second s	
b) Identify each	Frac. tank 🗉 Air st	ripper 🗖	Oil/water separator	Equalization tanks 🔲 Bag filter 🖪	Bag filter 🖻	GAC filter 🖸
applicable treatment						
unit (check all that	Chlorination De-	De-	Other (please describe):			
apply):		chlorination				
				the state of the s		

Remediation General Permit Appendix V - NOI

Page 17 of 22

-					NPDES Permit No. MAG910000 NPDES Permit No. NHG910000	88
c) Proposed average and maximum flow rates (gallons per minute) for the discharge and the design flow rate (s) (gallons per minute) of the treatment system: Average flow rate of discharge 50 gpm Maximum flow rate of treatment system 75 gpm Design flow rate of treatment system 50 gpm	flow rates (gal gpm M	llons per minute) f Maximum flow rat Jgpm	allons per minute) for the discharge and the Maximum flow rate of treatment system ⁷⁵ gpm	nd the design flow tem ⁷⁵	/ rate (s) (gallons per minute) of gpm	
d) A description of chemical additives being	- i i	planned to be use	used or planned to be used (attach MSDS sheets):	heets):		
None			an she and a she and			
5. Receiving surface water(s). Please provide information about the receiving water(s), using separate sheets as necessary:	se provide infor	mation about the 1	eceiving water(s),	using separate she	sets as necessary:	
a) Identify the discharge pathway:	Direct to receiving water	Within facility (sewer)	Storm drain	Wetlands	Other (descrihe).	
b) Provide a narrative description of the discharge pathway, including the name(s) of the receiving waters: The discharge will be pumped into the stormwater system, come out of the Valleyfield Outfall into the Cleamatic Broo		athway, including , come out of the V	the name(s) of the alleyfield Outfall into	e receiving waters: the Cleamatic Broo	large pathway, including the name(s) of the receiving waters: system, come out of the Valleyfield Outfall into the Cleamatic Brook and then travel to the Charles River.	
c) Attach a detailed map(s) indicating the site location and location of the outfall to the receiving water:1. For multiple discharges, number the discharges sequentially.2. For indirect dischargers, indicate the location of the discharge to the indirect conveyance and the discharge to surface waterThe map should also include the location and distance to the nearest sanitary sewer as well as the locus of nearby sensitive receptors (based on USGS topographical mapping), such as surface waters, drinking water supplies, and wetland areas.	g the site locatic he discharges se the location of th ation and distand uch as surface w	on and location of quentially. It discharge to the ce to the nearest s aters, drinking w	the outfall to the r e indirect conveya anitary sewer as w ater supplies, and	ecceiving water: nce and the discha ell as the locus of wetland areas.	rge to surface water nearby sensitive receptors (based	
d) Provide the state water quality classification of the receiving water	issification of th	e receiving water	ß			
e) Provide the reported or calculated seven day-ten year low flow (7Q10) of the receiving water 0.0083 Please attach any calculation sheets used to support stream flow and dilution calculations.	seven day-ten y used to support	ear low flow (7Q) stream flow and d	10) of the receivin ilution calculation	lg water 0.0083 Is.	cfs	·
a listed 303	(d) water quality	impaired or limit	quality impaired or limited water? Y O	N <u> </u> If yes, for	If yes, for which pollutant(s)?	
Is there a final TMDL? Y O N	• If yes, for w	If yes, for which pollutant(s)?				

t Page 18 of 22

Remediation General Permit Appendix V - NOI

NPDES Permit No. MAG910000 NPDES Permit No. NHG910000
6. ESA and NHPA Eligibility. Please provide the following information according to requirements of Permit Parts I.A.4 and I.A.5 Appendices II and VII.
a) Using the instructions in Appendix VII and information on Appendix II, under which criterion listed in Part I.C are you eligible for coverage under this general permit? A \bigcirc B \bigcirc C \bigcirc D \bigcirc E \bigcirc F \bigcirc F \bigcirc b) If you selected Criterion D or F, has consultation with the federal services been completed? Y \bigcirc N \bigcirc Underway \bigcirc
c) If consultation with U.S. Fish and Wildlife Service and/or NOAA Fisheries Service was completed, was a written concurrence finding that the discharge is "not likely to adversely affect" listed species or critical habitat received? $Y \odot N$
d) Attach documentation of ESA eligibility as described in the NOI instructions and required by Appendix VII, Part I.C, Step 4.
e) Using the instructions in Appendix VII, under which criterion listed in Part II.C are you eligible for coverage under this general permit? $1 \odot 2 \odot 3 \odot$
f) If Criterion 3 was selected, attach all written correspondence with the State or Tribal historic preservation officers, including any terms and conditions that outline measures the applicant must follow to mitigate or prevent adverse effects due to activities regulated by the RGP.
7. Supplemental information.
Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit.

Remediation General Permit Appendix V - NOI

Page 19 of 22

88		ų.		7			1
Vo. MAG9101 No. NHG9101	of 40 CFR	cordance wi iquiry of the the there are as.					
NPDES Permit No. MAG910000 NPDES Permit No. NHG910000	equirements	vision in acc sed on my ir certify that 1 aware that ving violatio					
ZA	e signatory 1	ion or super ubmitted. Ba formation,] tify that I an ent for know			Ser		
	ance with th	er my direct formation si hering the ir iplete. I cer d imprisonm		(of Man		
	8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:	I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalities for submitting false information, including the possibility of fine and imprisonment for knowing violations.			Phicr Project Mensor		
	y the operat	tents were p ather and ev ectly respon true, accur the possibili		\bigcap	Siphici		
	be signed b	l all attachm properly go persons dire e and belief, i, including i		M	5		
	Intent must ification:	ocument and id personnel im, or those information information	9	A	P. Vouna		
	ie Notice of llowing cert	v that this de that qualifie tge the syste the best of n nitting false	Farms # 128	N	then.		
	rements: TH uding the fo	radity of law d to assure is who mand nitted is, to ties for subn	Cumberiand	L'	e: Mq7	011	
]	8. Signature Requirements: The Notice of Intent mu Section 122.22, including the following certification:	I certify under penalty of law that this do a system designed to assure that qualifie, person or persons who manage the syste information submitted is, to the best of m significant penalties for submitting false	Facility/Site Name: Cumberland Farms # 1286	Operator signature:	Printed Name & Title: MG77hew	6113716	
į	8. Signa Section	I cer a sys perst infor signi	Facility.	Operato	Printed	Date	

Remediation General Permit Appendix V - NOI

Page 20 of 22

5

B. Submission of NOI to EPA - All operators applying for coverage under this General Permit must submit a completed Notice of Intent (NOI) to EPA. Signed and completed NOI forms and attachments must be submitted to EPA-NE at:

U.S. Environmental Protection Agency 5 Post Office Square, Suite 100 Mail Code OEP06-4 Boston, MA 02109-3912 ATTN: Remediation General Permit NOI Processing

or electronically mailed to NPDES.Generalpermits@epa.gov

or faxed to the EPA Office at 617-918-0505

If filling out the suggested NOI form electronically on EPA's website, the signature page must be signed and faxed or mailed to EPA at the fax number and/or address listed above.

<u>1. Filing with the states</u> - A copy of any NOI form filed with EPA-NE must also be filed with state agencies. The state agency may elect to develop a state specific form or other information requirements.

a) <u>Discharges in Massachusetts</u> - In addition to the NOI, permit applicants must submit copies of the State Application Form BRPWM 12, Request for General Permit coverage for the RGP. The application form and the Transmittal Form for Permit Application and Payment may be obtained from the Massachusetts Department of Environmental Protection (MassDEP) website at <u>www.state.ma.us/dep</u>. Municipalities are fee-exempt, but should send a copy of the transmittal form to that address for project tracking purposes. All applicants should keep a copy of the transmittal form and a copy of the application package for their records.

1) A copy of the NOI, the transmittal form, a copy of the check, and Form BRPWM 12 should be sent to:

Massachusetts Department of Environmental Protection Division of Watershed Management 627 Main Street, 2nd floor Worcester, MA 01608

2) A copy of the transmittal form and the appropriate fee should be sent to:

Massachusetts Department of Environmental Protection P.O. Box 4062 Boston, MA 02111

Please note: Applicants for discharges in Massachusetts should note that under 310 CMR 40.000, *as a matter of state law*, the general permit only applies to discharges that are **not** subject to the

Remediation General Permit Appendix V - NOI Massachusetts Contingency Plan (MCP) and 310 CMR 40.000. Therefore, discharges subject to the MCP are **not** required to fill out and submit the State Application Form BRPWM 12 or pay the state fees. However, they must submit a NOI to EPA.

b) <u>Discharges in New Hampshire</u> - applicants must provide a copy of the Notice of Intent to:

New Hampshire Department of Environmental Services Water Division Wastewater Engineering Bureau P.O. Box 95 Concord, New Hampshire 03302-0095.

<u>2. Filing with Municipalities</u> - A copy of the NOI must be submitted to the municipality in which the proposed discharge would be located.

.

ATTACHMENT II

Report Date: 04-Sep-13 14:36

Final ReportRe-Issued ReportRevised Report

SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY Laboratory Report

Environmental Compliance Services 997 Millbury Street, Unit G Worcester, MA 01607 Attn: Aaron Kaczowka

Project: 324 Marrett Rd. Lexington, MA Project #: 03-50098.13

Laboratory ID	<u>Client Sample ID</u>	Matrix	Date Sampled	Date Received
SB75842-01	MW-2	Ground Water	27-Aug-13 00:00	28-Aug-13 15:28

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

ficole Leja

Nicole Leja Laboratory Director

Spectrum Analytical holds certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 8 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

MassDEP Analytical Protocol Certification Form

Labo	oratory Name: Sp	bectrum Analytical, Inc.		Project #: 03-500	98.13		
Proje	ect Location: 324	Marrett Rd. Lexington,	MA	RTN:			
Гhis	form provides ce	ertifications for the follo	wing data set: S	B75842-01			
Matr	ices: Ground W	Vater					
CAM	l Protocol	-	-			-	
	260 VOC	7470/7471 Нg	MassDEP VPH CAM IV A	8081 Pesticides	7196 Hex Cr CAM VI B	MassDEP APH CAM IX A	
	AM II A	CAM III B		CAM V B		-	
	270 SVOC AM II B	7010 Metals CAM III C	MassDEP EPH CAM IV B	8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VOC CAM IX B	
	6010 Metals6020 Metals8082 PCB9012 Total9014 TotalCAM III ACAM III DCAM V ACyanide/PACCyanide/PACCAM VI ACAM VI ACAM VI ACAM VI A						
		Affirmative responses	to questions A through 1	F are required for "Presu	mptive Certainty" status		
A				cribed on the Chain of Cu repared/analyzed within m		✓ Yes No	
B	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?						
С	· ·		analytical response action l performance standard no	s specified in the selected on-conformances?	CAM	✓ Yes No	
D				ents specified in CAM VII Reporting of Analytical I		✓ Yes No	
E		•	Vas each method conducte he complete analyte list re	ed without significant modeported for each method?	lification(s)?	Yes No Yes No	
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to questions A through E)?						
		Responses to ques	tions G, H and I below ar	e required for "Presump	tive Certainty" status	•	
G	Were the report	ing limits at or below all	CAM reporting limits spe	cified in the selected CAN	A protocol(s)?	✓ Yes No	
		at achieve "Presumptive C in 310 CMR 40. 1056 (2)(k)		ressarily meet the data usabi	lity and representativeness		
Н	Were all QC per	rformance standards spec	ified in the CAM protoco	l(s) achieved?		Yes 🗸 No	
I	Were results rep	ported for the complete a	halyte list specified in the	selected CAM protocol(s)	?	Yes 🗸 No	
4ll ne	egative responses a	re addressed in a case narr	ative on the cover page of th	is report.			
				pon my personal inquiry of v knowledge and belief, acci		ing the	
					Ariole L	eja	
					Nicole Leja Laboratory Director	r	

CASE NARRATIVE:

The samples were received -0.5 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/-1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

According to WSC-CAM 5/2009 Rev.1, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended recovery range, a range has been set based on historical control limits.

Some target analytes which are not listed as exceptions in the Summary of CAM Reporting Limits may exceed the recommended RL based on sample initial volume or weight provided, % moisture content, or responsiveness of a particular analyte to purge and trap instrumentation.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 6010C

Spikes:

1320956-MS1 Source: SB75842-01

The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.

Iron

1320956-MSD1 Source: SB75842-01

The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.

Iron

1320956-PS1 Source: SB75842-01

The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.

Iron

Sample Acceptance Check Form

Client:	Environmental Compliance Services - Worcester, MA
Project:	324 Marrett Rd. Lexington, MA / 03-50098.13
Work Order:	SB75842
Sample(s) received on:	8/28/2013
Received by:	Vickie Knowles

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

- 1. Were custody seals present?
- 2. Were custody seals intact?
- 3. Were samples received at a temperature of $\leq 6^{\circ}$ C?
- 4. Were samples cooled on ice upon transfer to laboratory representative?
- 5. Were samples refrigerated upon transfer to laboratory representative?
- 6. Were sample containers received intact?
- 7. Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?
- 8. Were samples accompanied by a Chain of Custody document?
- 9. Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?
- 10. Did sample container labels agree with Chain of Custody document?
- 11. Were samples received within method-specific holding times?

Yes	No	N/A
	\checkmark	
		\checkmark
\checkmark		
	\checkmark	
\checkmark		
	\checkmark	
	\checkmark	
\checkmark		

Sample Id MW-2 SB75842-	-01				<u>Project #</u> 098.13		<u>Matrix</u> Ground W		ection Date -Aug-13 00			<u>ceived</u> Aug-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Met	als by EPA 200/6000 Series	Methods											
	Preservation	Lab Preserved		N/A			1	EPA 200/6000 methods	29-Aug-13	29-Aug-13	AME	1320867	
Total Met	als by EPA 6000/7000 Serie	s Methods											
7439-89-6	Iron	51.5		mg/l	0.0150	0.0074	1	SW846 6010C	30-Aug-13	03-Sep-13	TBC	1320956	
7439-92-1	Lead	< 0.0075		mg/l	0.0075	0.0020	1		"	"	"		
General C	hemistry Parameters												
	Total Suspended Solids	60		mg/l	5	2	1	SM2540D	29-Aug-13	30-Aug-13	BD	1320874	х

					Spike	Source		%REC		RPD
analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	C Limits	RPD	Limi
Batch 1320956 - SW846 3005A										
Blank (1320956-BLK1)					Pr	epared: 30-	Aug-13	Analyzed: 03-S	ep-13	
Iron	< 0.0150		mg/l	0.0150						
Lead	< 0.0075		mg/l	0.0075						
LCS (1320956-BS1)					Pr	epared: 30-	Aug-13	Analyzed: 03-S	ep-13	
Iron	1.39		mg/l	0.0150	1.25		112	85-115		
Lead	1.32		mg/l	0.0075	1.25		105	85-115		
LCS Dup (1320956-BSD1)					Pr	epared: 30-	Aug-13	Analyzed: 03-S	ep-13	
Iron	1.42		mg/l	0.0150	1.25		113	85-115	2	20
Lead	1.34		mg/l	0.0075	1.25		107	85-115	2	20
<u> Matrix Spike (1320956-MS1)</u>			Source: SI	B75842-01	Pr	epared: 30-	Aug-13	Analyzed: 03-S	ep-13	
Iron	53.8	QM2	mg/l	0.0150	1.25	51.5	184	75-125		
Lead	1.26		mg/l	0.0075	1.25	0.0058	100	75-125		
<u>Matrix Spike Dup (1320956-MSD1)</u>			Source: SI	B75842-01	Pr	epared: 30-	Aug-13	Analyzed: 03-S	ep-13	
Iron	54.8	QM2	mg/l	0.0150	1.25	51.5	268	75-125	2	20
Lead	1.24		mg/l	0.0075	1.25	0.0058	99	75-125	0.9	20
Post Spike (1320956-PS1)			Source: SI	B75842-01	Pr	epared: 30-	Aug-13	Analyzed: 03-S	ep-13	
Iron	53.2	QM2	mg/l	0.0150	1.25	51.5	132	80-120		
Lead	1.22		mg/l	0.0075	1.25	0.0058	97	80-120		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result %	6REC	%REC Limits	RPD	RPD Limit
Batch 1320874 - General Preparation										
<u>Blank (1320874-BLK1)</u>					Pre	epared: 29-Aug	-13 A	nalyzed: 30-A	ug-13	
Total Suspended Solids	< 5		mg/l	5						
LCS (1320874-BS1)					Pre	epared: 29-Aug	-13 A	nalyzed: 30-A	ug-13	
Total Suspended Solids	102		mg/l	10	100		102	90-110		

Notes and Definitions

- QM2 The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.
- dry Sample results reported on a dry weight basis
- NR Not Reported
- RPD Relative Percent Difference

Laboratory Control Sample (LCS): A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification</u>: The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor Kimberly Wisk

- All 11s subject to laboratory approval Min. 24-hour notification needed for rushes Samples disposed of after 60 days unless otherwise instructed Carlog for a structed Carlog for a s	kaczowka @	DW=Drinking Water GW=Groundwater WW=Wastewater Containers: Analyses: MA DEP MCP CAM R O=Oil SW= Surface Water SO=Soil SL=Sludge A=Air CT DPH RCP Rep VI= X2= X3= X3= CT DPH RCP Rep CT DPH RCP Rep VI= X2= X3= X3= CT DPH RCP Rep CT DPH RCP Rep VI= X2= X3= X3= CT DPH RCP Rep CT DPH RCP Rep VI= X2= X3= X3= CT DPH RCP Rep CT DPH RCP Rep VI= G=Grab C=Composite Type Matrix CH of VOA Vials CN ASP A* Lab Id: Sample Id: Date: Time: Type Matrix Cother NV ASP A* Inv ASP A* Inv ASP A* Inv ASP A* Inv ASP A* Inv ASP A* Inv ASP A* Inv ASP A* Inv ASP A* Inv ASP A* Inv ASP A* Inv ASP A* Inv ASP A* Inv ASP A* Inv ASP A* Inv ASP A* Inv ASP A* Inv ASP A* Inv ASP A* Inv ASP A* Inv ASP A* Inv ASP A* Inv ASP A* Inv ASP A*	$\frac{1}{6} + \frac{1}{756 - 0.151}$ Site Name: Le <i>x</i> ₁ /w to <i>x</i> ₁ /w to <i>x</i> ₁ /w to <i>x</i> ₁ /w to <i>x</i> _1/w to <i>x</i> _1/	SPECTROM ANALYTICAL, INC: Page of Min. 24-hour notification needed Featuring HANIBAL TECHNOLOGY . Min. 24-hour notification needed Report To: ECS_ Wolcestel Invoice To: Invoice To: CFT Project No.: 03-5007X, //3
---	------------	--	---	--

11 Almgren Drive • Agawam, MA 01001 • 413-789-9018 • FAX 413-789-4076 • www.spectrum-analytical.com

7

Revised Feb 2013

Report Date: 30-Aug-13 16:23

Final ReportRe-Issued ReportRevised Report

SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

Laboratory Report

Environmental Compliance Services 997 Millbury Street, Unit G Worcester, MA 01607 Attn: Aaron Kaczowka

Project: 324 Marrett Rd. Lexington, MA Project #: J50098

Laboratory ID	<u>Client Sample ID</u>	<u>Matrix</u>	Date Sampled	Date Received
SB75649-01	MW-2	Ground Water	18-Aug-13 14:00	23-Aug-13 15:30

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Juiole Leja

Nicole Leja Laboratory Director

Spectrum Analytical holds certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 16 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

MassDEP Analytical Protocol Certification Form

Labo	ratory Name: Sp	ectrum Analytical, Inc.		Project #: J50098		
Proje	ect Location: 324	Marrett Rd. Lexington,	MA	RTN:		
This f	form provides ce	rtifications for the follo	wing data set: S	SB75649-01		
Matr	ices: Ground W	ater				
CAM	Protocol					
/	260 VOC Am II A	7470/7471 Hg CAM III B	MassDEP VPH CAM IV A	8081 Pesticides CAM V B	7196 Hex Cr CAM VI B	MassDEP APH CAM IX A
	270 SVOC AM II B	7010 Metals CAM III C	MassDEP EPH CAM IV B	8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VOC CAM IX B
)10 Metals AM III A	6020 Metals CAM III D	8082 PCB CAM V A	9012 Total Cyanide/PAC CAM VI A	9014 Total Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B
		Affirmative responses	to questions A through	F are required for "Presu	mptive Certainty" status	
A	-			cribed on the Chain of Cu repared/analyzed within n		✓ Yes No
B	Were the analyti protocol(s) follo		ociated QC requirements	specified in the selected	CAM	✓ Yes No
С	-		analytical response action l performance standard no	s specified in the selected on-conformances?	CAM	✓ Yes No
D				ents specified in CAM VI Reporting of Analytical I		✓ Yes No
E		-	Vas each method conducted ne complete analyte list re	ed without significant mo eported for each method?	dification(s)?	Yes No Yes No
F	FWere all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to questions A through E)?Yes					
		Responses to ques	tions G, H and I below ar	re required for "Presump	tive Certainty" status	
G	Were the reporti	ng limits at or below all	CAM reporting limits spe	cified in the selected CAI	M protocol(s)?	Yes 🗸 No
		at achieve "Presumptive Co n 310 CMR 40. 1056 (2)(k)		cessarily meet the data usab	ility and representativeness	
Н	I Were all QC performance standards specified in the CAM protocol(s) achieved? Yes ✓ No					
I	Were results rep	orted for the complete ar	nalyte list specified in the	selected CAM protocol(s)?	✓ Yes No
All ne	gative responses ar	e addressed in a case narr	utive on the cover page of th	is report.		
	•			pon my personal inquiry of y knowledge and belief, accu		ing the
					Ariole L	eja
					Nicole Leja	

Nicole Leja Laboratory Director Date: 8/30/2013

CASE NARRATIVE:

The samples were received 0.3 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/-1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

According to WSC-CAM 5/2009 Rev.1, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended recovery range, a range has been set based on historical control limits.

Some target analytes which are not listed as exceptions in the Summary of CAM Reporting Limits may exceed the recommended RL based on sample initial volume or weight provided, % moisture content, or responsiveness of a particular analyte to purge and trap instrumentation.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8260C

Calibration:

1308090

Analyte quantified by quadratic equation type calibration.

1,4-Dioxane Acrylonitrile trans-1,4-Dichloro-2-butene

This affected the following samples:

1320848-BLK1 1320848-BS1 1320848-BSD1 MW-2 S310351-ICV1 S310390-CCV1

Laboratory Control Samples:

1320848 BS/BSD

1,2,3-Trichlorobenzene percent recoveries (66/64) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

MW-2

1,2,4-Trichlorobenzene percent recoveries (62/64) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

MW-2

1,2-Dibromo-3-chloropropane percent recoveries (76/64) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

MW-2

SW846 8260C

Laboratory Control Samples:

1320848 BS/BSD

2-Butanone (MEK) percent recoveries (79/69) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

MW-2

Acetone percent recoveries (77/62) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

MW-2

trans-1,4-Dichloro-2-butene percent recoveries (73/69) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

MW-2

1320848 BSD

Acetone RPD 22% (20%) is outside individual acceptance criteria.

Samples:

S310390-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

1,1,2,2-Tetrachloroethane (-22.1%) 1,2-Dibromo-3-chloropropane (-25.5%) Bromoform (-25.2%) Naphthalene (-26.6%) Tert-Butanol / butyl alcohol (-23.4%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

1,2,3-Trichlorobenzene (-36.4%) 1,2,4-Trichlorobenzene (-35.0%) Acetone (-27.4%) trans-1,4-Dichloro-2-butene (-25.6%)

This affected the following samples:

1320848-BLK1 1320848-BS1 1320848-BSD1 MW-2

SB75649-01 *N*

MW-2

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

Sample Acceptance Check Form

Client:	Environmental Compliance Services - Worcester, MA
Project:	324 Marrett Rd. Lexington, MA / J50098
Work Order:	SB75649
Sample(s) received on:	8/23/2013
Received by:	Tanya Krivolenko

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

- 1. Were custody seals present?
- 2. Were custody seals intact?
- 3. Were samples received at a temperature of $\leq 6^{\circ}$ C?
- 4. Were samples cooled on ice upon transfer to laboratory representative?
- 5. Were samples refrigerated upon transfer to laboratory representative?
- 6. Were sample containers received intact?
- 7. Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?
- 8. Were samples accompanied by a Chain of Custody document?
- 9. Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?
- 10. Did sample container labels agree with Chain of Custody document?
- 11. Were samples received within method-specific holding times?

<u>Yes</u>	<u>No</u>	<u>N/A</u>
\checkmark		

Sample Id MW-2 SB75649	dentification				<u>Project #</u> 098		<u>Matrix</u> Ground Wa		ection Date 8-Aug-13 14			<u>ceived</u> Aug-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	organic Compounds												
	anic Compounds by SW846 8260 by method SW846 5030 V	-	GS1										
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 10.0	D	µg/l	10.0	6.47	10	SW846 8260C	29-Aug-13	30-Aug-13	JEG	1320848	
67-64-1	Acetone	< 100	D	µg/l	100	25.6	10	H			"		
107-13-1	Acrylonitrile	< 5.00	D	µg/l	5.00	4.75	10	н		н	"		
71-43-2	Benzene	42.0	D	µg/l	10.0	6.69	10			н	"		
108-86-1	Bromobenzene	< 10.0	D	µg/l	10.0	7.21	10	"		н	"		
74-97-5	Bromochloromethane	< 10.0	D	µg/l	10.0	7.10	10	"		н	"		
75-27-4	Bromodichloromethane	< 5.00	D	µg/l	5.00	4.79	10	"		н	"		
75-25-2	Bromoform	< 10.0	D	µg/l	10.0	6.03	10	"		н	"		
74-83-9	Bromomethane	< 20.0	D	µg/l	20.0	11.4	10	H			"		
78-93-3	2-Butanone (MEK)	< 100	D	µg/l	100	19.3	10	"		н	"		
104-51-8	n-Butylbenzene	15.7	D	µg/l	10.0	5.62	10	"		н	"		
135-98-8	sec-Butylbenzene	< 10.0	D	µg/l	10.0	8.20	10	"		н	"		
98-06-6	tert-Butylbenzene	< 10.0	D	µg/l	10.0	7.45	10	н		н			
75-15-0	Carbon disulfide	< 20.0	D	µg/l	20.0	6.27	10	н		н			
56-23-5	Carbon tetrachloride	< 10.0	D	µg/l	10.0	5.49	10	н		н			
108-90-7	Chlorobenzene	< 10.0	D	µg/l	10.0	6.54	10	н		н			
75-00-3	Chloroethane	< 20.0	D	µg/l	20.0	10.3	10	н		н			
67-66-3	Chloroform	< 10.0	D	µg/l	10.0	6.89	10			н			
74-87-3	Chloromethane	< 20.0	D	µg/l	20.0	14.7	10			н			
95-49-8	2-Chlorotoluene	< 10.0	D	µg/l	10.0	7.91	10			н			
106-43-4	4-Chlorotoluene	< 10.0	D	µg/l	10.0	7.31	10			н			
96-12-8	1,2-Dibromo-3-chloroprop ane	< 20.0	D	μg/I	20.0	12.0	10				"		
124-48-1	Dibromochloromethane	< 5.00	D	µg/l	5.00	3.43	10	н		н	"		
106-93-4	1,2-Dibromoethane (EDB)	< 5.00	D	µg/l	5.00	3.27	10			н			
74-95-3	Dibromomethane	< 10.0	D	µg/l	10.0	6.66	10			н			
95-50-1	1,2-Dichlorobenzene	< 10.0	D	µg/l	10.0	6.68	10			н			
541-73-1	1,3-Dichlorobenzene	< 10.0	D	µg/l	10.0	7.12	10			н			
106-46-7	1,4-Dichlorobenzene	< 10.0	D	µg/l	10.0	6.24	10			н			
75-71-8	Dichlorodifluoromethane (Freon12)	< 20.0	D	μg/l	20.0	4.47	10	u			"		
75-34-3	1,1-Dichloroethane	< 10.0	D	µg/l	10.0	6.80	10			н			
107-06-2	1,2-Dichloroethane	< 10.0	D	µg/l	10.0	7.81	10			н			
75-35-4	1,1-Dichloroethene	< 10.0	D	µg/l	10.0	4.88	10						
156-59-2	cis-1,2-Dichloroethene	< 10.0	D	µg/l	10.0	7.16	10						
156-60-5	trans-1,2-Dichloroethene	< 10.0	D	µg/l	10.0	6.81	10				"		
78-87-5	1,2-Dichloropropane	< 10.0	D	µg/l	10.0	7.12	10				"		
142-28-9	1,3-Dichloropropane	< 10.0	D	µg/l	10.0	8.07	10	"			"		
594-20-7	2,2-Dichloropropane	< 10.0	D	µg/l	10.0	6.05	10	"			"		
563-58-6	1,1-Dichloropropene	< 10.0	D	µg/l	10.0	6.36	10	"					
10061-01-5	cis-1,3-Dichloropropene	< 5.00	D	µg/l	5.00	2.52	10	n		н			
10061-02-6	trans-1,3-Dichloropropene	< 5.00	D	µg/l	5.00	4.99	10			н			
100-41-4	Ethylbenzene	174	D	µg/l	10.0	7.32	10	n		н			
87-68-3	Hexachlorobutadiene	< 5.00	D	µg/l	5.00	4.89	10	n		н	"		
591-78-6	2-Hexanone (MBK)	< 100	D	µg/I	100	5.47	10				"		

Sample I MW-2 SB75649	-01				<u>Project #</u> 0098		<u>Matrix</u> Ground Wa		ection Date 3-Aug-13 14			<u>ceived</u> Aug-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile C	organic Compounds												
	anic Compounds by SW846 8260		GS1										
	by method SW846 5030 V		D		10.0		10	014/04/000000	00.4 40	00.4 40		4000040	
98-82-8	Isopropylbenzene	32.7	D	µg/l	10.0	6.21	10	SW846 8260C	29-Aug-13	30-Aug-13	JEG "	1320848	
99-87-6	4-Isopropyltoluene	< 10.0	D	µg/l	10.0	6.09	10						
1634-04-4 108-10-1	Methyl tert-butyl ether 4-Methyl-2-pentanone	23.9 < 100	D	μg/l μg/l	10.0 100	6.52 9.32	10 10						
	(MIBK)												
75-09-2	Methylene chloride	< 20.0	D	µg/l	20.0	6.90	10				"		
91-20-3	Naphthalene	74.9	D	µg/l	10.0	5.79	10	II.	•		"		
103-65-1	n-Propylbenzene	72.9	D	µg/l	10.0	7.58	10	"			"		
100-42-5	Styrene	< 10.0	D	µg/l	10.0	6.15	10				"		
630-20-6	1,1,1,2-Tetrachloroethane	< 10.0	D	µg/l	10.0	6.26	10	н			"		
79-34-5	1,1,2,2-Tetrachloroethane	< 5.00	D	µg/l	5.00	3.49	10	н			"		
127-18-4	Tetrachloroethene	< 10.0	D	µg/l	10.0	7.43	10	н			"		
108-88-3	Toluene	< 10.0	D	µg/l	10.0	8.12	10	н			"		
87-61-6	1,2,3-Trichlorobenzene	< 10.0	D	µg/l	10.0	3.76	10				"		
120-82-1	1,2,4-Trichlorobenzene	< 10.0	D	μg/l	10.0	3.60	10				"		
108-70-3	1,3,5-Trichlorobenzene	< 10.0	D	μg/l	10.0	7.84	10						
71-55-6	1,1,1-Trichloroethane	< 10.0	D	μg/l	10.0	5.82	10						
79-00-5	1,1,2-Trichloroethane	< 10.0	D	µg/l	10.0	6.42	10	н		н			
79-01-6	Trichloroethene	< 10.0	D	μg/l	10.0	7.55	10						
75-69-4	Trichlorofluoromethane (Freon 11)	< 10.0	D	μg/l	10.0	6.28	10			н			
96-18-4	1,2,3-Trichloropropane	< 10.0	D	µg/l	10.0	7.36	10						
95-63-6	1,2,4-Trimethylbenzene	473	D	µg/l	10.0	7.57	10	н					
108-67-8	1,3,5-Trimethylbenzene	80.6	D	µg/l	10.0	7.44	10	н					
75-01-4	Vinyl chloride	< 10.0	D	µg/l	10.0	8.07	10						
179601-23-1	m,p-Xylene	147	D	µg/l	20.0	16.4	10						
95-47-6	o-Xylene	11.1	D	µg/l	10.0	8.82	10	н					
109-99-9	Tetrahydrofuran	< 20.0	D	µg/l	20.0	14.4	10	н					
60-29-7	Ethyl ether	< 10.0	D	µg/l	10.0	6.93	10	н			"		
994-05-8	Tert-amyl methyl ether	< 10.0	D	µg/l	10.0	7.19	10	н			"		
637-92-3	Ethyl tert-butyl ether	< 10.0	D	µg/l	10.0	7.82	10	н					
108-20-3	Di-isopropyl ether	< 10.0	D	μg/l	10.0	7.27	10				"		
75-65-0	Tert-Butanol / butyl alcohol	132	D	μg/l	100	86.4	10			н			
123-91-1	1,4-Dioxane	< 200	D	μg/l	200	140	10	"					
110-57-6	trans-1,4-Dichloro-2-buten e	< 50.0	D	μg/I	50.0	7.67	10			н			
64-17-5	e Ethanol	< 4000	D	μg/l	4000	357	10						
Surrogate ree	coveries:												
460-00-4	4-Bromofluorobenzene	101			70-13	0 %							
2037-26-5	Toluene-d8	101			70-13	0 %		н			"		
17060-07-0	1,2-Dichloroethane-d4	106			70-13	0 %					"		
1868-53-7	Dibromofluoromethane	101			70-13	0 %							
Extractab	le Petroleum Hvdrocarbons												
Fingerprinti	le Petroleum Hydrocarbons ng by GC by method SW846 3510C												

Prepared by method SW846 3510C

<u>Sample Id</u> MW-2 SB75649	<u>dentification</u> -01				<u>Project #</u> 098		<u>Matrix</u> Ground Wa		ection Date -Aug-13 14			<u>ceived</u> Aug-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Fingerprintir	le Petroleum Hydrocarbo ng by GC by method SW846 3510												
8006-61-9	Gasoline	<u>6.5</u>		mg/l	0.2	0.2	1	SW846 8100Mod.	29-Aug-13	30-Aug-13	SEP	1320813	
68476-30-2	Fuel Oil #2	< 0.2		mg/l	0.2	0.2	1	"	g	"	"		
68476-31-3	Fuel Oil #4	< 0.2		mg/l	0.2	0.02	1	u			"		
68553-00-4	Fuel Oil #6	< 0.2		mg/l	0.2	0.2	1			н			
M09800000	Motor Oil	< 0.2		mg/l	0.2	0.2	1						
8032-32-4	Ligroin	< 0.2		mg/l	0.2	0.05	1	н		н	"		
J00100000	Aviation Fuel	< 0.2		mg/l	0.2	0.05	1	н		н	"		
	Hydraulic Oil	< 0.2		mg/l	0.2	0.02	1			н			
	Dielectric Fluid	< 0.2		mg/l	0.2	0.05	1			н			
	Unidentified	< 0.2		mg/l	0.2	0.05	1						
	Other Oil	< 0.2		mg/l	0.2	0.02	1						
	Total Petroleum Hydrocarbons	6.5		mg/l	0.2	0.02	1				"		
Surrogate rec	coveries:												
3386-33-2	1-Chlorooctadecane	53			40-14	0 %					"		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
atch 1320848 - SW846 5030 Water MS		0					-			
Blank (1320848-BLK1)					Pro	nared & Analy	zed: 29-Aug-1	3		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 1.00		μg/l	1.00	<u></u>	parca a Andly	200. 20-Muy-1	<u>~</u>		
Acetone	< 10.0		μg/l	10.0						
Acrylonitrile	< 0.50		μg/l	0.50						
Benzene	< 1.00		μg/l	1.00						
Bromobenzene	< 1.00		μg/l	1.00						
Bromochloromethane	< 1.00		µg/l	1.00						
Bromodichloromethane	< 0.50		µg/l	0.50						
Bromoform	< 1.00		μg/l	1.00						
Bromomethane	< 2.00		μg/l	2.00						
2-Butanone (MEK)	< 10.0		μg/l	10.0						
n-Butylbenzene	< 1.00		μg/l	1.00						
sec-Butylbenzene	< 1.00		μg/l	1.00						
tert-Butylbenzene	< 1.00		μg/I	1.00						
Carbon disulfide	< 2.00		μg/l	2.00						
Carbon tetrachloride	< 1.00		μg/l	1.00						
Chlorobenzene	< 1.00		µg/l	1.00						
Chloroethane	< 2.00		µg/l	2.00						
Chloroform	< 1.00		µg/l	1.00						
Chloromethane	< 2.00		µg/l	2.00						
2-Chlorotoluene	< 1.00		µg/l	1.00						
4-Chlorotoluene	< 1.00		µg/l	1.00						
1,2-Dibromo-3-chloropropane	< 2.00		µg/l	2.00						
Dibromochloromethane	< 0.50		µg/l	0.50						
1,2-Dibromoethane (EDB)	< 0.50		µg/l	0.50						
Dibromomethane	< 1.00		µg/l	1.00						
1,2-Dichlorobenzene	< 1.00		µg/l	1.00						
1,3-Dichlorobenzene	< 1.00		µg/l	1.00						
1,4-Dichlorobenzene	< 1.00		µg/l	1.00						
Dichlorodifluoromethane (Freon12)	< 2.00		µg/l	2.00						
1,1-Dichloroethane	< 1.00		µg/l	1.00						
1,2-Dichloroethane	< 1.00		µg/l	1.00						
1,1-Dichloroethene	< 1.00		µg/l	1.00						
cis-1,2-Dichloroethene	< 1.00		µg/l	1.00						
trans-1,2-Dichloroethene	< 1.00		µg/l	1.00						
1,2-Dichloropropane	< 1.00		µg/l	1.00						
1,3-Dichloropropane	< 1.00		µg/l	1.00						
2,2-Dichloropropane	< 1.00		μg/l	1.00						
1,1-Dichloropropene	< 1.00		µg/l	1.00						
cis-1,3-Dichloropropene	< 0.50		µg/l	0.50						
trans-1,3-Dichloropropene	< 0.50		µg/l	0.50						
Ethylbenzene	< 1.00		µg/l	1.00						
Hexachlorobutadiene	< 0.50		μg/l	0.50						
2-Hexanone (MBK)	< 10.0		µg/l	10.0						
Isopropylbenzene	< 1.00		μg/l	1.00						
4-Isopropyltoluene	< 1.00		µg/l	1.00						
Methyl tert-butyl ether	< 1.00		μg/l	1.00						
4-Methyl-2-pentanone (MIBK)	< 10.0		µg/l	10.0						
Methylene chloride	< 2.00		µg/l	2.00						
Naphthalene	< 1.00		µg/l	1.00						
n-Propylbenzene	< 1.00		µg/l	1.00						
Styrene	< 1.00		µg/l	1.00						
1,1,1,2-Tetrachloroethane	< 1.00		μg/l	1.00						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1320848 - SW846 5030 Water MS										
Blank (1320848-BLK1)					Pre	pared & Analy	zed: 29-Aug-1;	3		
1,1,2,2-Tetrachloroethane	< 0.50		µg/l	0.50		-	-			
Tetrachloroethene	< 1.00		µg/l	1.00						
Toluene	< 1.00		μg/l	1.00						
1,2,3-Trichlorobenzene	< 1.00		μg/l	1.00						
1,2,4-Trichlorobenzene	< 1.00		μg/l	1.00						
1,3,5-Trichlorobenzene	< 1.00		μg/I	1.00						
1,1,1-Trichloroethane	< 1.00		μg/l	1.00						
1,1,2-Trichloroethane	< 1.00		μg/I	1.00						
Trichloroethene	< 1.00		μg/l	1.00						
Trichlorofluoromethane (Freon 11)	< 1.00		μg/l	1.00						
1,2,3-Trichloropropane	< 1.00		μg/l	1.00						
1,2,4-Trimethylbenzene	< 1.00		μg/l	1.00						
1,3,5-Trimethylbenzene	< 1.00		μg/l	1.00						
Vinyl chloride	< 1.00		μg/l	1.00						
m,p-Xylene	< 2.00			2.00						
o-Xylene	< 1.00		μg/l μg/l	1.00						
Tetrahydrofuran	< 2.00			2.00						
Ethyl ether	< 1.00		µg/l	1.00						
Tert-amyl methyl ether	< 1.00 < 1.00		µg/l	1.00						
			µg/l							
Ethyl tert-butyl ether	< 1.00		µg/l	1.00						
Di-isopropyl ether	< 1.00		µg/l	1.00						
Tert-Butanol / butyl alcohol	< 10.0		µg/l	10.0						
1,4-Dioxane	< 20.0		µg/l	20.0						
trans-1,4-Dichloro-2-butene	< 5.00		µg/l	5.00						
Ethanol	< 400		µg/l	400						
Surrogate: 4-Bromofluorobenzene	48.5		µg/l		50.0		97	70-130		
Surrogate: Toluene-d8	49.5		µg/l		50.0		99	70-130		
Surrogate: 1,2-Dichloroethane-d4	56.8		µg/l		50.0		114	70-130		
Surrogate: Dibromofluoromethane	50.7		µg/l		50.0		101	70-130		
LCS (1320848-BS1)					Pre	pared & Analy	zed: 29-Aug-1;	3		
1,1,2-Trichlorotrifluoroethane (Freon 113)	21.0		µg/l		20.0		105	70-130		
Acetone	15.5		µg/l		20.0		77	70-130		
Acrylonitrile	23.1		µg/l		20.0		116	70-130		
Benzene	18.5		µg/l		20.0		93	70-130		
Bromobenzene	18.4		µg/l		20.0		92	70-130		
Bromochloromethane	19.1		µg/l		20.0		96	70-130		
Bromodichloromethane	18.7		µg/l		20.0		94	70-130		
Bromoform	14.8		μg/l		20.0		74	70-130		
Bromomethane	22.5		μg/l		20.0		113	70-130		
2-Butanone (MEK)	15.8		μg/l		20.0		79	70-130		
n-Butylbenzene	18.3		μg/l		20.0		91	70-130		
sec-Butylbenzene	18.2		μg/l		20.0		91	70-130		
tert-Butylbenzene	18.2		μg/l		20.0		91	70-130		
Carbon disulfide	17.5		μg/l		20.0		88	70-130		
Carbon tetrachloride	16.6		μg/l		20.0		83	70-130		
Chlorobenzene	18.5		μg/l		20.0		93	70-130		
Chloroethane	10.5				20.0		93 85			
Chloroform	21.4		µg/l		20.0		65 107	70-130 70-130		
			µg/l							
Chloromethane	18.9		µg/l		20.0		95 01	70-130		
2-Chlorotoluene	18.2		µg/l		20.0		91	70-130		
4-Chlorotoluene	18.2		µg/l		20.0		91	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1320848 - SW846 5030 Water MS										
LCS (1320848-BS1)					Pre	pared & Analy	zed: 29-Aug-1;	3		
1,2-Dibromo-3-chloropropane	15.1		µg/l		20.0		76	70-130		
Dibromochloromethane	17.2		µg/l		20.0		86	70-130		
1,2-Dibromoethane (EDB)	18.8		µg/l		20.0		94	70-130		
Dibromomethane	18.4		µg/l		20.0		92	70-130		
1,2-Dichlorobenzene	18.6		µg/l		20.0		93	70-130		
1,3-Dichlorobenzene	17.5		µg/l		20.0		87	70-130		
1,4-Dichlorobenzene	18.7		μg/l		20.0		94	70-130		
Dichlorodifluoromethane (Freon12)	19.6		μg/l		20.0		98	70-130		
1,1-Dichloroethane	18.7		µg/l		20.0		94	70-130		
1,2-Dichloroethane	21.6		μg/l		20.0		108	70-130		
1,1-Dichloroethene	18.7		µg/l		20.0		94	70-130		
cis-1,2-Dichloroethene	18.4		µg/l		20.0		92	70-130		
trans-1,2-Dichloroethene	18.9		µg/l		20.0		95	70-130		
1,2-Dichloropropane	19.6		µg/l		20.0		98	70-130		
1,3-Dichloropropane	21.2		µg/l		20.0		106	70-130		
2,2-Dichloropropane	20.3		μg/l		20.0		101	70-130		
1,1-Dichloropropene	18.7		µg/l		20.0		94	70-130		
cis-1,3-Dichloropropene	18.4		µg/l		20.0		92	70-130		
trans-1,3-Dichloropropene	17.0		µg/l		20.0		85	70-130		
Ethylbenzene	18.7		μg/l		20.0		94	70-130		
Hexachlorobutadiene	17.8		μg/l		20.0		89	70-130		
2-Hexanone (MBK)	16.2		μg/l		20.0		81	70-130		
Isopropylbenzene	18.7		μg/l		20.0		94	70-130		
4-Isopropyltoluene	18.7		μg/l		20.0		93	70-130		
Methyl tert-butyl ether	17.9		μg/l		20.0		90	70-130		
4-Methyl-2-pentanone (MIBK)	17.4		μg/l		20.0		87	70-130		
Methylene chloride	21.4		μg/l		20.0		107	70-130		
Naphthalene	15.5		μg/l		20.0		78	70-130		
n-Propylbenzene	18.6		μg/l		20.0		93	70-130		
Styrene	18.3		μg/l		20.0		91	70-130		
1,1,2-Tetrachloroethane	16.8		µg/l		20.0		84	70-130		
1,1,2,2-Tetrachloroethane	15.2		μg/I		20.0		76	70-130		
Tetrachloroethene	19.9		μg/l		20.0		100	70-130		
Toluene	18.4		μg/I		20.0		92	70-130		
1,2,3-Trichlorobenzene	13.2	QC2	µg/l		20.0		66	70-130		
1.2.4-Trichlorobenzene	12.5	QC2	μg/l		20.0		62	70-130		
1,3,5-Trichlorobenzene	16.7		μg/l		20.0		84	70-130		
1,1,1-Trichloroethane	19.3		μg/l		20.0		96	70-130		
1,1,2-Trichloroethane	19.3		µg/l		20.0		96	70-130		
Trichloroethene	19.2		μg/l		20.0		96	70-130		
Trichlorofluoromethane (Freon 11)	19.9		μg/l		20.0		100	70-130		
1,2,3-Trichloropropane	19.2		μg/l		20.0		96	70-130		
1,2,4-Trimethylbenzene	18.5		μg/l		20.0		92	70-130		
1,3,5-Trimethylbenzene	18.3		μg/l		20.0		92	70-130		
Vinyl chloride	20.2		μg/l		20.0		101	70-130		
m,p-Xylene	38.2		μg/i		40.0		96	70-130		
o-Xylene	18.9		μg/l		20.0		94	70-130		
Tetrahydrofuran	17.0		μg/i μg/l		20.0		9 4 85	70-130		
Ethyl ether	20.2		µg/l		20.0		101	70-130		
Tert-amyl methyl ether	17.2		μg/i μg/l		20.0		86	70-130		
Ethyl tert-butyl ether	17.2				20.0		80 89	70-130		
Di-isopropyl ether	17.8 17.4		μg/l μg/l		20.0		89 87	70-130 70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1320848 - SW846 5030 Water MS										
					Bro	narad @ Anali	rad: 20 Aug 1	0		
LCS (1320848-BS1)						pared & Analy	zed: 29-Aug-1			
Tert-Butanol / butyl alcohol 1,4-Dioxane	144		µg/l		200		72 81	70-130		
,	162		μg/l		200			70-130		
trans-1,4-Dichloro-2-butene	14.6		µg/l		20.0		73	70-130		
Ethanol	373		µg/l		400		93	70-130		
Surrogate: 4-Bromofluorobenzene	50.0		µg/l		50.0		100	70-130		
Surrogate: Toluene-d8	50.3		µg/l		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	56.3		µg/l		50.0		113	70-130		
Surrogate: Dibromofluoromethane	49.2		µg/l		50.0		98	70-130		
LCS Dup (1320848-BSD1)					Pre	pared: 29-Aug	13 Analyzed	l: 30-Aug-13		
1,1,2-Trichlorotrifluoroethane (Freon 113)	20.4		µg/l		20.0		102	70-130	3	20
Acetone	12.4	QR2	µg/l		20.0		62	70-130	22	20
Acrylonitrile	19.8		µg/l		20.0		99	70-130	15	20
Benzene	17.3		µg/l		20.0		87	70-130	7	20
Bromobenzene	19.2		μg/l		20.0		96	70-130	4	20
Bromochloromethane	18.6		μg/l		20.0		93	70-130	3	20
Bromodichloromethane	17.6		μg/l		20.0		88	70-130	6	20
Bromoform	14.8		μg/l		20.0		74	70-130	0	20
Bromomethane	21.4		μg/l		20.0		107	70-130	5	20
2-Butanone (MEK)	13.7		μg/l		20.0		69	70-130	14	20
n-Butylbenzene	17.8		μg/l		20.0		89	70-130	3	20
sec-Butylbenzene	18.8		μg/l		20.0		94	70-130	3	20
tert-Butylbenzene	18.9		μg/l		20.0		94	70-130	4	20
Carbon disulfide	17.2				20.0		86	70-130	2	20
Carbon tetrachloride	17.2		µg/l		20.0		86	70-130	4	20
			µg/l							
Chlorobenzene	18.8		µg/l		20.0		94	70-130	1	20
Chloroethane	17.0		µg/l		20.0		85	70-130	0.3	20
Chloroform	19.7		µg/l		20.0		98	70-130	8	20
Chloromethane	18.2		µg/l		20.0		91	70-130	4	20
2-Chlorotoluene	18.0		µg/l		20.0		90	70-130	0.8	20
4-Chlorotoluene	17.9		µg/l		20.0		89	70-130	2	20
1,2-Dibromo-3-chloropropane	12.7	QM9	µg/l		20.0		64	70-130	18	20
Dibromochloromethane	16.6		µg/l		20.0		83	70-130	3	20
1,2-Dibromoethane (EDB)	17.9		µg/l		20.0		90	70-130	5	20
Dibromomethane	17.3		µg/l		20.0		87	70-130	6	20
1,2-Dichlorobenzene	18.5		µg/l		20.0		92	70-130	0.5	20
1,3-Dichlorobenzene	18.6		µg/l		20.0		93	70-130	6	20
1,4-Dichlorobenzene	18.4		µg/l		20.0		92	70-130	1	20
Dichlorodifluoromethane (Freon12)	19.1		µg/l		20.0		96	70-130	2	20
1,1-Dichloroethane	17.4		µg/l		20.0		87	70-130	7	20
1,2-Dichloroethane	19.5		µg/l		20.0		97	70-130	11	20
1,1-Dichloroethene	18.5		µg/l		20.0		92	70-130	1	20
cis-1,2-Dichloroethene	17.9		µg/l		20.0		90	70-130	2	20
trans-1,2-Dichloroethene	18.5		µg/l		20.0		92	70-130	3	20
1,2-Dichloropropane	17.0		µg/l		20.0		85	70-130	14	20
1,3-Dichloropropane	19.0		µg/l		20.0		95	70-130	11	20
2,2-Dichloropropane	20.0		μg/l		20.0		100	70-130	1	20
1,1-Dichloropropene	18.5		μg/l		20.0		92	70-130	1	20
cis-1,3-Dichloropropene	16.8		μg/l		20.0		84	70-130	9	20
trans-1,3-Dichloropropene	15.3		μg/l		20.0		77	70-130	10	20
Ethylbenzene	18.8		μg/l		20.0		94	70-130	0.3	20
Hexachlorobutadiene	18.9		μg/l		20.0		95	70-130	6	20

	P 1		XX .	40.01	Spike	Source	0/DEC	%REC	DEE	RPI
analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Lim
Batch 1320848 - SW846 5030 Water MS										
LCS Dup (1320848-BSD1)					Pre	pared: 29-Aug	-13 Analyzed	: 30-Aug-13		
2-Hexanone (MBK)	14.8		µg/l		20.0		74	70-130	9	20
Isopropylbenzene	19.2		µg/l		20.0		96	70-130	3	20
4-Isopropyltoluene	18.4		µg/l		20.0		92	70-130	2	20
Methyl tert-butyl ether	16.3		µg/l		20.0		82	70-130	9	20
4-Methyl-2-pentanone (MIBK)	14.9		µg/l		20.0		75	70-130	16	20
Methylene chloride	19.0		µg/l		20.0		95	70-130	12	20
Naphthalene	14.8		µg/l		20.0		74	70-130	5	20
n-Propylbenzene	18.7		µg/l		20.0		94	70-130	1	20
Styrene	18.4		µg/l		20.0		92	70-130	0.9	20
1,1,1,2-Tetrachloroethane	16.7		μg/l		20.0		84	70-130	0.4	20
1,1,2,2-Tetrachloroethane	14.1		μg/l		20.0		71	70-130	7	20
Tetrachloroethene	20.5		μg/l		20.0		103	70-130	3	20
Toluene	18.4		μg/I		20.0		92	70-130	0.2	20
1,2,3-Trichlorobenzene	12.8	QC2	μg/l		20.0		64	70-130	3	20
1,2,4-Trichlorobenzene	12.9	QC2	μg/l		20.0		64	70-130	3	20
1,3,5-Trichlorobenzene	16.9		μg/I		20.0		84	70-130	1	20
1,1,1-Trichloroethane	18.2		μg/l		20.0		91	70-130	6	20
1,1,2-Trichloroethane	17.9		μg/l		20.0		90	70-130	7	20
Trichloroethene	16.7		μg/l		20.0		83	70-130	14	20
Trichlorofluoromethane (Freon 11)	19.5		μg/l		20.0		98	70-130	2	20
1,2,3-Trichloropropane	16.3		μg/l		20.0		81	70-130	17	20
1,2,4-Trimethylbenzene	18.4		μg/l		20.0		92	70-130	0.7	20
1,3,5-Trimethylbenzene	18.7				20.0		92 94	70-130	2	20
Vinyl chloride	19.6		µg/l		20.0		98	70-130	3	20
m,p-Xylene	38.6		µg/l		40.0		96	70-130	1	20
			µg/l							
o-Xylene	19.6		µg/l		20.0		98 74	70-130	4	20
Tetrahydrofuran	14.8		µg/l		20.0		74	70-130	14	20
Ethyl ether	18.1		µg/l		20.0		90	70-130	11	20
Tert-amyl methyl ether	16.1		µg/l		20.0		81	70-130	7	20
Ethyl tert-butyl ether	16.4		µg/l		20.0		82	70-130	8	20
Di-isopropyl ether	15.9		µg/l		20.0		80	70-130	9	20
Tert-Butanol / butyl alcohol	159		µg/l		200		80	70-130	10	20
1,4-Dioxane	148		μg/l		200		74	70-130	9	20
trans-1,4-Dichloro-2-butene	13.8	QM9	μg/l		20.0		69	70-130	5	20
Ethanol	357		μg/l		400		89	70-130	5	20
Surrogate: 4-Bromofluorobenzene	50.6		μg/l		50.0		101	70-130		
Surrogate: Toluene-d8	50.3		μg/l		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	52.1		µg/l		50.0		104	70-130		
Surrogate: Dibromofluoromethane	49.6		µg/l		50.0		99	70-130		

			-		-					
.nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1320813 - SW846 3510C										
Blank (1320813-BLK1)					Pre	pared: 29-Aug	13 Analyzed	l: 30-Aug-13		
Gasoline	< 0.2		mg/l	0.2						
Fuel Oil #2	< 0.2		mg/l	0.2						
Fuel Oil #4	< 0.2		mg/l	0.2						
Fuel Oil #6	< 0.2		mg/l	0.2						
Motor Oil	< 0.2		mg/l	0.2						
Ligroin	< 0.2		mg/l	0.2						
Aviation Fuel	< 0.2		mg/l	0.2						
Hydraulic Oil	< 0.2		mg/l	0.2						
Dielectric Fluid	< 0.2		mg/l	0.2						
Unidentified	< 0.2		mg/l	0.2						
Other Oil	< 0.2		mg/l	0.2						
Total Petroleum Hydrocarbons	< 0.2		mg/l	0.2						
Surrogate: 1-Chlorooctadecane	0.0417		mg/l		0.0500		83	40-140		
LCS (1320813-BS2)					Pre	pared: 29-Aug	g-13 Analyzed	l: 30-Aug-13		
Fuel Oil #2	9.7		mg/l	0.2	10.0		97	40-140		
Surrogate: 1-Chlorooctadecane	0.0518		mg/l		0.0500		104	40-140		

Notes and Definitions

- D Data reported from a dilution
- GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range.
- QC2 Analyte out of acceptance range in QC spike but no reportable concentration present in sample.
- QM9 The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits.
- QR2 The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.
- dry Sample results reported on a dry weight basis
- NR Not Reported
- RPD Relative Percent Difference

Interpretation of Total Petroleum Hydrocarbon Report

Petroleum identification is determined by comparing the GC fingerprint obtained from the sample with a library of GC fingerprints obtained from analyses of various petroleum products. Possible match categories are as follows:

Gasoline - includes regular, unleaded, premium, etc. Fuel Oil #2 - includes home heating oil, #2 fuel oil, and diesel Fuel Oil #4 - includes #4 fuel oil Fuel Oil #6 - includes #6 fuel oil and bunker "C" oil Motor Oil - includes virgin and waste automobile oil Ligroin - includes mineral spirits, petroleum naphtha, vm&p naphtha Aviation Fuel - includes kerosene, Jet A and JP-4 Other Oil - includes lubricating and cutting oil, and silicon oil

At times, the unidentified petroleum product is quantified using a calibration that most closely approximates the distribution of compounds in the sample. When this occurs, the result is qualified as Calculated as.

Laboratory Control Sample (LCS): A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

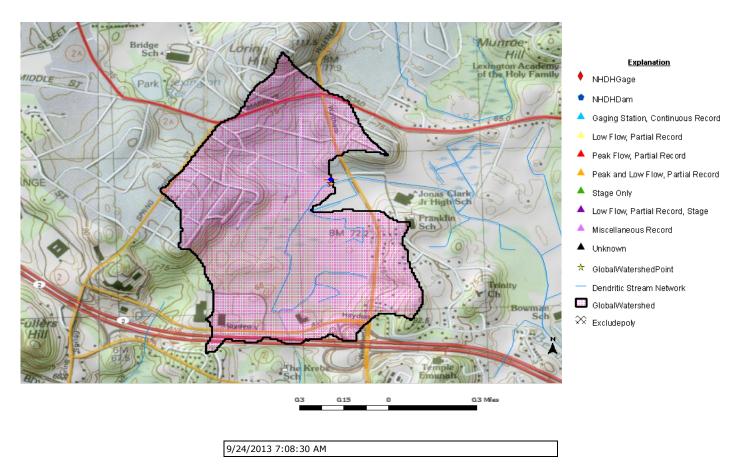
<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification</u>: The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: Kimberly Wisk


oon receipt: I leed Refrigerated DI VOA Frozen Soil Jar Frozen	Condition upon receipt:					D ,	11/2	
· ·	e E-mail to	313 15:30	8-23	K	Jungo	- And	i Ci	
a /100 700		5115 61	823	ſ	Yla	That whe	astan,	
FDD Format		e: Time: *	Date:	Received by:	Re Re	Relinquished by:	Relin	
		*.	1					
	-							
			4				V	
	L.							
	X							
4							•	
e sizzin'	*							
t cancelled peopt	χ χ χ χ χ	30	6 60 2	00.7	8-18-13	MW-2	Phone Cal	C
lõ	826 TP Tota	# of 4	Type Matr	Time:	Date:	Sample Id:	Lab Id:	
	H by 55 Lea	Amber Clear G Plastic			C=Composite	G=Grab C=		
QA/QC Reporting Level	E,T 6 4	Glass	ials	X.3=		X2=		
1	BA C Analyses:	containers:		WW=Wastewater _=Sludge A=Air	IS	GW=G Water	=Dr	
ve code below: QA/QC Reporting Notes: * additional charges may apply	List preservative code below:	1 7=CH ₃ OH	6=Ascorbic Acid 12=	³ 5=NaOH PO4 11=	4=	2=HCl 9= Deioni	1=Na ₂ S2O ₃ 8= NaHSO ₄	
24 Martett Rd Lexingstate: MA A. Kaczowella	Site Name:	M RON: Game	Please call	P.O. No.:	-0150 czalia	508-756 Aaron Ke	Telephone #: Project Mgr.	
J60098	Project No.:		To: CFT	Invoice To:	Greater	ELS-W6	Report To:	
Special Hano	RECORL	IY	CHAIN OF CUSTOD	HAIN	0	SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY	SPE	
1 SB JS649 JH								

4076 • www.spectrum-analytical.com Refigerated □ DI VOA Frozen □ Soil Jar Frozen 4076	113-789-4076 • ww	-9018 • FAX 4	001 • 413-789	Agawam, MA 0	11 Almgren Drive • Agawam, MA 01001 • 413-789-9018 • FAX 413-789-	BOI	1-1 10.3
Condition mon receipt	7				1000	1000	
E-mail to allaczouka @CCS Consultison	2.30	373 15	200	×	1anna	That while	Rem
EDD Format	Time: Temp [°] C	Date: Ti	P 22	Received by:	Rec	Relinquished by:	Relin
4128/c3							
irat notifies	1. N. A.						
icide							
Cwned a sizelis							
\$126113 Via							•
slashis received							
e stasto							が あい お
N N K Cancelled per PK	λ 7	6	6 662	2:00	2-18-13	1110-2	Physerce
State-specific reporting standards:	8	- #		l'ime:	Date:	Sample Id:	Lab Id:
	# of P 2@ TP;	# of A # of C	Гуре Matri:	1	1	1	4
□ NY ASP A*	TAM TAM	OA V Imber Clear C			C=Composite	G=Grab C=	
	TO E,T	Glas Hass					V1
CT	BA C	SS		ge A=Air	IS		0=0il SW=
Analyses: MA DEP MCP CAM Report: Yes 2 Not	::	Containers:		WW=Wastewater		g Water GW=Groundwater	DW=Drinking Water
List preservative code below: QA/QC Reporting Notes: * additional charges may apply		= $ -$	6=Ascorbic Acid 12=	5=NaOH 11=	$3=H_2SO_4$ $4=HNO_3$ ed Water $10=H_3PO_4$) ₃ 2=HCl 9= Deioniz	1=Na ₂ S2O ₃ 8= NaHSO ₄
Sampler(s): R, K & Zoletta		RQN: Game	Please call	P.O. No.:	eczondia	K	Project Mgr.
Location: 324 MGMettly Lexing State: M/t		2	N		01510	122-304	Telenhone #
Site Name: Le xingto	Site		1-94-1				
Project No .: JSO098	Proj		CEI	Invoice To:	wester	ELS-W61	Report To:
· Samples disposed of after 60 days unless otherwise instructed.		of _	Page			SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY	SPE
 → Standard TAT - 7 to 10 business days → Rush TAT - Date Needed: 5-30-13 → All TATs subject to laboratory approval. → Min 24-hour notification needed for misles 	Y RECOR	STOD	OF CU	CHAIN OF CUSTC	CF		1
Special Handling:					13		
SB JS649 JU							

ATTACHMENT III

StreamStats Print Page

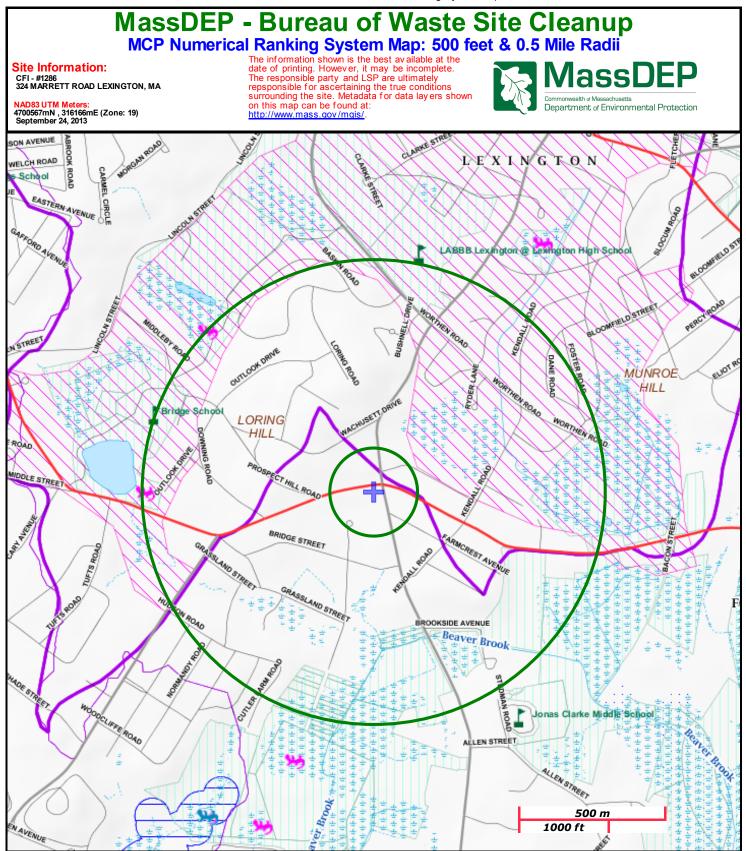
≈USGS			C. Contraction		1. 18. 20
	101000000000000000000000000000000000000		1. 19 A. 19		
Massac	1114	+11. T	116-2	111541	14:5

Streamstats Ungaged Site Report

Date: Tue Sep 24 2013 07:07:36 Mountain Daylight Time Site Location: Massachusetts NAD27 Latitude: 42.4307 (42 25 51) NAD27 Longitude: -71.2345 (-71 14 04) NAD83 Latitude: 42.4308 (42 25 51) NAD83 Longitude: -71.2340 (-71 14 03) ReachCode: 01090001022257 Measure: 30.66 Drainage Area: 0.59 mi2 Percent Urban: 59.2 % Percent Impervious: 19.4 %

100% Statewide Low Flow (0.59 mi2)			
Parameter	Value	Regression Equa	ation Valid Range
raidineter		Min	Max
Drainage Area (square miles)	0.59 (below min value 1.61)	1.61	149
Mean Basin Slope from 250K DEM (percent)	1.31	0.32	24.6
Stratified Drift per Stream Length (square mile per mile)	0.12	0	1.29
Massachusetts Region (dimensionless)	0	0	1

Warning: Some parameters are outside the suggested range. Estimates will be extrapolations with unknown errors.


100% Perennial How Probability (0.59 mi2)			
Parameter	Value	Regression Equa	tion Valid Range
ratanietei		Min	Max
Drainage Area (square miles)	0.59	0.01	1.99
Percent Underlain By Sand And Gravel (percent)	31.59	0	100
Percent Forest (percent)	34.29	0	100
Massachusetts Region (dimensionless)	0	0	1

Low Flo	ws Stream	nflow Statistics			
			Equivalent	90-Percent Pro	ediction Interval
Statistic	How (ft ³ /s)	Prediction Error (percent)	years of record	Minimum	Maximum
D50	0.56				
D60	0.36				
D70	0.2				
D75	0.15				
D80	0,11				
D85	0,0715				
D90	0.0466				
D95	0.0236				
D98	0.015				
D99	0.0102]
M7D2Y	0.028				
AUGD50	0.0802				
M7D10Y	0.0083				

The equation for estimating the probability of perennial flow is applicable for most areas of Massachusetts except eastern Buzzards Bay, Cape Cod, and the Island regions. The estimate obtained from the equation assumes natural flow conditions at the site. The equation also is best used for sites with drainage areas between 0.01 to 1.99 mi2, as errors beyond for basins beyond these bounds are unknown.

Probability	/ of Pe	rennial Flow Statistics
Statistic	Value	Standard Error (percent)
PROBPEREN	0.86	0,3

ATTACHMENT IV

Roads: Limited Access, Divided, Other Hwy, Major Road, Minor Road, Track, Trail

PWS Protection Areas: Zone II, IWPA, Zone A Hydrography: Open Water, PWS Reservoir, Tidal Flat

Boundaries: Town, County, DEP Region; Train; Powerline; Pipeline; Aqueduct

ald P

MassDEP MCP Numeric Ranking System Map

	Wetlands: Freshwater, Saltwater, Cranberry Bog
Basins: Major, PWS; Streams: Perennial, Intermittent, Man Made Shore, Dam	FEMA 100yr Floodplain; Protected Open Space; ACEC
] Est. Rare Wetland Wildlife Hab; Vernal Pool: Cert., Potential 🇾 😼 🤒
Non Potential Drinking Water Source Area: Medium, High (Yield)	🛿 Solid Waste Landfill; PWS: Com. GW, SW, Emerg., Non-Com. 🔯 😂 🤤 🤤

ATTACHMENT V

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Lexington; Street Name: Marrett;

Inv. No.	Property Name	Street	Town	Year
LEX.515	Bryant, Josiah House	8 Marrett Rd	Lexington	1805
LEX.516	Museum of Our National Heritage	33 Marrett Rd	Lexington	1974
LEX.610	Tower, Richard Gleason House	33 Marrett Rd	Lexington	1905
LEX.611	Tower, William Augustus Carriage House	33 Marrett Rd	Lexington	1905
LEX.1084	Mongeon, Dr. Louis House	64 Marrett Rd	Lexington	1909
LEX.1085	Moulton, Fred House	80 Marrett Rd	Lexington	1909
LEX.1086	Moulton, Fred Garage	80 Marrett Rd	Lexington	1909
LEX.583	Cotton, Henry Ward Beecher House	123 Marrett Rd	Lexington	1805
LEX.584	Randolph, W. B. House	162 Marrett Rd	Lexington	1850
LEX.585	Bridge, Abel Eliah - Patch, Franklin House	212 Marrett Rd	Lexington	1850
LEX.641	Wellington, Jonas C Copeland, Robert M. House	241 Marrett Rd	Lexington	1850
LEX.1087	Bridge, Matthew - Kendall, Francis P. Barn	259 Marrett Rd	Lexington	1850
LEX.586	Bridge, Matthew House	271 Marrett Rd	Lexington	1700
LEX.1597	Partridge, Ashley House	274 Marrett Rd	Lexington	1928
LEX.1088	Hinckley, William House	335 Marrett Rd	Lexington	1910
LEX.1598		360 Marrett Rd	Lexington	1920
LEX.1599		364 Marrett Rd	Lexington	1920
LEX.1600	Stanton, John J. House	366 Marrett Rd	Lexington	1925
LEX.1601	Payson, Edward S. House	399 Marrett Rd	Lexington	1907
LEX.642	Wellington, Walter House	410 Marrett Rd	Lexington	1860
LEX.587	Bridge, Joseph House	419 Marrett Rd	Lexington	1722
LEX.588	Wellington, Horatio - Fuller, George G. House	445 Marrett Rd	Lexington	1840
LEX.932	Whittemore - Muzzey Stone Walls	Marrett St	Lexington	
LEX.618	Whittemore, Jacob House	21 Marrett St	Lexington	1745
LEX.937	Whittemore, Jacob Well	21 Marrett St	Lexington	
LEX.1536	Hargrove Barn	21 Marrett St	Lexington	1850
Monday Sente	Monday Sentember 23 2013		ć	

Monday, September 23, 2013

Page 1 of 1

Massachusetts Cultural Resource Information System

MACRIS Search Results

Search Criteria: Town(s): Lexington; Street Name: Waltham;

lnv. No.	Property Name	Street	Town	Year
LEX.23	A.	15-17 Waltham St	Lexington	1800
, LEX.19	Holmes, Dr. Howland Barn	20 Waltham St	Lexington	1851
LEX.43		27 Waitham St	Lexington	
LEX.46		36 Waltham St	Lexington	1965
LEX.44	Manhattan Building	41-47 Waltham St	Lexington	1956
LEX.20	Whitcher, Bradley C. House	52 Waltham St	Lexington	1895
LEX.22	Brown, Eliah - Thurston, George House	55 Waltham St	Lexington	1850
LEX.21	Richardson, Aaron Parker House	72 Waltham St	Lexington	1865
LEX.45	New England Telephone and Telegraph Company Office	73 Waltham St	Lexington	1954
LEX.449	Spaulding, Albert G. House	82 Waltham St	Lexington	1870
LEX.450	Reed, Hammon House	87 Waltham St	Lexington	1870
LEX.451	O'Brien, Martin House	113 Waltham St	Lexington	1860
LEX.452	Hodgeman, J. E. House	125 Waltham St	Lexington	1873
LEX.453	Fairchild, Camille Carriage House	177 Waltham St	Lexington	1895
LEX.454	Gould, Henry T. House	182 Waltham St	Lexington	1895
LEX.455	Peabody, Frank House	183 Waltham St	Lexington	1895
LEX.456	Scott, John T. House	188 Waltham St	Lexington	1895
LEX.457	Tuttle, Herbert Ainsworth House	191 Waltham St	Lexington	1894
LEX.458	Wiswell, Charles Henry House	194 Waltham St	Lexington	1897
LEX.459	Kershaw, George E. House	201 Waltham St	Lexington	1904
LEX.460	Mulliken, Emery Abbot House	221-223 Waltham St	Lexington	1857
LEX.461	Scott, Augustus Elwin House	277 Waltham St	Lexington	1891
LEX.1139	Smith, William H. House	346 Waltham St	Lexington	1924
LEX.1140	Schwalm, William House	439 Waltham St	Lexington	1926
LEX.1141	Kendall, F. P. Barn	462 Waltham St	Lexington	1875
LEX.577	Messeriis House	609 Waltham St	Lexington	1895

Monday, September 23, 2013

Page 1 of 2

Monday, September 23, 2013

.

Page 2 of 2