

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region 1 5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

CERTIFIED MAI L RETURN RECEIPT REQUESTED

SEP 1 2 2013

David Brownsberger Project Manager Deloury Industries 100 Burtt Road Andover, MA 01810

Re: Authorization to discharge under the Remediation General Permit (RGP) – 910000. CSO Improvements Project site located at 40 Crown Street in Nashua, NH 03060, Authorization # NHG910063

Dear Mr. Brownsberger:

Based on the review of a Notice of Intent (NOI) submitted by Robert J. Leventry, Division Manager for Environmental Services, Inc., on behalf of Deloury Industries contracted by the City Of Nashua to perform CSO Improvements for the site referenced above, the U.S. Environmental Protection Agency (EPA) hereby authorizes you, as the named Operator, to discharge in accordance with the provisions of the RGP at that site. Your authorization number is listed above.

The checklist enclosed with this RGP authorization indicates the pollutants which you are required to monitor. Also indicated on the checklist are the effluent limits, test methods and minimum levels (MLs) for each pollutant. Please note that the check list does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of this permit, including influent and effluent monitoring, narrative water quality standards, record keeping, and reporting requirements, found in Parts I and II, and Appendices I – VIII of the RGP. See EPA's website for the complete RGP and other information at: http://www.epa.gov/region1/npdes/mass.html#dgp.

Please note the enclosed checklist includes the parameters which you have marked "Believed Present". The checklist also includes parameters which your laboratory reports indicated the presence of pollutants detected at levels above the Appendix III limits of the RGP.

Also, please note that the metals included on the checklist are dilution dependent pollutants and subject to limitations based on a dilution factor range (DFR). Due to the

ample dilution at the Merrimack River point of discharge (2,206) the DFR applicable for this pollutant is equal to the ceiling value established in the RGP. (See the RGP Appendix IV for New Hampshire facilities). Therefore, the limit for antimony of 141 ug/L, arsenic of 540 ug/L, trivalent chromium of 1,710 ug/L, copper of 2,070 ug/L, lead of 430 ug/L nickel of 2,380 ug/L, zinc of 1,480 ug/L, and iron of 5,000 ug/L, shall not be exceeded in the discharge.

This general permit and authorization to discharge will expire on September 9, 2015. This project reportedly will terminate on October 25, 2013. You are required to submit a Notice of Termination (NOT) to the attention of the contact person indicated below within 30 days of project completion.

Thank you in advance for your cooperation in this matter. Please contact Victor Alvarez at 617-918-1572 or Alvarez. Victor@epa.gov, if you have any questions.

Sincerely,

Thelma Murphy, Chief

Storm Water and Construction

Melma Murphy

Permits Section

Enclosure

cc: Jeff Andrews, NHDES

Robert J. Laventry, Green Environmental

2010 Remediation General Permit Summary of Monitoring Parameters [1]

NPDES Permit Number:		NHG910063				
Authorization Issued:	Septe	eptember, 2013				
Facility/Site Name:		Improvements Project				
Facility/Site Address:	40 Cr	own Street, Nashua, NH 03060				
	Email	address of owner; Not Provide, Phone n: 603 5983330				
Legal Name of Operato	or:	Deloury Industries				
Operator contact name, title,		David Brownsberger, Project Manager, Nashua NH.03060				
and Address:	AM WO	Email dbrownsberger@deloury.com				
Estimated Date of Com	pletion					
Category and Sub-Category:		Category III- Contaminated Construction Dewatering. Subcategory A. General Urban Fill Sites				
Receiving Water:	Jan Va	Merrimack River				

Monitoring & Limits are applicable <u>if checked</u>. All samples are to be collected as grab samples

	<u>Parameter</u>	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)						
✓	Total Suspended Solids (TSS)	30 milligrams/liter (mg/l) **, 50 mg/l for hydrostatic testing **, Me#60.2/5mL						
	Total Residual Chlorine (TRC) Total Residual Chlorine	Freshwater = 11 ug/l ** Saltwater = 7.5 ug/l **/ Me#330.5/ML 20ug/L						
	3. Total Petroleum Hydrocarbons (TPH)	5.0 mg/l/ Me# 1664A/5.0mg/LmL						
	4. Cyanide (CN) 2,3	Freshwater = 5.2 ug/l ** Saltwater = 1.0 ug/l **/ Me#335.4/ML 5ug/L						
	5. Benzene (B)	5ug/L /50.0 ug/l for hydrostatic testing only/ Me#8260C/ML 2 ug/L						
√	6. Toluene (T)	(limited as ug/L total BTEX)/ Me#8260C/ ML 2ug/L						
	7. Ethylbenzene (E)	(limited as ug/L total BTEX))/ Me#8260C/ ML 2ug/L						
8/14	8. (m,p,o) Xylenes (X)	(limited as ug/L total BTEX))/ Me#8260C/ ML 2ug/L						
	9. Total Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) ⁴	100 ug/l)/ Me#8260C/ ML 2ug/L						
	10. Ethylene Dibromide (EDB) (1,2- Dibromoethane)	0.05 ug/l/ Me#8260C/ ML 10ug/L 70.0 ug/l /Me#8260C/ ML 10ug/L						
	11. Methyl-tert-Butyl Ether (MtBE)							
-	12.tert-Butyl Alcohol (TBA)	Monitor Only (ug/L)/ Me#8260C/ ML						

	Parameter Parame	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **,
		in that case it will be a Monthly Average Limit)
	(TertiaryButanol)	10ug/L
TAS-	13. tert-Amyl Methyl Ether (TAME)	Monitor Only (ug/L) /Me#8260C/ ML 10ug/L
	14. Naphthalene ⁵	20 ug/l /Me#8260C/ ML 2ug/L
Ascell.	15. Carbon Tetrachloride	4.4 ug/l /Me#8260C/ ML 5ug/L
	16. 1,2 Dichlorobenzene (o-DCB)	600 ug/l /Me#8260C/ ML 5ug/L
	17. 1,3 Dichlorobenzene (m- DCB)	320 ug/l /Me#8260C/ ML 5ug/L
	18. 1,4 Dichlorobenzene (p-DCB)	5.0 ug/l /Me#8260C/ ML 5ug/L
	18a. Total dichlorobenzene	763 ug/l - NH only /Me#8260C/ ML5ug/L
	19. 1,1 Dichloroethane (DCA)	70 ug/l /Me#8260C/ ML 5ug/L
	20. 1,2 Dichloroethane (DCA)	5.0 ug/l /Me#8260C/ ML 5ug/L
200	21. 1,1 Dichloroethene (DCE)	3.2 ug/l/Me#8260C/ ML 5ug/L
	22. cis-1,2 Dichloroethene (DCE)	70 ug/l /Me#8260C/ ML 5ug/L
	23. Methylene Chloride	4.6 ug/I/Me#8260C/ ML 5ug/L
Vijale	24. Tetrachloroethene (PCE)	5.0 ug/l /Me#8260C/ ML 5ug/L
1/1 g 20/04/6	25. 1,1,1 Trichloro-ethane (TCA)	200 ug/l/Me#8260C/ ML 5ug/L
	26. 1,1,2 Trichloro-ethane (TCA)	5.0 ug/l /Me#8260C/ ML 5ug/L
	27. Trichloroethene (TCE)	5.0 ug/l /Me#8260C/ ML 5ug/L
	28. Vinyl Chloride (Chloroethene)	2.0 ug/l /Me#8260C/ ML 5ug/L
	29. Acetone	Monitor Only (ug/L) /Me#8260C/ ML 50ug/L
4. A. S.	30. 1,4 Dioxane	Monitor Only /Me#1624C/ML50 ug/L
GAN P	31. Total Phenols	300 ug/l Me#420.1&420.2/ML 2 ug/L/ Me# 420.4 /ML50 ug/L
Vanile	32. Pentachlorophenol (PCP)	1.0 ug/l /Me#8270D/ML5ug/L,Me#604 &625/ML10ug/L
	33. Total Phthalates (Phthalate esters) ⁶	3.0 ug/L ** /Me#8270D/ML5ug/L,Me#606/ML10ug/L8 Me#625/ML5ug/L
\vee	34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	6.0 ug/l /Me#8270D/ML5ug/L,Me#606/ML10ug/L Me#625/ML5ug/L
	35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)	10.0 ug/l
	a. Benzo(a) Anthracene ⁷	0.0038 ug/l /Me#8270D/ ML5ug/L, Me#610/ML5ug/L& Me#625/ML5ug/L
	b. Benzo(a) Pyrene ⁷	0.0038 ug/l /Me#8270D/ ML5ug/L, Me#610/ML5ug/L& Me#625/ML5ug/L
	c. Benzo(b)Fluoranthene 7	0.0038 ug/l /Me#8270D/ ML5ug/L,

		Efficient Limit (Mark add) (199					
82	25 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Effluent Limit/Method#/ML					
	Danamatan	(All Effluent Limits are shown as Daily					
	<u>Parameter</u>	Maximum Limit, unless denoted by a **,					
	rendration treat a spinit	in that case it will be a Monthly Average					
	100-310-ART (0-9-36-30)	Limit)					
	2011 3050	Me#610/ML5ug/L& Me#625/ML5ug/L					
	d. Benzo(k)Fluoranthene 7	0.0038 ug/l /Me#8270D/ ML5ug/L,					
	a. Delize(ix) radialiene	Me#610/ML5ug/L& Me#625/ML5ug/L					
	e. Chrysene ⁷	0.0038 ug/l /Me#8270D/ ML5ug/L,					
j.	C. CHI JSCHE	Me#610/ML5ug/L& Me#625/ML5ug/L					
	f. Dibenzo(a,h)anthracene 7	0.0038 ug/l /Me#8270D/ ML5ug/L,					
6	1. Dibenzo(a,ii)antinacene	Me#610/ML5ug/L& Me#625/ML5ug/L					
. 6	g Indeno(1 2 3-cd) Pyrene 7	0.0038 ug/l /Me#8270D/ ML5ug/L,					
1.0	g. Indeno(1,2,3-cd) Pyrene ⁷	Me#610/ML5ug/L& Me#625/ML5ug/L					
	36. Total Group II Polycyclic	The state of the s					
	Aromatic Hydrocarbons (PAH)	100 ug/l					
		X/Me#8270D/ML5ug/L,Me#610/ML5ug /L					
	h. Acenaphthene	& Me#625/ML5ug/L					
		X/Me#8270D/ML5ug/L,Me#610/ML5ug/L					
	i. Acenaphthylene	& Me#625/ML5ug/L					
		X/Me#8270D/ML5ug/L,Me#610/ML5ug/L					
	j. Anthracene	& Me#625/ML5ug/L					
	840 rLationals WEI	X/Me#8270D/ML5ug/L,Me#610/ML5ug/L					
	k. Benzo(ghi) Perylene	& Me#625/ML5ug/L					
der	I Eluoranthono AM II 318	X/Me#8270D/ML5ug/L,Me#610/ML5ug/L					
	I. Fluoranthene	& Me#625/ML5ug/L					
		X/Me#8270D/ML5ug/L,Me#610/ML5ug/L					
	m. Fluorene	& Me#625/ML5ug/L					
77		20 ug/l / Me#8270D/ ML5ug/L,					
	n. Naphthalene ⁵	Me#610/ML5ug/L & Me#625/ML5ug/L					
WE C	A STELL/Mayety/Gran	X/Me#8270D/ML5ug/L,Me#610/ML5ug/L					
	o. Phenanthrene	& Me#625/ML5ug/L					
7	is SYNdroden 1 4"18 green An	X/Me#8270D/ML5ug/L,Me#610/ML5ug/L					
	p. Pyrene	& Me#625/ML5ug/L					
B	37. Total Polychlorinated	A LEC STEER PLANT OF SELECTION					
	Biphenyls (PCBs) 8, 9	0.000064 ug/L / Me# 608/ ML 0.5 ug/L					
V	38. Chloride	Monitor only/Me# 300.0/ ML 0.1ug/L					
•	1	The state of the s					

	"den2/shorth/Grab"	Total Reco NH/Metal H ¹⁰ = 25 CaCO3, Unit (11/12)	Minimum level=ML		
	Metal parameter	<u>Freshwater</u> <u>Limts</u>	2206 dilution	Wester Bill	Ngametti.
√	39. Antimony	a l) IV xibra 141 si batal as		ML	10
√ _	40. Arsenic **	EPA's water qu	540	ML	20
	41. Cadmium **	0.8	mere is ou	ML	10
\checkmark	42. Chromium III (trivalent) **	Pager ed Zigin	1,710	ML	15

Bell of an amuse of the state o

	Pagent Circle Matherial Asia Pagent Circle are frown as Daily un circle arriess, sureted by a sec- case to vell term wantilly Average Case to vell term wantilly Average	NH/Meta H 10 = 25	Minimum level=ML		
	Metal parameter	<u>Freshwater</u> <u>Limts</u>	2206 dilution	A A A	
20	43. Chromium VI (hexavalent) **	11.4		ML	10
\checkmark	44. Copper **	1 別会業を 1	2,070	ML	15
\checkmark	45. Lead **	#E80.0	430	ML	20
	46. Mercury **	0.9		ML	02
\checkmark	47. Nickel **	MENDINAL Y	2,380	ML	20
	48. Selenium **	5		ML	20
	49. Silver	0.4	A THE MAINER	ML	10
\checkmark	50. Zinc **	ALL SALES	1,480	ML	15
√	51. Iron	5,00		ML	20

	Other Parameters	Limit		
V	52. Instantaneous Flow	Site specific in CFS		
\checkmark	53. Total Flow	Site specific in CFS		
	54. pH Range for Class A & Class B Waters in MA	6.5-8.3; 1/Month/Grab ¹³		
	55. pH Range for Class SA & Class SB Waters in MA	6.5-8.3; 1/Month/Grab 13		
\checkmark	56. pH Range for Class B Waters in NH	6.5-8; 1/Month/Grab ¹³		
	57. Daily maximum temperature - Warm water fisheries	83°F; 1/Month/Grab ¹⁴		
	58. Daily maximum temperature - Cold water fisheries	68°F; 1/Month/Grab14		
	59. Maximum Change in Temperature in MA - Any Class A water body	1.5°F; 1/Month/Grab ¹⁴		
	60. Maximum Change in Temperature in MA - Any Class B water body- Warm Water	5°F; 1/Month/Grab ¹⁴		
	61. Maximum Change in Temperature in MA – Any Class B water body - Cold water and Lakes/Ponds	3°F; 1/Month/Grab ¹⁴		
	62. Maximum Change in Temperature in MA – Any Class SA water body - Coastal	1.5°F; 1/Month/Grab ¹⁴		
	63. Maximum Change in Temperature in MA – Any Class SB water body - July to September	1.5°F; 1/Month/Grab ¹⁴		
	64. Maximum Change in Temperature in MA –Any Class SB water body - October to June	4°F; 1/Month/Grab ¹⁴		

Footnotes:

Although the maximum values for TRC are 11ug/l and 7.5 ug/l for freshwater, and saltwater respectively, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., Method 330.5, 20 ug/l).
Limits for cyanide are based on EPA's water quality criteria expressed as micrograms per liter. There is currently no EPA approved test method for free cyanide. Therefore, total cyanide must be reported.

³ Although the maximum values for cyanide are 5.2 ug/l and 1.0 ug/l for freshwater and saltwater, respectively, the compliance limits are equal to the minimum level (ML) of the Method 335.4 as listed in Appendix VI (i.e., 10 ug/l).

BTEX = sum of Benzene, Toluene, Ethylbenzene, and total Xylenes.

Naphthalene can be reported as both a purgeable (VOC) and extractable (SVOC) organic compound. If both VOC and SVOC are analyzed, the highest value must be used unless the QC criteria for one of the analyses is not met. In such cases, the value from the analysis meeting the QC criteria must be used.

⁶ The sum of individual phthalate compounds(not including the #34, Bis (2-Ethylhexyl) Phthalate . The compliance limits are equal to the minimum level (ML) of

the test method used as listed in Appendix VI.

Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measurement of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁷ Although the maximum value for the individual PAH compounds is 0.0038 ug/l, the compliance limits are equal to the minimum level (ML) of the test method used as

listed in Appendix VI.

⁸ In the November 2002 WQC, EPA has revised the definition of Total PCBs for aquatic life as total PCBs is the sum of all homologue, all isomer, all congener, or all "Oroclor analyses." Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measure of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁹Although the maximum value for total PCBs is 0.000064 ug/l, the compliance limit is equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., 0.5 ug/l for Method 608 or 0.00005 ug/l when Method 1668a is approved).

¹⁰ Hardness. Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc are

Hardness Dependent.

¹¹ For a Dilution Factor (DF) from 1 to 5, metals limits are calculated using DF times the base limit for the metal. See Appendix IV. For example, iron limits are calculated using DF x 1,000 μ L (the iron base limit). Therefore DF is 1.5, the iron limit will be 1,500 μ L; DF 2, then iron limit =1,000 x 2 =2,000 μ L, etc. not to exceed the DF=5.

Minimum Level (ML) is the lowest level at which the analytical system gives a recognizable signal and acceptable calibration point for the analyte. The ML represents the lowest concentration at which an analyte can be measured with a known level of confidence. The ML is calculated by multiplying the laboratory-determined method detection limit by 3.18 (see 40 CFR Part 136, Appendix B).

pH sampling for compliance with permit limits may be performed using field methods as provided for in EPA test Method 150.1.

Temperature sampling per Method 170.1

Remediation General Permit Appendix V

Notice of Intent (NOI) Suggested Forms & Instructions

I. Notice of Intent (NOI) Suggested Form and Instructions

In order to be covered by the remediation general permit (RGP), applicants must submit a completed Notice of Intent (NOI) to EPA Region I and the appropriate state agency. The owner or operator, as defined by 40 CFR § 122.2, means the owner or operator of any "facility or activity" subject to regulation under the NPDES program.

The following are three general "operator" scenarios (variations on any of these three are possible, especially as the number of owners and contractors increases):

- ► "Owner" as "Operator" sole permittee. The property owner designs the structures and control systems for the site, develops and implements the BMPP, and serves as general contractor (or has an on-site representative with full authority to direct day-to-day operations). Under the definition of operator, in this case, the "Owner" would be considered the "operator" and therefore the only party that needs permit coverage. Everyone else working on the site may be considered subcontractors and do not need to apply for permit coverage.
- "Contractor" as "Operator" sole permittee. The property owner hires a company (e.g., a contractor) to design the project and oversee all aspects, including preparation and implementation of the BMPP and compliance with the permit (e.g., a "turnkey" project). Here, the contractor would likely be the only party needing a permit. Similarly, EPA expects that property owners hiring a contractor or consultant to perform groundwater remediation work (e.g., due to a leaking fuel oil tank) would come under this type of scenario. EPA believes that the contractor, being a professional in the industry, should be the responsible entity rather than the individual. The contractor is better equipped to meet the requirements of both applying for permit coverage and developing and properly implementing the plans needed to comply with the permit. However, property owners would also meet the definition of "operator" and require permit coverage in instances where they perform any of the required tasks on their personal properties.
- "Owner" <u>and</u> "Contractor" as "Operators" co-permittees. The owner retains control over any changes to site plans, BMPPs, or wastewater conveyance or control designs, but the contractor is responsible for conducting and overseeing the actual activities (e.g., excavation, installation and operation of treatment train, etc.) and daily implementation of BMPP and other permit conditions. In this case, <u>both</u> parties need to apply for coverage.

Generally, a person would not be considered an "operator," and subsequently would not need permit coverage, if: 1) that person is a subcontractor hired by, and under the supervision of, the owner or a general contractor (e.g., if the contractor directs the

subcontractor's activities on-site, it is probably not an operator); or 2) the person's activities would otherwise result in the need for coverage under the RGP but another operator has legally assumed responsibility for the impacts of project activities.

A. Instructions for the Suggested Notice of Intent (NOI) - At a minimum, the Notice of Intent must include the following for each individual facility or site. Additional information may be attached as needed.

1. General facility/site information.

- a) Provide the facility/site name, mailing address, and telephone and fax numbers. Provide the facility Standard Industrial Classification (SIC) code(s), which can be found online at http://www.osha.gov/pls/imis/sic_manual.html. Provide the site location, including longitude and latitude.
- b) Provide the facility/site owner's name, address, email address, telephone and fax numbers, if different from the site information. Indicate whether the owner is a Federal, State/Tribal, private, or other entity.
- c) Provide the site operator's (e.g., contractor's) name, mailing address, telephone and fax numbers, and email address if different from the owner's information.
- d) For the site for which the application is being submitted, indicate whether:
 - 1) a prior NPDES permit exclusion has been granted for the discharge (if so, provide the tracking number of the exclusion letter);
 - 2) a prior NPDES application (Form 1 & 2C for reference, please visit http://www.epa.gov/region1/npdes/epa_attach.html) has ever been filed for the discharge (if so, provide the tracking number and date that the application was submitted to EPA);
 - 3) the discharge is a "new discharge" as defined by 40 CFR 122.2; and
 - 4) for sites in Massachusetts, is the discharge covered under the Massachusetts Contingency Plan (MCP) 310 CMR 40.0000 and exempt from state permitting.
- e) Indicate whether there is any ongoing state permitting, licensing, or other action regarding the facility or site which is generating the discharge. If "yes," provide any site identification number assigned by the state of NH or MA, any permit or license number assigned, and the state agency contact information (e.g. name, location, telephone no.).
- f) Indicate whether or not the facility is covered by other EPA permits including:
 - the Multi-Sector General Permit (MSGP) http://cfpub.epa.gov/npdes/stormwater/msgp.cfm;
 - the Final NPDES General Permit for Dewatering Activity Discharges in Massachusetts and New Hampshire http://www.epa.gov/region1/npdes/dewatering.html;
 - 3) the EPA Construction General Permit http://cfpub.epa.gov/npdes/stormwater/cgp.cfm;
 - 4) an individual NPDES permit; or
 - 5) any other water quality-related individual or general permit.

If so, provide permit tracking number(s).

g) Indicate if the site/facility discharge(s) to an Area of Critical Environmental Concern (ACEC), as shown on the tables and maps in Appendix I.

h) Based on the nature of the facility/site and any historical sampling data, the applicant must indicate which of the sub-categories within which the potential discharge falls.

2. Discharge information.

- a) Describe the discharge activities to be covered by the permit. Attach additional sheets as needed.
- b) Provide the following information about each discharge:
 - 1) the number of discharge points;
 - 2) the maximum and average flow rate of the discharge in cubic feet per second. For the average flow magnitude, include the units and appropriate notation if this value is a calculated design value or estimate if technical/design information is not available;
 - 3) the latitude and longitude of each discharge with an accuracy of 100 feet (see EPA's siting tool at: http://www.epa.gov/tri/report/siting_tool);
 - 4) the total volume of potential discharge (gal), only if hydrostatic testing;
 - 5) whether the discharge(s) is intermittent or seasonal and if ongoing.
- c) Provide the expected start and end dates of discharge (month/day/year).
- d) Attach a line drawing or flow schematic showing water flow through the facility including:
 - 1) sources of intake water;
 - 2) contributing flow from the operation;
 - 3) treatment units; and
 - 4) discharge points and receiving waters(s).

3. Contaminant information.

In order to complete the NOI, the applicant will need to take a minimum of one sample of the untreated water and have it analyzed for the parameters applicable to the sub-category into which the discharge falls, as listed in Appendix III of the permit and selected in Part 1 of the NOI form, except as noted below.

Permittees shall provide additional sampling results with the NOI if such sampling already exists, or if the permittee has reason to believe the site contains additional contaminants not listed in Appendix III for that sub-category or contains additional contaminants not included in Appendix III.

The applicant may use historical data as a substitute for the new sample if the data was collected no more than 2 years prior to the "Submittal of the NOI" and if collected pursuant to:

- i. for sites in Massachusetts, 310 CMR 40.0000, the Massachusetts Contingency Plan ("Chapter 21E");
- ii. for sites in New Hampshire, New Hampshire's Title 50 RSA 485-A: Water Pollution and Waste Disposal or Title 50 RSA 485-C: Groundwater Protection Act;
- a) Based on the analysis of the untreated influent, the applicant must indicate whether each listed chemical is believed present or believed absent in the potential discharge.

Based on the required sampling and analysis, the applicant must fill in the table, or provide a narrative description, with the following additional information for each chemical that is believed present (chemical that violate EPA's criteria limitations):

- 1) the number of samples taken (minimum of one sample for applicable parameters per Appendix III);
- 2) the type of sample (e.g. grab, composite, etc.);
- 3) the analytical method used, including the method number;
- 4) the minimum level (ML) of the method used (based on Appendix VI);
- 5) the maximum daily amount (concentration (ug/l) and mass (kg)) of each pollutant, based on the sampling data

lb/day (pounds per day) equals flow (in million gallons per day, MGD) times concentration in milligrams per liter (mg/l) times 8.34. Example: 2.5 MGD x 30 mg/l TSS x 8.34 = 625.5 lb TSS/day MGD = gallons per minute (gpm) x 0.00144 1 kg = 2.2 lbs

And;

6) the average daily amount (concentration and mass) of each pollutant, based on the sampling data.

If the results of any sampling indicate that pollutants exist in addition to those listed in Appendix III of the RGP of the permit, the applicant must also describe those contaminants on the NOI in boxes in section I.3.c.) on the line marked "Other," or use additional sheets as needed. Subsequently, EPA may require monitoring for such parameters or will decide if an individual permit is necessary.

c) Determination of Reasonable Potential and Allowable Dilution for Discharges of Metals:

If any *metals* are believed present in the potential discharge to freshwater¹, the applicant must follow the procedures below to determine the dilution factor for each metal.

Step 1: Initial Evaluation

- 1) The applicant must evaluate all metals believed present in the discharge subject to this permit, including "naturally occurring" metals such as dissolved and/or total Iron. Applicants must enter the highest detected concentration of the metal at zero dilution in the "Maximum value" column of the NOI.
- 2) Based on the maximum concentration of each metal, the applicant must perform an initial evaluation assuming zero dilution in the receiving water. The applicant must compare the metals concentrations in the untreated (intake) waters to the effluent limits contained in Appendix III.

¹Dilution factors may be available for discharges to saline waters but only with approval of the flow modeling information from the State prior to the submission of the NOI.

- i. If potential discharges (untreated influent) with metals contain concentrations above the concentration limits listed in Appendix III, applicant must proceed to step 2.
- ii. If potential discharges (untreated influent) with metals contain concentrations below the concentrations listed in Appendix III, the applicant may skip step 2 and those metals will **not** be subject to permit limitations or monitoring requirements.

Step 2: Calculation of Dilution Factor

1) For applicants in NH: If a metal concentration in a potential discharge (untreated influent) to freshwater exceeds the limits in Appendix III with zero dilution, the applicant shall evaluate the potential concentration considering a dilution factor (DF) using the formula below. For sites in New Hampshire, the applicant must contact NH DES to determine the 7Q10 and dilution factor.

$$DF = [(Qd + Qs)/Qd] \times 0.9$$

Where:

DF

= Dilution Factor

Od

= Maximum flow rate of the discharge in cubic feet per second (cfs) (1.0 gpm = .00223 cfs)

Os

= Receiving water 7Q10 flow, in cfs, where 7Q10 is the annual minimum flow for 7 consecutive days with a recurrence interval of 10 years

0.9

= Allowance for reserving 10% of the assets in the receiving stream as per Chapter ENV-Wq 1700, Surface Water Quality Regulations

- i. Using the DF calculated from the formula above, the applicant must refer to the corresponding dilution range column in Appendix IV. The applicant then compares the maximum concentration of the metal entered on the NOI to the corresponding total recoverable metals limits listed in Appendix IV. Please note that for this reissuance the applicant will be permitted to determine a limit using any fraction within the 1-5 dilution factor range times the metal limit (for all regulated metals). For example: if the DF is 1.5, the Iron limit is 1,500 ug/L; if the DF is 1.5, the antimony limit is 8.4, etc. All limits above a dilution factor of 5 are maintained.
 - 1. If a metal concentration in the potential discharge (untreated influent) is less than the corresponding limit in Appendix IV, the metal will **not** be subject to permit limitations or monitoring requirements.
 - 2. If a metal concentration in the potential discharge (untreated influent) is equal to or exceeds the corresponding limit in Appendix IV, the applicant must reduce it in the effluent to a concentration below the applicable total recoverable metals limit in Appendix IV prior to discharge.

- ii. In either case, the applicant must submit the results of this calculation as part of the NOI. EPA and NH DES will review the proposed effluent limitations for each metal and approve or disapprove the limits in the notification of coverage letter to the applicant.
- 2) For applicants in MA: If a metal concentration in a potential discharge (untreated influent) to freshwater exceeds the limits in Appendix III with zero dilution, the applicant must evaluate the potential concentration considering a dilution factor (DF) using the formula below.

$$DF = (Qd + Qs)/Qd$$

Where: DF = Dilution Factor

Qd = Maximum flow rate of the discharge in cubic feet per second

(cfs) (1.0 gpm = .00223 cfs)

Qs = Receiving water 7Q10 flow (cfs) where 7Q10 is the minimum flow (cfs) for 7 consecutive days with a recurrence interval of

10 years

- i. The applicant may estimate the 7Q10 for receiving water by using available information such as nearby USGS stream gauging stations directly or by application of certain "flow factors," using historic streamflow publication information, calculations based on drainage area, information from state water quality offices, or other means. In many cases Massachusetts has calculated 7Q10 information using "flow factors" for a number of streams in the state. The source of the low flow value(s) used by the applicant must be included on NOI application form. Flow data can also be obtained from web applications such as the one located at: http://ma.water.usgs.gov/streamstats/.
- ii. Using the DF calculated from the formula above, the applicant must refer to the corresponding dilution range column in Appendix IV. The applicant then shall compare the maximum concentration of each metal entered on the NOI to the corresponding total recoverable metals limit listed in Appendix IV. Please note that for this reissuance the applicant will be permitted to determine a limit using any fraction of the 0-5 of DF times the metal limit (for all regulated metals). For example: if the DF is 1.5, the Iron limit is 1,500 ug/L; if the DF is 1.5, the antimony limit is 8.4, etc. Not to exceed DF of 5.
 - 1. If a metal concentration in the potential discharge (untreated influent) is less than the corresponding limit in Appendix IV, the metal will **not** be subject to permit limitations or monitoring requirements.
 - 2. If a metal concentration in a potential discharge (untreated influent) is equal to or exceeds the corresponding limit in Appendix IV, the applicant must reduce it in the effluent to a concentration below the applicable total recoverable metals limit in Appendix IV prior to discharge.

iii. The applicant must submit the results of this calculation as part of the NOI. EPA (and MassDEP where the discharge is not covered by 310 CMR 40.0000) will review the proposed effluent limitations for each metal and approve or disapprove the limits in the notification of coverage letter to the applicant.

4. Treatment system information.

- a) Provide a written description of the treatment train and how the system will be set up for each discharge and attach a schematic of the proposed or existing treatment system(s).
- b) Identify each major treatment unit (e.g. frac tanks, filters, air stripper, liquid phase/vapor phase activated carbon, oil/water separators, etc.) by checking all that apply and describing any additional equipment not listed. Attach additional sheets as needed.
- c) Provide the proposed average and maximum flow rates (in gallons per minute, gpm) for the discharge and the design flow rates (in gpm) of the treatment system. Clearly identify the component of the treatment with the most limited flow, i.e., the part of the treatment train that establishes the design flow.
- d) Describe any chemical additives being used, or planned to be used, and attach MSDS sheets for each. EPA may request further information regarding the chemical composition of the additive, potential toxic effects, or other information to insure that approval of the use of the additive will not cause or contribute to a violation of State water quality standards. Approval of coverage under the RGP will constitute approval of the use of the chemical additive(s). If coverage of the discharge under the RGP has already been granted and the use of a chemical additive becomes necessary, the permittee must submit a Notice of Change (NOC).

5. Receiving surface water(s) information.

- a) Identify the discharge pathway by checking whether it is discharged: directly to the receiving water (river, stream, or brook), within the facility (e.g., through a sewer drain), to a storm drain, to a wetland, or other receiving body.
- b) Provide a narrative description of the discharge pathway, including the name(s) of the receiving waters into which discharge will occur.
- c) Provide a detailed map(s) indicating the location of the site and outfall(s) to the receiving water(s):
 - 1) For multiple discharges, the discharges should be numbered sequentially.
 - 2) In the case of indirect dischargers (to municipal storm sewer, etc) the map(s) must be sufficient to indicate the location of the discharge to the indirect conveyance and the discharge to the state classified surface water. The map should also include the location and distance to the nearest sanitary sewer as well as the locus of nearby sensitive receptors (based on USGS topographical mapping), such as surface waters, drinking water supplies, and wetland areas.
- d) Provide the state water quality classification of the receiving water and the basin (for Massachusetts, the Surface Water Quality Standards (314 CMR 4.00) are available at http://www.mass.gov/dep/water/laws/regulati.htm#wqual) (for New Hampshire, contact the NH DES at (603) 271-2984).
- e) Specify the reported seven day-ten year low flow (7Q10) of the receiving water (see Section I.A.3) c. above). In New Hampshire, the 7Q10 must be provided by to the applicant by the New Hampshire Department of Environmental Services.

f) Indicate whether the receiving water is a listed 303(d) water quality impaired or limited water and if so, for which pollutants (see Section IX of the Fact Sheet for additional information).

For MA, the most updated integrated list of waters (CWA 303(d) and 305(b)) is available at http://www.mass.gov/dep/water/resources/tmdls.htm#info.

For NH, the most updated integrated list of waters (CWA 303(d) and 305(b)) is available at http://des.nh.gov/organization/divisions/water/wmb/swqa/index.htm.

Also, indicate if there is a final TMDL for any of the listed pollutants. For MA, final TMDLs can be found at: http://www.mass.gov/dep/water/resources/tmdls.htm and for NH, final TMDLs can be found at

http://des.nh.gov/organization/divisions/water/wmb/tmdl/index.htm. For more information, contact the states at: New Hampshire Department of Environmental Services, Watershed Management Bureau at 603-271-3503 or the Massachusetts Department of Environmental Protection at 508-767-2796 or 508-767-2873.

6. ESA and NHPA Eligibility.

As required in Parts I.A.4 and Appendix VII the operator of a site/facility must ensure that the potential discharge will not adversely affect endangered species, designated critical habitat, or national historic places that are in proximity to the potential discharge. If the potential discharge is to certain water bodies, the applicant must also submit a formal certification with the NOI that indicates the consultation, with the U.S. Fish and Wildlife Service and National Marine Fisheries Service (the Services), resulted in either a no jeopardy opinion or a written concurrence on a finding that the discharge is not likely to adversely affect any endangered species or critical habitat. Facilities should begin the consultation as early in the process as possible.

- a) Using the instructions in Appendix VII and information in Appendix II, indicate under which criterion listed you are eligible for coverage under this general permit.
- b) If you selected criterion D or F, indicate if consultation with the federal services has been completed or if it is underway.
- c) If consultation with the U.S. Fish and Wildlife Service and/or NOAA Fisheries Service was completed, indicate if a written concurrence finding that the discharge is "not likely to adversely affect" listed species or critical habitat was received.
- d) Attach documentation of ESA eligibility as described below and required in Appendix VII, Part I.C, Step 4.
- Criterion A No federally-listed threatened or endangered species or federally-designated critical habitat are present: A copy of the most current county species list pages for the county(ies) where your site or facility and discharges are located. You must also include a statement on how you determined that no listed species or critical habitat are in proximity to your site or facility or discharge locations.
- Criterion B Section 7 consultation completed with the Service(s) on a prior project: A copy of the USFWS and/or NOAA Fisheries, as appropriate, biological opinion or concurrence on a finding of "unlikely to adversely effect" regarding the ESA Section 7 consultation.
- Criterion C Activities are covered by a Section 10 Permit: A copy of the USFWS and/or the NOAA Fisheries, as appropriate, letter transmitting the ESA Section 10 authorization.

- Criterion D Concurrence from the Service(s) that the discharge is "not likely to adversely affect" federally-listed species or federally-designated critical habitat (not including the four species of concern identified in Section I of Appendix I): A copy of the USFWS and/or the NOAA Fisheries, as appropriate, letter or memorandum concluding that the discharge is consistent with the general permit's "not likely to adversely affect" determination.
- Criterion E Activities are covered by certification of eligibility: A copy of the documents originally used by the other operator of your site or facility (or area including your site) to satisfy the documentation requirement of Criteria A, B, C or D.
- Criterion F Concurrence from the Service(s) that the discharge is "not likely to adversely affect" species of concern, as identified in Section I of Appendix I: A copy of the USFWS and/or the NOAA Fisheries, as appropriate, concurrence with the applicant's determination that the discharge is "not likely to adversely affect" listed species.
- e) Using the instructions in Appendix VII, identify which criterion listed in Part C makes you eligible for coverage under this general permit.
- f) If Criterion 3 was selected, attach all written correspondence with the State or Tribal historic preservation officers, including any terms and conditions that outline measures the applicant must follow to mitigate or prevent adverse effects due to activities regulated by the RGP.
- 7. Supplemental information. Applicants should provide any supplemental information needed to meet the requirements of the permit, including any analytical data used to support the application, and any certification(s) required.
- 8. Signature Requirements The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit

1. General facility/site information. Please provide the following information about the site: a) Name of facility/site: Improvements at CSO-004 Facility/site mailing address: Location of facility/site: Facility SIC Street: longitude: -71.4453 code(s): L Crown Street (End of Burke Street) Nashua, NH 03060 latitude: 42.7611 Town: Nashua b) Name of facility/site owner: Email address of facility/site owner: Zip: State: County: NΗ 03060 Telephone no. of facility/site owner: 603-589-3330 Owner is (check one): 1. Federal

2. State/Tribal Fax no. of facility/site owner: 603-589-3344 3. Private O 4. Other O if so, describe: Address of owner (if different from site): Municipality - City of Nashua Street: 229 Main Street County: Hillsborough Town: Nashua Zip: 03060 State: NH Operator telephone no: 978-475-8153 c) Legal name of operator: Operator email: dbrownsberger@deloury.com Operator fax no.: 978-475-7177 Deloury Industries Operator contact name and title: David Brownsberger - project Manager Address of operator (if different from Street: 100 Burtt Road, owner): Town: Andover Zip: 01810 County: Essex State: MA

d) Check Y for Ayes® or N for Ano® for the following: 1. Has a prior NPDES permit exclusion been granted for 2. Has a prior NPDES application (Form 1 & 2C) ever be Y O N O, if Y, date and tracking #: 3. Is the discharge a "new discharge" as defined by 40 CF 4. For sites in Massachusetts, is the discharge covered unopermitting? Y O N O	en filed for the discharge?
e) Is site/facility subject to any State permitting, license, or other action which is causing the generation of discharge? YONO If Y, please list: 1. site identification # assigned by the state of NH or MA: 2. permit or license # assigned: 3. state agency contact information: name, location, and telephone number:	f) Is the site/facility covered by any other EPA permit, including: 1. Multi-Sector General Permit? Y O N O, if Y, number: 2. Final Dewatering General Permit? Y O N O, if Y, number: 3. EPA Construction General Permit? Y O N O, if Y, number: 4. Individual NPDES permit? Y O N O, if Y, number: 5. any other water quality related individual or general permit? Y O N O, if Y, number:
g) Is the site/facility located within or does it discharge to	an Area of Critical Environmental Concern (ACEC)? Y O N O
h) Based on the facility/site information and any historical discharge falls.	al sampling data, identify the sub-category into which the potential
Activity Category	Activity Sub-Category
I - Petroleum Related Site Remediation	A. Gasoline Only Sites B. Fuel Oils and Other Oil Sites (including Residential Non-Business Remediation Discharges) C. Petroleum Sites with Additional Contamination
II - Non Petroleum Site Remediation	A. Volatile Organic Compound (VOC) Only Sites B. VOC Sites with Additional Contamination C. Primarily Heavy Metal Sites
III - Contaminated Construction Dewatering	A. General Urban Fill Sites B. Known Contaminated Sites

IV - Miscellaneous Related Dischar	B. W. Cont. C. H. D. L. E. Si	Vell Development/Rehabiliteminated Sites ydrostatic Testing of Pipel ong-Term Remediation of	aluate Formerly Contaminated Site ation at Contaminated/Formerly ines and Tanks Contaminated Sumps and Dikes edging Drain Back Waters (if not	•
e and the Colores are readed to the colorest colores.	artana ara da ara d		additional sheets as necessary)	including
a) Describe the discharge activiti	es for which the owner/applica	nt is seeking coverage:		
Dewatering of groundwater in excavati	on to support installation of 30,000	gallon storage tank.		
b) Provide the following informa	tion about each discharge:			
points: Ma		<u>mum flo</u> w a <mark>design valu</mark>	arge (in cubic feet per second, fr e? Y O N O a design value or estimate?	³ /s)?
3) Latitude and longitude of each pt.1: lat 42.7611 long 71.4 long pt.3: lat long long pt.5: lat long long		long long long long long	etc	
	Is the discharge intermittent			
c) Expected dates of discharge (n d) Please attach a line drawing or 1. sources of intake water. 2. con waters(s) Attached in Dewatering Plan	flow schematic showing water			ing

3. Contaminant information.

a) Based on the sub-category selected (see Appendix III), indicate whether each listed chemical is **believed present** or **believed absent** in the potential discharge. Attach additional sheets as needed.

					Sample	Analytical	Minimum	Maximum da	ily value	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
Total Suspended Solids (TSS)			×	2*	G	SM2540D	4 mg/l	1500000	1187	1500000	1187
Total Residual Chlorine (TRC)		×		1	G	M4500	.01 mg/l	ND		ND	
Total Petroleum Hydrocarbons (TPH)		×		i	G	E1664	5 mg/l	ND		Nđ	
4. Cyanide (CN)	57125	×		1::::::::::::::::::::::::::::::::::::::	G	SM4500	.01 mg/l	ND		ND	
5. Benzene (B)	71432	X		1	G	Sw8260B	1 ug/l	ND	<u>Parameters</u>	ND	
6. Toluene (T)	108883		×	1	u .		2 ug/l	3.1	.002	3.1	.002
7. Ethylbenzene (E)	100414	X		1	G		2 ug/l	ND		ND	Bartista
8. (m,p,o) Xylenes (X)	108883; 106423; 95476; 1330207	×	•		•		1	*			
9. Total BTEX ²	n/a						Zavinavekoji				
10. Ethylene Dibromide (EDB) (1,2-Dibromoethane) ³	106934	X	ı	11			ji	W		11	
11. Methyl-tert-Butyl Ether (MtBE)	1634044	X				•		*		11	
12. tert-Butyl Alcohol (TBA) (Tertiary-Butanol)	75650	Ø			ı	1	20 ug/l	w.			

^{*} Numbering system is provided to allow cross-referencing to Effluent Limits and Monitoring Requirements by Sub-Category included in Appendix III, as well as the Test Methods and Minimum Levels associated with each parameter provided in Appendix VI.

² BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes.

³ EDB is a groundwater contaminant at fuel spill and pesticide application sites in New England.

					Sample	Analytical	Minimum	Maximum dai	ly value	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
13. tert-Amyl Methyl Ether (TAME)	9940508	Ø		1	G	8260B	2 ug/l	ND		ND	
14. Naphthalene	91203	×		•	hr::::::::::::::::::::::::::::::::::::	***************************************	5 ug/l				
15. Carbon Tetrachloride	56235	×		ı		l li	2 ug/l			,	
16. 1,2 Dichlorobenzene (o-DCB)	95501	×		11	lt.		•	("	
17. 1,3 Dichlorobenzene (m-DCB)	541731	×		1	Ü		u	u U		7	
18. 1,4 Dichlorobenzene (p-DCB)	106467	×	a	11	,	III	ur.				
18a. Total dichlorobenzene		Ø									
19. 1,1 Dichloroethane (DCA)	75343	×		A ANN TRANSPORTER TO THE STATE OF THE STATE		ii				T.	
20. 1,2 Dichloroethane (DCA)	107062	X		11	1		T .			•	
21. 1,1 Dichloroethene (DCE)	75354	×		0	U		1 ug/l			1	
22. cis-1,2 Dichloroethene (DCE)	156592	×		"			2 ug/l				
23. Methylene Chloride	75092	X		1	Paragraphy		5 ug/l			*	
24. Tetrachloroethene (PCE)	127184	区		H.	T	u.	2 ug/l	n N		#	
25. 1,1,1 Trichloro-ethane (TCA)	71556	×				1	1	u e e e e e e e e e e e e e e e e e e e		IF	
26. 1,1,2 Trichloro-ethane (TCA)	79005	Ø		11		u u	1	OF THE PROPERTY OF THE PROPERT	on the second se	Ш	
27. Trichloroethene (TCE)	79016	X	13	u			•	A STATE OF THE STA		1	

	CAS Number				Sample	Analytical	Minimum	Maximum da	ily value	Average daily	<u>value</u>
<u>Parameter *</u>		Believed Absent	Believed Present	#of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
28. Vinyl Chloride (Chloroethene)	75014	×		1	G	8260B	2 ug/l	ND		ND	
29. Acetone	67641	X		1			10 ug/l				
30. 1,4 Dioxane	123911	×									
31. Total Phenols	108952	×		1	Ğ	8270C	23 ug/l	ND		ND	
32. Pentachlorophenol (PCP)	87865	×		•	ır	u		W.		10 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
33. Total Phthalates (Phthalate esters) ⁴			×	11	U	U.S.	11 ug/l	210	.17	210	.17
34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	117817		×	i 1	u		W.	120	.09	120	.09
35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)		Ø		"	1			ND		ND	
a. Benzo(a) Anthracene	56553				/ Complete Control Conference (Conference And Conference		1272243				
b. Benzo(a) Pyrene	50328										
c. Benzo(b)Fluoranthene	205992			3 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4							
d. Benzo(k)Fluoranthene	207089										
e. Chrysene	21801										
f. Dibenzo(a,h)anthracene	53703										
g. Indeno(1,2,3-cd) Pyrene	193395										
36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)		×		"		u.				¥	The state of the s

⁴ The sum of individual phthalate compounds.

					Sample	Analytical	Minimum	Maximum da	ily value	Average daily	v value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
h. Acenaphthene	83329										
i. Acenaphthylene	208968										
j. Anthracene	120127										
k. Benzo(ghi) Perylene	191242		建设 用 提起								
l. Fluoranthene	206440										
m. Fluorene	86737							(A) Core (A) A) A War and (A) The (A) A The (A			
n. Naphthalene	91203		在新 田 機能	<u> Carrière de la companion de</u>							
o. Phenanthrene	85018										
p. Pyrene	129000										
37. Total Polychlorinated Biphenyls (PCBs)	85687; 84742; 117840; 84662; 131113; 117817.	×		1	G	SW8082	.22 ug/l	ND		ND	
38. Chloride	16887006		×	2*	G	E300	5 mg/l	51000	40	51000	40
39. Antimony	7440360		×	1		SW7041	5 ug/l	8.5	.007	8.5	.007
40. Arsenic	7440382		这 用	2*	G	SW7060	4 ug/l	15	.01	15	.01
41. Cadmium	7440439	×		1.55.55	G	SW6010		ND		ND	
42. Chromium III (trivalent)	16065831		×	2*	G		10 ug/l	12.5	.01	12.5	.01
43. Chromium VI (hexavalent)	18540299	×		1	G	M3500-CR	.01 mg/l	NĐ	and of the back of the same of the back of	ND	
44. Copper	7440508	×		2*	With the second of	SW6010	25 ug/l				
45. Lead	7439921	×		H			12.5 ug/l	II.		g.	
46. Mercury	7439976	×			¥ in the second second	SW7470	l2 ug/l	1			
47. Nickel	7440020	×			1	SW6010	40 ug/l	u.			
48. Selenium	7782492	×		1	*	SW7740	5 ug/l	1		•	
49. Silver	7440224	X		11	u	SW6010	7 ug/l	n.		ni i	
50. Zinc	7440666		×	2*		W.	20 ug/l	40.8	.04	40.8	.04
51. Iron	7439896		X		was and a second		100 ug/l	3100	2.5	3100	2.5
Other (describe):		maiga La augus					The state of the s				

					Sample	<u>Analytical</u>	Minimum	Maximum da	ily value	Average dail	VV
Parameter *	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	
											L
b) For discharges whe	re metals a	re believe	ed present, p	lease fill o	out the follow	ving (attach	results of ar	ny calculations) :		医变化
Step 1: Do any of the Appendix III (i.e., the	metals in t	he influer	nt exceed the	e effluent l	limits in	If yes, w	hich metals Arsenic, Zinc	?			
Step 2: For any metal dilution factor (DF) instructions or as dete What is the dilution factor (Metal: Antimony Metal: Arsenic Metal: Iron	using the for ermined by actor for an	ormula in the State	Part I.A.3.c prior to the	(step 2) o	f the NOI	factor in influent effluent	Appendix have the po- limits in Ap- ration above	Ilculated at the IV. Do any of otential to exce opendix IV (i.e. the limit set a , list which me	the metal ed the corn i, is the in t the calcu	s in the responding fluent	
Etc.									Anno de Maria de Carlos de Maria de La Carlos de C		
4. Treatment system a) A description of the		lateration, at each	The entity was the sample of a second					err elimente e en en milita	ing:		
Based on the contaminant vegetative matter. Contam system start up, a frac tank	s identified, t ninants identi and bag filte	he treatme fied are lik er system n	ent works is co ely attributabl nay be employ	mprised of set to suspended.	sediment/rete ded solids idei	ntion basin win	th a silt fence/ amples collect	hay bale filtration red. Should addit	ional settlin	g be required aft	er
b) Identify each applicable treatment	Frac, ta	randa (Kumba Ma) Januaryan (Kumba	ir stripper		vater separat		Equalization	n tanks 🔲 Ba	g filter ⊠	GAC filter	
unit (check all that apply):	Chlorii 		e- hlorination	and the second second	r (please des	cribe): Sedin	nentation bas	in and hay bales/	silt fence fil	ration	

c) Proposed average and maximun the treatment system: Average flow rate of discharge 145 Design flow rate of treatment system	gpm	allons per minute) f Maximum flow rat Jgpm		**************************************	w rate(s) (gallons per minute) of gpm
d) A description of chemical additiv	es being used	or planned to be use	ed (attach MSD	S sheets):	
NONE					
5. Receiving surface water(s). Plea	se provide info	ormation about the i	eceiving water	(s), using separate sl	neets as necessary:
a) Identify the discharge pathway:	Direct to receiving water	Within facility (sewer)	Storm drain 🔲	Wetlands 🔲	Other (describe): After filtration and overland flow
b) Provide a narrative description of	the discharge	pathway, including	the name(s) of	the receiving water	33
Sedimentation basin; silt fence filtration; ap	oproximately 30 f	eet of overland flow th	rough vegetative	matter; Merrimack Rive	T
c) Attach a detailed map(s) indicating 1. For multiple discharges, number 2. For indirect dischargers, indicate The map should also include the loc on USGS topographical mapping), so	the discharges the location of ation and dista	sequentially. the discharge to the nce to the nearest s	e indirect conve anitary sewer as	yance and the disch s well as the locus o	arge to surface water f nearby sensitive receptors (based
d) Provide the state water quality cla	assification of	the receiving water	В		
e) Provide the reported or calculated Please attach any calculation sheets	l seven day-ten used to suppor	year low flow (7Q t stream flow and d	10) of the recei	ving water ⁷⁸⁴ ions.	efs
f) Is the receiving water a listed 303	(d) water quali	ty impaired or limi	ted water? Y_	O If yes, fo	or which pollutant(s)?
Is there a final TMDL? Y_O N_	O If yes, for	which pollutant(s)?	pH, Aluminum, Creosote	e, Chlorophyll	

and the second of the second o	
coverage under this gene A O B O C O I	
c) If consultation with U that the discharge is "not	.S. Fish and Wildlife Service and/or NOAA Fisheries Service was completed, was a written concurrence finding likely to adversely affect" listed species or critical habitat received? Y O N O
d) Attach documentation	of ESA eligibility as described in the NOI instructions and required by Appendix VII, Part I.C, Step 4.
1 O 2 O 3 O f) If Criterion 3 was sele	in Appendix VII, under which criterion listed in Part II.C are you eligible for coverage under this general permit? cted, attach all written correspondence with the State or Tribal historic preservation officers, including any terms the measures the applicant must follow to mitigate or prevent adverse effects due to activities regulated by the RGP.
	emental information. Attach any analytical data used to support the application. Attach any certification(s)
transferance of the control of the c	emental information. Attach any analytical data used to support the application. Attach any certification(s)

8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facility/Site Name: CSO-004 Nashua NH			
Operator signature:	}		
Printed Name & Title: David Brownsberger - Projec	t Manager		
Date: 08-09-2013			

B. Submission of NOI to EPA - All operators applying for coverage under this General Permit must submit a completed Notice of Intent (NOI) to EPA. Signed and completed NOI forms and attachments must be submitted to EPA-NE at:

U.S. Environmental Protection Agency
5 Post Office Square, Suite 100
Mail Code OEP06-4
Boston, MA 02109-3912
ATTN: Remediation General Permit NOI Processing

or electronically mailed to NPDES.Generalpermits@epa.gov

or faxed to the EPA Office at 617-918-0505

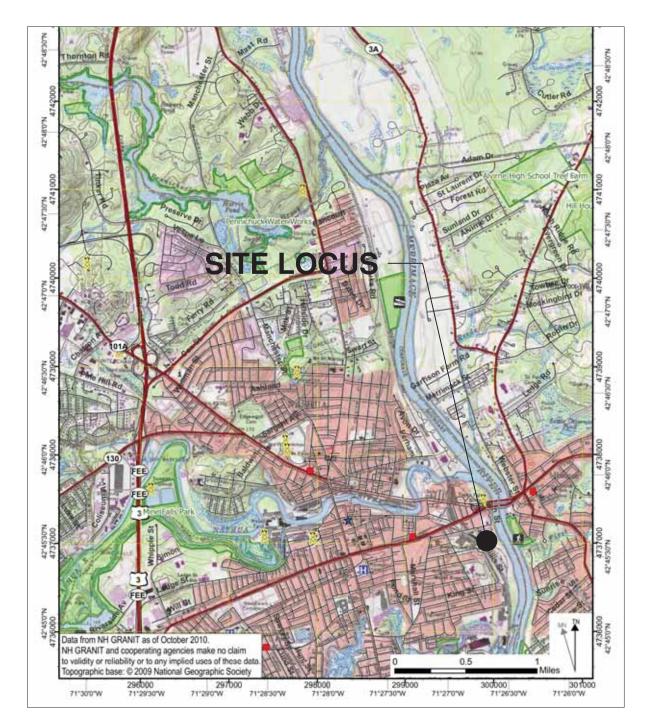
If filling out the suggested NOI form electronically on EPA=s website, the signature page must be signed and faxed or mailed to EPA at the fax number and/or address listed above.

- 1. Filing with the states A copy of any NOI form filed with EPA-NE must also be filed with state agencies. The state agency may elect to develop a state specific form or other information requirements.
- a) <u>Discharges in Massachusetts</u> In addition to the NOI, permit applicants must submit copies of the State Application Form BRPWM 12, Request for General Permit coverage for the RGP. The application form and the Transmittal Form for Permit Application and Payment may be obtained from the Massachusetts Department of Environmental Protection (MassDEP) website at www.state.ma.us/dep. Municipalities are fee-exempt, but should send a copy of the transmittal form to that address for project tracking purposes. All applicants should keep a copy of the transmittal form and a copy of the application package for their records.
 - 1) A copy of the NOI, the transmittal form, a copy of the check, and Form BRPWM 12 should be sent to:

Massachusetts Department of Environmental Protection Division of Watershed Management 627 Main Street, 2nd floor Worcester, MA 01608

2) A copy of the transmittal form and the appropriate fee should be sent to:

Massachusetts Department of Environmental Protection P.O. Box 4062 Boston, MA 02111


Please note: Applicants for discharges in Massachusetts should note that under 310 CMR 40.000, as a matter of state law, the general permit only applies to discharges that are **not** subject to the

Massachusetts Contingency Plan (MCP) and 310 CMR 40.000. Therefore, discharges subject to the MCP are **not** required to fill out and submit the State Application Form BRPWM 12 or pay the state fees. However, they must submit a NOI to EPA.

b) Discharges in New Hampshire - applicants must provide a copy of the Notice of Intent to:

New Hampshire Department of Environmental Services Water Division Wastewater Engineering Bureau P.O. Box 95 Concord, New Hampshire 03302-0095.

2. Filing with Municipalities - A copy of the NOI must be submitted to the municipality in which the proposed discharge would be located.

LOCUS DISPLAYS SITE AT L CROWN STREET NASHUA, NH 03060

Green Environmental Inc., 120 Longwater Drive, Norwell, MA 02061
Telephone (617) 479-0550 Fax (617) 479-5150
www.GreenEnvironmental.com
Engineering and Environmental Services

SITE LOCUS

FIGURE: N/A SCALE: N/A PROJECT NO.: 13025 APPROVED BY: N/A CHECKED BY: N/A

DRAWN BY: N/A

In NOI section 3 "Contaminant Information," when the number of samples was noted with an asterisk, only the most recent water sampling date was utilized. Concentrations of Total Metals and Elevated TSS were identified as part of the pre-characterization of groundwater. An additional sample was collected after groundwater was allowed to settle in a container to evaluate the effects this would have on total metals concentrations and TSS. As anticipated, the concentrations decreased. Based on this information, the proposed means to manage groundwater effluent through sedimentation basin and hay bale/silt fence filtration should provide sufficient reduction in concentrations prior to the receiving water body. Effluent sampling will occur in accordance with the NPDES permit requirements to monitor for the compounds identified during pre-characterization.

Laboratory analytical data packages for the sampling are attached to this NOI.

CLIENT: Green Environmental, Inc.

Project: 40 Crown St. Nashua Work Order Sample Summary

Date: 03-Jul-13

Lab Order: 1306055 **Date Received:** 6/26/2013

Lab Sample ID	Client Sample ID	Collection Date	Collection Time
1306055-01A	Ground Water	6/26/2013	12:15 PM
1306055-01B	Ground Water	6/26/2013	12:15 PM
1306055-01C	Ground Water	6/26/2013	12:15 PM
1306055-01D	Ground Water	6/26/2013	12:15 PM
1306055-01E	Ground Water	6/26/2013	12:15 PM
1306055-01F	Ground Water	6/26/2013	12:15 PM
1306055-01G	Ground Water	6/26/2013	12:15 PM
1306055-01H	Ground Water	6/26/2013	12:15 PM

DATA COMMENT PAGE

Organic Data Qualifiers

- ND Indicates compound was analyzed for, but not detected at or above the reporting limit.
- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than the method detection limit.
- H Method prescribed holding time exceeded.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- R RPD outside accepted recovery limits
- RL Reporting limit; defined as the lowest concentration the laboratory can accurately quantitate.
- S Spike Recovery outside accepted recovery limits.
- # See Case Narrative

Micro Data Qualifiers

TNTC Too numerous to count

Inorganic Data Qualifiers

- ND or U Indicates element was analyzed for, but not detected at or above the reporting limit.
- J Indicates a value greater than or equal to the method detection limit, but less than the quantitation limit.
- H Indicates analytical holding time exceedance.
- B Indicates that the analyte is found in the associated blank, as well as in the sample.
- MSA Indicates value determined by the Method of Standard Addition
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- R RPD outside accepted recovery limits
- RL Reporting limit; defined as the lowest concentration the laboratory can accurately quantitate.
- S Spike Recovery outside accepted recovery limits.
- PS The analyte was below the Reporting Limit but has significant matrix interference as noted by the poor recovery of the Post Digestion Spike.
- # See Case Narrative
- * MCL Exceeded

Report Comments:

- 1. Soil, sediment and sludge sample results are reported on a "dry weight" basis.
- 2. Reporting limits are adjusted for sample size used, dilutions and moisture content, if applicable.

CLIENT: Green Environmental, Inc. Lab Order: 1306055

Project: 40 Crown St. Nashua

Lab ID: 1306055-01 **Collection Date:** 6/26/2013 12:15:00 PM

Collection Time:

Date: 03-Jul-13

Client Sample ID: Ground Water Matrix: GROUNDWATER

Analyses	Result	RL Qu	ual Units	DF	Date Analyzed
ICP METALS TOTAL SW-846	SV	V6010B			Analyst: AL
Cadmium	ND	4.00	μg/L	1	6/27/2013 5:26:02 PM
Chromium	665	10.0	μg/L	1	6/27/2013 5:26:02 PM
Copper	150	25.0	μg/L	1	6/27/2013 5:26:02 PM
Iron	71,200	100	μg/L	1	6/27/2013 5:26:02 PM
Lead	157	12.5	μg/L	1	6/27/2013 5:26:02 PM
Nickel	82.1	40.0	μg/L	1	6/27/2013 5:26:02 PM
Silver	ND	7.00	μg/L	1	6/27/2013 5:26:02 PM
Zinc	358	20.0	μg/L	1	6/27/2013 5:26:02 PM
ARSENIC, TOTAL	SV	V7060A			Analyst: REB
Arsenic	65	8.0	μg/L	2	7/1/2013 11:22:10 AM
MERCURY, TOTAL	SV	V7470A			Analyst: AL
Mercury	0.462	0.200	μg/L	1	7/1/2013 6:14:43 PM
ANTIMONY, TOTAL	SV	V7041			Analyst: REB
Antimony	8.5	5.0	μg/L	1	6/28/2013 11:00:32 AM
SELENIUM, TOTAL	SV	V7740			Analyst: REB
Selenium	ND	5.0 P	S μg/L	1	6/28/2013 12:22:04 PM

CLIENT: Green Environmental, Inc. Lab Order: 1306055

Project: 40 Crown St. Nashua

Lab ID: 1306055-01 **Collection Date:** 6/26/2013 12:15:00 PM

Collection Time:

Date: 03-Jul-13

Client Sample ID: Ground Water Matrix: GROUNDWATER

Chemic Sample 120 Cround Water			1124		
Analyses	Result	RL Qu	ual Units	DF	Date Analyzed
OIL & GREASE, TPH (NON-POLAR M	MATERIAL) E	E1664			Analyst: AL
SGT-Hexane Extractable Material	ND	5.0	mg/L	1	6/28/2013
ION CHROMATOGRAPHY	E	≣300			Analyst: REB
Chloride	62	5.0	mg/L	10	7/1/2013 10:28:07 AM
PHENOL, TOTAL	E	E420.1			Analyst: AL
Phenolics, Total Recoverable	ND	0.050	mg/L	1	6/27/2013
TOTAL SUSPENDED SOLIDS	5	SM2540 D			Analyst: DD
Suspended Solids (Residue, Non-Filterable)	2,000	4.0	mg/L	1	7/1/2013
HEXAVALENT CHROMIUM	ľ	M3500-CR			Analyst: AL
Chromium, Hexavalent	ND	0.010	mg/L	1	6/27/2013 9:55:00 AM
CHLORINE, TOTAL RESIDUAL (MOD	DIFIED)	M4500-CL G			Analyst: AL
Chlorine, Total Residual	ND	0.10	mg/L	1	6/26/2013 3:30:00 PM
CYANIDE, TOTAL	5	SM4500-CN C,	E		Analyst: AL
Cyanide	ND	0.010	mg/L	1	6/27/2013

CLIENT: Green Environmental, Inc. Client Sample ID: Ground Water

Lab Order: 1306055 **Collection Date:** 6/26/2013 12:15:00 PM

Date: 03-Jul-13

Project: 40 Crown St. Nashua **Matrix:** GROUNDWATER

Lab ID: 1306055-01H

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	sv	V8260B				Analyst: DH
1,4-Dioxane	ND	50		μg/L	1	7/1/2013 1:48:00 PM
Dichlorodifluoromethane	ND	5.0		μg/L	1	7/1/2013 1:48:00 PM
Chloromethane	ND	3.0		μg/L	1	7/1/2013 1:48:00 PM
Vinyl chloride	ND	2.0		μg/L	1	7/1/2013 1:48:00 PM
Chloroethane	ND	5.0		μg/L	1	7/1/2013 1:48:00 PM
Bromomethane	ND	2.0		μg/L	1	7/1/2013 1:48:00 PM
Trichlorofluoromethane	ND	2.0		μg/L	1	7/1/2013 1:48:00 PM
Diethyl ether	ND	5.0		μg/L	1	7/1/2013 1:48:00 PM
Acetone	ND	10		μg/L	1	7/1/2013 1:48:00 PM
1,1-Dichloroethene	ND	1.0		μg/L	1	7/1/2013 1:48:00 PM
Carbon disulfide	ND	2.0		μg/L	1	7/1/2013 1:48:00 PM
Methylene chloride	ND	5.0		μg/L	1	7/1/2013 1:48:00 PM
Methyl tert-butyl ether	ND	2.0		μg/L	1	7/1/2013 1:48:00 PM
trans-1,2-Dichloroethene	ND	2.0		μg/L	1	7/1/2013 1:48:00 PM
1,1-Dichloroethane	ND	2.0		μg/L	1	7/1/2013 1:48:00 PM
Tertiary Butanol	ND	20		μg/L	1	7/1/2013 1:48:00 PM
2-Butanone	ND	10		μg/L	1	7/1/2013 1:48:00 PM
Diisopropyl ether	ND	2.0		μg/L	1	7/1/2013 1:48:00 PM
2,2-Dichloropropane	ND	2.0		μg/L	1	7/1/2013 1:48:00 PM
cis-1,2-Dichloroethene	ND	2.0		μg/L	1	7/1/2013 1:48:00 PM
Ethyl Tertiary Butyl Ether	ND	2.0		μg/L	1	7/1/2013 1:48:00 PM
Chloroform	ND	2.0		μg/L	1	7/1/2013 1:48:00 PM
Tetrahydrofuran	ND	10		μg/L	1	7/1/2013 1:48:00 PM
Bromochloromethane	ND	2.0		μg/L	1	7/1/2013 1:48:00 PM
1,1,1-Trichloroethane	ND	2.0		μg/L	1	7/1/2013 1:48:00 PM
1,1-Dichloropropene	ND	2.0		μg/L	1	7/1/2013 1:48:00 PM
Carbon tetrachloride	ND	2.0		μg/L	1	7/1/2013 1:48:00 PM
1,2-Dichloroethane	ND	2.0		μg/L	1	7/1/2013 1:48:00 PM
Benzene	ND	1.0		μg/L	1	7/1/2013 1:48:00 PM
Trichloroethene	ND	2.0		μg/L	1	7/1/2013 1:48:00 PM
1,2-Dichloropropane	ND	2.0		μg/L	1	7/1/2013 1:48:00 PM
Bromodichloromethane	ND	2.0		μg/L	1	7/1/2013 1:48:00 PM
Dibromomethane	ND	2.0		μg/L	1	7/1/2013 1:48:00 PM
Tertiary Amyl Methyl Ether	ND	2.0		μg/L	1	7/1/2013 1:48:00 PM
4-Methyl-2-pentanone	ND	10		μg/L	1	7/1/2013 1:48:00 PM
cis-1,3-Dichloropropene	ND	1.0		μg/L	1	7/1/2013 1:48:00 PM
Toluene	3.1	2.0		μg/L	1	7/1/2013 1:48:00 PM
trans-1,3-Dichloropropene	ND	1.0		μg/L	1	7/1/2013 1:48:00 PM
1,1,2-Trichloroethane	ND	2.0		μg/L	1	7/1/2013 1:48:00 PM

CLIENT: Green Environmental, Inc. Client Sample ID: Ground Water

Project: 40 Crown St. Nashua Matrix: GROUNDWATER

Date: 03-Jul-13

Lab ID: 1306055-01H

Analyses	Result	RL Qu	ual Units	DF	Date Analyzed
1,2-Dibromoethane	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
2-Hexanone	ND	10	μg/L	1	7/1/2013 1:48:00 PM
1,3-Dichloropropane	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
Tetrachloroethene	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
Dibromochloromethane	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
Chlorobenzene	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
Ethylbenzene	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
m,p-Xylene	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
o-Xylene	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
Styrene	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
Bromoform	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
Isopropylbenzene	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
Bromobenzene	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
n-Propylbenzene	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
2-Chlorotoluene	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
4-Chlorotoluene	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
tert-Butylbenzene	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
1,2,4-Trimethylbenzene	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
sec-Butylbenzene	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
4-Isopropyltoluene	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
1,3-Dichlorobenzene	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
1,4-Dichlorobenzene	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
n-Butylbenzene	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
1,2-Dichlorobenzene	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	7/1/2013 1:48:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
Hexachlorobutadiene	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
Naphthalene	ND	5.0	μg/L	1	7/1/2013 1:48:00 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
1,3,5-Trichlorobenzene	ND	2.0	μg/L	1	7/1/2013 1:48:00 PM
Surr: Dibromofluoromethane	97.9	68-122	%REC	1	7/1/2013 1:48:00 PM
Surr: 1,2-Dichloroethane-d4	101	74-124	%REC	1	7/1/2013 1:48:00 PM
Surr: Toluene-d8	100	69-121	%REC	1	7/1/2013 1:48:00 PM
Surr: 4-Bromofluorobenzene	101	62-129	%REC	1	7/1/2013 1:48:00 PM

CLIENT: Green Environmental, Inc. Client Sample ID: Ground Water

Lab Order: 1306055 **Collection Date:** 6/26/2013 12:15:00 PM

Date: 03-Jul-13

Project: 40 Crown St. Nashua **Matrix:** GROUNDWATER

Lab ID: 1306055-01E

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA 8270C SEMIVOLATILE ORGANICS		SW8270C				Analyst: KAM
N-Nitrosodimethylamine	ND	23		μg/L	1	6/28/2013 1:00:00 PM
Phenol	ND	11		μg/L	1	6/28/2013 1:00:00 PM
Bis(2-chloroethyl)ether	ND	11		μg/L	1	6/28/2013 1:00:00 PM
2-Chlorophenol	ND	11		μg/L	1	6/28/2013 1:00:00 PM
1,3-Dichlorobenzene	ND	11		μg/L	1	6/28/2013 1:00:00 PM
1,4-Dichlorobenzene	ND	11		μg/L	1	6/28/2013 1:00:00 PM
Benzyl alcohol	ND	23		μg/L	1	6/28/2013 1:00:00 PM
2-Methylphenol	ND	11		μg/L	1	6/28/2013 1:00:00 PM
1,2-Dichlorobenzene	ND	11		μg/L	1	6/28/2013 1:00:00 PM
Bis(2-chloroisopropyl)ether	ND	11		μg/L	1	6/28/2013 1:00:00 PM
4-Methylphenol	ND	11		μg/L	1	6/28/2013 1:00:00 PM
N-Nitrosodi-n-propylamine	ND	11		μg/L	1	6/28/2013 1:00:00 PM
Hexachloroethane	ND	11		μg/L	1	6/28/2013 1:00:00 PM
Nitrobenzene	ND	11		μg/L	1	6/28/2013 1:00:00 PM
Isophorone	ND	11		μg/L	1	6/28/2013 1:00:00 PM
2,4-Dimethylphenol	ND	11		μg/L	1	6/28/2013 1:00:00 PM
Benzoic acid	ND	23		μg/L	1	6/28/2013 1:00:00 PM
2-Nitrophenol	ND	11		μg/L	1	6/28/2013 1:00:00 PM
Bis(2-chloroethoxy)methane	ND	11		μg/L	1	6/28/2013 1:00:00 PM
2,4-Dichlorophenol	ND	11		μg/L	1	6/28/2013 1:00:00 PM
1,2,4-Trichlorobenzene	ND	11		μg/L	1	6/28/2013 1:00:00 PM
Naphthalene	ND	11		μg/L	1	6/28/2013 1:00:00 PM
4-Chloroaniline	ND	11		μg/L	1	6/28/2013 1:00:00 PM
Hexachlorobutadiene	ND	11		μg/L	1	6/28/2013 1:00:00 PM
4-Chloro-3-methylphenol	ND	23		μg/L	1	6/28/2013 1:00:00 PM
2-Methylnaphthalene	ND	11		μg/L	1	6/28/2013 1:00:00 PM
Hexachlorocyclopentadiene	ND	11		μg/L	1	6/28/2013 1:00:00 PM
2,4,6-Trichlorophenol	ND	11		μg/L	1	6/28/2013 1:00:00 PM
2,4,5-Trichlorophenol	ND	11		μg/L	1	6/28/2013 1:00:00 PM
2-Chloronaphthalene	ND	11		μg/L	1	6/28/2013 1:00:00 PM
2-Nitroaniline	ND	23		μg/L	1	6/28/2013 1:00:00 PM
Dimethyl phthalate	ND	11		μg/L	1	6/28/2013 1:00:00 PM
2,6-Dinitrotoluene	ND	11		μg/L	1	6/28/2013 1:00:00 PM
Acenaphthylene	ND	11		μg/L	1	6/28/2013 1:00:00 PM
3-Nitroaniline	ND	23		μg/L	1	6/28/2013 1:00:00 PM
4-Nitrophenol	ND	23		μg/L	1	6/28/2013 1:00:00 PM
2,4-Dinitrophenol	ND	23		μg/L	1	6/28/2013 1:00:00 PM
Acenaphthene	ND	11		μg/L	1	6/28/2013 1:00:00 PM
2,4-Dinitrotoluene	ND	11		μg/L	1	6/28/2013 1:00:00 PM

CLIENT: Green Environmental, Inc. Client Sample ID: Ground Water

Lab Order: 1306055 **Collection Date:** 6/26/2013 12:15:00 PM

Date: 03-Jul-13

Project: 40 Crown St. Nashua Matrix: GROUNDWATER

Lab ID: 1306055-01E

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Dibenzofuran	ND	11	μg/L	1	6/28/2013 1:00:00 PM
Diethyl phthalate	ND	11	μg/L	1	6/28/2013 1:00:00 PM
4-Chlorophenyl phenyl ether	ND	11	μg/L	1	6/28/2013 1:00:00 PM
Fluorene	ND	11	μg/L	1	6/28/2013 1:00:00 PM
4-Nitroaniline	ND	23	μg/L	1	6/28/2013 1:00:00 PM
4,6-Dinitro-2-methylphenol	ND	23	μg/L	1	6/28/2013 1:00:00 PM
N-Nitrosodiphenylamine	ND	11	μg/L	1	6/28/2013 1:00:00 PM
1,2-Diphenylhydrazine (as Azobenzene)	ND	11	μg/L	1	6/28/2013 1:00:00 PM
4-Bromophenyl phenyl ether	ND	11	μg/L	1	6/28/2013 1:00:00 PM
Hexachlorobenzene	ND	11	μg/L	1	6/28/2013 1:00:00 PM
Pentachlorophenol	ND	23	μg/L	1	6/28/2013 1:00:00 PM
Phenanthrene	ND	11	μg/L	1	6/28/2013 1:00:00 PM
Anthracene	ND	11	μg/L	1	6/28/2013 1:00:00 PM
Carbazole	ND	11	μg/L	1	6/28/2013 1:00:00 PM
Di-n-butyl phthalate	ND	11	μg/L	1	6/28/2013 1:00:00 PM
Fluoranthene	ND	11	μg/L	1	6/28/2013 1:00:00 PM
Benzidine	ND	23	μg/L	1	6/28/2013 1:00:00 PM
Pyrene	ND	11	μg/L	1	6/28/2013 1:00:00 PM
Butyl benzyl phthalate	120	11	μg/L	1	6/28/2013 1:00:00 PM
Bis(2-ethylhexyl)phthalate	76	11	μg/L	1	6/28/2013 1:00:00 PM
3,3'-Dichlorobenzidine	ND	11	μg/L	1	6/28/2013 1:00:00 PM
Benz(a)anthracene	ND	11	μg/L	1	6/28/2013 1:00:00 PM
Chrysene	ND	11	μg/L	1	6/28/2013 1:00:00 PM
Di-n-octyl phthalate	14	11	μg/L	1	6/28/2013 1:00:00 PM
Benzo(b)fluoranthene	ND	11	μg/L	1	6/28/2013 1:00:00 PM
Benzo(k)fluoranthene	ND	11	μg/L	1	6/28/2013 1:00:00 PM
Benzo(a)pyrene	ND	11	μg/L	1	6/28/2013 1:00:00 PM
Dibenz(a,h)anthracene	ND	11	μg/L	1	6/28/2013 1:00:00 PM
Indeno(1,2,3-cd)pyrene	ND	11	μg/L	1	6/28/2013 1:00:00 PM
Benzo(g,h,i)perylene	ND	11	μg/L	1	6/28/2013 1:00:00 PM
Surr: 2-Fluorophenol	55.7	20-79	%REC	1	6/28/2013 1:00:00 PM
Surr: Phenol-d5	34.7	15-54	%REC	1	6/28/2013 1:00:00 PM
Surr: Nitrobenzene-d5	65.9	42-117	%REC	1	6/28/2013 1:00:00 PM
Surr: 2-Fluorobiphenyl	73.3	43-107	%REC	1	6/28/2013 1:00:00 PM
Surr: 2,4,6-Tribromophenol	77.8	52-129	%REC	1	6/28/2013 1:00:00 PM
Surr: 4-Terphenyl-d14	80.6	37-125	%REC	1	6/28/2013 1:00:00 PM

CLIENT: Green Environmental, Inc.

Lab Order: 1306055

Project: 40 Crown St. Nashua

Lab ID: 1306055-01F

Date: 03-Jul-13

Client Sample ID: Ground Water

Collection Date: 6/26/2013 12:15:00 PM

Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	
PCBS BY EPA8082	S	W8082			Analyst: KAM	
Aroclor 1016	ND	0.22	μg/L	1	7/2/2013 7:39:00 PM	
Aroclor 1221	ND	0.22	μg/L	1	7/2/2013 7:39:00 PM	
Aroclor 1232	ND	0.22	μg/L	1	7/2/2013 7:39:00 PM	
Aroclor 1242	ND	0.22	μg/L	1	7/2/2013 7:39:00 PM	
Aroclor 1248	ND	0.22	μg/L	1	7/2/2013 7:39:00 PM	
Aroclor 1254	ND	0.22	μg/L	1	7/2/2013 7:39:00 PM	
Aroclor 1260	ND	0.22	μg/L	1	7/2/2013 7:39:00 PM	
Surr: Decachlorobiphenyl	59.8	16-135	%REC	1	7/2/2013 7:39:00 PM	
Surr: Tetrachloro-m-xylene	77.7	25-128	%REC	1	7/2/2013 7:39:00 PM	

CLIENT: Green Environmental, Inc.

Project: 13025 40 Crown St. Nashua

Lab Order: 1307034 **Date Received:** 7/17/2013

Work Order Sample Summary

Date: 24-Jul-13

Lab Sample ID	Client Sample ID	Collection Date	Collection Time
1307034-01A	7-17-13 Water-1	7/17/2013	12:00 AM
1307034-01B	7-17-13 Water-1	7/17/2013	12:00 AM

DATA COMMENT PAGE

Organic Data Qualifiers

- ND Indicates compound was analyzed for, but not detected at or above the reporting limit.
- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than the method detection limit.
- H Method prescribed holding time exceeded.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- R RPD outside accepted recovery limits
- RL Reporting limit; defined as the lowest concentration the laboratory can accurately quantitate.
- S Spike Recovery outside accepted recovery limits.
- # See Case Narrative

Micro Data Qualifiers

TNTC Too numerous to count

Inorganic Data Qualifiers

- ND or U Indicates element was analyzed for, but not detected at or above the reporting limit.
- J Indicates a value greater than or equal to the method detection limit, but less than the quantitation limit.
- H Indicates analytical holding time exceedance.
- B Indicates that the analyte is found in the associated blank, as well as in the sample.
- MSA Indicates value determined by the Method of Standard Addition
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- R RPD outside accepted recovery limits
- RL Reporting limit; defined as the lowest concentration the laboratory can accurately quantitate.
- S Spike Recovery outside accepted recovery limits.
- PS The analyte was below the Reporting Limit but has significant matrix interference as noted by the poor recovery of the Post Digestion Spike.
- # See Case Narrative
- * MCL Exceeded

Report Comments:

- 1. Soil, sediment and sludge sample results are reported on a "dry weight" basis.
- 2. Reporting limits are adjusted for sample size used, dilutions and moisture content, if applicable.

CLIENT: Green Environmental, Inc. Lab Order: 1307034

Project: 13025 40 Crown St. Nashua

Lab ID: 1307034-01 **Collection Date:** 7/17/2013

Collection Time:

Date: 24-Jul-13

Client Sample ID: 7-17-13 Water-1 Matrix: AQUEOUS

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
ICP METALS TOTAL SW-846	SI	W6010B			Analyst: AL
Chromium	12.5	10.0	μg/L	1	7/22/2013 4:20:32 PM
Copper	ND	25.0	μg/L	1	7/22/2013 4:20:32 PM
Iron	3,100	100	μg/L	1	7/22/2013 4:20:32 PM
Lead	ND	12.5	μg/L	1	7/22/2013 4:20:32 PM
Nickel	ND	40.0	μg/L	1	7/22/2013 4:20:32 PM
Zinc	40.8	20.0	μg/L	1	7/22/2013 4:20:32 PM
ARSENIC, TOTAL	SV	N7060A			Analyst: REB
Arsenic	15	4.0	μg/L	1	7/22/2013 11:27:16 AM
ION CHROMATOGRAPHY	E3	300			Analyst: REB
Chloride	51	5.0	mg/L	10	7/18/2013
MERCURY, TOTAL	SI	N7470A			Analyst: AL
Mercury	ND	0.200	μg/L	1	7/17/2013 4:06:31 PM
TOTAL SUSPENDED SOLIDS	SI	M2540 D			Analyst: DD
Suspended Solids (Residue, Non-Filterable)	1,500	4.0	mg/L	1	7/23/2013

CLIENT: Green Environmental, Inc.

Project: 13025 40 Crown St. Nashua

Lab Order: 1308020 **Date Received:** 8/13/2013

Work Order Sample Summary

Date: 20-Aug-13

Lab Sample ID	Client Sample ID	Collection Date	Collection Time
1308020-01A	8/13/13 Water-1	8/13/2013	9:00 AM
1308020-02A	08/13/13 Water-2	8/13/2013	9:00 AM

DATA COMMENT PAGE

Organic Data Qualifiers

- ND Indicates compound was analyzed for, but not detected at or above the reporting limit.
- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than the method detection limit.
- H Method prescribed holding time exceeded.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- R RPD outside accepted recovery limits
- RL Reporting limit; defined as the lowest concentration the laboratory can accurately quantitate.
- S Spike Recovery outside accepted recovery limits.
- # See Case Narrative

Micro Data Qualifiers

TNTC Too numerous to count

Inorganic Data Qualifiers

- ND or U Indicates element was analyzed for, but not detected at or above the reporting limit.
- J Indicates a value greater than or equal to the method detection limit, but less than the quantitation limit.
- H Indicates analytical holding time exceedance.
- B Indicates that the analyte is found in the associated blank, as well as in the sample.
- MSA Indicates value determined by the Method of Standard Addition
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- R RPD outside accepted recovery limits
- RL Reporting limit; defined as the lowest concentration the laboratory can accurately quantitate.
- S Spike Recovery outside accepted recovery limits.
- PS The analyte was below the Reporting Limit but has significant matrix interference as noted by the poor recovery of the Post Digestion Spike.
- # See Case Narrative
- * MCL Exceeded

Report Comments:

- 1. Soil, sediment and sludge sample results are reported on a "dry weight" basis.
- 2. Reporting limits are adjusted for sample size used, dilutions and moisture content, if applicable.

CLIENT: Green Environmental, Inc. Lab Order: 1308020

Project: 13025 40 Crown St. Nashua

Lab ID: 1308020-01 **Collection Date:** 8/13/2013 9:00:00 AM

Collection Time:

Date: 20-Aug-13

Client Sample ID: 8/13/13 Water-1 Matrix: AQUEOUS

Analyses Result **RL Qual Units** DF **Date Analyzed** ION CHROMATOGRAPHY E300 Analyst: REB Chloride 130 2.5 mg/L 8/14/2013 10:36:36 AM Analyst: DD **TOTAL SUSPENDED SOLIDS** SM2540 D Suspended Solids (Residue, Non-24 4.0 mq/L 8/14/2013 Filterable)

Lab ID: 1308020-02 **Collection Date:** 8/13/2013 9:00:00 AM

Collection Time:

Client Sample ID: 08/13/13 Water-2 Matrix: AQUEOUS

Result **RL Qual Units** Analyses DF **Date Analyzed ICP METALS TOTAL SW-846** SW6010B Analyst: AL Chromium ND 10.0 1 8/16/2013 12:02:43 AM μg/L Copper ND 25.0 8/16/2013 12:02:43 AM µg/L 1 1,600 8/16/2013 12:02:43 AM Iron 100 μg/L 1 Lead ND 12.5 μg/L 1 8/16/2013 12:02:43 AM Nickel ND 40.0 8/16/2013 12:02:43 AM μg/L 1 20.0 8/16/2013 12:02:43 AM Zinc 51.4 1 μg/L SW7060A ARSENIC, TOTAL Analyst: REB Arsenic 2 8/19/2013 11:31:00 AM 21 8.0 μg/L MERCURY, TOTAL SW7470A Analyst: AL Mercury ND 0.200 8/16/2013 3:32:47 PM µg/L

CLIENT: Green Environmental, Inc.

#13025 40 Crown St. Nashua **Project:**

Lab Order: 1308070 **Work Order Sample Summary**

Date: 29-Aug-13

8/27/2013 **Date Received:**

Lab Sample ID **Client Sample ID Collection Date Collection Time** 1308070-01A 12:00 AM 8/27/13 GW 8/27/2013 1308070-01B 8/27/13 GW 8/27/2013 12:00 AM

DATA COMMENT PAGE

Organic Data Qualifiers

- ND Indicates compound was analyzed for, but not detected at or above the reporting limit.
- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than the method detection limit.
- H Method prescribed holding time exceeded.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- R RPD outside accepted recovery limits
- RL Reporting limit; defined as the lowest concentration the laboratory can accurately quantitate.
- S Spike Recovery outside accepted recovery limits.
- # See Case Narrative

Micro Data Qualifiers

TNTC Too numerous to count

Inorganic Data Qualifiers

- ND or U Indicates element was analyzed for, but not detected at or above the reporting limit.
- J Indicates a value greater than or equal to the method detection limit, but less than the quantitation limit.
- H Indicates analytical holding time exceedance.
- B Indicates that the analyte is found in the associated blank, as well as in the sample.
- MSA Indicates value determined by the Method of Standard Addition
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- R RPD outside accepted recovery limits
- RL Reporting limit; defined as the lowest concentration the laboratory can accurately quantitate.
- S Spike Recovery outside accepted recovery limits.
- PS The analyte was below the Reporting Limit but has significant matrix interference as noted by the poor recovery of the Post Digestion Spike.
- # See Case Narrative
- * MCL Exceeded

Report Comments:

- 1. Soil, sediment and sludge sample results are reported on a "dry weight" basis.
- 2. Reporting limits are adjusted for sample size used, dilutions and moisture content, if applicable.

CLIENT: Green Environmental, Inc.

Lab Order: 1308070

Project: #13025 40 Crown St. Nashua

Lab ID: 1308070-01B

Date: 29-Aug-13

Client Sample ID: 8/27/13 GW Collection Date: 8/27/2013

Matrix: GROUNDWATER

Analyses	Result	RL Qual	DF	Date Analyzed	
ARSENIC, TOTAL	SV	V7060A		Analyst: REB	
Arsenic	ND	4.0	μg/L	1	8/28/2013 12:37:17 PM

CLIENT: Green Environmental, Inc. **Client Sample ID:** 8/27/13 GW

Lab Order: 1308070 **Collection Date:** 8/27/2013

Project: #13025 40 Crown St. Nashua Matrix: GROUNDWATER

Lab ID: 1308070-01A

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA 8270C SEMIVOLATILE ORG	ANICS, BASE/NE S	W8270C			Analyst: KAM
Dimethyl phthalate	ND	10	μg/L	1	8/28/2013 2:37:00 PM
Diethyl phthalate	ND	10	μg/L	1	8/28/2013 2:37:00 PM
Di-n-butyl phthalate	ND	10	μg/L	1	8/28/2013 2:37:00 PM
Butyl benzyl phthalate	ND	10	μg/L	1	8/28/2013 2:37:00 PM
Bis(2-ethylhexyl)phthalate	ND	10	μg/L	1	8/28/2013 2:37:00 PM
Di-n-octyl phthalate	ND	10	μg/L	1	8/28/2013 2:37:00 PM
Surr: Nitrobenzene-d5	82.2	42-117	%REC	1	8/28/2013 2:37:00 PM
Surr: 2-Fluorobiphenyl	78.3	43-107	%REC	1	8/28/2013 2:37:00 PM
Surr: 4-Terphenyl-d14	89.5	37-125	%REC	1	8/28/2013 2:37:00 PM

Date: 29-Aug-13

FINAL SUBMITTED TO EPA - 2012 LIST OF THREATENED OR IMPAIRED WATERS THAT REQUIRE A TMDL

(i.e., Category 5 Impairments - this represents the Section 303(d) List)

Date: 7/16/13 Page 94 of 110

Notes:

- 1. See the Consolidated Assessment and Listing Methodology (CALM) for definitions and details regarding how this list was developed.

 2. This list is sorted by Waterbody Type and then Assessment Unit ID.
- 3. TMDL stands for Total Maximum Daily Load study. TMDL schedules are subject to change as funding and resources become available.
- 4. Waters presented on this list may also be threatened or impaired by other pollutants or nonpollutants that do not require a TMDL.

Assessment Unit ID	Water Name	Primary Town	Water Size	Size Unit	Use Desc	Impairment Name	DES Category	Threat	TMDL Priority	TMDL Schedule	Source Name
NHRIV700060905-19	Baboosic Brook, CWF	MERRIMACK	10.27	76 MILES	Aquatic Life	Benthic-Macroinvertebrat e Bioassessments	5-P	N	LOW	2019	Source Unknown
						Oxygen, Dissolved	5-P	20	LOW	2017	Source Unknown
NHRIV700060906-01	Beaver Brook	MONT VERNON	13.00	02 MILES	Aquatic Life	Aluminum	5 - M	N	LOW	2023	Source Unknown
						рН	5-M	N	LOW	2021	Source Unknown
NHRIV700060906-04	Hartshorn Brook	MONT VERNON	7.17	71 MILES	Aquatic Life	рН	5-M	N	LOW	2023	Source Unknown
NHRIV700060906-08	Great Brook	MILFORD	9.62	23 MILES	Aquatic Life	рН	5-M	N	LOW	2021	Source Unknown
NHRIV700060906-12	Ox Brook	MILFORD	4.71	17 MILES	Aquatic Life	pН	5 - M	N	LOW	2021	Source Unknown
NHRIV700060906-18	Souhegan River, W/CWF	MERRIMACK	12.23	6 MILES	Aquatic Life	Aluminum	5-M	N	LOW	2023	Source Unknown
						Oxygen, Dissolved	5-P	N	LOW	2019	Source Unknown
						рн	5 - M	N	LOW	2023	Source Unknown
NHRIV700060906-20 UNNAMED BROOK - FROM YORK POND TO SOUHEGAI RIVER	MERRIMACK	2.23	31 MILES	Aquatic Life	Dissolved oxygen	5-M	N	LOW	2019	Source Unknown	
						pН	5-M	N	LOW	2017	Source Unknown
NHRIV700061001-02	Witches Brook, CLS-A,	HOLLIS	11.80	06 MILES	Aquatic Life	Oxygen, Dissolved	5-P	N	LOW	2019	Source Unknown
						рН	5-P	10	LOW	2017	Source Unknown
JHRIV700061001-05	Pennichuck Brook	HOLLIS	1.51	11 MILES	Aquatic Life	pН	5-M	N	LOW	2019	Source Unknown
JHRIV700061001-06	Muddy Brook	NASHUA	4.80	05 MILES	Aquatic Life	Oxygen, Dissolved	5-M	N	LOW	2019	Source Unknown
						pН	5-M	N	LOW	2021	Source Unknown
JHRIV700061001-07	Pennichuck Brook,	MERRIMACK	3.64	12 MILES	Aquatic Life	Dissolved oxygen	5-M	N	LOW	2019	Source Unknown
						Oxygen, Dissolved	5-P	93	LOW	2019	Source Unknown
						рН	5-P	N	LOW	2019	Source Unknown
HRIV700061001-09	Unnamed Brook to Pennichuck Brook (Boire Fields)	NASHUA	0.98	36 MILES	Aquatic Life	Oxygen, Dissolved	5 - P	N	LOW	2021	Source Unknown
						рН	5-M	N	LOW	2021	Source Unknown
HRIV700061001-12	UNNAMED BROOK	NASHUA	0.28	36 MILES	Aquatic Life	Iron	5-M	N	LOW	2023	Source Unknown
						Oxygen, Dissolved	5 - P	N	LOW	2023	Source Unknown
MRIV700061002-04	Nesenkeag Brook	LONDONDERRY	0 . 48	32 MILES	Aquatic Life	Oxygen, Dissolved	5 - P	N	LOW	2016	Source Unknown
						рН	5-M	N	LOW	2019	Source Unknown
HRIV700061002-05	Nesenkeag Brook, CWF	LITCHFIELD	4 03	31 MILES	Aquatic Life	Benthic-Macroinvertebrat e Bioassessments	5-M		LOW	2017	Source Unknown
						Oxygen, Dissolved	5 - P	N	LOW	2019	Source Unknown
						рН	5-M	N	LOW	2016	Source Unknown
NHRIV700061002-14	MERRIMACK RIVER	NASHUA	3.71	4 MILES	Aquatic Life	рН	5-M	N	LOW	2023	Source Unknown

FINAL SUBMITTED TO EPA - 2012 LIST OF THREATENED OR IMPAIRED WATERS THAT REQUIRE A TMDL

(i.e., Category 5 Impairments - this represents the Section 303(d) List)

Date: 7/16/13 Page 96 of 110

Notes:

- 1. See the Consolidated Assessment and Listing Methodology (CALM) for definitions and details regarding how this list was developed.
- 2. This list is sorted by Waterbody Type and then Assessment Unit ID.
- 3. TMDL stands for Total Maximum Daily Load study. TMDL schedules are subject to change as funding and resources become available.
- 4. Waters presented on this list may also be threatened or impaired by other pollutants or nonpollutants that do not require a TMDL.

Assessment Unit ID	Water Name	Primary Town	Water Size	Size Unit	Use Desc	Impairment Name	DES Category	Threat	TMDL Priority	TMDL Schedule	Source Name
NHRIV700061203-11	Beaver Brook	DERRY	7.53	4 MILES	Aquatic Life	Chloride	5-P	N	LOW	2021	Impervious Surface/Parking Lot Runoff
NHRIV700061203-16	BEAVER BROOK	LONDONDERRY	5 40	6 MILES	Aquatic Life	рН	5 - M	N	LOW	2017	Landfills
NHRIV700061203-20	Beaver Brook, CWF	LONDONDERRY	12.40	2 MILES	Aquatic Life	рН	5-M	N	LOW	2016	Source Unknown
NHRIV700061203-21	Beaver Brook, CWF	WINDHAM	9 80	8 MILES	Aquatic Life	рН	5-M	N	LOW	2019	Source Unknown
NHRIV700061203-22	Beaver Brook, CWF	PELHAM	10,50	8 MILES	Aquatic Life	Benthic-Macroinvertebrat e Bioassessments	5-P	N	LOW	2017	Source Unknown
NHRIV700061203-25	HOWARD BROOK	HUDSON	0.64	5 MILES	Aquatic Life	рн	5-M	N	LOW	2021	Source Unknown
					Primary Contact Recreation	ESCHERICHIA COLI	5-P		LOW	2025	Source Unknown
NHRIV700061203-27	UNNAMED BROOK	CHESTER	2 24	4 MILES	Aquatic Life	РН	5-M		LOW	2025	Source Unknown
NHRIV700061203-28	UNNAMED BROOK	CHESTER	0.10	9 MILES	Aquatic Life	PH	5-P		LOW	2025	Source Unknown
NHRIV700061203-35	UNNAMED BROOK	HUDSON	0.16	7 MILES	Aquatic Life	РН	5-M		LOW	2025	Source Unknown
NHRIV700061203-37	UNNAMED BROOK	HUDSON	0.21	1 MILES	Aquatic Life	РН	5-M		LOW	2025	Source Unknown
NHRIV700061204-08	UNNAMED BROOK	MINDHAM	0_66	0 MILES	Aquatic Life	PH	5-M		LOW	2025	Source Unknown
NHRIV700061205-01	Beaver Brook, CWF	PELHAM	1.95	7 MILES	Aquatic Life	Benthic-Macroinvertebrat e Bioassessments	5-P	N	LOW	2017	Source Unknown
NHRIV700061205-05	UNNAMED BROOK - TO GUMPAS POND	PELHAM	1.84	6 MILES	Aquatic Life	рН	5 - M	N	LOW	2019	Source Unknown
NHRIV700061206-01	GLOVER BROOK	HUDSON	2 77	2 MILES	Aquatic Life	рН	5-P	N	LOW	2021	Source Unknown
NHRIV700061206-04	MERRILL BROOK	HUDSON	3.74	2 MILES	Aquatic Life	рН	5-P	N	LOW	2021	Source Unknown
NHRIV700061206-05	First Brook	HUDSON	0,14	9 MILES	Aquatic Life	рН	5 - M	10	LOW	2021	Source Unknown
NHRIV700061206-10	SECOND BROOK	HUDSON	2.31	8 MILES	Aquatic Life	рН	5 - M	52	LOW	2019	Source Unknown
NHRIV700061206-24	MERRIMACK RIVER	NASHUA	5 15	1 MILES	Aquatic Life	Aluminum	5-M	74	LOW	2019	Source Unknown
						рН	5-P	N	LOW	2016	Source Unknown
					Primary Contact Recreation	Chlorophyll-a	5-M	N	LOW	2019	Source Unknown
NHRIV700061401-04	Kelly Brook	PLAISTOW	13 48	2 MILES	Aquatic Life	Benthic-Macroinvertebrat e Bioassessments	. 5-M		LOW	2019	Municipal (Urbanized High Density Area) Source Unknown Unspecified Urban
						Dissolved oxygen	5-M	N	LOW	2019	Source Unknown
						Oxygen, Dissolved	5 - P	N	LOW	2016	Source Unknown
						рН	5-M	24	LOW	2016	Source Unknown
NHRIV700061403-05	Bartlett Brook	DANVILLE	13.02	5 MILES	Aquatic Life	Dissolved oxygen	5 - M	10	LOW	2021	Source Unknown
						Oxygen, Dissolved	5-P	N	LOW	2021	Source Unknown
						рН	5-M	14	LOW	2019	Source Unknown

FINAL SUBMITTED TO EPA - 2012 LIST OF THREATENED OR IMPAIRED WATERS THAT REQUIRE A TMDL

(i.e., Category 5 Impairments - this represents the Section 303(d) List)

Date: 7/16/13 Page 95 of 110

Notes:

- 1. See the Consolidated Assessment and Listing Methodology (CALM) for definitions and details regarding how this list was developed.
- 2. This list is sorted by Waterbody Type and then Assessment Unit ID.
- 3. TMDL stands for Total Maximum Daily Load study. TMDL schedules are subject to change as funding and resources become available.

 4. Waters presented on this list may also be threatened or impaired by other pollutants or nonpollutants that do not require a TMDL.

Assessment Unit ID	Water Name	Primary Town	Water Size	Size Unit	Use Desc	Impairment Name	DES Category	Threat	TMDL Priority	TMDL Schedule	Source Name
NHRIV700061002-14	MERRIMACK RIVER	NASHUA	3 714	4 MILES	Primary Contact Recreation	Creosote	5-M	N	FOM	2019	Contaminated Groundwater
											Rcra Hazardous Waste Site
NHRIV700061002-26	NESENKEAG BROOK - UNNAMED BROOK	LONDONDERRY	3,15	1 MILES	Aquatic Life	Oxygen, Dissolved	5-P	N	LOW	2023	Source Unknown
						рН	5 - M	N	LOW	2023	Source Unknown
NHRIV700061101-01	Drew Brook	DERRY	11,270	O MILES	Aquatic Life	Нд	5-M	N	LOW	2019	Source Unknown
NHRIV700061101-05	Taylor Brook	DERRY	0.330	0 MILES	Primary Contact Recreation	ESCHERICHIA COLI	5-P	N	LOW	2025	Source Unknown
NHRIV700061102-16	POLICY BROOK - FROM CANOBIE LAKE	SALEM	1.18	9 MILES	Aquatic Life	Benthic-Macroinvertebrat e Bioassessments	5-P	N	LOW	2019	Source Unknown
NHRIV700061102-17 POLICY BROOK	SALEM	0 . 844	4 MILES	Aquatic Life	Chloride	5-P	N	LOW	2021	Commerical Districts (Shopping/Office	
										Highway/Road/Bridge Runof: (Non-construction Related)	
											Impervious Surface/Parking Lot Runoff
NHRIV700061102-18		Benthic-Macroinvertebrat e Bioassessments	5-P	N	LOW	2019	Municipal (Urbanized High Density Area)				
											Source Unknown Unspecified Urban
						рн	5-M	N	LOW	2017	Source Unknown
NHRIV700061102-21	Unnamed Trib to Harris	SALEM	2.16	5 MILES	Aquatic Life	Chloride	5-M	N	LOW	2023	Source Unknown
NHRIV700061203-01	Unnamed Tribs to Hurantis Lake	CHESTER	1 27	6 MILES	Aquatic Life	рН	5-M	N	LOW	2016	Source Unknown
NHRIV700061203-02	Unnamed Brook from Hurantis Lake to Adams	DERRY	4.062	2 MILES	Aquatic Life	рН	5-M	N	LOW	2016	Source Unknown
NHRIV700061203-09	BEAVER BROOK	DERRY	15.45	3 MILES	Aquatic Life	Benthic-Macroinvertebrat e Bioassessments	5-P		LOW	2021	Municipal (Urbanized High Density Area)
											Source Unknown
						Chloride	5 - M	N	LOW	2021	Commerical Districts (Shopping/Office
											Highway/Road/Bridge Runof: (Non-construction Related
											Impervious Surface/Parking Lot Runoff
						1					Municipal (Urbanized High Density Area)
						рН	5-P	N	LOW	2017	Source Unknown
NHRIV700061203-11	Beaver Brook	DERRY	7.53	4 MILES	Aquatic Life	Chloride	5-P	N	LOW	2021	Commerical Districts (Shopping/Office
											Highway/Road/Bridge Runof (Non-construction Related

May 15, 2013

Matt Sweeney Deloury Construction 46 Lowell Jct. Road Andover, MA 01810

Re: Dewatering Program

Infrastructure Improvements At CSO 004 – Storage Tank Nashua, New Hampshire

Mr. Sweeney:

Attached please find a dewatering plan for construction of CSO-004 Storage Tank for the above referenced project. The dewatering plan was developed using best available information at this time including plan sheet C-03 from the bid and Addendum 1 (record drawing dated 4-75) with borings shown.

The project remains subject to and contractor responsible to abide by all Project, Local, State and Federal requirements, conditions, specifications and practices.

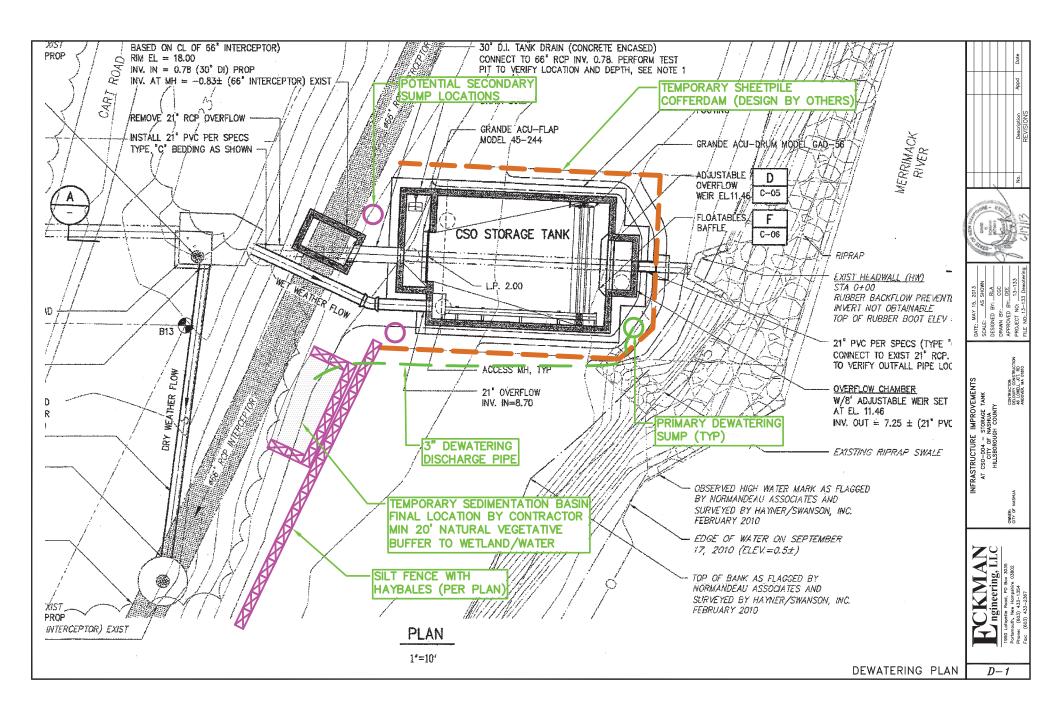
If conditions are encountered that are different from the conditions used to establish this dewatering program the contractor shall contact the engineer prior to continuing work.

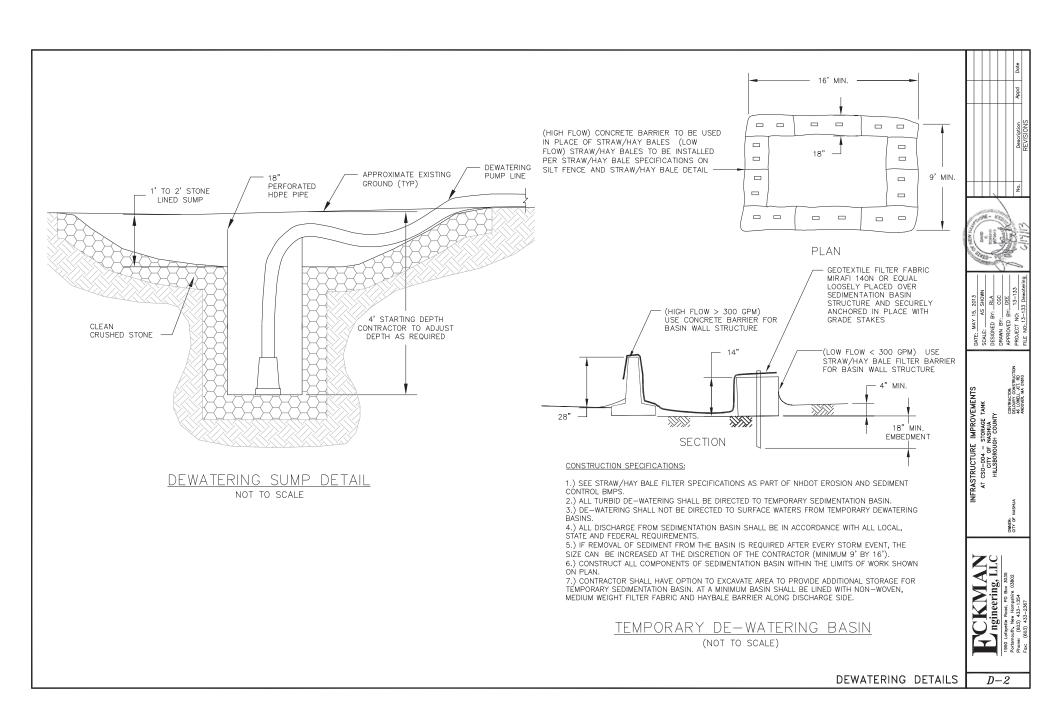
If you have any questions, suggestions or require additional information please feel free to contact me.

Very truly yours.

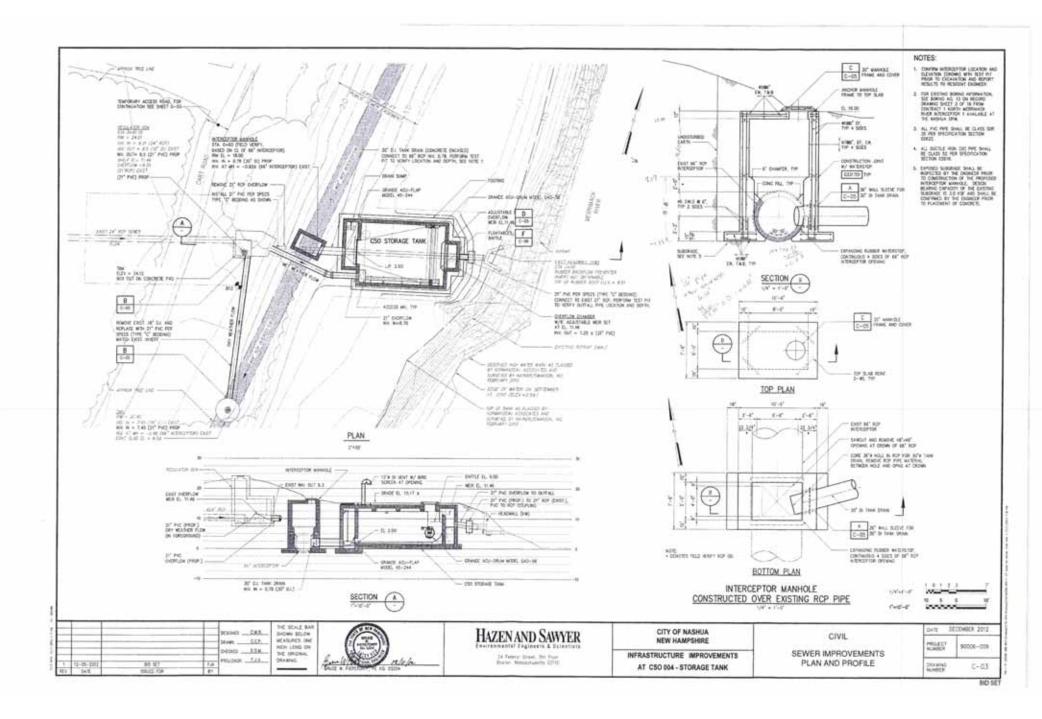
David E. Eckman, PE Principal Engineer Roger Appleton, Project Engineer

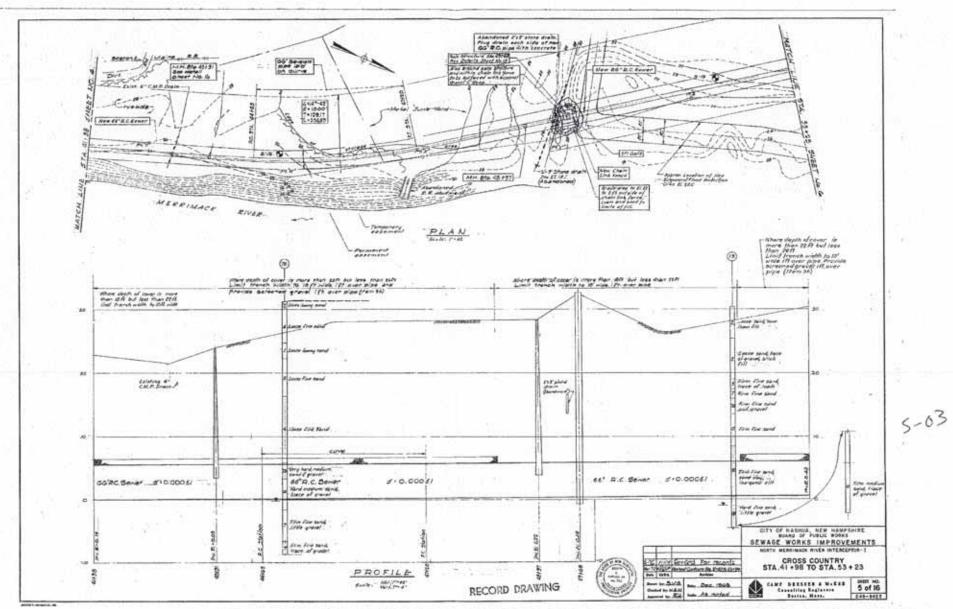
1.0 - DEWATERING PROGRAM SUMMARY


The proposed construction of CSO-004 Storage Tank requires excavation below high water mark of the adjacent Merrimack River. During excavation the contractor will utilize sheetpile cofferdams with dewatering to allow installation of the storage tank in generally dry conditions. Best available information was utilized to develop the dewatering program including subsurface soil information provided on record drawings from 4-75 and included in project information as Addendum 1 (attached). If soil conditions exist that are not consistent with the information provided on Addendum 1, the contractor shall notify this office before commencing construction and placing personnel in the excavation area


The excavation site is located approximately 20' from the observed high water mark for Merrimack River as noted on sheet C-03 of the project plans. Construction of the storage tank will require excavation to an elevation of 0 and -1.5+/- in different areas of the excavation. Information provided on plan sheet C-3 shows an edge of water elevation of 0.5+/- for Merrimack River on September 17, 2010. Soil information obtained from Addendum 1 (attached) shows the soils near bottom of excavation to be firm to hard fine sand with little gravel and some clay or inorganic silt. The boring information suggests soil layers near bottom of excavation that are cemented and have low hydraulic conductivity.

The proposal is to install sheet pile cofferdams at limit of excavation that are driven approximately 8'+/- (sheet pile cofferdam design by others) below bottom of excavation in most areas. The sheet pile cofferdam will help seal the excavation creating a longer flow path through the soil for groundawater to reduce the volume of water necessary to create a safe and dry excavation area. Dewatering will be completed with a 3" submersible electric pump installed in a sump created with 4' section of 18" HDPE pipe with 1' of crushed stone in the bottom. The main dewatering sump will be located at the southeast corner of the excavation. Additional sumps if necessary can be installed at the other corners of the excavation.


Due to the proximity of the excavation immediately adjacent to an existing 66" RCP pipe the potential exists for increased groundwater flowing laterally along the pipe through potentially well draining bedding/backfill around the existing pipe. If additional lateral flows are encountered through the pipe bedding material during excavation the contractor shall contact the engineer before continuing to establish additional dewatering measures including possible additional sumps or temporarily sealing excavation along the pipe.


DEWATERING PLANS & DETAILS

REFERENCE PLANS

Addardien (

Matthew Head

From:

Andrews, Jeff < Jeffrey. Andrews@des.nh.gov>

Sent:

Friday, August 09, 2013 11:24 AM

To:

Matthew Head

Subject:

RE: Project in Nashua NH

Hi Matthew, the 7Q10 for the Nashua River in Nashua is 784 cfs. The dilution factor equation is on page 5 of 22 of Appendix V of the RGP:

DF = $[(Qd + Qs)/Qd] \times 0.9 = [(0.32 + 784)/0.32] \times 0.9 = 2206$

Please call me if you have any questions.

Thanks, Jeff

Jeffrey G. Andrews, P.E.
Sanitary Engineer
Wastewater Engineering Bureau
NH Department of Environmental Services

Tel: (603) 271-2984 Fax: (603) 271-4128

E-mail: Jeff.Andrews@des.nh.gov

----Original Message----

From: Matthew Head [mailto:mhead@greenenvironmental.com]

Sent: Friday, August 09, 2013 8:11 AM

To: Andrews, Jeff **Cc:** Rob Leventry

Subject: Project in Nashua NH

Hello,

This is Mathew Head from Green Environmental. I am currently working on a NPDES RGP for a project in Nashua, NH at long: -71.4453 lat: 42.7611. Discharge from the project will ultimately be to the Merrimack River. The NOI for the RGP refers us to contact NHDES for the 7Q10 and Dilution Factor and I was wondering if you could be of help. Our estimated discharge is 210,000 GPD or approximately .32 cfs.

Thank You,

Mathew Head

In NOI section 3 "Contaminant Information," when the number of samples was noted with an asterisk, only the most recent water sampling date was utilized. Concentrations of Total Metals and Elevated TSS were identified as part of the pre-characterization of groundwater. An additional sample was collected after groundwater was allowed to settle in a container to evaluate the effects this would have on total metals concentrations and TSS. As anticipated, the concentrations decreased. Based on this information, the proposed means to manage groundwater effluent through sedimentation basin and hay bale/silt fence filtration should provide sufficient reduction in concentrations prior to the receiving water body. Effluent sampling will occur in accordance with the NPDES permit requirements to monitor for the compounds identified during pre-characterization.

Laboratory analytical data packages for the sampling are attached to this NOI.