

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region 1 5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

CERTIFIED MAIL RETURN RECEIPT REQUESTED

DEC 0 5 2012

Richard P. Geisler Branch Manager E C S, Inc. 30 Harris Place Brattleboro, VT 05301

Re: Authorization to discharge under the Remediation General Permit (RGP) – MAG910000. Shell Station site located at 100 Mohawk Trail, Greenfield, MA 01301, Franklin County; Authorization # MAG910558

Dear Mr. Geisler:

Based on the review of a Notice of Intent (NOI) submitted on behalf of the estate of Helen Mackin by your firm Environmental Compliance Services (ECS), Inc., for the site referenced above, the U.S. Environmental Protection Agency (EPA) hereby authorizes you, as the named Operator, to discharge in accordance with the provisions of the RGP at that site. Your authorization number is listed above.

The checklist enclosed with this RGP authorization indicates the pollutants which you are required to monitor. Also indicated on the checklist are the effluent limits, test methods and minimum levels (MLs) for each pollutant. Please note that the checklist does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of this permit, including influent and effluent monitoring, narrative water quality standards, record keeping, and reporting requirements, found in Parts I and II, and Appendices I – VIII of the RGP. See EPA's website for the complete RGP and other information at: http://www.epa.gov/region1/npdes/mass.html#dgp.

Please note the enclosed checklist includes parameters that exceeded Appendix III limits. The checklist also includes other parameters for which your laboratory reports indicated there was insufficient sensitivity to detect these parameters at the minimum levels established in Appendix VI of the RGP.

This general permit and authorization to discharge will expire on September 9, 2015. You have reported that this project will terminate on November 12, 2015. If for any reason the discharge terminates sooner you are required to submit a Notice of Termination (NOT) to the attention of the contact person indicated below within 30 days of project completion.

Thank you in advance for your cooperation in this matter. Please contact Victor Alvarez at 617-918-1572 or Alvarez. Victor@epa.gov, if you have any questions.

Sincerely,

Thelma Murphy, Manager Storm Water and Construction

Wina Murphy

Permits Section

Enclosure

cc: Robert Kubit, MassDEP

Sandra D. Shields, Greenfield, DPW

Alicia Flammia, ECS, Inc.

2010 Remediation General Permit Summary of Monitoring Parameters [1]

LM 6 90 Olim	MAG910558	
Decer	nber, 2012	
	Station	
100 M	Iohawk Trail, Greenfield, MA 01301	
Email	mail address of owner: Not provided. Telephone No. 508-771-3132	
	Environmental Compliance Services, Inc.	
, title,	Richard P. Geisler, LSP/Branch Manager 30 Harris Place, Brattleboro, VT 05301	
P16 # 82	Email: rgeisler@ecsconsultant.com	
pletion:	November 12, 2015	
gory:	Category I. Petroleum Related Site Remediation. Sub-category C. Petroleum Sites with Additional Contamination	
SIMMS	September 10, 2015	
	Unnamed Brook to Green Field River	
	Decer Shell	

Monitoring & Limits are applicable if checked. All samples are to be collected as grab samples

	<u>Parameter</u>	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
√	Total Suspended Solids (TSS)	30 milligrams/liter (mg/L) **, 50 mg/L for hydrostatic testing ** Me#160.2/ML5ug/L
	Total Residual Chlorine (TRC) Total Residual Chlorine	Freshwater = 11 ug/L ** Saltwater = 7.5 ug/L **/ Me#330.5/ML 20ug/L
✓	3. Total Petroleum Hydrocarbons (TPH)	5.0 mg/L/ Me# 1664A/ML 5.0mg/L
	4. Cyanide (CN) 2,3	Freshwater = 5.2 ug/l ** Saltwater = 1.0 ug/L **/ Me#335.4/ML 10ug/L
√	5. Benzene (B)	5ug/L /50.0 ug/L for hydrostatic testing only/ Me#8260C/ML 2 ug/L
√	6. Toluene (T)	(limited as ug/L total BTEX)/ Me#8260C/ ML 2ug/L
√	7. Ethylbenzene (E)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L
√	8. (m,p,o) Xylenes (X)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L
√	9. Total Benzene, Toluene, Ethyl Benzene, and Xylenes	100 ug/L/ Me#8260C/ ML 2ug/L

	<u>Parameter</u>	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
	(BTEX) ⁴	ation issued a December 2012
V	10. Ethylene Dibromide (EDB) (1,2- Dibromoethane)	0.05 ug/l/ Me#8260C/ ML 10ug/L
√	11. Methyl-tert-Butyl Ether (MtBE)	70.0 ug/l/Me#8260C/ML 10ug/L
	12.tert-Butyl Alcohol (TBA) (TertiaryButanol)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
	13. tert-Amyl Methyl Ether (TAME)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
$\sqrt{}$	14. Naphthalene ⁵	20 ug/L /Me#8260C/ML 2ug/L
	15. Carbon Tetrachloride	4.4 ug/L /Me#8260C/ ML 5ug/L
D b.	16. 1,2 Dichlorobenzene (o-DCB)	600 ug/L /Me#8260C/ ML 5ug/L
	17. 1,3 Dichlorobenzene (m-DCB)	320 ug/L /Me#8260C/ ML 5ug/L
	18. 1,4 Dichlorobenzene (p-DCB)	5.0 ug/L /Me#8260C/ ML 5ug/L
	18a. Total dichlorobenzene	763 ug/L - NH only /Me#8260C/ ML 5ug/L
	19. 1,1 Dichloroethane (DCA)	70 ug/L /Me#8260C/ ML 5ug/L
nd,	20. 1,2 Dichloroethane (DCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
-	21. 1,1 Dichloroethene (DCE)	3.2 ug/L/Me#8260C/ ML 5ug/L
V	22. cis-1,2 Dichloroethene (DCE)	70 ug/L/Me#8260C/ ML 5ug/L
V	23. Methylene Chloride	4.6 ug/L/Me#8260C/ ML 5ug/L
	24. Tetrachloroethene (PCE)	5.0 ug/L/Me#8260C/ ML 5ug/L
531	25. 1,1,1 Trichloro-ethane (TCA)	200 ug/L/Me#8260C/ ML 5ug/L
1APE	26. 1,1,2 Trichloro-ethane (TCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
$\sqrt{}$	27. Trichloroethene (TCE)	5.0 ug/L /Me#8260C/ ML 5ug/L
√	28. Vinyl Chloride (Chloroethene)	2.0 ug/L /Me#8260C/ ML 5ug/L
-0.5	29. Acetone	Monitor Only(ug/L)/Me#8260C/ML 50ug/L
\vee	30. 1,4 Dioxane	Monitor Only /Me#1624C/ML 50ug/L
Į.	31. Total Phenols	300 ug/L Me#420.1&420.2/ML 2 ug/L/ Me# 420.4 /ML 50ug/L
140	32. Pentachlorophenol (PCP)	1.0 ug/L /Me#8270D/ML 5ug/L,Me#604 &625/ML 10ug/L
1/1	33. Total Phthalates	3.0 ug/L ** /Me#8270D/ML 5ug/L,
	(Phthalate esters) 6	Me#606/ML 10ug/L& Me#625/ML 5ug/L
	34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	6.0 ug/L /Me#8270D/ML 5ug/L,Me#606/ML 10ug/L & Me#625/ML 5ug/L
	35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)	10.0 ug/L 2004 200 200 200 200 200 200 200 200 20

	<u>Parameter</u>	(All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
-Att	a. Benzo(a) Anthracene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	b. Benzo(a) Pyrene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	c. Benzo(b)Fluoranthene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	d. Benzo(k)Fluoranthene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	e. Chrysene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	f. Dibenzo(a,h)anthracene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	g. Indeno(1,2,3-cd) Pyrene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML5ug/L
	36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)	100 ug/L
	h. Acenaphthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	i. Acenaphthylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	j. Anthracene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
orija	k. Benzo(ghi) Perylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	I. Fluoranthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
A	m. Fluorene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	n. Naphthalene ⁵	20 ug/l / Me#8270/ML 5ug/L, Me#610/Ml 5ug/L & Me#625/ML 5ug/L
	o. Phenanthrene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	p. Pyrene	X/Me#8270D/ML5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	37. Total Polychlorinated Biphenyls (PCBs) ^{8, 9}	0.000064 ug/L/Me# 608/ ML 0.5 ug/L
$\sqrt{}$	38. Chloride	Monitor only/Me# 300.0/ ML 100 ug/L

Standy Chester Committee and Service and S	Total Reco Metal Limit mg/l Cat dischar	@ H ¹⁰ = 50 CO3 for		
	Massachuse 11/2		Minimu level=N	
Metal parameter	Freshwater	Saltwater		
39. Antimony	5.6/M	L 10		

VIDEO DE MONTE EN LES CONTRACTOR DE STORMEN NA CONTRACTOR DE CONTRACTOR	Total Recoverable Metal Limit @ H 10 = 50 mg/l CaCO3 for discharges in Massachusetts (ug/l) 11/12		Minimum level=ML	
Metal parameter	Freshwater	Saltwater		
40. Arsenic **	10/ML20	36/ML 20	Alexant at	
41. Cadmium **	0.2/ML10	8.9/ML 10		
42. Chromium III (trivalent) **	48.8/ML15	100/ML 15	Biotrage and	
43. Chromium VI (hexavalent) **	11.4/ML10	50.3/ML 10	diaxase to	
44. Copper **	5.2/ML15	3.7/ML 15		
45. Lead **	1.3/ML20	8.5/ML 20	neering or	
46. Mercury **	0.9/ML0.2	1.1/ML 0.2	lesned(U)	
47. Nickel **	29/ML20	8.2/ML 20	and the same of the same of	
48. Selenium **	5/ML20	71/ML 20	toneint no	
49. Silver	1.2/ML10	2.2/ML 10	Markett salt	
50. Zinc **	66.6/ML15	85.6/ML 15	olianette	
51. Iron	1,000/1	ML 20	阿伊斯	

	Other Parameters	Limit
/	52. Instantaneous Flow	Site specific in CFS
\checkmark	53. Total Flow	Site specific in CFS
$\sqrt{}$	54. pH Range for Class A & Class B Waters in MA	6.5-8.3; 1/Month/Grab ¹³
	55. pH Range for Class SA & Class SB Waters in MA	6.5-8.3; 1/Month/Grab ¹³
	56. pH Range for Class B Waters in NH	6.5-8; 1/Month/Grab ¹³
	57. Daily maximum temperature - Warm water fisheries	83°F; 1/Month/Grab ¹⁴
	58. Daily maximum temperature - Cold water fisheries	68°F; 1/Month/Grab14
	59. Maximum Change in Temperature in MA - Any Class A water body	1.5°F; 1/Month/Grab ¹⁴
	60. Maximum Change in Temperature in MA - Any Class B water body- Warm Water	5°F; 1/Month/Grab ¹⁴
	61. Maximum Change in Temperature in MA – Any Class B water body - Cold water and Lakes/Ponds	3°F; 1/Month/Grab ¹⁴
	62. Maximum Change in Temperature in MA – Any Class SA water body - Coastal	1.5°F; 1/Month/Grab ¹⁴
	63. Maximum Change in Temperature in MA – Any Class SB water body - July to September	1.5°F; 1/Month/Grab ¹⁴
	64. Maximum Change in Temperature in MA –Any Class SB water body - October to June	4°F; 1/Month/Grab ¹⁴

Footnotes:

- ¹ Although the maximum values for TRC are 11ug/l and 7.5 ug/l for freshwater, and saltwater respectively, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., Method 330.5, 20 ug/l).
- ² Limits for cyanide are based on EPA's water quality criteria expressed as micrograms per liter. There is currently no EPA approved test method for free cyanide. Therefore, total cyanide must be reported.
- ³ Although the maximum values for cyanide are 5.2 ug/l and 1.0 ug/l for freshwater and saltwater, respectively, the compliance limits are equal to the minimum level (ML) of the Method 335.4 as listed in Appendix VI (i.e., 10 ug/l).

BTEX = sum of Benzene, Toluene, Ethylbenzene, and total Xylenes.

- ⁵ Naphthalene can be reported as both a purgeable (VOC) and extractable (SVOC) organic compound. If both VOC and SVOC are analyzed, the highest value must be used unless the QC criteria for one of the analyses is not met. In such cases, the value from the analysis meeting the QC criteria must be used.
- ⁶ The sum of individual phthalate compounds(not including the #34, Bis (2-Ethylhexyl) Phthalate . The compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measurement of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

 7 Although the maximum value for the individual PAH compounds is 0.0038 ug/l, the compliance limits are equal to the minimum level (ML) of the test method used as

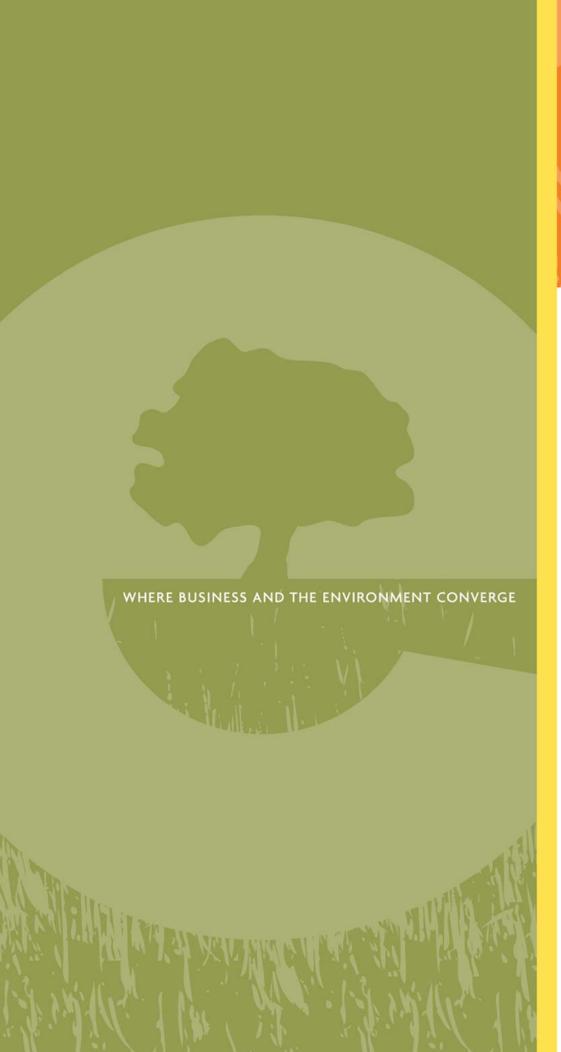
listed in Appendix VI.

⁸ In the November 2002 WQC, EPA has revised the definition of Total PCBs for aquatic life as total PCBs is the sum of all homologue, all isomer, all congener, or all "Oroclor analyses." Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measure of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁹Although the maximum value for total PCBs is 0.000064 ug/l, the compliance limit is equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., 0.5 ug/l for Method 608 or 0.00005 ug/l when Method 1668a is approved).

¹⁰ Hardness. Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc are

Hardness Dependent.


¹¹ For a Dilution Factor (DF) from 1 to 5, metals limits are calculated using DF times the base limit for the metal. See Appendix IV. For example, iron limits are calculated using DF x 1,000 μ L (the iron base limit). Therefore DF is 1.5, the iron limit will be 1,500 μ L; DF 2, then iron limit =1,000 x 2 =2,000 μ L, etc. not to exceed the DF=5.

Minimum Level (ML) is the lowest level at which the analytical system gives a recognizable signal and acceptable calibration point for the analyte. The ML represents the lowest concentration at which an analyte can be measured with a known level of confidence. The ML is calculated by multiplying the laboratory-determined method detection limit by 3.18 (see 40 CFR Part 136, Appendix B).

pH sampling for compliance with permit limits may be performed using field

methods as provided for in EPA test Method 150.1.

Temperature sampling per Method 170.1

Shell Gas Station/ Convenience Store 100 Mohawk Trail Greenfield, Massachusetts

RTN 1-18881

Prepared for: Victor Alvarez USEPA, Region 1 RPG-NOC Processing 1 Congress St, Suite 1100 Boston MA 02114-2023

ECS Project No.94-205185.04 October 29, 2012

Prepared By: ECS 30 Harris Place Brattleboro, VT 05301 tel 802.257.1195 fax 802.257.1603 www.ecsconsult.com

30 Harris Place, Brattleboro, VT 05301 tel 802.257.1195 fax 802.257.1603 www.ecsconsult.com

Mr. Victor Alvarez United States Environmental Protection Agency, Region 1 RPG-NOC Processing 1 Congress Street, Suite 1100 Boston, MA 02114-2023 October 29, 2012 Project No. 94-205185.04

RE: Shell Gas Station/Convenience Store

100 Mohawk Trail

Greenfield, Massachusetts

RTN 1-18881

Dear Mr. Alvarez:

Environmental Compliance Services, Inc. (ECS) is pleased to provide supporting documentation for the Notice of Intent (NOI) for the Remediation General Permit (RGP) on behalf of the estate of Helen Mackin for the above-referenced property. This NOI is being submitted in order to obtain a permit for the operation of a temporary groundwater recovery and treatment system (GWTS) that is located at 100 Mohawk Trail, Greenfield, Massachusetts (the Site). The GWTS is required to be operated at the Site in order to allow for the remediation of light non-aqueous phase liquid (LNAPL) and petroleum-impacted soil and groundwater. A Site Locus is provided as Figure 1 and a Site Plan is provided as Figure 2. A Drainage Path Sketch and a System Design Sketch are included as Figures 3 and 4, respectively. A copy of the NOI form is provided as Attachment I.

System Design

The groundwater treatment system located on the Site will be composed of either:

- 1) A rotary lobe blower for extracting vapors and liquids from the recovery wells; a cyclonic separator for separation of the influent vapor and liquid streams; oil-water separator, low profile stripper and two 500 pound liquid phase granular activated carbon (GAC) (plumbed in series); vapor phase GAC for treatment of the air stripper off-gas and catalytic oxidation for treatment of the vapor effluent from the rotary lobe blower; or
- 2) Submersible pneumatic pumps that collect groundwater from the treatment area, then recovered groundwater will be pumped through an oil-water separator, particulate filters, a soil vapor extraction (SVE) blower and air stripper and two 500 pound liquid phase GAC units for the treatment of recovered liquids.

A choice between the treatment options will be determined by the pilot test data obtained on October 29, 2012 and by available equipment at the time of installation. Treatment will occur prior to discharge to the Department of Transportation storm water manhole (MH-4) located in the southeastern portion of the parking lot at the Site. The storm water line discharges to an unnamed brook before discharging to the Green River 750 feet to the northeast.

Mr. Victor Alvarez USEPA, Region 1 October 29, 2012

Page 2

A Site plan detailing the location of the groundwater treatment system, the groundwater withdrawal points, the manhole for the storm water line, and the planned area for the remediation trailer is provided as Figure 2. A line diagram of the groundwater treatment system is provided as Figure 3. The outfall location of the storm water line and surface water bodies adjacent to the outfall location are indicated on the Site Locus, Figure 1.

Average flow rate of discharge of treated groundwater from the system to the storm water line is expected to be approximately 6 gallons per minute (gpm). The design capacity of the groundwater treatment system is 10 to 15 gpm based upon data collected from comparable systems installed at other remedial sites operated/designed by ECS.

<u>Influent Sample Analysis</u>

Two surface water samples were collected immediately dowgradient of the affected manhole's outfall at the unnamed stream. In addition, groundwater data from recent (February and April 2012) groundwater sampling activities¹ is being used to present data for additional parameters known to be located onsite from a previous and off-site release. The samples were submitted to Spectrum Analytical, Inc. of Agawam, Massachusetts under standard chain of custody protocol for analysis of total petroleum hydrocarbons (TPH) by USEPA Method 8100, volatile organic compounds (VOCs) by USEPA Method 8260B, ethylene dibromide (EDB) by USEPA Method 504.1, total metals (iron and lead) by USEPA Method 200.7, hardness by SM 2340B, and total suspended solids by SM2540D. A copy of the laboratory reports and chains of custody record are provided as Attachment II.

Appendix III of the the 2010 RGP under NPDES sets the effluent limitations for treatment system discharges. Benzene, cis-1,2-dichloroethene, ethylbenzene, methyl tert-butyl ether, naphthalene, n-propylbenzene, toluene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, total xylenes, total suspended solids, TPH as gasoline, EDB, and iron were detected in the representative surface water and groundwater samples that were collected from the stream and site monitoring wells in February, April and October 2012. Comparison of the concentrations of these compounds to the Appendix III effluent limitations (http://www.epa.gov/region1/npdes/remediation/RGP2010_PermitAppendixIII.pdf, accessed on October 25, 2012) indicates that many of detected concentrations were above the Appendix III. Parameters not detected above the effluent limits include total suspended solids, iron, EDB, TPH, cis-1,2-dichloroethene and methyl tert-butyl ether.

Receiving Waters Information

The receiving water for the treated groundwater discharge is the unnamed brook across Mohawk Trail, with eventual discharge to the Green River located approximately 1,000 feet northeast of the Site. ECS consulted the online United States Geological Survey (USGS) Streamstats program to determine the 7Q10 flow rate at the discharge location (http://ma.water.usgs.gov/streamstats/, accessed October 26, 2012). Based on data available for the area, ECS calculated a 7Q10 for this area of 10.4 cubic feet per minute.

¹ Conducted as part of due diligence work for property lease transaction.

Mr. Victor Alvarez USEPA, Region 1 October 29, 2012

Page 3

Receiving Water Classification

ECS consulted the Massachusetts Department of Environmental Protection (MassDEP) Division of Water Pollution Control (http://www.mass.gov/dep/water/laws/tblfig.pdf) to determine the classification for the receiving waters. The Green River is listed as Class B surface water.

Evaluation of Threatened or Endangered Species or Critical Habitat Located within Receiving Waters

According to Massachusetts Geographic Information Systems (MassGIS) online maps for the Natural Heritage Endangered Species Program (NHESP) (2008), no Priority Habitat of Rare Species or Estimated Habitats of Rare Wildlife are located within at the proposed discharge area. There are no Areas of Critical Environmental Concern or Endangered Species known to exist within one mile of the proposed discharge area.

Review of National Register of Historic Places

Listings of Historic Places within the City of Marlborugh in the vicinity of the Site were obtained from the Massachusetts Cultural Resources Information System (MACRIS) online database at http://mhc-macris.net/towns.aspx (accessed October 18, 2012). Copies of the MACRIS report are provided as Attachment III. The database indicated that there are no historic places located in close proximity to the Site and proposed discharge area. This project does not involve the demolition or rehabilitation of existing structures and historic properties.

Copies of this letter and supporting documentation have been forwarded to the Western Regional Office of the MassDEP and to Ms. Sandra D. Shields, at the Department of Public Works for the City of Greenfield. Should you have any questions or concerns regarding the contents of this letter or the NOI for the RGP, please do not hesitate to contact the undersigned at (802) 257-1195.

Sincerely,

ENVIRONMENTAL COMPLIANCE SERVICES, INC.

Alicia Flammia

Project Manager

Richard P. Geisler, P.G., LSP

Principal/Branch Manager/Senior Hydrogeologist

Mr. Victor Alvarez USEPA, Region 1 October 29, 2012

Page 4

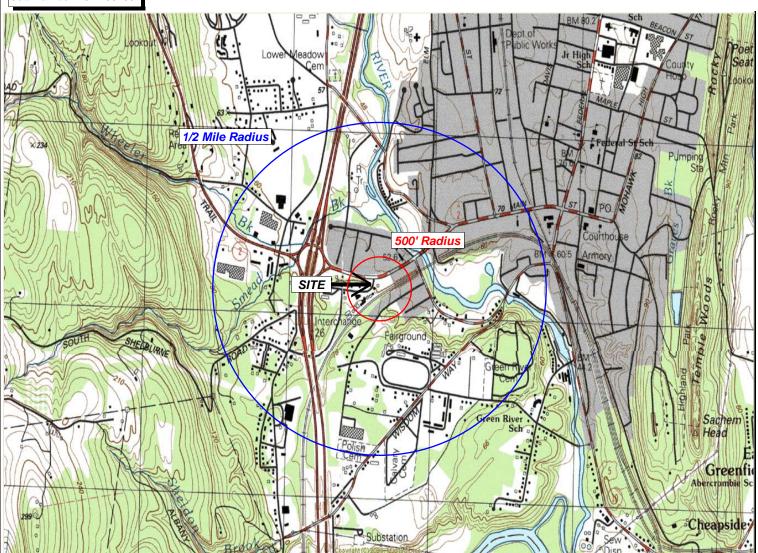
List of Attachments

Figure 1: Site Locus Figure 2: Site Plan

Figure 3: Drainage Path Sketch Figure 4: System Design Sketch

Attachment 1: NOI for the RGP

Attachment 2: Laboratory Analytical ReportS and Chain of Custody Record Attachment 3: MACRIS Database Search Results


Environmental Compliance Services, Inc. 30 Harris Place, Brattleboro, VT 05301 Phone (802)-257-1195 Fax (802)-257-1603 www.ecsconsult.com

SITE LOCUS

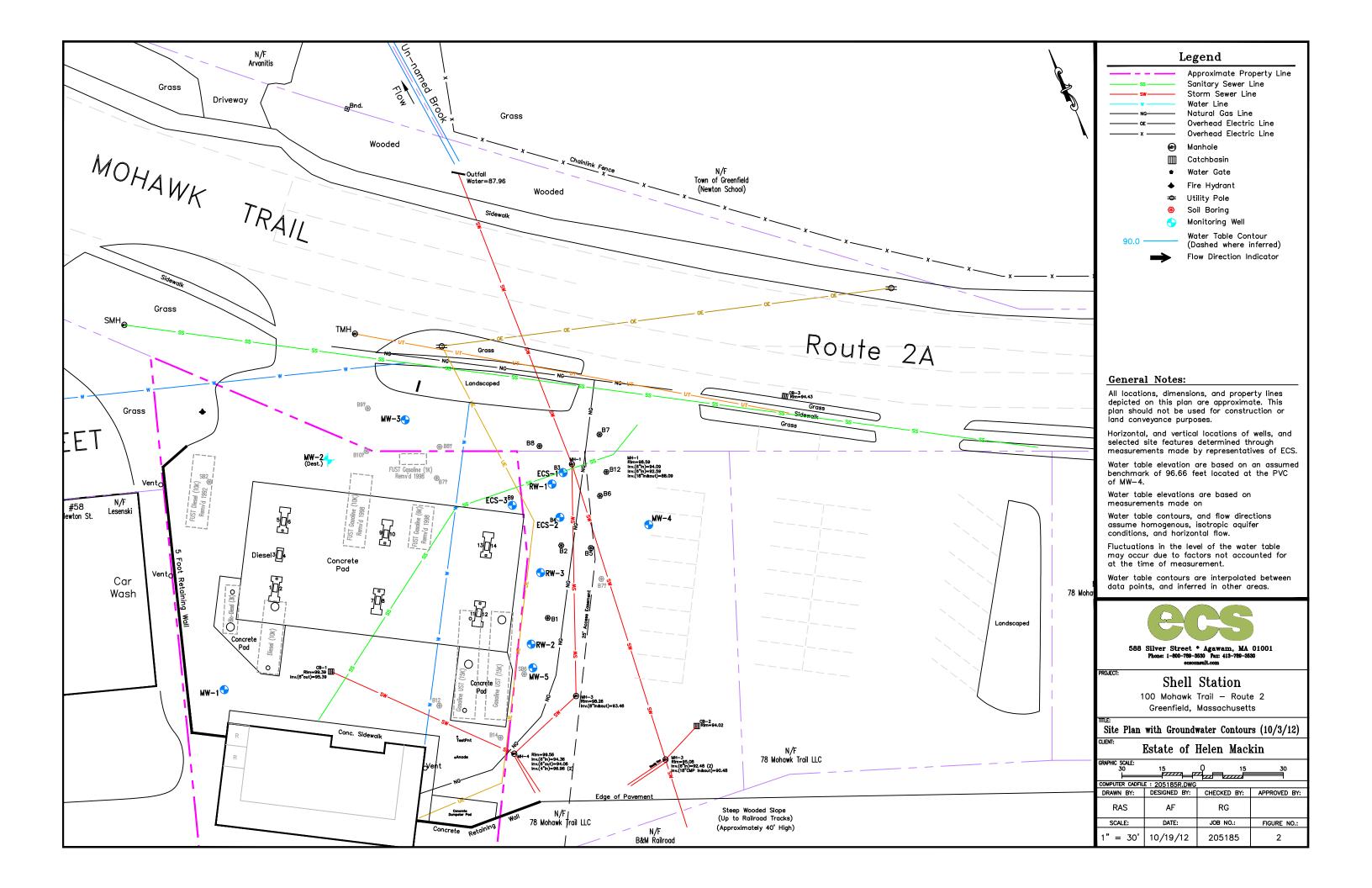
Figure:

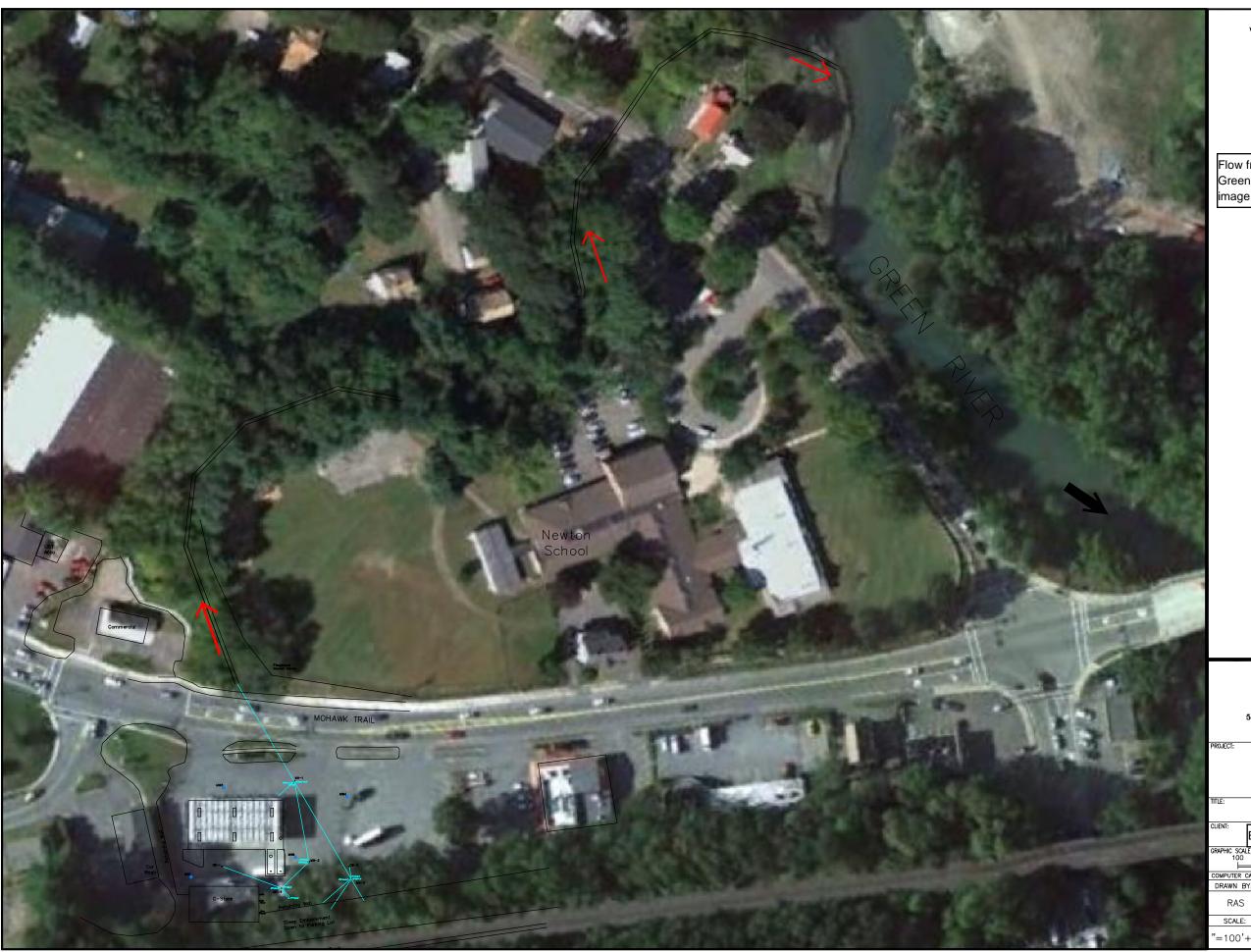
100 Mohawk Trail Greenfield, MA

Job Number: 04-205185.

1 1/2 0 1 Mile

1 inch = 1500 feet


Contour Interval: 6 Meters

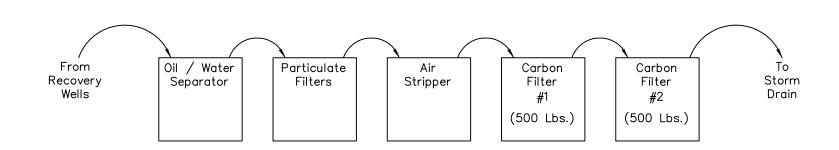

North

Base Map: U.S. Geological Survey; Quadrangle Location: Greenfield, MA

Latitude and Longitude: 42d 35" 02.61' North / 72d 36" 57.86' West

Map Edited: 1990 Map Revised: Generated By: CEF

Flow from the unnamed stream enters the Green River via the path outlined in the



Shell Station

100 Mohawk Trail — Route 2
Greenfield, Massachusetts

Drainage Path Sketch

ı	CLIENT: Est	tate of Heler	n Mackin c/o	Haddleton
1	GRAPHIC SCALE: 100	50	0 50	100
	COMPUTER CADFIL	E : greenfield-ske	etch.dwg	
١	DRAWN BY:	DESIGNED BY:	CHECKED BY:	APPROVED BY:
I	RAS			
	SCALE:	DATE:	JOB NO.:	FIGURE NO.:
	"=100"+/-	10/1/12	205185	3

CLIENT: Estate of He	["	PROJECT:
GRAPHIC SCALE:	0 0	NTLE:

"	COMPUTER CADFI
Shell Station	DRAWN BY:
100 Mohawk Trail	EB
Greenfield, MA	SCALE:
System Flow Diagra	m NTS

COMPUTER CADFIL	E :		
DRAWN BY:	DESIGNED BY:	CHECKED BY:	APPROVED BY:
EB	RAS	AF	RPG
SCALE:	DATE:	JOB NO.:	FIGURE NO.:
NTS	Oct. 2012	205185.04	4

ATTACHMENT I NOI FOR THE RGP

B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit

1. General facility/site information. Please provide the following information about the site: a) Name of facility/site: Shell Station Facility/site mailing address: Location of facility/site: Facility SIC Street: code(s): longitude: 72d 36" 57.86 100 Mohawk Trail latitude: 42d 35" 02.61 5541 b) Name of facility/site owner: Town: Greenfield Email address of facility/site owner: Zip: State: County: MA 01301 Franklin Telephone no. of facility/site owner: 508-771-3132 Fax no. of facility/site owner: Owner is (check one): 1. Federal O 2. State/Tribal O 3. Private • 4. Other • if so, describe: Address of **owner** (if different from site): Estate of Helen Mackin c/o Haddleton Associates Street: 251 South Street - PO Box 1298 County: Barnstable Town: Hyannis State: MA Zip: 02601 Operator telephone no: 802-257-1195 c) Legal name of operator: ECS, Inc Operator fax no.: 802-257-1603 Operator email: rgeisler@ecsconsult.com Operator contact name and title: Richard P. Geisler, LSP / Branch Manager Address of operator (if different from Street: 30 Harris Place owner): Town: Brattleboro Zip: 05301 State: VT County: Windham

d) Check Y for "yes" or N for "no" for the following: 1. Has a prior NPDES permit exclusion been granted for the discharge? Y O N O, if Y, number: 2. Has a prior NPDES application (Form 1 & 2C) ever been filed for the discharge? Y O N O, if Y, date and tracking #: 3. Is the discharge a "new discharge" as defined by 40 CFR 122.2? Y O N O 4. For sites in Massachusetts, is the discharge covered under the Massachusetts Contingency Plan (MCP) and exempt from state permitting? Y O N O				
e) Is site/facility subject to any State permitting, license, or other action which is causing the generation of discharge? Y O NO If Y, please list: 1. site identification # assigned by the state of NH or MA: RIN 1-18881 2. permit or license # assigned: 3. state agency contact information: name, location, and telephone number: Mass Dept of Environmental Protection - Western Regional Office 436 Dwight Street	f) Is the site/facility covered by any other EPA permit, including: 1. Multi-Sector General Permit? Y O N O, if Y, number: 2. Final Dewatering General Permit? Y O N O, if Y, number: 3. EPA Construction General Permit? Y O N O, if Y, number: 4. Individual NPDES permit? Y O N O, if Y, number: 5. any other water quality related individual or general permit? Y O N O, if Y, number:			
Springfield, MA 01103				
g) Is the site/facility located within or does it discharge to an Area of Critical Environmental Concern (ACEC)? Y_O_N_O_				
h) Based on the facility/site information and any historical sampling data, identify the sub-category into which the potential discharge falls.				
Activity Category	Activity Sub-Category			
I - Petroleum Related Site Remediation	A. Gasoline Only Sites ☐ B. Fuel Oils and Other Oil Sites (including Residential Non-Business Remediation Discharges) ☐ C. Petroleum Sites with Additional Contamination ☑			
II - Non Petroleum Site Remediation	A. Volatile Organic Compound (VOC) Only Sites B. VOC Sites with Additional Contamination C. Primarily Heavy Metal Sites			
III - Contaminated Construction Dewatering	A. General Urban Fill Sites B. Known Contaminated Sites			

IV - Miscellaneous Related Discharges	A. Aquifer Pump Testing to Evaluate Formerly Contaminated Sites B. Well Development/Rehabilitation at Contaminated/Formerly Contaminated Sites C. Hydrostatic Testing of Pipelines and Tanks
	D. Long-Term Remediation of Contaminated Sumps and Dikes E. Short-term Contaminated Dredging Drain Back Waters (if not covered by 401/404 permit)
	about the discharge, (attaching additional sheets as necessary) including:
a) Describe the discharge activities for which the owner/a	pplicant is seeking coverage:
Discharge of treated groundwater from remediation system	
b) Provide the following information about each discharg	e:
1) Number of discharge 2) What is the maximum a	nd average flow rate of discharge (in cubic feet per second, ft ³ /s)?
points: Max. flow 0.02 I Average flow (include unit	s maximum flow a design value? Y O N O s) 6 Gal/Minute Is average flow a design value or estimate? estimate
3) Latitude and longitude of each discharge within 100 fe	
pt.1: lat <u>A2° 35' 4.83N</u> long 72° 36 56.66W pt.2: lat.	long
pt.3: lat long pt.4: lat. pt.5: lat long pt.6: lat.	long.;
pt.7: lat long pt.8: lat.	long ; etc.
4) If hydrostatic testing, total volume of the discharge ongoing? Y discharge (gals).	tent O or seasonal O? N O
c) Expected dates of discharge (mm/dd/yy): start 11/12/2012	end 11/12/2015
d) Please attach a line drawing or flow schematic showing	
1. sources of intake water. 2. contributing flow from the cowaters(s). Figure 3 and other flowes	peration. 3. treatment units, and 4. discharge points and receiving
Marcia(2)1.22.22 Marcia	

3. Contaminant information.

a) Based on the sub-category selected (see Appendix III), indicate whether each listed chemical is believed present or believed absent in the potential discharge. Attach additional sheets as needed.

	Sattle Average et	ranar te aane.		grana a di sun	Sample	Analytical	Minimum	Maximum dai	ly value	Average daily	value
Parameter *	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
Total Suspended Solids (TSS)			×	2	grab	2540	5 ug/L	13 ug/L			
2. Total Residual Chlorine (TRC)		×									
Total Petroleum Hydrocarbons (TPH)			×	2	grab	8100	122 ug/L	2.5 mg/L		THE PARTY OF THE P	
4. Cyanide (CN)	57125	×									
5. Benzene (B)	71432		×	6	grab	8260	5 ug/L	65 ug/L			
6. Toluene (T)	108883		×	6	grab	8260	5 ug/L	456 ug/L			
7. Ethylbenzene (E)	100414		×	6	grab	8260	5 ug/L	85.4 ug/L			П
8. (m,p,o) Xylenes (X)	108883; 106423; 95476; 1330207			6	grab	8260	10 ug/L	463 ug/L			
9. Total BTEX ²	n/a		×	6	grab	8260		1069,4 ug/L		·	
10. Ethylene Dibromide (EDB) (1,2-Dibromoethane) ³	106934		×	2	grab	8260	.01 ug/L	.012 ug/L		,	
11. Methyl-tert-Butyl Ether (MtBE)	1634044		×	6	grab	8260	5 ug/L	8.05 ug/L			
12. tert-Butyl Alcohol (TBA) (Tertiary-Butanol)	75650	×							ki ka marana ang ka marana		

^{*} Numbering system is provided to allow cross-referencing to Effluent Limits and Monitoring Requirements by Sub-Category included in Appendix III, as well as the Test Methods and Minimum Levels associated with each parameter provided in Appendix VI.

² BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes.
³ EDB is a groundwater contaminant at fuel spill and pesticide application sites in New England.

				The Levision	Sample	Analytical	Minimum	Maximum dai	ly value	Average daily	value .
Parameter *	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
13. tert-Amyl Methyl Ether (TAME)	9940508	×									
14. Naphthalene	91203		×	2	grab	8260	5 ug/L	60.8 ug/L			
15. Carbon Tetrachloride	56235	×									
16. 1,2 Dichlorobenzene (o-DCB)	95501	×									
17. 1,3 Dichlorobenzene (m-DCB)	541731	×									
18. 1,4 Dichlorobenzene (p-DCB)	106467	×									
18a. Total dichlorobenzene	, , , , , , , , , , , , , , , , , , , ,	×									
19. 1,1 Dichloroethane (DCA)	75343	×								NAME OF THE PROPERTY OF THE PR	
20. 1,2 Dichloroethane (DCA)	107062	×									
21. 1,1 Dichloroethene (DCE)	75354	×								·	
22. cis-1,2 Dichloroethene (DCE)	156592		×	6	grab	8260	70 ug/L	497 ug/L			
23. Methylene Chloride	75092	×									
24. Tetrachloroethene (PCE)	127184	X									
25. 1,1,1 Trichloro-ethane (TCA)	71556	×			A CONTRACTOR OF THE CONTRACTOR						
26. 1,1,2 Trichloro-ethane (TCA)	79005	X	П								
27. Trichloroethene (TCE)	79016		×	6	grab	8260	5 ug/L	83.3 ug/L			

		organi (comento)	engerig erj.		Sample	Analytical	Minimum	Maximum dai	ly value	Average daily	value
Parameter *	CAS Number	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
28. Vinyl Chloride (Chloroethene)	75014		×	6	grab	8260	5 ug/L	37.1 ug/L			and the state of t
29. Acetone	67641	×									
30. 1,4 Dioxane	123911	×									
31. Total Phenols	108952	×									
32. Pentachlorophenol (PCP)	87865	×									
33. Total Phthalates (Phthalate esters) ⁴		x .									
34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	117817	×									
35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)		×									
a. Benzo(a) Anthracene	56553	×									
b. Benzo(a) Pyrene	50328	×									
c. Benzo(b)Fluoranthene	205992	×							-		
d. Benzo(k)Fluoranthene	207089	×							-		
e. Chrysene	21801	×									
f. Dibenzo(a,h)anthracene	53703	×							-		
g. Indeno(1,2,3-cd) Pyrene	193395	×									The state of the s
36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)		X									

⁴ The sum of individual phthalate compounds.

Remediation General Permit Appendix V - NOI Page 15 of 22

	diserra		-10-10-1	, A Carte ero Peta-	Sample	Analytical	Minimum	Maximum daily value		Average daily	value ::
Parameter *	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
h. Acenaphthene	83329	×									
i. Acenaphthylene	208968	×									
j. Anthracene	120127	×			Control					:	
k. Benzo(ghi) Perylene	191242	×									
l. Fluoranthene	206440	×									
m. Fluorene	86737	×									(man)
n. Naphthalene	91203	×					Vertex				
o. Phenanthrene	85018	×									
p. Pyrene	129000	×									
	85687; 84742; 117840; 84662;	X									
37. Total Polychlorinated Biphenyls (PCBs)	131113; 117817.										
38. Chloride	16887006	×				:					
39. Antimony	7440360	×					Manual Manager				
40. Arsenic	7440382	×					Actual reservoir				
41. Cadmium	7440439	×					CVP married				
42. Chromium III (trivalent)	16065831	×									A THE STATE OF THE
43. Chromium VI (hexavalent)	18540299	×								COLUMN	Attacher 1980
44. Copper	7440508	×									
45. Lead	7439921	×									
46. Mercury	7439976	×				:					
47. Nickel	7440020	×									
48. Selenium	7782492	×									
49. Silver	7440224	×							· ·	:	
50. Zinc	7440666	×					The state of the s				
51. Iron	7439896		×	2	grab	8260	0.015 ug/L .	0.392 ug/L			
Other (describe):											

	Siletore del demo	erson plananga lutid		Sample A	Analytical	Minimum	<u>Maximum</u>	Maximum daily value		Average daily value	
Parameter *	CAS Belie Number Abs		# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentrati (ug/l)	on mass (kg)	concentration (ug/l)	<u>m:</u> <u>(k</u>	
					A/A-V/A-VAV/AV						
Step 1: Do any of the man Appendix III (i.e., the lies Step 2: For any metals we dilution factor (DF) us instructions or as determant What is the dilution factor Metal: Metal: Metal: Metal: Etc.	etals in the infi mits set at zero which exceed the ing the formulation	luent exceed the dilution)? Y he Appendix I a in Part I.A.3. ate prior to the	ne effluent l O N O (III limits, c c (step 2) o	limits in alculate the of the NOI	Look up factor in influent	the limit can Appendix thave the potential in Aprandix at limits in Apration above	alculated at t IV. Do any otential to expendix IV (he correspond of the metal sceed the condition, is the interest that the calculation	rresponding		
A description of the raised on equipment available of pound liquid phase GAC slower, air stripper and two st	treatment syste ility, the system v units, vapor GAC	em, including a vill be composed and catalytic ox	schematic of either: a reidation; or su	of the proposotary lobe blow	sed or existiver, a cyclonic	ing treatmer	nt system: -water separat	tor, low profile			
b) Identify each applicable treatment	Frac. tank	11		water separate		Equalizati	on tanks 🗖	Bag filter L	GAC filter	×	
unit (check all that apply):	Chlorination	De- chlorination		er (please des	cribe):						

c) Proposed average and maximum the treatment system: Average flow rate of discharge Design flow rate of treatment system	gpm N	lons per minute) f Aaximum flow rat gpm			v rate(s) (gallons per minute) of gpm
d) A description of chemical additiv	es being used or	planned to be use	ed (attach MSDS s	sheets):	
5. Receiving surface water(s). Plea	se provide infor	mation about the r	eceiving water(s).	, using separate sh	eets as necessary:
a) Identify the discharge pathway:	Direct to receiving water	Within facility (sewer)	Storm drain 🗵	Wetlands 🔲	Other (describe)
b) Provide a narrative description of treated groundwater will discharge to the					
c) Attach a detailed map(s) indicating 1. For multiple discharges, number to 2. For indirect dischargers, indicate The map should also include the loc on USGS topographical mapping), so	he discharges se the location of that ation and distan-	equentially. The discharge to the ce to the nearest sa	e indirect conveya anitary sewer as w	nce and the dischavell as the locus of	
d) Provide the state water quality cla	assification of th	e receiving water	В		
e) Provide the reported or calculated Please attach any calculation sheets	l seven day-ten y used to support	vear low flow (7Q stream flow and d	10) of the receivir ilution calculation	ng water 10.4	cfs
f) Is the receiving water a listed 303	(d) water quality	impaired or limit	ed water? Y <u>©</u>	N_O_If yes, fo	r which pollutant(s)?
Is there a final TMDL? Y_O_ N_	O If yes, for w	hich pollutant(s)?	fecal coliform		

6. ESA and NHPA Eligibility. Please provide the following information according to requirements of Permit Parts I.A.4 and I.A.5 Appendices II and VII.
a) Using the instructions in Appendix VII and information on Appendix II, under which criterion listed in Part I.C are you eligible for coverage under this general permit? A
c) If consultation with U.S. Fish and Wildlife Service and/or NOAA Fisheries Service was completed, was a written concurrence finding that the discharge is "not likely to adversely affect" listed species or critical habitat received? Y O N O
d) Attach documentation of ESA eligibility as described in the NOI instructions and required by Appendix VII, Part I.C, Step 4.
e) Using the instructions in Appendix VII, under which criterion listed in Part II.C are you eligible for coverage under this general permit? 1 © 2 © 3 © f) If Criterion 3 was selected, attach all written correspondence with the State or Tribal historic preservation officers, including any terms and conditions that outline measures the applicant must follow to mitigate or prevent adverse effects due to activities regulated by the RGP.
7. Supplemental information.
Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit.

8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facility/Site Name: Shell Station	
Operator signature:	
Printed Name & Title: Richard P. Geisler-LSP, Branch Manager, Environmental Compliance Services	
Date: 10 29 20 4 Z	

ATTACHMENT II

LABORATORY REPORTS AND CHAIN OF CUSTODY RECORD

Report Date: 25-Oct-12 14:48

Laboratory Report

Environmental Compliance Services 588 Silver Street Agawam, MA 01001

Attn: Alicia Flammia

Project: 100 Mohawk Trail - Greenfield, MA

Project #: 94-205185.04

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SB58074-01	SW-1	Surface Water	12-Oct-12 13:15	12-Oct-12 15:45
SB58074-02	SW-2	Surface Water	12-Oct-12 13:30	12-Oct-12 15:45
SB58074-03	Trip	Deionized Water	12-Oct-12 00:00	12-Oct-12 15:45

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Micole Leja

Spectrum Analytical holds certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 22 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

MassDEP Analytical Protocol Certification Form

Labo	ratory Name: Sp	ectrum Analytical, Inc.		Project #: 94-205	5185.04					
Proje	ect Location: 100	Mohawk Trail - Greenfi	eld, MA	RTN:						
This 1	form provides ce	rtifications for the follo	wing data set:	SB58074-01 through SB5	8074-03					
Matr	ices: Deionized Surface W									
CAM	Protocol									
_	260 VOC AM II A	7470/7471 Hg CAM III B	MassDEP VPH CAM IV A	8081 Pesticides CAM V B	7196 Hex Cr CAM VI B	MassDEP APH CAM IX A				
	270 SVOC AM II B	7010 Metals CAM III C	MassDEP EPH CAM IV B	8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VOC CAM IX B				
_	010 Metals AM III A	6020 Metals CAM III D	8082 PCB CAM V A	9012 Total Cyanide/PAC CAM VI A	9014 Total Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B				
		Affirmative responses	to questions A through		umptive Certainty" status	-				
A				cribed on the Chain of Corepared/analyzed within r		✓ Yes No				
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed? ✓ Yes No									
C			analytical response action performance standard no	s specified in the selected on-conformances?	l CAM	✓ Yes No				
D				ents specified in CAM VI Reporting of Analytical		✓ Yes No				
E		•		ed without significant mo	dification(s)?	Yes No Yes No				
F		-	-	non-conformances identification questions A through E)		✓ Yes No				
		Responses to quest	tions G, H and I below ar	re required for "Presump	otive Certainty" status	•				
G	Were the reporti	ng limits at or below all	CAM reporting limits spe	ecified in the selected CA	M protocol(s)?	Yes ✔ No				
		at achieve "Presumptive Co n 310 CMR 40. 1056 (2)(k)		cessarily meet the data usab	ility and representativeness					
Н	Were all QC per	formance standards spec	ified in the CAM protoco	l(s) achieved?		Yes ✔ No				
I	Were results rep	orted for the complete ar	alyte list specified in the	selected CAM protocol(s))?	Yes ✔ No				
All ne	gative responses ar	e addressed in a case narro	tive on the cover page of th	nis report.		•				
		• •		pon my personal inquiry of y knowledge and belief, acc	1					
					Micole L	eja				
					Nicole Leja Laboratory Director Date: 10/25/2012	r				

CASE NARRATIVE:

The samples were received 0.5 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of \pm 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

According to WSC-CAM 5/2009 Rev.1, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended recovery range, a range has been set based on historical control limits.

Some target analytes which are not listed as exceptions in the Summary of CAM Reporting Limits may exceed the recommended RL based on sample initial volume or weight provided, % moisture content, or responsiveness of a particular analyte to purge and trap instrumentation.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8260C

Calibration:

1210050

Analyte quantified by quadratic equation type calibration.

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,2-Dibromo-3-chloropropane

Dibromochloromethane

Hexachlorobutadiene

Naphthalene

This affected the following samples:

1225974-BLK1

1225974-BS1

1225974-BSD1

S212821-ICV1

S213072-CCV1

SW-1

SW-2

Trip

Samples:

S213072-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

```
1,4-Dioxane (-24.0%)
2-Hexanone (MBK) (-23.9%)
```

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

```
4-Methyl-2-pentanone (MIBK) (-23.8%)
Tert-Butanol / butyl alcohol (-20.8%)
Tetrahydrofuran (-22.3%)
```

This laboratory report is not valid without an authorized signature on the cover page.

SW846 8260C

Samples:

S213072-CCV1

This affected the following samples:

1225974-BLK1 1225974-BS1 1225974-BSD1

12259/4-BSD SW-1

SW-2 Trip

SB58074-01 SW-1

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SB58074-02 SW-2

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SW-1	Sample Identification SW-1 SB58074-01			Project # 5185.04		Matrix Surface Wa		ection Date 2-Oct-12 13		Received 12-Oct-12			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	Organic Compounds												
	anic Compounds		GS1										
	by method SW846 5030 V		_										
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 5.00	D	μg/l	5.00	3.24	5	SW846 8260C	23-Oct-12	24-Oct-12	eq	1225974	
67-64-1	Acetone	< 50.0	D	μg/l	50.0	12.8	5	п			"		
107-13-1	Acrylonitrile	< 2.50	D	μg/l	2.50	2.30	5				"		
71-43-2	Benzene	25.0	D	μg/l	5.00	3.34	5				"		
108-86-1	Bromobenzene	< 5.00	D	μg/l	5.00	3.60	5	п		н	"		
74-97-5	Bromochloromethane	< 5.00	D	μg/l	5.00	3.55	5				"		
75-27-4	Bromodichloromethane	< 2.50	D	μg/l	2.50	2.40	5				"		
75-25-2	Bromoform	< 5.00	D	μg/l	5.00	3.02	5				"		
74-83-9	Bromomethane	< 10.0	D	μg/l	10.0	5.70	5			н	"		
78-93-3	2-Butanone (MEK)	< 50.0	D	μg/l	50.0	8.67	5			н	"		
104-51-8	n-Butylbenzene	< 5.00	D	μg/l	5.00	2.81	5	ı		н	"		
135-98-8	sec-Butylbenzene	< 5.00	D	μg/l	5.00	4.10	5				"		
98-06-6	tert-Butylbenzene	< 5.00	D	μg/l	5.00	3.72	5				"		
75-15-0	Carbon disulfide	< 10.0	D	μg/l	10.0	3.14	5				"		
56-23-5	Carbon tetrachloride	< 5.00	D	μg/l	5.00	2.74	5				"		
108-90-7	Chlorobenzene	< 5.00	D	μg/l	5.00	3.27	5				"		
75-00-3	Chloroethane	< 10.0	D	μg/l	10.0	5.16	5				"		
67-66-3	Chloroform	< 5.00	D	μg/l	5.00	3.44	5				"		
74-87-3	Chloromethane	< 10.0	D	μg/l	10.0	7.36	5				"		
95-49-8	2-Chlorotoluene	< 5.00	D	μg/l	5.00	3.96	5			н	"		
106-43-4	4-Chlorotoluene	< 5.00	D	μg/l	5.00	3.66	5			н	"		
96-12-8	1,2-Dibromo-3-chloroprop ane	< 10.0	D	μg/l	10.0	4.64	5	H .			"		
124-48-1	Dibromochloromethane	< 2.50	D	μg/l	2.50	1.44	5	ı		н	"		
106-93-4	1,2-Dibromoethane (EDB)	< 2.50	D	μg/l	2.50	1.64	5				"		
74-95-3	Dibromomethane	< 5.00	D	μg/l	5.00	3.33	5	ı		н	"		
95-50-1	1,2-Dichlorobenzene	< 5.00	D	μg/l	5.00	3.34	5				"		
541-73-1	1,3-Dichlorobenzene	< 5.00	D	μg/l	5.00	3.56	5				"		
106-46-7	1,4-Dichlorobenzene	< 5.00	D	μg/l	5.00	3.12	5			н	"		
75-71-8	Dichlorodifluoromethane (Freon12)	< 10.0	D	μg/l	10.0	2.24	5	и			"		
75-34-3	1,1-Dichloroethane	< 5.00	D	μg/l	5.00	3.40	5				"		
107-06-2	1,2-Dichloroethane	< 5.00	D	μg/l	5.00	3.90	5	ı		н	"		
75-35-4	1,1-Dichloroethene	< 5.00	D	μg/l	5.00	2.44	5			н	"		
156-59-2	cis-1,2-Dichloroethene	5.05	D	μg/l	5.00	3.58	5	ı		н	"		
156-60-5	trans-1,2-Dichloroethene	< 5.00	D	μg/l	5.00	3.40	5				"		
78-87-5	1,2-Dichloropropane	< 5.00	D	μg/l	5.00	3.56	5				"		
142-28-9	1,3-Dichloropropane	< 5.00	D	μg/l	5.00	4.04	5				"		
594-20-7	2,2-Dichloropropane	< 5.00	D	μg/l	5.00	3.02	5				"		
563-58-6	1,1-Dichloropropene	< 5.00	D	μg/l	5.00	3.18	5				"		
10061-01-5	cis-1,3-Dichloropropene	< 2.50	D	μg/l	2.50	1.26	5				"		
10061-02-6	trans-1,3-Dichloropropene	< 2.50	D	μg/l	2.50	2.50	5				"		
100-41-4	Ethylbenzene	24.6	D	μg/I	5.00	3.66	5				"		
87-68-3	Hexachlorobutadiene	< 2.50	D	μg/l	2.50	2.25	5				"		
591-78-6	2-Hexanone (MBK)	< 50.0	D	μg/l	50.0	2.72	5			ı	"		

Sample Identification SW-1 SB58074-01				Client Project # 94-205185.04		Matrix Co Surface Water			Dellection Date/Time 12-Oct-12 13:15		Received 12-Oct-12		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	Organic Compounds												
	anic Compounds		GS1										
	by method SW846 5030 V												
98-82-8	Isopropylbenzene	< 5.00	D	μg/l	5.00	3.10	5	SW846 8260C	23-Oct-12	24-Oct-12	eq	1225974	
99-87-6	4-Isopropyltoluene	< 5.00	D	μg/l	5.00	3.04	5	"		"	"		
1634-04-4	Methyl tert-butyl ether	6.85	D -	μg/l	5.00	3.26	5	"		ıı	"		
108-10-1	4-Methyl-2-pentanone (MIBK)	< 50.0	D	μg/l	50.0	4.66	5		•		"	"	
75-09-2	Methylene chloride	< 10.0	D	μg/l	10.0	3.45	5			"	"		
91-20-3	Naphthalene	34.2	D	μg/l	5.00	1.66	5			"	•		
103-65-1	n-Propylbenzene	< 5.00	D	μg/l	5.00	3.79	5	"		"	•		
100-42-5	Styrene	< 5.00	D	μg/l	5.00	3.08	5	"		ıı	"		
630-20-6	1,1,1,2-Tetrachloroethane	< 5.00	D	μg/l	5.00	3.13	5	"		ıı	"		
79-34-5	1,1,2,2-Tetrachloroethane	< 2.50	D	μg/l	2.50	1.74	5	ı		ıı	"		
127-18-4	Tetrachloroethene	< 5.00	D	μg/l	5.00	3.72	5	ı		ıı	"		
108-88-3	Toluene	182	D	μg/l	5.00	4.06	5	ı		ıı	"		
87-61-6	1,2,3-Trichlorobenzene	< 5.00	D	μg/l	5.00	1.88	5	"		ıı	"		
120-82-1	1,2,4-Trichlorobenzene	< 5.00	D	μg/l	5.00	1.80	5	"		ıı	•		
108-70-3	1,3,5-Trichlorobenzene	< 5.00	D	μg/l	5.00	3.92	5	"		ıı	•		
71-55-6	1,1,1-Trichloroethane	< 5.00	D	μg/l	5.00	2.91	5	II .		ıı	•		
79-00-5	1,1,2-Trichloroethane	< 5.00	D	μg/l	5.00	3.21	5	"		ıı	"		
79-01-6	Trichloroethene	< 5.00	D	μg/l	5.00	3.78	5			ıı	"		
75-69-4	Trichlorofluoromethane (Freon 11)	< 5.00	D	μg/l	5.00	3.14	5	н		н	"		
96-18-4	1,2,3-Trichloropropane	< 5.00	D	μg/l	5.00	3.68	5			u	"		
95-63-6	1,2,4-Trimethylbenzene	77.1	D	μg/l	5.00	3.78	5			u	"		
108-67-8	1,3,5-Trimethylbenzene	31.1	D	μg/l	5.00	3.72	5			u	"		
75-01-4	Vinyl chloride	< 5.00	D	μg/l	5.00	4.04	5			u	"		
179601-23-1	m,p-Xylene	142	D	μg/l	10.0	8.20	5			u	"		
95-47-6	o-Xylene	106	D	μg/l	5.00	4.41	5			u	"		
109-99-9	Tetrahydrofuran	< 10.0	D	μg/I	10.0	7.21	5	ı		u	"		
60-29-7	Ethyl ether	< 5.00	D	μg/l	5.00	3.46	5			u	"		
994-05-8	Tert-amyl methyl ether	< 5.00	D	μg/I	5.00	3.60	5	ı		u	"		
637-92-3	Ethyl tert-butyl ether	< 5.00	D	μg/l	5.00	3.91	5			"	"		
108-20-3	Di-isopropyl ether	< 5.00	D	μg/l	5.00	3.64	5			"	"		
75-65-0	Tert-Butanol / butyl alcohol	< 50.0	D	μg/l	50.0	43.2	5				"		
123-91-1	1,4-Dioxane	< 100	D	μg/l	100	70.1	5			u	"		
110-57-6	trans-1,4-Dichloro-2-buten e	< 25.0	D	μg/l	25.0	3.84	5	н		ı	"		
64-17-5	Ethanol	< 2000	D	μg/l	2000	178	5	ı		"	"		
Surrogate red	coveries:												
460-00-4	4-Bromofluorobenzene	100			70-13	0 %		ı		u	"		
2037-26-5	Toluene-d8	97		70-130 %				ı		u	"		
17060-07-0	1,2-Dichloroethane-d4	99		70-130 %				ı		u	"		
1868-53-7	Dibromofluoromethane	102			70-13	0 %				ıı	"		
Microextr	ractable Organic Compound	s											
106-93-4	1,2-Dibromoethane (EDB)	0.0120		μg/l	0.0100	0.00740	1	EPA 504.1	16-Oct-12	16-Oct-12	DS	1225186	
Extractab	le Petroleum Hydrocarbons												

Mary	Sample I SW-1 SB58074	dentification			<u>Client Program 94-205</u>			<u>Matrix</u> Surface Wa	· · · · · · · · · · · · · · · · · · ·	ection Date 2-Oct-12 13			ceived Oct-12	
Propertical by Method SW846 3510C Propertic	CAS No.		Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Parameter Par	Extractab	ole Petroleum Hydrocarbo	ons											
8-8-19			<u>oc</u>											
Fuel Oil #2	8006-61-9		Calculated		mg/l	0.2	0.2	1	SW846 8100Mod.	20-Oct-12	22-Oct-12	SEW	1225745	
Fuel Oil #6 < 0.2 mg/l 0.2 0.2 1 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	68476-30-2	Fuel Oil #2	< 0.2		mg/l	0.2	0.2	1	н			"		
Motor Oil	68476-31-3	Fuel Oil #4	< 0.2		mg/l	0.2	0.02	1				"		
Motor Cili	68553-00-4	Fuel Oil #6	< 0.2		mg/l	0.2	0.2	1	п			"		
Mydraulic Oil Co. Mydraulic Oil	M09800000	Motor Oil	< 0.2		mg/l	0.2	0.2	1				"		
Hydraulic Oil	8032-32-4	Ligroin	< 0.2		mg/l	0.2	0.06	1				"		
Dielectric Fluid < 0.2 mg/l 0.2 0.06 1	J00100000	Aviation Fuel	< 0.2		mg/l	0.2	0.06	1				"		
Unidentified 2.1 mg/l 0.2 0.06 1 " " " " " " " " " " " " " " " " " "		Hydraulic Oil	< 0.2		mg/l	0.2	0.02	1				"		
Other Oil Calculated as mg/l 0.2 0.02 1 " " " " " " " " " " " " " " " " " "		Dielectric Fluid	< 0.2		mg/l	0.2	0.06	1				"		
Total Petroleum Hydrocarbons 2.1 mg/l 0.2 0.02 1 " " " " " " " " " " " " " " " " "		Unidentified	2.1		mg/l	0.2	0.06	1				"		
Hydrocarbons		Other Oil			mg/l	0.2	0.02	1			n	W		
## 1			2.1		mg/l	0.2	0.02	1	п			"		
Preservation Field N/A 1 EPA 200/6000 AMT 1225520	Surrogate re	coveries:												
Preservation Field Preserved	3386-33-2	1-Chlorooctadecane	55			40-14	0 %					"		
Preserved Metals by EPA 200/6000 Series Methods Filtration Lab Filtered N/A 1 EPA 12-Oct-12 12-O	Total Met	tals by EPA 200/6000 Seri	es Methods											
Filtration Lab Filtered N/A 1 EPA 12-Oct-12 12-Oct-12 15 124975 200.7/3005A/6010 16:30 16:		Preservation			N/A			1				AMT	1225520	
200.7/3005A/6010 16:30 16:30 pluble Metals by EPA 200 Series Methods 39-89-6 Iron 0.353 mg/l 0.0150 0.0056 1 EPA 200.7 23-Oct-12 25-Oct-12 LR 1225931 39-92-1 Lead < 0.0075 mg/l 0.0075 0.0045 1 " " " " " " " " " " " " " " " " " "	Soluble M	Ietals by EPA 200/6000 Se	eries Methods											
39-89-6 Iron		Filtration	Lab Filtered		N/A			1				JS	1224975	
39-92-1 Lead < 0.0075 mg/l 0.0075 0.0045 1 " " " " " " " eneral Chemistry Parameters	Soluble M	Ietals by EPA 200 Series M	Methods											
eneral Chemistry Parameters	7439-89-6	Iron	0.353		mg/l	0.0150	0.0056	1	EPA 200.7	23-Oct-12	25-Oct-12	LR	1225931	Χ
·	7439-92-1	Lead	< 0.0075		mg/l	0.0075	0.0045	1	ı			"		Χ
Hardness 90.1 mg/l CaCO3 0.291 0.0979 1 SM 2340B 23-Oct-12 25-Oct-12 LR 1225931	General (Chemistry Parameters												
		Hardness	90.1		mg/l CaCO3	0.291	0.0979	1	SM 2340B	23-Oct-12	25-Oct-12	LR	1225931	Χ

5

SM2540D

16-Oct-12 17-Oct-12

BD

1225243 X

Total Suspended Solids

13

Sample Ic SW-2 SB58074-	dentification			<u>Client F</u> 94-205	Project # 185.04		<u>Matrix</u> Surface Wa		ection Date 2-Oct-12 13			ceived Oct-12	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	anic Compounds		GS1										
	by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 5.00	D	μg/l	5.00	3.24	5	SW846 8260C	23-Oct-12	24-Oct-12	eq	1225974	
67-64-1	Acetone	< 50.0	D	μg/l	50.0	12.8	5	"			"		
107-13-1	Acrylonitrile	< 2.50	D	μg/I	2.50	2.30	5	II .		н	"		
71-43-2	Benzene	65.0	D	μg/l	5.00	3.34	5	"		II .	"		
108-86-1	Bromobenzene	< 5.00	D	μg/l	5.00	3.60	5	"		II .	"		
74-97-5	Bromochloromethane	< 5.00	D	μg/l	5.00	3.55	5	"		II .	"		
75-27-4	Bromodichloromethane	< 2.50	D	μg/I	2.50	2.40	5			н	"		
75-25-2	Bromoform	< 5.00	D	μg/l	5.00	3.02	5			н	"		
74-83-9	Bromomethane	< 10.0	D	μg/I	10.0	5.70	5			н	"		
78-93-3	2-Butanone (MEK)	< 50.0	D	μg/l	50.0	8.67	5				"		
104-51-8	n-Butylbenzene	< 5.00	D	μg/l	5.00	2.81	5			н	"		
135-98-8	sec-Butylbenzene	< 5.00	D	μg/l	5.00	4.10	5			н	"		
98-06-6	tert-Butylbenzene	< 5.00	D	μg/l	5.00	3.72	5				"		
75-15-0	Carbon disulfide	< 10.0	D	μg/l	10.0	3.14	5				"		
56-23-5	Carbon tetrachloride	< 5.00	D	μg/l	5.00	2.74	5				"		
108-90-7	Chlorobenzene	< 5.00	D	μg/l	5.00	3.27	5				"		
75-00-3	Chloroethane	< 10.0	D	μg/l	10.0	5.16	5				"		
67-66-3	Chloroform	< 5.00	D	μg/l	5.00	3.44	5				"		
74-87-3	Chloromethane	< 10.0	D	μg/l	10.0	7.36	5				"		
95-49-8	2-Chlorotoluene	< 5.00	D	μg/l	5.00	3.96	5				"		
106-43-4	4-Chlorotoluene	< 5.00	D	μg/l	5.00	3.66	5				"		
96-12-8	1,2-Dibromo-3-chloroprop ane	< 10.0	D	μg/l	10.0	4.64	5			н	"		
124-48-1	Dibromochloromethane	< 2.50	D	μg/l	2.50	1.44	5				"		
106-93-4	1,2-Dibromoethane (EDB)	< 2.50	D	μg/l	2.50	1.64	5	п		н	"		
74-95-3	Dibromomethane	< 5.00	D	μg/l	5.00	3.33	5			н	"		
95-50-1	1,2-Dichlorobenzene	< 5.00	D	μg/l	5.00	3.34	5			н	"		
541-73-1	1,3-Dichlorobenzene	< 5.00	D	μg/l	5.00	3.56	5			н	"		
106-46-7	1,4-Dichlorobenzene	< 5.00	D	μg/l	5.00	3.12	5				"		
75-71-8	Dichlorodifluoromethane (Freon12)	< 10.0	D	μg/l	10.0	2.24	5				"		
75-34-3	1,1-Dichloroethane	< 5.00	D	μg/l	5.00	3.40	5			н	"		
107-06-2	1,2-Dichloroethane	< 5.00	D	μg/l	5.00	3.90	5				"		
75-35-4	1,1-Dichloroethene	< 5.00	D	μg/l	5.00	2.44	5				"		
156-59-2	cis-1,2-Dichloroethene	9.40	D	μg/l	5.00	3.58	5				"		
156-60-5	trans-1,2-Dichloroethene	< 5.00	D	μg/l	5.00	3.40	5				"		
78-87-5	1,2-Dichloropropane	< 5.00	D	μg/l	5.00	3.56	5				"		
142-28-9	1,3-Dichloropropane	< 5.00	D	μg/l	5.00	4.04	5				"		
594-20-7	2,2-Dichloropropane	< 5.00	D	μg/l	5.00	3.02	5				"		
563-58-6	1,1-Dichloropropene	< 5.00	D	μg/l	5.00	3.18	5				"		
10061-01-5	cis-1,3-Dichloropropene	< 2.50	D	μg/l	2.50	1.26	5				"		
10061-02-6	trans-1,3-Dichloropropene	< 2.50	D	μg/I	2.50	2.50	5				"		
100-41-4	Ethylbenzene	85.4	D	μg/l	5.00	3.66	5				"		
87-68-3	Hexachlorobutadiene	< 2.50	D	μg/l	2.50	2.25	5				"		
591-78-6	2-Hexanone (MBK)	< 50.0	D	μg/l	50.0	2.72	5				"		

SW-2	mple Identification V-2 358074-02				Project # 5185.04		<u>Matrix</u> Surface Wa	·	ection Date 2-Oct-12 13			Ceived Oct-12	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	Organic Compounds												
	anic Compounds		GS1										
	by method SW846 5030 V	Vater MS											
98-82-8	Isopropylbenzene	< 5.00	D	μg/l	5.00	3.10	5	SW846 8260C	23-Oct-12	24-Oct-12	eq	1225974	
99-87-6	4-Isopropyltoluene	< 5.00	D	μg/l	5.00	3.04	5			"	"		
1634-04-4	Methyl tert-butyl ether	8.05	D	μg/l	5.00	3.26	5			"	"		
108-10-1	4-Methyl-2-pentanone (MIBK)	< 50.0	D	μg/l	50.0	4.66	5			"	"		
75-09-2	Methylene chloride	< 10.0	D	μg/l	10.0	3.45	5			"	•		
91-20-3	Naphthalene	60.8	D	μg/l	5.00	1.66	5	II .		п	"		
103-65-1	n-Propylbenzene	15.6	D	μg/l	5.00	3.79	5			"	"		
100-42-5	Styrene	< 5.00	D	μg/l	5.00	3.08	5			"	"		
630-20-6	1,1,1,2-Tetrachloroethane	< 5.00	D	μg/l	5.00	3.13	5				"		
79-34-5	1,1,2,2-Tetrachloroethane	< 2.50	D	μg/l	2.50	1.74	5				"		
127-18-4	Tetrachloroethene	< 5.00	D	μg/l	5.00	3.72	5				"		
108-88-3	Toluene	456	D	μg/l	5.00	4.06	5				"		
37-61-6	1,2,3-Trichlorobenzene	< 5.00	D	μg/l	5.00	1.88	5				"		
20-82-1	1,2,4-Trichlorobenzene	< 5.00	D	μg/l	5.00	1.80	5				"		
108-70-3	1,3,5-Trichlorobenzene	< 5.00	D	μg/l	5.00	3.92	5	"		п	"		
1-55-6	1,1,1-Trichloroethane	< 5.00	D	μg/l	5.00	2.91	5	"		п	"		
79-00-5	1,1,2-Trichloroethane	< 5.00	D	μg/l	5.00	3.21	5	"		п	•		
79-01-6	Trichloroethene	< 5.00	D	μg/l	5.00	3.78	5	ı		ıı	•		
75-69-4	Trichlorofluoromethane (Freon 11)	< 5.00	D	μg/l	5.00	3.14	5			ı	"		
96-18-4	1,2,3-Trichloropropane	< 5.00	D	μg/l	5.00	3.68	5	"		"	"		
95-63-6	1,2,4-Trimethylbenzene	167	D	μg/l	5.00	3.78	5	ı		ıı	•		
108-67-8	1,3,5-Trimethylbenzene	40.4	D	μg/l	5.00	3.72	5	ı		ıı	•		
75-01-4	Vinyl chloride	< 5.00	D	μg/l	5.00	4.04	5	ı		ıı	•		
79601-23-1	m,p-Xylene	293	D	μg/l	10.0	8.20	5	ı		ıı	"		
95-47-6	o-Xylene	170	D	μg/l	5.00	4.41	5	ı		ıı	•		
109-99-9	Tetrahydrofuran	< 10.0	D	μg/l	10.0	7.21	5	"		п	"		
60-29-7	Ethyl ether	< 5.00	D	μg/l	5.00	3.46	5	ı		ıı	"		
994-05-8	Tert-amyl methyl ether	< 5.00	D	μg/l	5.00	3.60	5	ı		ıı	"		
37-92-3	Ethyl tert-butyl ether	< 5.00	D	μg/l	5.00	3.91	5	ı		ıı	•		
08-20-3	Di-isopropyl ether	< 5.00	D	μg/l	5.00	3.64	5				"		
75-65-0	Tert-Butanol / butyl alcohol	< 50.0	D	μg/l	50.0	43.2	5			ı	"		
123-91-1	1,4-Dioxane	< 100	D	μg/l	100	70.1	5				"		
110-57-6	trans-1,4-Dichloro-2-buten e	< 25.0	D	μg/l	25.0	3.84	5	п			"		
64-17-5	Ethanol	< 2000	D	μg/l	2000	178	5			ı	u		
Surrogate red	coveries:												
460-00-4	4-Bromofluorobenzene	99			70-13	0 %		ı		"	"		
2037-26-5	Toluene-d8	97			70-13	0 %					"		
17060-07-0	1,2-Dichloroethane-d4	98			70-13	0 %					"		
1868-53-7	Dibromofluoromethane	99			70-13	0 %					"		
Microextr	ractable Organic Compound	s											
06-93-4	1,2-Dibromoethane (EDB)	0.0110		μg/l	0.0100	0.00740	1	EPA 504.1	16-Oct-12	16-Oct-12	DS	1225186	
Extractab	le Petroleum Hydrocarbons												

Sample Io SW-2 SB58074	dentification -02			Client Pr 94-2051			Matrix Surface Wa		ection Date			Oct-12	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Extractab	ole Petroleum Hydrocarb	ons											
Fingerprinti													
Prepared	by method SW846 351	<u>0C</u>											
8006-61-9	Gasoline	2.5		mg/l	0.2	0.2	1	SW846 8100Mod.	20-Oct-12	22-Oct-12	SEW	1225745	
68476-30-2	Fuel Oil #2	< 0.2		mg/l	0.2	0.2	1				"		
68476-31-3	Fuel Oil #4	< 0.2		mg/l	0.2	0.02	1	п					
68553-00-4	Fuel Oil #6	< 0.2		mg/l	0.2	0.2	1	п			"		
M09800000	Motor Oil	< 0.2		mg/l	0.2	0.2	1				"		
8032-32-4	Ligroin	< 0.2		mg/l	0.2	0.05	1				"		
J00100000	Aviation Fuel	< 0.2		mg/l	0.2	0.05	1						
	Hydraulic Oil	< 0.2		mg/l	0.2	0.02	1						
	Dielectric Fluid	< 0.2		mg/l	0.2	0.05	1				"		
	Unidentified	< 0.2		mg/l	0.2	0.05	1	п			"		
	Other Oil	< 0.2		mg/l	0.2	0.02	1	п			"		
	Total Petroleum Hydrocarbons	2.5		mg/l	0.2	0.02	1	н			"		
Surrogate red	coveries:												
3386-33-2	1-Chlorooctadecane	66			40-14	0 %		п			"		
Total Met	tals by EPA 200/6000 Ser	ies Methods											
	Preservation	Field Preserved		N/A			1	EPA 200/6000 methods			AMT	1225520	
Soluble M	letals by EPA 200/6000 S	eries Methods											
	Filtration	Lab Filtered		N/A			1	EPA 200.7/3005A/6010	12-Oct-12 16:30	12-Oct-12 16:30	JS	1224975	
Soluble M	letals by EPA 200 Series	Methods											
7439-89-6	Iron	0.392		mg/l	0.0150	0.0056	1	EPA 200.7	23-Oct-12	25-Oct-12	LR	1225931	Χ
7439-92-1	Lead	< 0.0075		mg/l	0.0075	0.0045	1	п			"		Χ
General C	Chemistry Parameters												
	Hardness	86.4		mg/l CaCO3	0.291	0.0979	1	SM 2340B	23-Oct-12	25-Oct-12	LR	1225931	Х

SM2540D

16-Oct-12

17-Oct-12

 BD

1225243 X

Total Suspended Solids

< 5

Sample Id Trip SB58074	dentification				Project # 5185.04	Ε	Matrix Deionized W		ection Date 2-Oct-12 00			Oct-12	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	Organic Compounds												
	anic Compounds												
	by method SW846 5030 V							0110100000					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.00		μg/l	1.00	0.65	1	SW846 8260C	23-Oct-12	24-Oct-12	eq	1225974	
67-64-1	Acetone	< 10.0		μg/l	10.0	2.56	1	"			"		
107-13-1	Acrylonitrile	< 0.50		μg/l	0.50	0.46	1	"			"		
71-43-2	Benzene	< 1.00		μg/l	1.00	0.67	1	"			"		
108-86-1	Bromobenzene	< 1.00		μg/l	1.00	0.72	1	"			"		
74-97-5	Bromochloromethane	< 1.00		μg/l	1.00	0.71	1	"			"		
75-27-4	Bromodichloromethane	< 0.50		μg/l	0.50	0.48	1	"			"		
75-25-2	Bromoform	< 1.00		μg/l	1.00	0.60	1				"		
74-83-9	Bromomethane	< 2.00		μg/l	2.00	1.14	1				"		
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	1.73	1				"		
104-51-8	n-Butylbenzene	< 1.00		μg/l	1.00	0.56	1	ı			"		
135-98-8	sec-Butylbenzene	< 1.00		μg/l	1.00	0.82	1	ı			"		
98-06-6	tert-Butylbenzene	< 1.00		μg/l	1.00	0.74	1	ı			"		
75-15-0	Carbon disulfide	< 2.00		μg/l	2.00	0.63	1				"		
56-23-5	Carbon tetrachloride	< 1.00		μg/l	1.00	0.55	1				"		
108-90-7	Chlorobenzene	< 1.00		μg/l	1.00	0.65	1				"		
75-00-3	Chloroethane	< 2.00		μg/l	2.00	1.03	1				"		
67-66-3	Chloroform	< 1.00		μg/l	1.00	0.69	1				"		
74-87-3	Chloromethane	< 2.00		μg/l	2.00	1.47	1				"		
95-49-8	2-Chlorotoluene	< 1.00		μg/l	1.00	0.79	1				"		
106-43-4	4-Chlorotoluene	< 1.00		μg/l	1.00	0.73	1				"		
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.00		μg/l	2.00	0.93	1	ı		"	"		
124-48-1	Dibromochloromethane	< 0.50		μg/l	0.50	0.29	1	ı			"		
106-93-4	1,2-Dibromoethane (EDB)	< 0.50		μg/l	0.50	0.33	1				"		
74-95-3	Dibromomethane	< 1.00		μg/l	1.00	0.67	1				"		
95-50-1	1,2-Dichlorobenzene	< 1.00		μg/l	1.00	0.67	1				"		
541-73-1	1,3-Dichlorobenzene	< 1.00		μg/l	1.00	0.71	1				"		
106-46-7	1,4-Dichlorobenzene	< 1.00		μg/l	1.00	0.62	1				"		
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.00		μg/l	2.00	0.45	1	н	•	ı	"		
75-34-3	1,1-Dichloroethane	< 1.00		μg/l	1.00	0.68	1				"		
107-06-2	1,2-Dichloroethane	< 1.00		μg/l	1.00	0.78	1				"		
75-35-4	1,1-Dichloroethene	< 1.00		μg/l	1.00	0.49	1	п			"		
156-59-2	cis-1,2-Dichloroethene	< 1.00		μg/l	1.00	0.72	1				"		
156-60-5	trans-1,2-Dichloroethene	< 1.00		μg/l	1.00	0.68	1	п			"		
78-87-5	1,2-Dichloropropane	< 1.00		μg/l	1.00	0.71	1				"		
142-28-9	1,3-Dichloropropane	< 1.00		μg/l	1.00	0.81	1				"		
594-20-7	2,2-Dichloropropane	< 1.00		μg/l	1.00	0.60	1	ı			"		
563-58-6	1,1-Dichloropropene	< 1.00		μg/l	1.00	0.64	1	ı			"		
10061-01-5	cis-1,3-Dichloropropene	< 0.50		μg/l	0.50	0.25	1				"		
10061-02-6	trans-1,3-Dichloropropene	< 0.50		μg/l	0.50	0.50	1				"		
100-41-4	Ethylbenzene	< 1.00		μg/I	1.00	0.73	1				"		
87-68-3	Hexachlorobutadiene	< 0.50		μg/l	0.50	0.45	1	п			"		
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	0.54	1						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1225974 - SW846 5030 Water MS										
Blank (1225974-BLK1)					Pre	pared & Analy	zed: 23-Oct-12	!		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 1.00		μg/l	1.00						
Acetone	< 10.0		μg/l	10.0						
Acrylonitrile	< 0.50		μg/l	0.50						
Benzene	< 1.00		μg/l	1.00						
Bromobenzene	< 1.00		μg/l	1.00						
Bromochloromethane	< 1.00		μg/l	1.00						
Bromodichloromethane	< 0.50		μg/l	0.50						
Bromoform	< 1.00		μg/l	1.00						
Bromomethane	< 2.00		μg/l	2.00						
2-Butanone (MEK)	< 10.0		μg/l	10.0						
n-Butylbenzene	< 1.00		μg/l	1.00						
sec-Butylbenzene	< 1.00		μg/l	1.00						
tert-Butylbenzene	< 1.00		μg/l	1.00						
Carbon disulfide	< 2.00		μg/l	2.00						
Carbon tetrachloride	< 1.00		μg/l	1.00						
Chlorobenzene	< 1.00		μg/l	1.00						
Chloroethane	< 2.00		μg/l	2.00						
Chloroform	< 1.00		μg/l	1.00						
Chloromethane	< 2.00		μg/l	2.00						
2-Chlorotoluene	< 1.00		μg/l	1.00						
4-Chlorotoluene	< 1.00		μg/l	1.00						
1,2-Dibromo-3-chloropropane	< 2.00		μg/l	2.00						
Dibromochloromethane	< 0.50		μg/l	0.50						
1,2-Dibromoethane (EDB)	< 0.50		μg/l	0.50						
Dibromomethane	< 1.00		μg/l	1.00						
1,2-Dichlorobenzene	< 1.00		μg/l	1.00						
1,3-Dichlorobenzene	< 1.00		μg/l	1.00						
1,4-Dichlorobenzene	< 1.00		μg/l	1.00						
Dichlorodifluoromethane (Freon12)	< 2.00		μg/l	2.00						
1,1-Dichloroethane	< 1.00		μg/l	1.00						
1,2-Dichloroethane	< 1.00		μg/l	1.00						
1,1-Dichloroethene	< 1.00		μg/l	1.00						
cis-1,2-Dichloroethene	< 1.00		μg/l	1.00						
trans-1,2-Dichloroethene	< 1.00		μg/l	1.00						
1,2-Dichloropropane	< 1.00		μg/l	1.00						
1,3-Dichloropropane	< 1.00		μg/l	1.00						
2,2-Dichloropropane	< 1.00		μg/l	1.00						
1,1-Dichloropropene	< 1.00		μg/l	1.00						
cis-1,3-Dichloropropene	< 0.50		μg/l	0.50						
trans-1,3-Dichloropropene	< 0.50		μg/l	0.50						
Ethylbenzene	< 1.00		μg/l	1.00						
Hexachlorobutadiene	< 0.50		μg/l	0.50						
2-Hexanone (MBK)	< 10.0		μg/l	10.0						
Isopropylbenzene	< 1.00		μg/l	1.00						
4-Isopropyltoluene	< 1.00		μg/l	1.00						
Methyl tert-butyl ether	< 1.00		μg/l	1.00						
4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0						
Methylene chloride	< 2.00		μg/l	2.00						
Naphthalene	< 1.00		μg/l	1.00						
n-Propylbenzene	< 1.00		μg/l	1.00						
Styrene	< 1.00		μg/l	1.00						
1,1,1,2-Tetrachloroethane	< 1.00		μg/l	1.00						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1225974 - SW846 5030 Water MS										
Blank (1225974-BLK1)					Pre	pared & Analy	zed: 23-Oct-12			
1,1,2,2-Tetrachloroethane	< 0.50		μg/l	0.50						
Tetrachloroethene	< 1.00		μg/l	1.00						
Toluene	< 1.00		μg/l	1.00						
1,2,3-Trichlorobenzene	< 1.00		μg/l	1.00						
1,2,4-Trichlorobenzene	< 1.00		μg/l	1.00						
1,3,5-Trichlorobenzene	< 1.00		μg/l	1.00						
1,1,1-Trichloroethane	< 1.00		μg/l	1.00						
1,1,2-Trichloroethane	< 1.00		μg/l	1.00						
Trichloroethene	< 1.00		μg/l	1.00						
Trichlorofluoromethane (Freon 11)	< 1.00		μg/l	1.00						
1,2,3-Trichloropropane	< 1.00		μg/l	1.00						
1,2,4-Trimethylbenzene	< 1.00		μg/l	1.00						
1,3,5-Trimethylbenzene	< 1.00		μg/l	1.00						
Vinyl chloride	< 1.00		μg/l	1.00						
m,p-Xylene	< 2.00		μg/l	2.00						
o-Xylene	< 1.00		μg/l	1.00						
Tetrahydrofuran	< 2.00		μg/l	2.00						
Ethyl ether	< 1.00		μg/l	1.00						
Tert-amyl methyl ether	< 1.00		μg/l	1.00						
Ethyl tert-butyl ether	< 1.00		μg/l	1.00						
Di-isopropyl ether	< 1.00		μg/l	1.00						
Tert-Butanol / butyl alcohol	< 10.0			10.0						
1,4-Dioxane	< 20.0		μg/l	20.0						
trans-1,4-Dichloro-2-butene	< 5.00		μg/l	5.00						
Ethanol	< 400		μg/l	400						
			μg/l	400						
Surrogate: 4-Bromofluorobenzene	29.9		μg/l		30.0		100	70-130		
Surrogate: Toluene-d8	29.9		μg/l		30.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	28.8		μg/l		30.0		96	70-130		
Surrogate: Dibromofluoromethane	30.0		μg/l		30.0		100	70-130		
LCS (1225974-BS1)					Pre	pared & Analy	zed: 23-Oct-12			
1,1,2-Trichlorotrifluoroethane (Freon 113)	19.8		μg/l		20.0		99	70-130		
Acetone	18.6		μg/l		20.0		93	70-130		
Acrylonitrile	17.4		μg/l		20.0		87	70-130		
Benzene	19.3		μg/l		20.0		97	70-130		
Bromobenzene	19.0		μg/l		20.0		95	70-130		
Bromochloromethane	19.3		μg/l		20.0		96	70-130		
Bromodichloromethane	20.3		μg/l		20.0		102	70-130		
Bromoform	19.8		μg/l		20.0		99	70-130		
Bromomethane	17.1		μg/l		20.0		86	70-130		
2-Butanone (MEK)	16.9		μg/l		20.0		84	70-130		
n-Butylbenzene	18.9		μg/l		20.0		94	70-130		
sec-Butylbenzene	19.2		μg/l		20.0		96	70-130		
tert-Butylbenzene	19.6		μg/l		20.0		98	70-130		
Carbon disulfide	18.2		μg/l		20.0		91	70-130		
Carbon tetrachloride	20.1		μg/l		20.0		101	70-130		
Chlorobenzene	19.2		μg/l		20.0		96	70-130		
Chloroethane	18.7		μg/l		20.0		94	70-130		
Chloroform	18.3		μg/I		20.0		92	70-130		
Chloromethane	17.0				20.0		85	70-130		
	18.6		μg/l 							
2-Chlorotoluene			μg/l		20.0		93	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1225974 - SW846 5030 Water MS										
LCS (1225974-BS1)					Pre	pared & Analy	zed: 23-Oct-12			
1,2-Dibromo-3-chloropropane	18.6		μg/l		20.0		93	70-130		
Dibromochloromethane	19.7		μg/l		20.0		99	70-130		
1,2-Dibromoethane (EDB)	19.0		μg/l		20.0		95	70-130		
Dibromomethane	18.9		μg/l		20.0		95	70-130		
1,2-Dichlorobenzene	19.7		μg/l		20.0		98	70-130		
1,3-Dichlorobenzene	18.6		μg/l		20.0		93	70-130		
1,4-Dichlorobenzene	19.2		μg/l		20.0		96	70-130		
Dichlorodifluoromethane (Freon12)	17.1		μg/l		20.0		85	70-130		
1,1-Dichloroethane	19.2		μg/l		20.0		96	70-130		
1,2-Dichloroethane	18.2		μg/l		20.0		91	70-130		
1,1-Dichloroethene	19.5		μg/l		20.0		97	70-130		
cis-1,2-Dichloroethene	19.1		μg/l		20.0		96	70-130		
trans-1,2-Dichloroethene	19.0		μg/l		20.0		95	70-130		
1,2-Dichloropropane	19.3		μg/l		20.0		96	70-130		
1,3-Dichloropropane	18.6		μg/l		20.0		93	70-130		
2,2-Dichloropropane	20.5		μg/l		20.0		102	70-130		
1,1-Dichloropropene	18.9				20.0		94	70-130		
• •	20.5		μg/l		20.0		102	70-130		
cis-1,3-Dichloropropene			μg/l				102			
trans-1,3-Dichloropropene	20.7		μg/l		20.0			70-130		
Ethylbenzene	19.8		μg/l		20.0		99	70-130		
Hexachlorobutadiene	22.2		μg/l "		20.0		111	70-130		
2-Hexanone (MBK)	15.8		μg/l		20.0		79	70-130		
Isopropylbenzene	18.5		μg/l		20.0		92	70-130		
4-Isopropyltoluene	20.7		μg/l		20.0		103	70-130		
Methyl tert-butyl ether	18.5		μg/l		20.0		92	70-130		
4-Methyl-2-pentanone (MIBK)	15.9		μg/l		20.0		79	70-130		
Methylene chloride	19.8		μg/l		20.0		99	70-130		
Naphthalene	17.4		μg/l		20.0		87	70-130		
n-Propylbenzene	19.0		μg/l		20.0		95	70-130		
Styrene	19.5		μg/l		20.0		98	70-130		
1,1,1,2-Tetrachloroethane	21.1		μg/l		20.0		106	70-130		
1,1,2,2-Tetrachloroethane	17.7		μg/l		20.0		89	70-130		
Tetrachloroethene	19.5		μg/l		20.0		98	70-130		
Toluene	19.1		μg/l		20.0		96	70-130		
1,2,3-Trichlorobenzene	18.2		μg/l		20.0		91	70-130		
1,2,4-Trichlorobenzene	19.1		μg/l		20.0		96	70-130		
1,3,5-Trichlorobenzene	19.1		μg/l		20.0		95	70-130		
1,1,1-Trichloroethane	19.6		μg/l		20.0		98	70-130		
1,1,2-Trichloroethane	19.3		μg/l		20.0		96	70-130		
Trichloroethene	18.5		μg/l		20.0		93	70-130		
Trichlorofluoromethane (Freon 11)	18.6		μg/l		20.0		93	70-130		
1,2,3-Trichloropropane	17.0		μg/l		20.0		85	70-130		
1,2,4-Trimethylbenzene	19.8		μg/l		20.0		99	70-130		
1,3,5-Trimethylbenzene	19.5		μg/l		20.0		98	70-130		
Vinyl chloride	16.5		μg/l		20.0		82	70-130		
m,p-Xylene	37.9		μg/l		40.0		95	70-130		
o-Xylene	19.0		μg/l		20.0		95	70-130		
Tetrahydrofuran	15.8		μg/l		20.0		79	70-130		
Ethyl ether	19.2		μg/l		20.0		96	70-130		
Tert-amyl methyl ether	18.3		μg/l		20.0		92	70-130		
Ethyl tert-butyl ether	19.1		μg/l		20.0		96	70-130		
Di-isopropyl ether	19.1		μg/I		20.0		97	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1225974 - SW846 5030 Water MS										
LCS (1225974-BS1)					Pro	nared & Analy	zed: 23-Oct-12)		
Tert-Butanol / butyl alcohol	153		μg/l		200	pared & Arialy	77	70-130		
1,4-Dioxane	160		μg/I		200		80	70-130		
trans-1,4-Dichloro-2-butene	18.6		μg/I		20.0		93	70-130		
Ethanol	326		μg/l		400		81	70-130		
Surrogate: 4-Bromofluorobenzene	28.3		μg/l		30.0		94	70-130		
Surrogate: Toluene-d8	30.0		μg/l		30.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	29.1		μg/l		30.0		97	70-130		
Surrogate: Dibromofluoromethane	29.7		μg/l		30.0		99	70-130		
LCS Dup (1225974-BSD1)			10		Pre	pared & Analy	zed: 23-Oct-12	2		
1,1,2-Trichlorotrifluoroethane (Freon 113)	17.4		μg/l		20.0	ourou a mary	87	70-130	13	20
Acetone	18.5		μg/l		20.0		92	70-130	0.4	20
Acrylonitrile	16.6		μg/l		20.0		83	70-130	5	20
Benzene	18.5		μg/I		20.0		93	70-130	4	20
Bromobenzene	18.6		μg/l		20.0		93	70-130	2	20
Bromochloromethane	18.8		μg/I μg/I		20.0		93 94	70-130 70-130	3	20
Bromodichloromethane	19.8						99			20
			μg/l		20.0			70-130	2	
Bromoform Bromomethane	19.9		μg/l		20.0		100	70-130	0.9	20
	16.8		μg/l		20.0		84	70-130	2	20
2-Butanone (MEK)	16.7		μg/l		20.0		84	70-130	1	20
n-Butylbenzene	18.5		μg/l		20.0		92	70-130	2	20
sec-Butylbenzene	18.5		μg/l		20.0		93	70-130	3	20
tert-Butylbenzene	19.0		μg/l		20.0		95	70-130	3	20
Carbon disulfide	17.2		μg/l		20.0		86	70-130	6	20
Carbon tetrachloride	18.7		μg/l		20.0		93	70-130	7	20
Chlorobenzene	18.5		μg/l		20.0		93	70-130	4	20
Chloroethane	17.3		μg/l		20.0		87	70-130	8	20
Chloroform	17.7		μg/l		20.0		89	70-130	3	20
Chloromethane	16.0		μg/l		20.0		80	70-130	6	20
2-Chlorotoluene	18.0		μg/l		20.0		90	70-130	4	20
4-Chlorotoluene	18.2		μg/l		20.0		91	70-130	2	20
1,2-Dibromo-3-chloropropane	18.3		μg/l		20.0		92	70-130	1	20
Dibromochloromethane	19.0		μg/l		20.0		95	70-130	4	20
1,2-Dibromoethane (EDB)	18.5		μg/l		20.0		93	70-130	3	20
Dibromomethane	18.6		μg/l		20.0		93	70-130	2	20
1,2-Dichlorobenzene	19.6		μg/l		20.0		98	70-130	0.6	20
1,3-Dichlorobenzene	18.1		μg/l		20.0		90	70-130	3	20
1,4-Dichlorobenzene	18.6		μg/l		20.0		93	70-130	3	20
Dichlorodifluoromethane (Freon12)	15.2		μg/l		20.0		76	70-130	12	20
1,1-Dichloroethane	18.3		μg/l		20.0		92	70-130	5	20
1,2-Dichloroethane	17.7		μg/l		20.0		88	70-130	3	20
1,1-Dichloroethene	18.6		μg/l		20.0		93	70-130	5	20
cis-1,2-Dichloroethene	18.8		μg/l		20.0		94	70-130	2	20
trans-1,2-Dichloroethene	18.3		μg/l		20.0		92	70-130	3	20
1,2-Dichloropropane	18.8		μg/l		20.0		94	70-130	3	20
1,3-Dichloropropane	18.2		μg/l		20.0		91	70-130	2	20
2,2-Dichloropropane	19.0		μg/l		20.0		95	70-130	8	20
1,1-Dichloropropene	17.8		μg/I		20.0		89	70-130	6	20
cis-1,3-Dichloropropene	20.3		μg/l		20.0		102	70-130	0.6	20
trans-1,3-Dichloropropene	20.7		μg/l		20.0		103	70-130	0.0	20
Ethylbenzene	19.0				20.0		95	70-130	4	20
Hexachlorobutadiene	22.7		μg/l		20.0		114	70-130 70-130	2	20

	D 1	El	I I':	*DD1	Spike	Source	0/DEC	%REC	DDD	RPI
nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Lim
atch 1225974 - SW846 5030 Water MS										
LCS Dup (1225974-BSD1)					Pre	pared & Analy	zed: 23-Oct-12	<u>)</u>		
2-Hexanone (MBK)	15.4		μg/l		20.0		77	70-130	3	20
Isopropylbenzene	17.8		μg/l		20.0		89	70-130	4	20
4-Isopropyltoluene	20.0		μg/l		20.0		100	70-130	3	20
Methyl tert-butyl ether	18.0		μg/l		20.0		90	70-130	3	20
4-Methyl-2-pentanone (MIBK)	15.7		μg/l		20.0		78	70-130	1	20
Methylene chloride	18.6		μg/l		20.0		93	70-130	6	20
Naphthalene	17.9		μg/l		20.0		90	70-130	3	20
n-Propylbenzene	18.3		μg/l		20.0		91	70-130	4	20
Styrene	19.3		μg/l		20.0		96	70-130	1	20
1,1,1,2-Tetrachloroethane	21.0		μg/l		20.0		105	70-130	0.4	20
1,1,2,2-Tetrachloroethane	17.8		μg/l		20.0		89	70-130	0.6	20
Tetrachloroethene	18.1		μg/l		20.0		90	70-130	8	20
Toluene	18.2		μg/l		20.0		91	70-130	5	20
1,2,3-Trichlorobenzene	19.0		μg/l		20.0		95	70-130	4	20
1,2,4-Trichlorobenzene	19.4		μg/l		20.0		97	70-130	2	20
1,3,5-Trichlorobenzene	18.6		μg/l		20.0		93	70-130	2	20
1,1,1-Trichloroethane	18.7		μg/l		20.0		94	70-130	5	20
1,1,2-Trichloroethane	18.4		μg/l		20.0		92	70-130	4	20
Trichloroethene	18.0		μg/l		20.0		90	70-130	3	20
Trichlorofluoromethane (Freon 11)	16.8		μg/l		20.0		84	70-130	10	20
1,2,3-Trichloropropane	16.6		μg/l		20.0		83	70-130	2	20
1,2,4-Trimethylbenzene	19.5		μg/l		20.0		97	70-130	2	20
1,3,5-Trimethylbenzene	18.9		μg/l		20.0		95	70-130	3	20
Vinyl chloride	15.6		μg/l		20.0		78	70-130	5	20
m,p-Xylene	36.7		μg/l		40.0		92	70-130	3	20
o-Xylene	18.5		μg/l		20.0		93	70-130	2	20
Tetrahydrofuran	15.8		μg/l		20.0		79	70-130	0.4	20
Ethyl ether	18.1		μg/l		20.0		91	70-130	6	20
Tert-amyl methyl ether	17.6		μg/l		20.0		88	70-130	4	20
Ethyl tert-butyl ether	18.8		μg/l		20.0		94	70-130	1	20
Di-isopropyl ether	19.1		μg/l		20.0		95	70-130	2	20
Tert-Butanol / butyl alcohol	150		μg/l		200		75	70-130	2	20
1,4-Dioxane	147		μg/l		200		73	70-130	8	20
trans-1,4-Dichloro-2-butene	18.9		μg/l		20.0		94	70-130	1	20
Ethanol	308		μg/l		400		77	70-130	6	20
Surrogate: 4-Bromofluorobenzene	28.7		μg/l		30.0		96	70-130		
Surrogate: Toluene-d8	29.9		μg/l		30.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	28.2		μg/l		30.0		94	70-130		
Surrogate: Dibromofluoromethane	30.9		μg/l		30.0		103	70-130		

Microextractable Organic Compounds - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1225186 - General Preparation SVOC										
Blank (1225186-BLK1)					<u>Pre</u>	pared & Analy	zed: 16-Oct-12			
1,2-Dibromoethane (EDB)	< 0.0100		μg/l	0.0100						
LCS (1225186-BS1)					<u>Pre</u>	pared & Analy	zed: 16-Oct-12			
1,2-Dibromoethane (EDB)	0.212		μg/l	0.0100	0.200		106	50-150		
LCS Dup (1225186-BSD1)					<u>Pre</u>	pared & Analy	zed: 16-Oct-12			
1,2-Dibromoethane (EDB)	0.224		μg/l	0.0100	0.200		112	50-150	6	50

Extractable Petroleum Hydrocarbons - Quality Control

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Satch 1225745 - SW846 3510C										
Blank (1225745-BLK1)					<u>Pre</u>	pared: 20-Oct	-12 Analyzed	: 22-Oct-12		
Gasoline	< 0.2		mg/l	0.2						
Fuel Oil #2	< 0.2		mg/l	0.2						
Fuel Oil #4	< 0.2		mg/l	0.2						
Fuel Oil #6	< 0.2		mg/l	0.2						
Motor Oil	< 0.2		mg/l	0.2						
Ligroin	< 0.2		mg/l	0.2						
Aviation Fuel	< 0.2		mg/l	0.2						
Hydraulic Oil	< 0.2		mg/l	0.2						
Dielectric Fluid	< 0.2		mg/l	0.2						
Unidentified	< 0.2		mg/l	0.2						
Other Oil	< 0.2		mg/l	0.2						
Total Petroleum Hydrocarbons	< 0.2		mg/l	0.2						
Surrogate: 1-Chlorooctadecane	0.0457		mg/l		0.0500		91	40-140		
LCS (1225745-BS2)					Pre	pared: 20-Oct	-12 Analyzed	: 22-Oct-12		
Fuel Oil #2	9.2		mg/l	0.2	10.0		92	40-140		
Surrogate: 1-Chlorooctadecane	0.0441		mg/l		0.0500		88	40-140		

Soluble Metals by EPA 200 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1225931 - EPA 200 Series										
Blank (1225931-BLK1)					Pre	pared: 23-Oct-	12 Analyzed	: 25-Oct-12		
Iron	< 0.0150		mg/l	0.0150						
Lead	< 0.0075		mg/l	0.0075						
LCS (1225931-BS1)					Pre	pared: 23-Oct-	12 Analyzed	: 25-Oct-12		
Iron	1.24		mg/l	0.0150	1.25		99	85-115		
Lead	1.20		mg/l	0.0075	1.25		96	85-115		
<u>Duplicate (1225931-DUP1)</u>			Source: SI	358074-02	Pre	pared: 23-Oct-	12 Analyzed	: 25-Oct-12		
Lead	< 0.0075		mg/l	0.0075		BRL				20
Iron	0.421		mg/l	0.0150		0.392			7	20
Matrix Spike (1225931-MS1)			Source: SI	358074-02	Pre	pared: 23-Oct-	12 Analyzed	: 25-Oct-12		
Iron	1.64		mg/l	0.0150	1.25	0.392	100	70-130		
Lead	1.20		mg/l	0.0075	1.25	BRL	96	70-130		
Post Spike (1225931-PS1)			Source: SI	358074-02	Pre	pared: 23-Oct-	12 Analyzed	: 25-Oct-12		
Lead	1.28		mg/l	0.0075	1.25	BRL	102	85-115		
Iron	1.66		mg/l	0.0150	1.25	0.392	101	85-115		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1225243 - General Preparation										
Blank (1225243-BLK1)					<u>Pre</u>	pared: 16-Oct-	-12 Analyzed	: 17-Oct-12		
Total Suspended Solids	< 5		mg/l	5						
LCS (1225243-BS1)					<u>Pre</u>	pared: 16-Oct-	-12 Analyzed	: 17-Oct-12		
Total Suspended Solids	104		mg/l	10	100		104	90-110		
Batch 1225931 - EPA 200 Series										
Blank (1225931-BLK1)					<u>Pre</u>	pared: 23-Oct-	-12 Analyzed	: 25-Oct-12		
Hardness	< 0.291		mg/l CaCO3	0.291						
LCS (1225931-BS1)					<u>Pre</u>	pared: 23-Oct-	-12 Analyzed	: 25-Oct-12		
Hardness	21.3		mg/l CaCO3	0.291	20.8		102	85-115		
<u>Duplicate (1225931-DUP1)</u>			Source: SB	<u>58074-02</u>	<u>Pre</u>	pared: 23-Oct-	-12 Analyzed	: 25-Oct-12		
Hardness	90.3		mg/l CaCO3	0.291		86.4			4	20
Matrix Spike (1225931-MS1)			Source: SB	<u>58074-02</u>	<u>Pre</u>	pared: 23-Oct-	-12 Analyzed	: 25-Oct-12		
Hardness	112		mg/l CaCO3	0.291	20.8	86.4	123	70-130		
Post Spike (1225931-PS1)			Source: SB	<u>58074-02</u>	<u>Pre</u>	pared: 23-Oct-	-12 Analyzed	: 25-Oct-12		
Hardness	101	QM9	mg/l CaCO3	0.291	20.8	86.4	68	85-115		

Notes and Definitions

D Data reported from a dilution

GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

OM9 The spike recovery for this OC sample is outside the established control limits. The sample results for the OC batch were

accepted based on LCS/LCSD or SRM recoveries within the control limits.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

Interpretation of Total Petroleum Hydrocarbon Report

Petroleum identification is determined by comparing the GC fingerprint obtained from the sample with a library of GC fingerprints obtained from analyses of various petroleum products. Possible match categories are as follows:

Gasoline - includes regular, unleaded, premium, etc.

Fuel Oil #2 - includes home heating oil, #2 fuel oil, and diesel

Fuel Oil #4 - includes #4 fuel oil

Fuel Oil #6 - includes #6 fuel oil and bunker "C" oil

Motor Oil - includes virgin and waste automobile oil

Ligroin - includes mineral spirits, petroleum naphtha, vm&p naphtha

Aviation Fuel - includes kerosene, Jet A and JP-4

Other Oil - includes lubricating and cutting oil, and silicon oil

At times, the unidentified petroleum product is quantified using a calibration that most closely approximates the distribution of compounds in the sample. When this occurs, the result is qualified as Calculated as.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: Nicole Leja

CHAIN OF CUSTODY RECORD

Special Handling:

Standard TAT - 7 to 10 business days

☐ Rush TAT - Date Needed:

SB58074 GM

- · All TATs subject to laboratory approval. Min 24-hour notification needed for rushes.

SPECTRUM ANALYTICAL, INC- Featuring HANIBAL TECHNOLOGY	Pag	ge of		Samples disposed of after 60 days unless otherwise instructed.
Report To: FCS Agawam	Invoice To:	eme	<u>.</u>	Project No.: 94-205185.04 Site Name: 100 Mohaw K Trail
Telephone #:	P.O. No.:	RQN	N:	Site Name: // // // // // // Location: Sampler(s): Savah S.
	5=NaOH 6=Ascorbic	Acid 7=C	CH ₃ OH	List preservative code below: QA/QC Reporting Notes: * additional charges may apply
DW=Drinking Water GW=Groundwater WW=V O=Oil SW= Surface Water SO=Soil SL=Sludg X1= DT	Time: Park Signal Signa	TOS # of VOA Vials # of Amber Glass	# of Clear Glass # of Plastic # of Plastic	Analyses: MA DEP MCP CAM Report: Yes No CT DPH RCP Report: Yes No QA/QC Reporting Level Standard No QC DQA* NY ASP A* NY ASP B* NJ Reduced* NJ Full* THER II* TIER V* Other State-specific reporting standards: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Relinquished by Rece	ived by:	Date:		D.S E-mail to <u>Alammia Cecsconsvit</u> C
				□ Ambient

CHAIN OF CUSTODY RECORD

5	5.00.	14	54
	1		

Special Handling:

Standard TAT - 7 to 10 business days

☐ Rush TAT - Date Needed:

- · All TATs subject to laboratory approval.
- · Min. 24-hour notification needed for rushes.
- · Samples disposed of after 60 days unless

Featuring HANIBAL TECHNOLOGY		Page	_ 01 _							e instructed.
Report To: FCS Agawam	Invoice To:	Same								5185.04
					-	Site Na	ıme:	100	N	lohan K Trail
						Locatio	on:			Geld State: MA
Telephone #: Project Mgr. Alicia Flamma	P.O. No.:		RQN	:		Sample	er(s):		ara	eh S.
1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 8= NaHSO ₄ 9= Deionized Water 10=	5=NaOH 6=Asco		7=CI					ve code b		QA/QC Reporting Notes: * additional charges may apply
DW=Drinking Water GW=Groundwater WW=W			Cont	ainers:			Anal			MA DEP MCP CAM Report: Yes No□ CT DPH RCP Report: Yes □ No □
O=Oil SW= Surface Water SO=Soil SL=Sludge X1= X2= X3=		Vials	Glass	Glass	1655		8100	4.00.4)	QA/QC Reporting Level Standard □ No QC □ DQA*
G=Grab C=Composite)A	5	of Clear G	3	DB	Hd.			☐ NY ASP A* ☐ NY ASP B* ☐ NJ Reduced* ☐ NJ Full* ☐ TIER II* ☐ TIER V*
Lab Id: Sample Id: Date:	Time:	Matrix # of VOA	/ Jo #	# #	立	M		160		☐ Other State-specific reporting standards:
	1:15 G	SW 35	1	4	X	X	X	XX	X	* Please lab
1 02 814-2	1:30 G	SW 5	1	4	$\perp \times$	XX	X	XX	X	tilter lead
I as Trip	AM	XII							X	and Ivon
										TPH 8100 per ilel
										regrest
				188						
2 Palinguished Kr.	ved by:	Date:		Time:	Ten	np°C				
Relinquished by Recei	ved by:	10/12/	10	15:40			E-ma	Format_ il to <u>Q</u>	Fla	mmia Cecsconsult ce
1							Ambient (Iced □R	efrigerated	☐ Fridge temp°C ☐ Freezer temp°C

11 Almgren Drive Agawam, MA 01001 (413) 789-9018

This preceding chain of custody has been amended to include the client requested additional analyses as noted below:

Laboratory ID	Client ID	Analysis	Added
SB58074-01	SW-1	Fingerprinting by GC	10/15/2012
SB58074-02	SW-2	Fingerprinting by GC	10/15/2012

Report Date: 19-Apr-12 14:05

☑ Final Report☐ Re-Issued Report☐ Revised Report

Laboratory Report

Environmental Compliance Services 30 Harris PlaceAlex Brattleboro, VT 05301

Attn: Alicia Flammia

Project #: 04-205185.03

Project: 100 Mohawk Trail - Greenfield, MA

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SB47144-01	Trip	Deionized Water	11-Apr-12 10:00	12-Apr-12 16:10
SB47144-02	MW-1	Ground Water	11-Apr-12 14:45	12-Apr-12 16:10
SB47144-03	MW-3	Ground Water	11-Apr-12 12:15	12-Apr-12 16:10
SB47144-04	MW-4	Ground Water	11-Apr-12 13:12	12-Apr-12 16:10
SB47144-05	MW-5	Ground Water	11-Apr-12 14:00	12-Apr-12 16:10

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Vicole Leja

Spectrum Analytical holds certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes.

Please note that this report contains 26 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report

Please note that this report contains 26 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

The following outlines the condition of all VPH samples contained within this report upon laboratory receipt.

Matrices	Deionized Water Ground Water		
Containers	✓ Satisfactory		
Sample Preservative	Aqueous (acid preserved)	N/A ✓ pH≤2 pH>2	
	Soil or	✓ N/A Samples not received in Methanol	ml Methanol/g soil
	Sediment	Samples received in Methanol: covering soil/sediment not covering soil/sediment	1:1 +/-25% Other
		Samples received in air-tight container	
Temperature	Received on ic	Received at 4 ± 2 °C \checkmark Other: 1.2°C	

Were all QA/QC procedures followed as required by the VPH method? Yes

Were any significant modifications made to the VPH method as specified in section 11.3? No

Were all performance/acceptance standards for required QA/QC procedures achieved? Yes

The following outlines the condition of all EPH samples contained within this report upon laboratory receipt.

Matrices	Ground Water				
Containers	✓ Satisfactor	y			
Aqueous Preservative	N/A	✓ pH <u>≤</u> 2	pH>2	pH adjusted to <2 in lab	
Temperature	Received of	on ice	Received at 4 ± 2 °C	✓ Other: 1.2°C	

Were all QA/QC procedures followed as required by the EPH method? Yes

Were any significant modifications made to the EPH method as specified in Section 11.3? No

Were all performance/acceptance standards for required QA/QC procedures achieved? Yes

I attest that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Authorized by:

Nicole Leja Laboratory Director

Mide Leja

MassDEP Analytical Protocol Certification Form

Labo	ratory Name: Spe	ectrum Analytical, Inc.		Project #: 04-205	185.03					
Proje	ct Location: 100	Mohawk Trail - Greenfie	eld, MA	RTN:						
This form provides certifications for the following data set: SB47144-01 through SB47144-05										
Matr	ices: Deionized	Water								
	Ground Wa	nter								
CAM	Protocol			1						
_	260 VOC AM II A	7470/7471 Hg CAM III B	✓ MassDEP VPH CAM IV A	8081 Pesticides CAM V B	7196 Hex Cr CAM VI B	MassDEP APH CAM IX A				
	70 SVOC AM II B	7010 Metals CAM III C	✓ MassDEP EPH CAM IV B	8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VOC CAM IX B				
	010 Metals AM III A	6020 Metals CAM III D	✓ 8082 PCB CAM V A	9012 Total Cyanide/PAC CAM VI A	9014 Total Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B				
		Affirmative responses	to questions A through I		mptive Certainty" status					
A				cribed on the Chain of Cu epared/analyzed within m		✓ Yes No				
В	Were the analytic protocol(s) follow		ociated QC requirements	specified in the selected (CAM	✓ Yes No				
С	_		nalytical response actions performance standard no	s specified in the selected on-conformances?	CAM	✓ Yes No				
D				ents specified in CAM VII Reporting of Analytical I		✓ Yes No				
E		-	as each method conducte e complete analyte list re	ed without significant moo	dification(s)?	✓ Yes No Yes No				
F				non-conformances identification questions A through E)?		✓ Yes No				
		Responses to quest	ions G, H and I below ar	e required for "Presump	tive Certainty" status	•				
G	Were the reportir	ng limits at or below all C	CAM reporting limits spe	cified in the selected CAI	M protocol(s)?	Yes ✔ No				
		t achieve "Presumptive Ce 1 310 CMR 40. 1056 (2)(k)		essarily meet the data usabl	ility and representativeness					
Н	Were all QC perf	formance standards speci	fied in the CAM protocol	l(s) achieved?		Yes ✔ No				
I	Were results repo	orted for the complete an	alyte list specified in the	selected CAM protocol(s)?	Yes ✔ No				
All ne	gative responses are	e addressed in a case narra	tive on the cover page of th	is report.						
1		• •		pon my personal inquiry of knowledge and belief, acci	those responsible for obtaining urate and complete.	; the				
					Nicole Leja Laboratory Director Date: 4/19/2012	a_				

CASE NARRATIVE:

The samples were received 1.2 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of \pm 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

According to WSC-CAM 5/2009 Rev.1, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended recovery range, a range has been set based on historical control limits.

Some target analytes which are not listed as exceptions in the Summary of CAM Reporting Limits may exceed the recommended RL based on sample initial volume or weight provided, % moisture content, or responsiveness of a particular analyte to purge and trap instrumentation.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

MADEP EPH 5/2004 R

Laboratory Control Samples:

1208630 BSD

Anthracene RPD 29% (25%) is outside individual acceptance criteria, but within overall method allowances.

1208630-BSD2

The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.

Anthracene

n-Decane

n-Nonane (C9)

Trip	Sample Identification [Frip GB47144-01				Client Project # 04-205185.03		<u>Matrix</u> eionized W	· · · · · · · · · · · · · · · · · · ·	Collection Date/Time 11-Apr-12 10:00			Received 12-Apr-12	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	ic/Aromatic Carbon Ranges												
Prepared	by method VPH - EPA 503	<u>30B</u>											
	C5-C8 Aliphatic Hydrocarbons	< 75.0		μg/l	75.0	5.55	1	MADEP VPH 5/2004 Rev. 1.1	17-Apr-12	17-Apr-12	mp	1208628	
	C9-C12 Aliphatic Hydrocarbons	< 25.0		μg/l	25.0	4.22	1	н		ı	"		
	C9-C10 Aromatic Hydrocarbons	< 25.0		μg/l	25.0	1.12	1	п		ı	"		
	Unadjusted C5-C8 Aliphatic Hydrocarbons	< 75.0		μg/l	75.0	7.10	1	п			"		
	Unadjusted C9-C12 Aliphatic Hydrocarbons	< 25.0		μg/l	25.0	4.68	1	п			"		
VPH Target	<u>Analytes</u>												
<u>Prepared</u>	by method VPH - EPA 503	<u>30B</u>											
71-43-2	Benzene	< 5.0		μg/l	5.0	1.3	1			"	"		
100-41-4	Ethylbenzene	< 5.0		μg/l	5.0	1.4	1			II .	"		
1634-04-4	Methyl tert-butyl ether	< 5.0		μg/l	5.0	1.6	1				"		
91-20-3	Naphthalene	< 5.0		μg/l	5.0	1.2	1				"		
108-88-3	Toluene	< 5.0		μg/l	5.0	1.3	1	ıı			"		
179601-23-1	m,p-Xylene	< 10.0		μg/l	10.0	2.8	1	ı			"		
95-47-6	o-Xylene	< 5.0		μg/l	5.0	1.1	1				"		
Surrogate rec	coveries:												
615-59-8	2,5-Dibromotoluene (FID)	99			70-13	0 %					"		
615-59-8	2,5-Dibromotoluene (PID)	99			70-13	0 %		п			"		

<u>58111910 N</u> MW-1 SB47144	dentification -02				Project # 185.03		<u>Matrix</u> Ground Wa		ection Date -Apr-12 14			ceived Apr-12	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile O	Organic Compounds												
	tic/Aromatic Carbon Ranges												
Prepared	by method VPH - EPA 503	<u>0B</u>											
	C5-C8 Aliphatic Hydrocarbons	< 75.0		μg/l	75.0	5.55	5	MADEP VPH 5/2004 Rev. 1.1	17-Apr-12	17-Apr-12	mp	1208628	
	C9-C12 Aliphatic Hydrocarbons	< 25.0		μg/l	25.0	4.22	5	п			"	"	
	C9-C10 Aromatic Hydrocarbons	< 25.0		μg/l	25.0	1.12	5	н		"	"		
	Unadjusted C5-C8 Aliphatic Hydrocarbons	< 75.0		μg/l	75.0	7.10	5	п			"		
	Unadjusted C9-C12 Aliphatic Hydrocarbons	< 25.0		μg/l	25.0	4.68	5	п		"	"		
VPH Target Prepared	<u>t Analytes</u> I by method VPH - EPA 503	<u>0B</u>											
71-43-2	Benzene	< 5.0		μg/l	5.0	1.3	5	п			"		
100-41-4	Ethylbenzene	< 5.0		μg/l	5.0	1.4	5	п			"		
634-04-4	Methyl tert-butyl ether	< 5.0		μg/l	5.0	1.6	5	п					
11-20-3	Naphthalene	< 5.0		μg/l	5.0	1.2	5	и			"		
08-88-3	Toluene	< 5.0		μg/l	5.0	1.3	5				"		
79601-23-1	m,p-Xylene	< 10.0		μg/l	10.0	2.8	5	п					
5-47-6	o-Xylene	< 5.0		μg/l	5.0	1.1	5	п					
Surrogato roc													
Surrogate red 115-59-8	2,5-Dibromotoluene (FID)	102			70.10	0.0/							
15-59-8		102			70-13						"		
	2,5-Dibromotoluene (PID)				70-13	U %							
	tile Organic Compounds by C	iC											
	ated Biphenyls by method SW846 3510C												
2674-11-2	Aroclor-1016	< 0.233		μg/l	0.233	0.0100	1	SW846 8082A	17-Apr-12	17-Apr-12	IMR	1208625	
1104-28-2	Aroclor-1221	< 0.233		μg/l	0.233	0.0166	1						
1141-16-5	Aroclor-1232	< 0.233		μg/l	0.233	0.0156	1						
3469-21-9	Aroclor-1242	< 0.233		μg/I	0.233	0.00849	1	п					
2672-29-6	Aroclor-1248	< 0.233		μg/l	0.233	0.0131	1	п					
1097-69-1	Aroclor-1254	< 0.233		μg/I	0.233	0.0115	1	п					
1096-82-5	Aroclor-1260	< 0.233			0.233	0.00674	1						
7324-23-5	Aroclor-1262	< 0.233		μg/l									
1100-14-4	Aroclor-1268	< 0.233		μg/l	0.233	0.0101	1						
1100-14-4	AIOCIOI-1206	V 0.233		μg/l	0.233	0.0110	1						
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	51			30-15	0 %		ı		"	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	78			30-15	0 %		я			"		
2051-24-3	Decachlorobiphenyl (Sr)	66			30-15	0 %		ı			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	95			30-15	0 %		п		ı	"		
Extractab	ole Petroleum Hydrocarbons												
	tic/Aromatic Ranges by method SW846 3510C												
	C9-C18 Aliphatic	< 133		μg/l	133	33.1	1	MADEP EPH	17-Apr-12	18-Apr-12	MP	1208630	

Sample I MW-1	dentification_			Client I	Project #		Matrix	Colle	ection Date	/Time	Re	ceived	
SB47144	-02			04-205	185.03		Ground Wa	nter 11	-Apr-12 14	:45	12-	Apr-12	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Extractab	ole Petroleum Hydrocarbons												
	tic/Aromatic Ranges												
Prepared	by method SW846 3510C												
	C19-C36 Aliphatic Hydrocarbons	< 133		μg/l	133	104	1	MADEP EPH 5/2004 R	17-Apr-12	18-Apr-12	MP	1208630	
	C11-C22 Aromatic Hydrocarbons	< 133		μg/l	133	72.7	1	н		п	"		
	Unadjusted C11-C22 Aromatic Hydrocarbons	< 133		μg/l	133	72.7	1	н	н	ı	"		
	Total Petroleum Hydrocarbons	< 133		μg/l	133	133	1	п			"		
	Unadjusted Total Petroleum Hydrocarbons	< 133		μg/l	133	133	1	н		п	"		
EPH Target	PAH Analytes												
	by method SW846 3510C												
91-20-3	Naphthalene	< 1.00		μg/l	1.00	0.125	1				"		
91-57-6	2-Methylnaphthalene	< 1.00		μg/I	1.00	0.167	1			"	"		
108-96-8	Acenaphthylene	< 1.00		μg/I	1.00	0.172	1			"	"		
3-32-9	Acenaphthene	< 1.00		μg/l	1.00	0.111	1	ı			"		
6-73-7	Fluorene	< 1.00		μg/l	1.00	0.118	1				"		
5-01-8	Phenanthrene	< 1.00		μg/l	1.00	0.129	1				"		
20-12-7	Anthracene	< 1.00		μg/l	1.00	0.121	1	п			"		
06-44-0	Fluoranthene	< 1.00		μg/l	1.00	0.0883	1	п			"		
29-00-0	Pyrene	< 1.00		μg/l	1.00	0.142	1	п			"		
6-55-3	Benzo (a) anthracene	< 1.00		μg/l	1.00	0.111	1	п			"		
18-01-9	Chrysene	< 1.00		μg/l	1.00	0.126	1				"		
105-99-2	Benzo (b) fluoranthene	< 1.00		μg/l	1.00	0.221	1	п			"		
107-08-9	Benzo (k) fluoranthene	< 1.00		μg/l	1.00	0.269	1	п			"		
0-32-8	Benzo (a) pyrene	< 0.200		μg/l	0.200	0.200	1				"		
93-39-5	Indeno (1,2,3-cd) pyrene	< 0.500		μg/l	0.500	0.278	1				"		
53-70-3	Dibenzo (a,h) anthracene	< 0.500		μg/l	0.500	0.231	1				"		
91-24-2	Benzo (g,h,i) perylene	< 1.00		μg/l	1.00	0.195	1	ı	п		"		
Surrogate red	coveries:												
3386-33-2	1-Chlorooctadecane	73			40-14	0 %					"		
14-15-1	Ortho-Terphenyl	70			40-14	0 %		ı			"		
321-60-8	2-Fluorobiphenyl	40			40-14	0 %		ı			"		
Soluble M	letals by EPA 200/6000 Serie	es Methods											
	Filtration	Field Filtered		N/A			1	EPA 200.7/3005A/6010			DJB	1208500	
	letals by EPA 6000/7000 Ser										. –		
440-22-4	Silver	< 0.0050		mg/l	0.0050	0.0020	1	SW846 6010C	16-Apr-12	17-Apr-12	LR 	1208530	
440-38-2	Arsenic	< 0.0040		mg/l	0.0040	0.0032	1	ı					
440-39-3	Barium	0.0333		mg/l	0.0050	0.0034	1				"		
440-43-9	Cadmium	< 0.0025		mg/l	0.0025	0.0001	1	ı			"		
440-47-3	Chromium	< 0.0050		mg/l	0.0050	0.0034	1	ı			"		
439-92-1	Lead	< 0.0075		mg/l	0.0075	0.0045	1				"		
782-49-2	Selenium	< 0.0150		mg/l	0.0150	0.0024	1				"		
Soluble M	letals by EPA 200 Series Me	thods											
439-97-6	Mercury	< 0.00020		mg/l	0.00020	0.00007	1	EPA 245.1/7470A	16-Apr-12	17-Apr-12	EDT/A	1208531)

<u>Sample 10</u> MW-3 SB47144	dentification -03				Project # 185.03		<u>Matrix</u> Ground Wa		ection Date I-Apr-12 12			ceived Apr-12	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile O	Organic Compounds												
	tic/Aromatic Carbon Ranges												
Prepared	by method VPH - EPA 503	<u>80B</u>											
	C5-C8 Aliphatic Hydrocarbons	< 75.0		μg/l	75.0	5.55	5	MADEP VPH 5/2004 Rev. 1.1	17-Apr-12	17-Apr-12	mp	1208628	
	C9-C12 Aliphatic Hydrocarbons	< 25.0		μg/l	25.0	4.22	5	н			"		
	C9-C10 Aromatic Hydrocarbons	< 25.0		μg/l	25.0	1.12	5	n .			"		
	Unadjusted C5-C8 Aliphatic Hydrocarbons	< 75.0		μg/l	75.0	7.10	5			ı	"		
	Unadjusted C9-C12 Aliphatic Hydrocarbons	< 25.0		μg/l	25.0	4.68	5			п	"		
VPH Target Prepared	<u>t Analytes</u> I by method VPH - EPA 503	30B											
71-43-2	Benzene	< 5.0		μg/l	5.0	1.3	5	п			"		
100-41-4	Ethylbenzene	< 5.0		μg/l	5.0	1.4	5	п			"		
1634-04-4	Methyl tert-butyl ether	< 5.0		μg/l	5.0	1.6	5				"		
11-20-3	Naphthalene	< 5.0		μg/l	5.0	1.2	5				"		
08-88-3	Toluene	< 5.0		μg/l	5.0	1.3	5				"		
79601-23-1	m,p-Xylene	< 10.0		μg/l	10.0	2.8	5				"		
5-47-6	o-Xylene	< 5.0		μg/l	5.0	1.1	5				"		
Surrogate red	coveries:												
:15-59-8	2,5-Dibromotoluene (FID)	100			70-13	0 %							
15-59-8	2,5-Dibromotoluene (PID)	102			70-13						,,		
	tile Organic Compounds by C				70 10	0 70							
Polychlorina	ated Biphenyls I by method SW846 3510C	JC .											
12674-11-2	Aroclor-1016	< 0.244		μg/l	0.244	0.0105	1	SW846 8082A	17-Apr-12	17-Apr-12	IMR	1208625	
1104-28-2	Aroclor-1221	< 0.244		μg/l	0.244	0.0103	1	3VV040 0002A	17-Api-12	17-Api-12	"	1200023	
1141-16-5	Aroclor-1232	< 0.244			0.244	0.0174	1				,,		
3469-21-9	Aroclor-1242	< 0.244		μg/l	0.244	0.0163	1						
2672-29-6	Aroclor-1248	< 0.244		μg/l	0.244	0.00690	1						
1097-69-1	Aroclor-1254	< 0.244		μg/l	0.244	0.0136	1						
1096-82-5	Aroclor-1260	< 0.244		μg/l		0.0121	1						
7324-23-5	Aroclor-1262	< 0.244		μg/l	0.244		1						
11100-14-4	Aroclor-1268	< 0.244		μg/l μg/l	0.244 0.244	0.0106 0.0116	1						
				F9:									
Surrogate red 10386-84-2	4,4-DB-Octafluorobiphenyl	59			30-15	0 %				п	"		
10386-84-2	(Sr) 4,4-DB-Octafluorobiphenyl	78			30-15	0 %					"		
2051-24-3	(Sr) [2C]	97			00.45	0 0/					"		
2051-24-3	Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C]	87 116			30-15 30-15			и			"		
Extractab	ole Petroleum Hydrocarbons												
	tic/Aromatic Ranges												
	by method SW846 3510C												
	C9-C18 Aliphatic	< 122		μg/l	122	30.3	1	MADEP EPH	17-Apr-12	18-Apr-12	MP	1208630	

Sample I MW-3	dentification_			Client I	Project #		Matrix	Colle	ection Date	/Time	Red	ceived	
SB47144	1-03			04-205	5185.03		Ground Wa	ater 11	-Apr-12 12	:15	12-	Apr-12	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cei
Extractab	ole Petroleum Hydrocarbons	1											
EPH Alipha	tic/Aromatic Ranges												
Prepared	by method SW846 3510C												
	C19-C36 Aliphatic Hydrocarbons	< 122		μg/l	122	95.4	1	MADEP EPH 5/2004 R	17-Apr-12	18-Apr-12	MP	1208630	
	C11-C22 Aromatic Hydrocarbons	< 122		μg/l	122	66.5	1				"		
	Unadjusted C11-C22 Aromatic Hydrocarbons	< 122		μg/l	122	66.5	1	II		ı	"		
	Total Petroleum Hydrocarbons	< 122		μg/l	122	122	1	н			"		
	Unadjusted Total Petroleum Hydrocarbons	< 122		μg/l	122	122	1	и		ı	"		
	t PAH Analytes												
	l by method SW846 3510C	•											
91-20-3	Naphthalene	< 1.00		μg/l	1.00	0.125	1	"			"		
91-57-6	2-Methylnaphthalene	< 1.00		μg/l	1.00	0.167	1	"			"		
108-96-8	Acenaphthylene	< 1.00		μg/l	1.00	0.172	1				"		
3-32-9	Acenaphthene	< 1.00		μg/l	1.00	0.111	1				"		
6-73-7	Fluorene	< 1.00		μg/I	1.00	0.118	1				"		
5-01-8	Phenanthrene	< 1.00		μg/I	1.00	0.129	1				"		
20-12-7	Anthracene	< 1.00		μg/l	1.00	0.121	1				"		
06-44-0	Fluoranthene	< 1.00		μg/l	1.00	0.0883	1				"		
29-00-0	Pyrene	< 1.00		μg/l	1.00	0.142	1				"		
6-55-3	Benzo (a) anthracene	< 1.00		μg/l	1.00	0.111	1	п		"	"		
18-01-9	Chrysene	< 1.00		μg/l	1.00	0.126	1	п		"	"		
05-99-2	Benzo (b) fluoranthene	< 1.00		μg/l	1.00	0.221	1	п			"		
07-08-9	Benzo (k) fluoranthene	< 1.00		μg/l	1.00	0.269	1	п			"		
0-32-8	Benzo (a) pyrene	< 0.200		μg/l	0.200	0.200	1	п			"		
93-39-5	Indeno (1,2,3-cd) pyrene	< 0.500		μg/l	0.500	0.278	1				"		
3-70-3	Dibenzo (a,h) anthracene	< 0.500		μg/l	0.500	0.231	1				"		
91-24-2	Benzo (g,h,i) perylene	< 1.00		μg/l	1.00	0.195	1	ı			"		
Surrogate red	coveries:												
3386-33-2	1-Chlorooctadecane	67			40-14	0 %					"		
14-15-1	Ortho-Terphenyl	71			40-14	0 %					"		
321-60-8	2-Fluorobiphenyl	41			40-14	0 %		п		"	"		
Soluble M	letals by EPA 200/6000 Serie	es Methods											
	Filtration	Field Filtered		N/A			1	EPA 200.7/3005A/6010			DJB	1208500	
	Tetals by EPA 6000/7000 Ser			-			_	0 1116					
440-22-4	Silver	< 0.0050		mg/l	0.0050	0.0020	1	SW846 6010C	16-Apr-12	17-Apr-12	LR 	1208530	
440-38-2	Arsenic	< 0.0040		mg/l	0.0040	0.0032	1	ı			"		
440-39-3	Barium	0.0440		mg/l	0.0050	0.0034	1	ı			"		
440-43-9	Cadmium	< 0.0025		mg/l	0.0025	0.0001	1	ı			"		
440-47-3	Chromium	< 0.0050		mg/l	0.0050	0.0034	1	ı			"		
439-92-1	Lead	< 0.0075		mg/l	0.0075	0.0045	1	"			"		
782-49-2	Selenium	< 0.0150		mg/l	0.0150	0.0024	1				"		
Soluble M	Ietals by EPA 200 Series Me	thods											
7439-97-6	Mercury	< 0.00020		mg/l	0.00020	0.00007	1	EPA 245.1/7470A	16-Apr-12	17-Apr-12	EDT/A	1208531	2

Sample Io MW-4 SB47144	dentification				Project # 5185.03		<u>Matrix</u> Ground Wa		ection Date -Apr-12 13			ceived Apr-12	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
VPH Aliphat	tic/Aromatic Carbon Ranges												
Prepared	by method VPH - EPA 503	30B											
	C5-C8 Aliphatic Hydrocarbons	290		μg/l	75.0	5.55	5	MADEP VPH 5/2004 Rev. 1.1	17-Apr-12	17-Apr-12	mp	1208628	
	C9-C12 Aliphatic Hydrocarbons	236		μg/l	25.0	4.22	5			ı	"		
	C9-C10 Aromatic Hydrocarbons	193		μg/l	25.0	1.12	5	н		п	"		
	Unadjusted C5-C8 Aliphatic Hydrocarbons	483		μg/l	75.0	7.10	5	п		и	"		
	Unadjusted C9-C12 Aliphatic Hydrocarbons	430		μg/l	25.0	4.68	5	п		и	"		
VPH Target	Analytes												
Prepared	by method VPH - EPA 503	<u>30B</u>											
71-43-2	Benzene	11.8		μg/l	5.0	1.3	5				"		
100-41-4	Ethylbenzene	< 5.0		μg/l	5.0	1.4	5				"		
1634-04-4	Methyl tert-butyl ether	< 5.0		μg/l	5.0	1.6	5				"		
91-20-3	Naphthalene	< 5.0		μg/l	5.0	1.2	5	н			"		
108-88-3	Toluene	< 5.0		μg/l	5.0	1.3	5				"		
179601-23-1	m,p-Xylene	181		μg/l	10.0	2.8	5				"		
95-47-6	o-Xylene	< 5.0		μg/l	5.0	1.1	5	п		н	"		
Surrogate red	coveries:												
615-59-8	2,5-Dibromotoluene (FID)	102			70-13	0 %		н			"		
615-59-8	2,5-Dibromotoluene (PID)	105			70-13	0 %					"		

MW-5 SB47144	dentification 1-05				Project # 5185.03		<u>Matrix</u> Ground Wa		ection Date -Apr-12 14			ceived Apr-12	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile C	Organic Compounds												
	tic/Aromatic Carbon Ranges												
Prepared	by method VPH - EPA 503												
	C5-C8 Aliphatic Hydrocarbons	528		μg/l	75.0	5.55	5	MADEP VPH 5/2004 Rev. 1.1	17-Apr-12	17-Apr-12	mp	1208628	
	C9-C12 Aliphatic Hydrocarbons	< 25.0		μg/l	25.0	4.22	5	"	•		"		
	C9-C10 Aromatic Hydrocarbons	< 25.0		μg/l	25.0	1.12	5			н	"		
	Unadjusted C5-C8 Aliphatic Hydrocarbons	556		μg/l	75.0	7.10	5	н		н	"		
	Unadjusted C9-C12 Aliphatic Hydrocarbons	< 25.0		μg/l	25.0	4.68	5	н		н	"		
VPH Target													
	by method VPH - EPA 503				_				_			_	
71-43-2	Benzene	19.5		μg/l	5.0	1.3	5	"			"		
100-41-4	Ethylbenzene	< 5.0		μg/l	5.0	1.4	5				"		
1634-04-4	Methyl tert-butyl ether	< 5.0		μg/l	5.0	1.6	5				"		
91-20-3	Naphthalene 	< 5.0		μg/l	5.0	1.2	5				"		
108-88-3	Toluene	8.4		μg/l	5.0	1.3	5						
179601-23-1	m,p-Xylene	< 10.0		μg/l	10.0	2.8	5						
95-47-6 ————	o-Xylene	< 5.0		μg/l	5.0	1.1	5	"			"		
Surrogate red	coveries:												
615-59-8	2,5-Dibromotoluene (FID)	104			70-13	0 %					"	•	
615-59-8	2,5-Dibromotoluene (PID)	105			70-13	0 %					"		
Semivolat	tile Organic Compounds by C	ЭC											
	ated Biphenyls I by method SW846 3510C												
12674-11-2	Aroclor-1016	< 0.267		μg/l	0.267	0.0115	1	SW846 8082A	17-Apr-12	17-Apr-12	IMR	1208625	
11104-28-2	Aroclor-1221	< 0.267		μg/l	0.267	0.0191	1				"		
11141-16-5	Aroclor-1232	< 0.267		μg/l	0.267	0.0179	1				"		
53469-21-9	Aroclor-1242	< 0.267		μg/l	0.267	0.00973	1				"		
12672-29-6	Aroclor-1248	< 0.267		μg/l	0.267	0.0151	1				"		
11097-69-1	Aroclor-1254	< 0.267		μg/l	0.267	0.0132	1				"		
11096-82-5	Aroclor-1260	< 0.267		μg/l	0.267	0.00773	1				"		
37324-23-5	Aroclor-1262	< 0.267		μg/l	0.267	0.0116	1				"		
11100-14-4	Aroclor-1268	< 0.267		μg/I	0.267	0.0127	1	н			"		
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	60			30-15	0 %		н		н	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	74			30-15	0 %		н		н	"		
2051-24-3	Decachlorobiphenyl (Sr)	66			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	86			30-15			н		н	"		
Soluble M	Tetals by EPA 200/6000 Serie	s Methods											
	Filtration	Field Filtered		N/A			1	EPA 200.7/3005A/6010			DJB	1208500	
Soluble M	Ietals by EPA 6000/7000 Seri												
7440-22-4	Silver	< 0.0050		mg/l	0.0050	0.0020	1	SW846 6010C	16-Apr-12	17-Apr-12	LR	1208530	
	Arsenic	< 0.0040		mg/l	0.0040	0.0032	1	"		, .			

Sample Id MW-5 SB47144-	entification				Project # 185.03		<u>Matrix</u> Ground Wa		ection Date -Apr-12 14			ceived Apr-12	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Soluble Me	etals by EPA 6000/	7000 Series Methods											
7440-39-3	Barium	0.0404		mg/l	0.0050	0.0034	1	SW846 6010C	16-Apr-12	17-Apr-12	LR	1208530	
7440-43-9	Cadmium	< 0.0025		mg/l	0.0025	0.0001	1				"		
7440-47-3	Chromium	< 0.0050		mg/l	0.0050	0.0034	1				"		
7439-92-1	Lead	< 0.0075		mg/l	0.0075	0.0045	1				"		
7782-49-2	Selenium	< 0.0150		mg/l	0.0150	0.0024	1				"		
Soluble Mo	etals by EPA 200 S	eries Methods											
7439-97-6	Mercury	< 0.00020		mg/l	0.00020	0.00007	1	EPA 245.1/7470A	16-Apr-12	17-Apr-12	EDT/A	1208531	Χ

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1208628 - VPH - EPA 5030B										
Blank (1208628-BLK1)					Pre	pared & Analy	zed: 17-Apr-12			
C5-C8 Aliphatic Hydrocarbons	< 75.0		μg/l	75.0						
C9-C12 Aliphatic Hydrocarbons	< 25.0		μg/l	25.0						
C9-C10 Aromatic Hydrocarbons	< 25.0		μg/l	25.0						
Unadjusted C5-C8 Aliphatic Hydrocarbons	< 75.0		μg/l	75.0						
Unadjusted C9-C12 Aliphatic Hydrocarbons	< 25.0		μg/l	25.0						
Benzene	< 5.0		μg/l	5.0						
Ethylbenzene	< 5.0		μg/l	5.0						
Methyl tert-butyl ether	< 5.0		μg/l	5.0						
Naphthalene	< 5.0		μg/l	5.0						
Toluene	< 5.0		μg/l	5.0						
m,p-Xylene	< 10.0		μg/l	10.0						
o-Xylene	< 5.0		μg/l	5.0						
2-Methylpentane	< 5.0		μg/l	5.0						
n-Nonane	< 10.0		μg/l	10.0						
n-Pentane	< 10.0		μg/l	10.0						
1,2,4-Trimethylbenzene	< 5.0		μg/l	5.0						
2,2,4-Trimethylpentane	< 5.0		μg/l	5.0						
n-Butylcyclohexane	< 5.0		μg/l	5.0						
n-Decane	< 5.0		μg/l	5.0						
					50.0		97	70.400		
Surrogate: 2,5-Dibromotoluene (FID)	48.5		μg/l		50.0		99	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	49.7		μg/l		50.0			70-130		
LCS (1208628-BS1)						pared & Analy	zed: 17-Apr-12			
C5-C8 Aliphatic Hydrocarbons	61.7		μg/l		60.0		103	70-130		
C9-C12 Aliphatic Hydrocarbons	57.9		μg/l		60.0		97	70-130		
C9-C10 Aromatic Hydrocarbons	23.0		μg/l		20.0		115	70-130		
Unadjusted C5-C8 Aliphatic Hydrocarbons	201		μg/l		200		100	70-130		
Unadjusted C9-C12 Aliphatic Hydrocarbons	81.0		μg/l		80.0		101	70-130		
Benzene	20.6		μg/l		20.0		103	70-130		
Ethylbenzene	20.7		μg/l		20.0		104	70-130		
Methyl tert-butyl ether	14.4		μg/l		20.0		72	70-130		
Naphthalene	21.6		μg/l		20.0		108	70-130		
Toluene	20.9		μg/l		20.0		105	70-130		
m,p-Xylene	41.1		μg/l		40.0		103	70-130		
o-Xylene	21.3		μg/l		20.0		106	70-130		
2-Methylpentane	25.9		μg/l		20.0		130	70-130		
n-Nonane	22.8		μg/l		20.0		114	70-130		
n-Pentane	24.2		μg/l		20.0		121	70-130		
1,2,4-Trimethylbenzene	21.0		μg/l		20.0		105	70-130		
2,2,4-Trimethylpentane	18.9		μg/l		20.0		94	70-130		
n-Butylcyclohexane	20.0		μg/l		20.0		100	70-130		
n-Decane	18.9		μg/l		20.0		94	70-130		
Surrogate: 2,5-Dibromotoluene (FID)	54.1		μg/l		50.0		108	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	54.9		μg/l		50.0		110	70-130		
LCS Dup (1208628-BSD1)			• =			pared & Analy	zed: 17-Apr-12			
C5-C8 Aliphatic Hydrocarbons	61.7		μg/l		60.0		103	70-130	0.09	25
C9-C12 Aliphatic Hydrocarbons	56.0		μg/l		60.0		93	70-130	3	25
C9-C10 Aromatic Hydrocarbons	22.2		μg/l		20.0		111	70-130	4	25
Unadjusted C5-C8 Aliphatic Hydrocarbons	198		μg/l		200		99	70-130	1	25
Unadjusted C9-C12 Aliphatic	78.3				80.0		98	70-130	3	25
Hydrocarbons	10.3		μg/l		00.0		30	10-100	J	23

.nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
eatch 1208628 - VPH - EPA 5030B										
LCS Dup (1208628-BSD1)					Pre	pared & Analy	zed: 17-Apr-12	2		
Benzene	20.1		μg/l		20.0	,	101	70-130	2	25
Ethylbenzene	20.1		μg/l		20.0		101	70-130	3	25
Methyl tert-butyl ether	14.0		μg/l		20.0		70	70-130	2	25
Naphthalene	21.2		μg/l		20.0		106	70-130	2	25
Toluene	20.4		μg/l		20.0		102	70-130	3	25
m,p-Xylene	40.8		μg/l		40.0		102	70-130	0.7	25
o-Xylene	20.7		μg/l		20.0		103	70-130	3	25
2-Methylpentane	25.4		μg/l		20.0		127	70-130	2	25
n-Nonane	22.4		μg/l		20.0		112	70-130	2	25
n-Pentane	25.1		μg/l		20.0		125	70-130	3	25
1,2,4-Trimethylbenzene	20.4		μg/l		20.0		102	70-130	3	25
2,2,4-Trimethylpentane	19.1		μg/l		20.0		96	70-130	1	25
n-Butylcyclohexane	19.5		μg/l		20.0		97	70-130	3	25
n-Decane	18.1		μg/l		20.0		91	70-130	4	25
Surrogate: 2,5-Dibromotoluene (FID)	52.1		μg/l		50.0		104	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	53.1		μg/l		50.0		106	70-130		

Semivolatile Organic Compounds by GC - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1208625 - SW846 3510C										
Blank (1208625-BLK1)					Pre	pared & Analy	zed: 17-Apr-12			
Aroclor-1016	< 0.200		μg/l	0.200						
Aroclor-1016 [2C]	< 0.200		μg/l	0.200						
Aroclor-1221	< 0.200		μg/l	0.200						
Aroclor-1221 [2C]	< 0.200		μg/l	0.200						
Aroclor-1232	< 0.200		μg/l	0.200						
Aroclor-1232 [2C]	< 0.200		μg/l	0.200						
Aroclor-1242	< 0.200		μg/l	0.200						
Aroclor-1242 [2C]	< 0.200		μg/l	0.200						
Aroclor-1248	< 0.200		μg/l	0.200						
Aroclor-1248 [2C]	< 0.200		μg/l	0.200						
Aroclor-1254	< 0.200		μg/l	0.200						
Aroclor-1254 [2C]	< 0.200		μg/l	0.200						
Aroclor-1260	< 0.200		μg/l	0.200						
Aroclor-1260 [2C]	< 0.200		μg/l	0.200						
Aroclor-1262	< 0.200		μg/l	0.200						
Aroclor-1262 [2C]	< 0.200		μg/l	0.200						
Aroclor-1268	< 0.200		μg/l	0.200						
Aroclor-1268 [2C]	< 0.200		μg/l	0.200						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.148		μg/l		0.200		74	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.193		μg/l		0.200		96	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.153		μg/l		0.200		76	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.198		μg/l		0.200		99	30-150		
LCS (1208625-BS1)					Pre	pared & Analy	zed: 17-Apr-12			
Aroclor-1016	2.01		μg/l	0.200	2.50		80	50-140		
Aroclor-1016 [2C]	2.10		μg/l	0.200	2.50		84	50-140		
Aroclor-1260	1.98		μg/l	0.200	2.50		79	50-140		
Aroclor-1260 [2C]	2.08		μg/l	0.200	2.50		83	50-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.155		μg/l		0.200		78	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.169		μg/l		0.200		84	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.186		μg/l		0.200		93	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.217		μg/l		0.200		109	30-150		
LCS Dup (1208625-BSD1)					Pre	pared & Analy	zed: 17-Apr-12			
Aroclor-1016	2.08		μg/l	0.200	2.50		83	50-140	4	30
Aroclor-1016 [2C]	2.21		μg/l	0.200	2.50		88	50-140	5	30
Aroclor-1260	2.08		μg/l	0.200	2.50		83	50-140	5	30
Aroclor-1260 [2C]	2.12		μg/l	0.200	2.50		85	50-140	2	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.161		μg/l		0.200		80	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.180		μg/l		0.200		90	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.193		μg/l		0.200		96	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.225		μg/l		0.200		113	30-150		

Extractable Petroleum Hydrocarbons - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1208630 - SW846 3510C										
Blank (1208630-BLK1)					Pre	pared: 17-Apr	-12 Analyzed:	18-Apr-12		
C9-C18 Aliphatic Hydrocarbons	< 50.0		μg/l	50.0			•	-		
C19-C36 Aliphatic Hydrocarbons	< 50.0		μg/l	50.0						
C11-C22 Aromatic Hydrocarbons	< 50.0		μg/l	50.0						
Unadjusted C11-C22 Aromatic	< 50.0		μg/l	50.0						
Hydrocarbons										
Total Petroleum Hydrocarbons	< 50.0		μg/l	50.0						
Unadjusted Total Petroleum Hydrocarbons	< 50.0		μg/l	50.0						
Naphthalene	< 1.00		μg/l	1.00						
2-Methylnaphthalene	< 1.00		μg/l	1.00						
Acenaphthylene	< 1.00		μg/l	1.00						
Acenaphthene	< 1.00		μg/l	1.00						
Fluorene	< 1.00		μg/l	1.00						
Phenanthrene	< 1.00		μg/l	1.00						
Anthracene	< 1.00		μg/l	1.00						
Fluoranthene	< 1.00		μg/l	1.00						
Pyrene	< 1.00		μg/l	1.00						
Benzo (a) anthracene	< 1.00		μg/l	1.00						
Chrysene	< 1.00		μg/l	1.00						
Benzo (b) fluoranthene	< 1.00		μg/l	1.00						
Benzo (k) fluoranthene	< 1.00		μg/l	1.00						
Benzo (a) pyrene	< 0.200		μg/l	0.200						
Indeno (1,2,3-cd) pyrene	< 0.500		μg/l	0.500						
Dibenzo (a,h) anthracene	< 0.500		μg/l	0.500						
Benzo (g,h,i) perylene	< 1.00		μg/l	1.00						
n-Nonane (C9)	< 5.00		μg/l	5.00						
n-Decane	< 5.00		μg/l	5.00						
n-Dodecane	< 5.00		μg/l	5.00						
n-Tetradecane	< 5.00		μg/l	5.00						
n-Hexadecane	< 5.00		μg/l	5.00						
n-Octadecane	< 5.00		μg/l	5.00						
n-Nonadecane	< 5.00		μg/l	5.00						
n-Eicosane	< 5.00		μg/l 	5.00						
n-Docosane	< 5.00		μg/l	5.00						
n-Tetracosane	< 5.00		μg/l	5.00						
n-Hexacosane	< 5.00		μg/l	5.00						
n-Octacosane	< 5.00		μg/l	5.00						
n-Triacontane	< 5.00		μg/l	5.00						
n-Hexatriacontane	< 5.00		μg/l	5.00						
Naphthalene (aliphatic fraction) 2-Methylnaphthalene (aliphatic fraction)	0.00 0.00		μg/l							
			μg/l							
Surrogate: 1-Chlorooctadecane	32.5		μg/l		50.0		65	40-140		
Surrogate: Ortho-Terphenyl	28.3		μg/l		50.0		57	40-140		
Surrogate: 2-Fluorobiphenyl	20.3		μg/l		40.0		51	40-140		
LCS (1208630-BS1)				-		pared: 17-Apr	-12 Analyzed:	•		
C9-C18 Aliphatic Hydrocarbons	402		μg/l	50.0	600		67	40-140		
C19-C36 Aliphatic Hydrocarbons	776		μg/l	50.0	800		97	40-140		
C11-C22 Aromatic Hydrocarbons	1100		μg/l	50.0	1700		65	40-140		
LCS (1208630-BS2)						pared: 17-Apr	-12 Analyzed:	•		
Naphthalene	45.4		μg/l	10.0	100		45	40-140		
2-Methylnaphthalene	47.0		μg/l	10.0	100		47	40-140		
Acenaphthylene	59.8		μg/l	10.0	100		60	40-140		

Extractable Petroleum Hydrocarbons - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
Batch 1208630 - SW846 3510C										
LCS (1208630-BS2)					Pre	pared: 17-Apr-	12 Analyzed:	18-Apr-12		
Acenaphthene	60.5		μg/l	10.0	100		60	40-140		
Fluorene	70.6		μg/l	10.0	100		71	40-140		
Phenanthrene	92.2		μg/l	10.0	100		92	40-140		
Anthracene	79.5		μg/l	10.0	100		80	40-140		
Fluoranthene	83.3		μg/l	10.0	100		83	40-140		
Pyrene	80.7		μg/l	10.0	100		81	40-140		
Benzo (a) anthracene	93.4		μg/l	10.0	100		93	40-140		
Chrysene	76.3		μg/l	10.0	100		76	40-140		
Benzo (b) fluoranthene	82.9		μg/l	10.0	100		83	40-140		
Benzo (k) fluoranthene	88.2		μg/l	10.0	100		88	40-140		
Benzo (a) pyrene	79.6		μg/l	2.00	100		80	40-140		
Indeno (1,2,3-cd) pyrene	82.2		μg/l	5.00	100		82	40-140		
Dibenzo (a,h) anthracene	66.9		μg/l	5.00	100		67	40-140		
Benzo (g,h,i) perylene	74.4		μg/l	10.0	100		74	40-140		
n-Nonane (C9)	48.9		μg/l	5.00	100		49	30-140		
n-Decane	62.5		μg/l	5.00	100		62	40-140		
n-Dodecane	74.8		μg/l	5.00	100		75	40-140		
n-Tetradecane	90.5		μg/l	5.00	100		91	40-140		
n-Hexadecane	102		μg/l	5.00	100		102	40-140		
n-Octadecane	108		μg/l	5.00	100		108	40-140		
n-Nonadecane	112		μg/l	5.00	100		112	40-140		
n-Eicosane	114		μg/l	5.00	100		114	40-140		
n-Docosane	118		μg/l	5.00	100		118	40-140		
n-Tetracosane	117		μg/l	5.00	100		117	40-140		
n-Hexacosane	117		μg/l	5.00	100		117	40-140		
n-Octacosane	118		μg/l	5.00	100		118	40-140		
n-Triacontane	112		μg/l	5.00	100		112	40-140		
n-Hexatriacontane	107		μg/l	5.00	100		107	40-140		
Naphthalene (aliphatic fraction)	0.00		μg/l					0-200		
2-Methylnaphthalene (aliphatic fraction)	0.00		μg/l					0-200		
Surrogate: 1-Chlorooctadecane	46.0		μg/l		50.0		92	40-140		
Surrogate: Ortho-Terphenyl	40.7		μg/l		50.0		81	40-140		
Surrogate: 2-Fluorobiphenyl	27.3		μg/l		40.0		68	40-140		
Naphthalene Breakthrough	0.00		%					0-5		
2-Methylnaphthalene Breakthrough	0.00		%					0-5		
LCS (1208630-BS3)					Pre	pared: 17-Apr-	12 Analyzed:	18-Apr-12		
C9-C18 Aliphatic Hydrocarbons	423		μg/l	50.0	600		70	40-140		
C19-C36 Aliphatic Hydrocarbons	592		μg/l	50.0	800		74	40-140		
C11-C22 Aromatic Hydrocarbons	1100		μg/l	500	1700		65	40-140		
Naphthalene	50.2		μg/l	10.0	100		50	40-140		
2-Methylnaphthalene	56.3		μg/l	10.0	100		56	40-140		
Acenaphthylene	63.9		μg/l	10.0	100		64	40-140		
Acenaphthene	66.1		μg/l	10.0	100		66	40-140		
Fluorene	74.5		μg/l	10.0	100		74	40-140		
Phenanthrene	91.3		μg/l	10.0	100		91	40-140		
Anthracene	76.5		μg/l	10.0	100		76	40-140		
Fluoranthene	78.0		μg/l	10.0	100		78	40-140		
Pyrene	76.8		μg/l	10.0	100		77	40-140		
Benzo (a) anthracene	87.9		μg/I	10.0	100		88	40-140		
Chrysene	74.9			10.0	100		75	40-140		
Benzo (b) fluoranthene	74.9 80.2		μg/l	10.0	100		75 80	40-140 40-140		

Extractable Petroleum Hydrocarbons - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result %RE	%REC EC Limits	RPD	RPD Limit
atch 1208630 - SW846 3510C									
LCS (1208630-BS3)					<u>Pre</u>	pared: 17-Apr-12 Ana	lyzed: 18-Apr-12		
Benzo (k) fluoranthene	43.9		μg/l	10.0	100	44	40-140		
Benzo (a) pyrene	77.1		μg/l	2.00	100	77	40-140		
Indeno (1,2,3-cd) pyrene	79.8		μg/l	5.00	100	80	40-140		
Dibenzo (a,h) anthracene	76.9		μg/l	5.00	100	77	40-140		
Benzo (g,h,i) perylene	62.9		μg/l	10.0	100	63	40-140		
n-Nonane (C9)	53.6		μg/l	5.00	100	54	30-140		
n-Decane	62.0		μg/l	5.00	100	62	40-140		
n-Dodecane	67.3		μg/l	5.00	100	67	40-140		
n-Tetradecane	76.3		μg/l	5.00	100	76	40-140		
n-Hexadecane	83.1		μg/l	5.00	100	83	40-140		
n-Octadecane	86.5		μg/l	5.00	100	86	40-140		
n-Nonadecane	86.9		μg/l	5.00	100	87	40-140		
n-Eicosane	86.7		μg/l	5.00	100	87	40-140		
n-Docosane	86.1		μg/l	5.00	100	86	40-140		
n-Tetracosane	84.1		μg/l	5.00	100	84			
n-Hexacosane	84.2		μg/l	5.00	100	84	40-140		
n-Octacosane	84.8		μg/l	5.00	100	85	40-140		
n-Triacontane	81.6		μg/l	5.00	100	82			
n-Hexatriacontane	78.1		μg/l	5.00	100	78			
Naphthalene (aliphatic fraction)	0.00		μg/l				0-200		
2-Methylnaphthalene (aliphatic fraction)	0.00		μg/l				0-200		
Surrogate: 1-Chlorooctadecane	42.9		μg/l		50.0	86	40-140		
Surrogate: Ortho-Terphenyl	40.3		μg/l		50.0	81	40-140		
Surrogate: 2-Fluorobiphenyl	20.2		μg/l		40.0	50	40-140		
Naphthalene Breakthrough	0.00		%				0-5		
2-Methylnaphthalene Breakthrough	0.00		%				0-5		
LCS Dup (1208630-BSD1)					Pre	pared: 17-Apr-12 Ana	lyzed: 18-Apr-12		
C9-C18 Aliphatic Hydrocarbons	507		μg/l	50.0	600	84	40-140	23	25
C19-C36 Aliphatic Hydrocarbons	774		μg/l	50.0	800	97	40-140	0.3	25
C11-C22 Aromatic Hydrocarbons	1170		μg/l	50.0	1700	69	40-140	6	25
LCS Dup (1208630-BSD2)					Pre	pared: 17-Apr-12 Ana	lvzed: 18-Apr-12		
Naphthalene	40.4		μg/l	10.0	100	40		12	25
2-Methylnaphthalene	42.0		μg/l	10.0	100	42		11	25
Acenaphthylene	51.6		μg/l	10.0	100	52		15	25
Acenaphthene	53.4		μg/l	10.0	100	53		12	25
Fluorene	60.8		μg/l	10.0	100	61		15	25
Phenanthrene	81.3		μg/l	10.0	100	81		13	25
Anthracene	59.5	QR2	μg/l	10.0	100	60		29	25
Fluoranthene	76.8		μg/l	10.0	100	77		8	25
Pyrene	76.8 75.2		μg/I	10.0	100	75		7	25
Benzo (a) anthracene	92.8		μg/I μg/I	10.0	100	93		0.6	25 25
Chrysene	78.5		μg/I μg/I	10.0	100	78		3	25
Benzo (b) fluoranthene	76.5 85.8		μg/I μg/I	10.0	100	86		3	25 25
Benzo (k) fluoranthene	85.8 77.9			10.0	100	78		3 12	25 25
			μg/l			78 80			
Benzo (a) pyrene	79.8		μg/l	2.00	100			0.3	25
Indeno (1,2,3-cd) pyrene	72.9		μg/l	5.00	100	73		12	25
Dibenzo (a,h) anthracene	81.4		μg/l	5.00	100	81		20	25
Benzo (g,h,i) perylene	71.2	050	μg/l	10.0	100	71		4	25
n-Nonane (C9)	34.4	QR2	μg/l	5.00	100	34		35	25
		QR2							25 25
n-Decane n-Dodecane	47.4 61.1	QR2	µg/I µg/I µg/I	5.00 5.00	100 100	47 61	40-140	27 20	

Extractable Petroleum Hydrocarbons - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1208630 - SW846 3510C										
LCS Dup (1208630-BSD2)					Pre	pared: 17-Apr	-12 Analyzed:	18-Apr-12		
n-Tetradecane	78.3		μg/l	5.00	100		78	40-140	14	25
n-Hexadecane	88.7		μg/l	5.00	100		89	40-140	14	25
n-Octadecane	95.1		μg/l	5.00	100		95	40-140	13	25
n-Nonadecane	98.2		μg/l	5.00	100		98	40-140	13	25
n-Eicosane	101		μg/l	5.00	100		101	40-140	12	25
n-Docosane	106		μg/l	5.00	100		106	40-140	11	25
n-Tetracosane	106		μg/l	5.00	100		106	40-140	10	25
n-Hexacosane	107		μg/l	5.00	100		107	40-140	9	25
n-Octacosane	108		μg/l	5.00	100		108	40-140	9	25
n-Triacontane	104		μg/l	5.00	100		104	40-140	8	25
n-Hexatriacontane	99.9		μg/l	5.00	100		100	40-140	6	25
Naphthalene (aliphatic fraction)	0.00		μg/l					0-200		200
2-Methylnaphthalene (aliphatic fraction)	0.00		μg/l					0-200		200
Surrogate: 1-Chlorooctadecane	41.3		μg/l		50.0		83	40-140		
Surrogate: Ortho-Terphenyl	37.2		μg/l		50.0		74	40-140		
Surrogate: 2-Fluorobiphenyl	24.1		μg/l		40.0		60	40-140		
Naphthalene Breakthrough	0.00		%					0-5		
2-Methylnaphthalene Breakthrough	0.00		%					0-5		

Soluble Metals by EPA 6000/7000 Series Methods - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1208530 - SW846 3005A										
Blank (1208530-BLK1)					Pre	pared: 16-Apr	-12 Analyzed:	17-Apr-12		
Lead	< 0.0075		mg/l	0.0075		•	•			
Selenium	< 0.0150		mg/l	0.0150						
Chromium	< 0.0050		mg/l	0.0050						
Silver	< 0.0050		mg/l	0.0050						
Arsenic	< 0.0040		mg/l	0.0040						
Barium	< 0.0050		mg/l	0.0050						
Cadmium	< 0.0025		mg/l	0.0025						
LCS (1208530-BS1)			•		Pro	nared· 16-∆nr	-12 Analyzed:	17-∆nr-12		
Lead	1.21		mg/l	0.0075	1.25	Jaica. 10 Apr	97	85-115		
Selenium	1.17		mg/l	0.0150	1.25		93	85-115		
Chromium	1.16		mg/l	0.0050	1.25		93	85-115		
Cadmium	1.20		mg/l	0.0035	1.25		96	85-115		
Barium	1.25		•	0.0023	1.25		100	85-115		
Arsenic	1.25		mg/l	0.0050	1.25		99	85-115 85-115		
Silver	1.24		mg/l	0.0040	1.25		99 95	85-115 85-115		
	1.10		mg/l	0.0050						
LCS Dup (1208530-BSD1)						oared: 16-Apr	-12 Analyzed:	•		
Lead	1.27		mg/l	0.0075	1.25		101	85-115	4	20
Selenium	1.23		mg/l	0.0150	1.25		98	85-115	5	20
Silver	1.23		mg/l	0.0050	1.25		99	85-115	4	20
Chromium	1.23		mg/l	0.0050	1.25		98	85-115	5	20
Cadmium	1.26		mg/l	0.0025	1.25		100	85-115	4	20
Arsenic	1.31		mg/l	0.0040	1.25		105	85-115	5	20
Barium	1.32		mg/l	0.0050	1.25		106	85-115	5	20
<u>Duplicate (1208530-DUP1)</u>			Source: SE	<u>347144-02</u>	Pre	pared: 16-Apr	-12 Analyzed:	17-Apr-12		
Selenium	< 0.0150		mg/l	0.0150		BRL				20
Lead	< 0.0075		mg/l	0.0075		BRL				20
Chromium	< 0.0050		mg/l	0.0050		BRL				20
Cadmium	< 0.0025		mg/l	0.0025		BRL				20
Barium	0.0357		mg/l	0.0050		0.0333			7	20
Arsenic	< 0.0040		mg/l	0.0040		BRL				20
Silver	< 0.0050		mg/l	0.0050		BRL				20
Matrix Spike (1208530-MS1)			Source: SE	347144-02	Pre	pared: 16-Apr	-12 Analyzed:	17-Apr-12		
Lead	1.24		mg/l	0.0075	1.25	BRL	99	75-125		
Selenium	1.26		mg/l	0.0150	1.25	BRL	101	75-125		
Barium	1.34		mg/l	0.0050	1.25	0.0333	105	75-125		
Cadmium	1.25		mg/l	0.0025	1.25	BRL	100	75-125		
Silver	1.26		mg/l	0.0050	1.25	BRL	101	75-125		
Chromium	1.26		mg/l	0.0050	1.25	BRL	101	75-125		
Arsenic	1.35		mg/l	0.0040	1.25	BRL	108	75-125		
	1.00		_							
Matrix Spike Dup (1208530-MSD1)	4.46		Source: SE				-12 Analyzed:		7	00
Lead	1.16		mg/l	0.0075	1.25	BRL	93	75-125	7	20
Selenium	1.16		mg/l	0.0150	1.25	BRL	93	75-125	8	20
Cadmium	1.17		mg/l	0.0025	1.25	BRL	94	75-125	7	20
Barium	1.27		mg/l	0.0050	1.25	0.0333	99	75-125	5	20
Arsenic	1.26		mg/l	0.0040	1.25	BRL	101	75-125	7	20
Silver	1.17		mg/l	0.0050	1.25	BRL	94	75-125	7	20
Chromium	1.16		mg/l	0.0050	1.25	BRL	93	75-125	8	20
Post Spike (1208530-PS1)			Source: SE		Pre	•	-12 Analyzed:	17-Apr-12		
Lead	1.17		mg/l	0.0075	1.25	BRL	94	80-120		
Selenium	1.18		mg/l	0.0150	1.25	BRL	95	80-120		
Silver	1.21		mg/l	0.0050	1.25	BRL	97	80-120		

Soluble Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1208530 - SW846 3005A										
Post Spike (1208530-PS1)		:	Source: SE	347144-0 <u>2</u>	Pre	pared: 16-Apr	-12 Analyzed	: 17-Apr-12		
Arsenic	1.26		mg/l	0.0040	1.25	BRL	101	80-120		
Barium	1.26		mg/l	0.0050	1.25	0.0333	98	80-120		
Cadmium	1.19		mg/l	0.0025	1.25	BRL	95	80-120		
Chromium	1.16		mg/l	0.0050	1.25	BRL	92	80-120		

Soluble Metals by EPA 200 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1208531 - EPA200/SW7000 Series										
Blank (1208531-BLK1)					Pre	pared: 16-Apr-	12 Analyzed:	17-Apr-12		
Mercury	< 0.00020		mg/l	0.00020						
LCS (1208531-BS1)					Pre	pared: 16-Apr-	12 Analyzed:	17-Apr-12		
Mercury	0.00461		mg/l	0.00020	0.00500		92	85-115		
<u>Duplicate (1208531-DUP1)</u>			Source: S	B47144-03	Pre	pared: 16-Apr-	12 Analyzed:	17-Apr-12		
Mercury	< 0.00020		mg/l	0.00020		BRL				20
Matrix Spike (1208531-MS1)			Source: S	B47144-03	Pre	pared: 16-Apr-	12 Analyzed:	17-Apr-12		
Mercury	0.00470		mg/l	0.00020	0.00500	BRL	94	80-120		
Matrix Spike Dup (1208531-MSD1)			Source: S	B47144-03	Pre	pared: 16-Apr-	12 Analyzed:	17-Apr-12		
Mercury	0.00468		mg/l	0.00020	0.00500	BRL	94	80-120	0.4	20

Extractable Petroleum Hydrocarbons - CCV Evaluation Report

Analyte(s)	Average RF	CCRF	% D	Limit	
Batch S204431					
Calibration Check (S204431-CCV1)					
C9-C18 Aliphatic Hydrocarbons	2.246762E+08	1.83527E+08	-13.5	25	
C19-C36 Aliphatic Hydrocarbons	3.194745E+08	1.894385E+08	-15.4	25	
Unadjusted C11-C22 Aromatic Hydrocarbons	20.13922	19.39912	11.2	25	
n-Nonane (C9)	208770.2	228859.7	9.6	30	
n-Decane	207562.7	231613.5	11.6	25	
n-Dodecane	205872.2	231039.8	12.2	25	
n-Tetradecane	203563.3	225178.5	10.6	25	
n-Hexadecane	202270.4	200063.4	-1.1	25	
n-Octadecane	196922.5	179471.4	-8.9	25	
n-Nonadecane	193536.3	175991.6	-9.1	25	
n-Eicosane	188848.2	172894	-8.4	25	
n-Docosane	184035.6	172983.2	-6.0	25	
n-Tetracosane	180606.5	170815.3	-5.4	25	
n-Hexacosane	179194.9	171635.8	-4.2	25	
n-Octacosane	175341.2	170830.5	-2.6	25	
n-Triacontane	180784.2	169311.4	-6.3	25	
n-Hexatriacontane	179954.4	159944.7	-11.1	25	
Calibration Check (S204431-CCV2)					
Naphthalene	7.056121	6.416367	-9.1	25	
2-Methylnaphthalene	4.72779	4.318174	-8.7	25	
Acenaphthylene	6.693564	6.460383	-3.5	25	
Acenaphthene	4.684416	4.354118	-7.1	25	
Fluorene	4.649559	4.670014	0.4	25	
Phenanthrene	5.533264	6.299575	13.8	25	
Anthracene	6.933528	6.608845	-4.7	25	
Fluoranthene	7.097068	6.569984	-7.4	25	
Pyrene	7.511488	6.822951	-9.2	25	
Benzo (a) anthracene	4.66105	4.381366	-6.0	25	
Chrysene	7.656343	6.169547	-19.4	25	
Benzo (b) fluoranthene	3.692349	3.298615	-10.7	25	
Benzo (k) fluoranthene	6.777886	5.715731	-15.7	25	
Benzo (a) pyrene	4.597956	3.719298	-19.1	25	
Indeno (1,2,3-cd) pyrene	4.107122	3.42964	-16.5	25	
Dibenzo (a,h) anthracene	3.255377	2.697666	-17.1	25	
Benzo (g,h,i) perylene	4.022939	3.08492	-23.3	25	
Calibration Check (S204431-CCV3)					
C9-C18 Aliphatic Hydrocarbons	2.246762E+08	1.94072E+08	-8.3	25	
C19-C36 Aliphatic Hydrocarbons	3.194745E+08	1.792379E+08	-21.1	25	
Unadjusted C11-C22 Aromatic Hydrocarbons	20.13922	19.03394	8.8	25	
n-Nonane (C9)	208770.2	187890.2	-10.0	30	
n-Decane	207562.7	190727.2	-8.1	25	
n-Dodecane	205872.2	190910	-7.3	25	
n-Tetradecane	203563.3	190873.4	-6.2	25	
n-Hexadecane	202270.4	187157	-7.5	25	
n-Octadecane	196922.5	176259.3	-10.5	25	
n-Nonadecane	193536.3	171516.3	-11.4	25	
n-Eicosane	188848.2	165702	-12.3	25	
n-Docosane	184035.6	160931.9	-12.6	25	
n-Tetracosane	180606.5	156224.7	-13.5	25	
n-Hexacosane	179194.9	157740.2	-12.0	25	
n-Octacosane	175341.2	155480.6	-11.3	25	

Extractable Petroleum Hydrocarbons - CCV Evaluation Report

	Average				
Analyte(s)	RF	CCRF	% D	Limit	
Batch S204431					
Calibration Check (S204431-CCV3)					
n-Triacontane	180784.2	155884.4	-13.8	25	
n-Hexatriacontane	179954.4	148801	-17.3	25	
Calibration Check (S204431-CCV4)					
Naphthalene	7.056121	5.91189	-16.2	25	
2-Methylnaphthalene	4.72779	4.218248	-10.8	25	
Acenaphthylene	6.693564	6.044865	-9.7	25	
Acenaphthene	4.684416	4.129053	-11.9	25	
Fluorene	4.649559	4.310468	-7.3	25	
Phenanthrene	5.533264	6.013792	8.7	25	
Anthracene	6.933528	6.287946	-9.3	25	
Fluoranthene	7.097068	6.702204	-5.6	25	
Pyrene	7.511488	6.966303	-7.3	25	
Benzo (a) anthracene	4.66105	4.819396	3.4	25	
Chrysene	7.656343	6.781202	-11.4	25	
Benzo (b) fluoranthene	3.692349	3.664753	-0.7	25	
Benzo (k) fluoranthene	6.777886	6.297799	-7.1	25	
Benzo (a) pyrene	4.597956	4.392673	-4.5	25	
Indeno (1,2,3-cd) pyrene	4.107122	3.457898	-15.8	25	
Dibenzo (a,h) anthracene	3.255377	2.621034	-19.5	25	
Benzo (g,h,i) perylene	4.022939	3.640603	-9.5	25	

Volatile Organic Compounds - CCV Evaluation Report

Analyte(s)	Average RF	CCRF	% D	Limit	
	IVI	COM	,,,,	Limit	
Batch S204314					
Calibration Check (S204314-CCV1)					
Benzene	118535.5	121441.2	2.5	25	
Ethylbenzene	79913.34	83477.74	4.5	25	
Methyl tert-butyl ether	26187.5	21009.56	-19.8	25	
Naphthalene	75027.16	75698.96	0.9	25	
Toluene	98734.49	101854.3	3.2	25	
m,p-Xylene	92675.13	97216.47	4.9	25	
o-Xylene	78999.76	83845.92	6.1	25	
2-Methylpentane	21987.17	27324.06	24.3	25	
n-Nonane	17364.82	20437.44	17.7	30	
n-Pentane	20561.1	22586.14	9.8	25	
1,2,4-Trimethylbenzene	77150.91	80885.98	4.8	25	
2,2,4-Trimethylpentane	25151.48	25681.38	2.1	25	
n-Butylcyclohexane	19643.16	20635.16	5.1	25	
n-Decane	15889.53	16718.58	5.2	25	
Calibration Check (S204314-CCV2)					
Benzene	118535.5	121332.4	2.4	25	
Ethylbenzene	79913.34	83186.44	4.1	25	
Methyl tert-butyl ether	26187.5	22296.68	-14.9	25	
Naphthalene	75027.16	78121.44	4.1	25	
Toluene	98734.49	102047	3.4	25	
m,p-Xylene	92675.13	96809.43	4.5	25	
o-Xylene	78999.76	83592.08	5.8	25	
2-Methylpentane	21987.17	24081.72	9.5	25	
n-Nonane	17364.82	15128.4	-12.9	30	
n-Pentane	20561.1	23971.42	16.6	25	
1,2,4-Trimethylbenzene	77150.91	79635.74	3.2	25	
2,2,4-Trimethylpentane	25151.48	23863.32	-5.1	25	
n-Butylcyclohexane	19643.16	15969.82	-18.7	25	
n-Decane	15889.53	12521.62	-21.2	25	

Notes and Definitions

QR2 The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the

QC batch were accepted based on percent recoveries and completeness of QC data.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

A Matrix Spike and Matrix Spike Duplicate (MS/MSD) for MADEP EPH CAM may not have been analyzed with the samples in this work order. According to the method these spikes are performed only when requested by the client. If requested the spike recoveries are included in the batch QC data.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor Nicole Leja

5B47144 R

CHAIN OF CUSTODY RECORD

Page __/_ of ___/

Special Handling:

☐ Standard TAT - 7 to 10 business days Rush TAT - Date Needed: 4/18/2012 · All TATs subject to laboratory approval.

· Min. 24-hour notification needed for rushes.

· Samples disposed of after 60 days unless otherwise instructed.

Report To:	ECS-Brastled	aro	Invoice To	: EC	25 -	Sg	ae	ai	n			Site	Nam	e: 100 Mohe	awk Trail
Telephone #:	(802) 257-1	195	1000						20 20 24 24					/	State: MA
	Aliva Flan		P.O. No.: _				RQI	N: C	000	2	_	Sam	pler(s	kertlotz	
1=Na ₂ S	$52O_3$ 2=HCl 3=H		5=NaOH 6=	=Asco	orbic A 11=_	cid	7=0	CH ₃ O	Н	100	29	-	-	rvative code below:	QA/QC Reporting Notes: (check as needed)
	g Water GW=Groun						Cor	ntaine	ers:		7		1	Analyses:	Provide MA DEP MCP CAM Report
	Surface Water SO X2= G=Grab C=0	X3=_	e A=Air	- 100 mm m	X	70A Vials	# of Amber Glass	of Clear Glass	of Plastic		H	H	Was Deets	S	□ Provide CT DPH RCP Report QA/QC Reporting Level □ Standard □ No QC □ Other □ Other
Lab Id:	Sample Id:	Date:	Time:	Type	Matrix	# of VOA	# of <i>∀</i>	# of C	# of P		NPH	E	Dissolved	28	State specific reporting standards:
7144-C1	TRIP	4/11/12	17 75	9	XI	1	8				X			自 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五	RCKA8 metals
1-02	MW-1	28665	4:45		GW	3	2		1			X	X	X	were field filtered
-3	MW-3	图 景 的 整 看 电	12:15			1	2		1	9		X	X	X	
1 - cy	MW-H.	日 美 上 景 图 1	13:12												
1-05	MW-5	1	4:00	1	V	V	i		1		1		X	X	是 图 图 图 图 图 图
U	建工艺艺艺艺艺	11 400			8 5	3 =	4							新	1 3 1 8. 1条.5 3 年
v	機構立直接公司	Marketter		8 0						6					1 日 1 日 1 日 1 日 1 日 1 日 1 日 1 日 1 日 1 日
	July 3	Hockertlety										Č.	0 8		A PROPERTY OF A
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	性更多的					1 44						经营销 丁島 華書	30000000000000000000000000000000000000
Relin	nquished by:	Receiv	ved by:		Γ	ate:		1	Γime:		Tem	p°C		EDD Format	
Holly .	1. Madealloty	7	DEC		4/	121	12	12	1,2	8					nmia@ecsconsult.com
7	DEC	1/0			4/1	2/1	12	4	110)	10				1/2
						l ·						ı	□ Aml	oient 🗆 Iced Refrigerate	ed Fridge temp C Freezer temp C

Report Date: 12-Mar-12 11:10

□ Re-Issued Report □ Revised Report

Laboratory Report

Environmental Compliance Services 30 Harris PlaceAlex Brattleboro, VT 05301

Attn: Alicia Flammia

Project: 100 Mohawk Trail - Greenfield, MA

Project #: 04-205185

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SB44670-01	MW-3	Ground Water	24-Feb-12 10:57	29-Feb-12 16:00
SB44670-02	OS-17	Ground Water	24-Feb-12 10:12	29-Feb-12 16:00
SB44670-03	MW-1	Ground Water	24-Feb-12 12:52	29-Feb-12 16:00
SB44670-04	MW-4	Ground Water	24-Feb-12 11:22	29-Feb-12 16:00
SB44670-05	MW-5	Ground Water	24-Feb-12 11:56	29-Feb-12 16:00
SB44670-06	OS-11SR	Ground Water	24-Feb-12 09:38	29-Feb-12 16:00
SB44670-07	Trip	Trip	24-Feb-12 09:00	29-Feb-12 16:00

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Ticole Leja

Spectrum Analytical holds certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes.

Please note that this report contains 18 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

MassDEP Analytical Protocol Certification Form

Labo	ratory Name: Sp	ectrum Analytical, Inc.		Project #: 04-205	5185	
Proje	ect Location: 100	Mohawk Trail - Greenfi	eld, MA	RTN:		
This	form provides ce	ertifications for the follow	wing data set:	SB44670-01 through SB4	4670-07	
Matr	ices: Ground W	ater				
	Trip					
CAM	Protocol		1			
_	260 VOC AM II A	7470/7471 Hg CAM III B	MassDEP VPH CAM IV A	8081 Pesticides CAM V B	7196 Hex Cr CAM VI B	MassDEP APH CAM IX A
	270 SVOC AM II B	7010 Metals CAM III C	MassDEP EPH CAM IV B	8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VOC CAM IX B
	010 Metals AM III A	6020 Metals CAM III D	8082 PCB CAM V A	9012 Total Cyanide/PAC CAM VI A	9014 Total Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B
		Affirmative responses	to questions A through		ımptive Certainty" status	
A				cribed on the Chain of Co repared/analyzed within r		✓ Yes No
В	Were the analytic protocol(s) follo	. ,	ociated QC requirements	specified in the selected	CAM	✓ Yes No
C			analytical response action I performance standard no	s specified in the selected on-conformances?	I CAM	✓ Yes No
D				ents specified in CAM VI Reporting of Analytical		✓ Yes No
E		•		ed without significant mo	dification(s)?	Yes No Yes No
F		*	•	non-conformances identification questions A through E)		✓ Yes No
		Responses to quest	tions G, H and I below at	re required for "Presump	otive Certainty" status	•
G	Were the reporti	ing limits at or below all	CAM reporting limits spe	ecified in the selected CA	M protocol(s)?	Yes ✔ No
		at achieve "Presumptive Co in 310 CMR 40. 1056 (2)(k)	•	cessarily meet the data usab	ility and representativeness	
Н	Were all QC per	rformance standards spec	ified in the CAM protoco	l(s) achieved?		Yes ✔ No
I	Were results rep	ported for the complete ar	alyte list specified in the	selected CAM protocol(s)?	Yes ✔ No
All ne	gative responses a	re addressed in a case narro	utive on the cover page of th	nis report.		•
				pon my personal inquiry of y knowledge and belief, acc	those responsible for obtain urate and complete.	ing the
					Micole L	eja
					Nicole Leja Laboratory Director Date: 3/12/2012	r

CASE NARRATIVE:

The samples were received 1.3 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of \pm 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

According to WSC-CAM 5/2009 Rev.1, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended recovery range, a range has been set based on historical control limits.

Some target analytes which are not listed as exceptions in the Summary of CAM Reporting Limits may exceed the recommended RL based on sample initial volume or weight provided, % moisture content, or responsiveness of a particular analyte to purge and trap instrumentation.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8260C

Samples:

SB44670-02 *OS-17*

The concentration indicated for this analyte is an estimated value. This value is considered an estimate (CLP E-flag).

cis-1,2-Dichloroethene

SB44670-02RE1 *OS-17*

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SB44670-04 *MW-4*

The concentration indicated for this analyte is an estimated value. This value is considered an estimate (CLP E-flag).

cis-1,2-Dichloroethene

SB44670-04RE1 MW-4

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SB44670-05 *MW-5*

The concentration indicated for this analyte is an estimated value. This value is considered an estimate (CLP E-flag).

cis-1,2-Dichloroethene

Trichloroethene

SB44670-05RE1 MW-5

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

-	Sample Identification MW-3			Client I	Project #		Matrix	<u>Coll</u>	Collection Date/Time			Received		
SB44670	0-01			04-20	05185		Ground Wa	ater 24	1-Feb-12 10	:57	29-1	Feb-12		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.	
Volatile C	Organic Compounds													
	ganic Halocarbons													
Prepared	by method SW846 5030 V	Vater MS												
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.5	1	SW846 8260C	07-Mar-12	07-Mar-12	ek	1205029		
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1				"			
74-83-9	Bromomethane	< 2.0		μg/l	2.0	1.1	1				"			
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.5	1				"			
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.7	1				"			
75-00-3	Chloroethane	< 2.0		μg/l	2.0	1.0	1				"			
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.7	1				"			
74-87-3	Chloromethane	< 2.0		μg/l	2.0	1.5	1				"			
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.3	1				"			
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.7	1				"			
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.7	1				"			
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.6	1				"			
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.4	1	н			"			
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.7	1				"			
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.8	1				"			
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1				"			
156-59-2	cis-1,2-Dichloroethene	18.4		μg/l	1.0	0.7	1				"			
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.7	1	н			"			
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.7	1	н			"			
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.3	1				"			
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1				"			
75-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.7	1	н			"			
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.3	1	н			"			
127-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.7	1	н			"			
71-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.6	1				"			
79-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.6	1				"			
79-01-6	Trichloroethene	22.7		μg/l	1.0	0.8	1				"			
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	0.6	1				n .			
75-01-4	Vinyl chloride	< 1.0		μg/l	1.0	0.8	1				"			
Surrogate red	coveries:													
460-00-4	4-Bromofluorobenzene	103			70-13	0 %					"			
2037-26-5	Toluene-d8	103			70-13			п			"			
17060-07-0	1,2-Dichloroethane-d4	107			70-13						"			
1868-53-7	Dibromofluoromethane	104			70-13						"			
.500 00-7	2.bromondorometrarie	104			70-13	U /U								

OS-17 SB44670-	dentification -02				<u>Project #</u> 05185		<u>Matrix</u> Ground Wa		ection Date I-Feb-12 10			reb-12	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile O	organic Compounds												
	anic Halocarbons												
<u> </u>	by method SW846 5030 V				0.5	0.5		01410.40.00000	0714 40	07.14 40	-1-	1005000	
	Bromodichloromethane Bromoform	< 0.5		μg/l	0.5	0.5	1	SW846 8260C	07-Mar-12	07-Mar-12	ek "	1205029	
75-25-2 74-83-9	Bromorethane	< 1.0		μg/l	1.0	0.6	1				"		
56-23-5		< 2.0		μg/l	2.0	1.1	1						
	Carbon tetrachloride	< 1.0 < 1.0		μg/l	1.0	0.5	1						
108-90-7	Chlorobenzene			μg/l	1.0	0.7	1				"		
75-00-3	Chloroethane	< 2.0		μg/l	2.0	1.0	1				"		
37-66-3	Chloroform	< 1.0		μg/l	1.0	0.7	1				"		
4-87-3	Chloromethane	< 2.0		μg/l "	2.0	1.5	1						
24-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.3	1				"		
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.7	1				"		
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.7	1				"		
06-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.6	1				"		
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.4	1						
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.7	1	ı			"		
07-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.8	1				"		
5-35-4	1,1-Dichloroethene	1.5		μg/l	1.0	0.5	1				"		
56-59-2	cis-1,2-Dichloroethene	546	E	μg/l	1.0	0.7	1				"		
56-60-5	trans-1,2-Dichloroethene	8.3		μg/l	1.0	0.7	1				"		
8-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.7	1				"		
0061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.3	1				"		
0061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1				"		
75-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.7	1				"		
9-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.3	1				"		
27-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.7	1				"		
1-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.6	1				"		
79-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.6	1				"		
9-01-6	Trichloroethene	8.0		μg/l	1.0	0.8	1				"		
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	0.6	1	н		п	"		
75-01-4	Vinyl chloride	3.1		μg/l	1.0	0.8	1	II .			"		
Surrogate rec	coveries:												
160-00-4	4-Bromofluorobenzene	96			70-13	0 %					"		
2037-26-5	Toluene-d8	102			70-13						"		
17060-07-0	1,2-Dichloroethane-d4	103			70-13						"		
1868-53-7	Dibromofluoromethane	105			70-13						"		
Re-analysis	of Volatile Organic Halocarbons		GS1		70.10	• ,.							
<u> </u>	by method SW846 5030 V Bromodichloromethane	< 10.0		μg/l	10.0	9.6	20	SW846 8260C	08-Mar-12	08-Mar-12	ek	1205152	
75-25-2	Bromoform	< 20.0		μg/l	20.0	12.1	20	"			"	00102	
4-83-9	Bromomethane	< 40.0		μg/l	40.0	22.8	20				"		
6-23-5	Carbon tetrachloride	< 20.0		μg/l	20.0	11.0	20				"		
08-90-7	Chlorobenzene	< 20.0			20.0	13.1	20				"		
	CHICHODEHZEHE	~ 20.0		μg/l	20.0	13.1	20						
75-00-3	Chloroethane	< 40.0		μg/l	40.0	20.7	20	II .			"		

Client Project # 04-205185

Matrix Ground Water Collection Date/Time 24-Feb-12 10:12 Received 29-Feb-12

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Ceri
Volatile O	rganic Compounds												
	of Volatile Organic Halocarbons		GS1										
Prepared	by method SW846 5030 V	Vater MS											
74-87-3	Chloromethane	< 40.0		μg/l	40.0	29.5	20	SW846 8260C	08-Mar-12	08-Mar-12	ek	1205152	
124-48-1	Dibromochloromethane	< 10.0		μg/l	10.0	5.8	20				"	"	
95-50-1	1,2-Dichlorobenzene	< 20.0		μg/l	20.0	13.4	20				"		
541-73-1	1,3-Dichlorobenzene	< 20.0		μg/l	20.0	14.2	20				"		
106-46-7	1,4-Dichlorobenzene	< 20.0		μg/l	20.0	12.5	20			н	"		
75-71-8	Dichlorodifluoromethane (Freon12)	< 40.0		μg/l	40.0	8.9	20	п			"		
75-34-3	1,1-Dichloroethane	< 20.0		μg/l	20.0	13.6	20				"		
107-06-2	1,2-Dichloroethane	< 20.0		μg/l	20.0	15.6	20				"		
75-35-4	1,1-Dichloroethene	< 20.0		μg/l	20.0	9.8	20						
156-59-2	cis-1,2-Dichloroethene	537		μg/l	20.0	14.3	20			н			
156-60-5	trans-1,2-Dichloroethene	< 20.0		μg/l	20.0	13.6	20			н	"		
78-87-5	1,2-Dichloropropane	< 20.0		μg/l	20.0	14.2	20			н			
10061-01-5	cis-1,3-Dichloropropene	< 10.0		μg/l	10.0	5.0	20			н	"		
10061-02-6	trans-1,3-Dichloropropene	< 10.0		μg/l	10.0	10.0	20				"		
75-09-2	Methylene chloride	< 40.0		μg/l	40.0	13.8	20				"		
79-34-5	1,1,2,2-Tetrachloroethane	< 10.0		μg/l	10.0	7.0	20				"		
127-18-4	Tetrachloroethene	< 20.0		μg/l	20.0	14.9	20				"		
71-55-6	1,1,1-Trichloroethane	< 20.0		μg/l	20.0	11.6	20	п			"		
79-00-5	1,1,2-Trichloroethane	< 20.0		μg/l	20.0	12.8	20	п			"		
79-01-6	Trichloroethene	< 20.0		μg/l	20.0	15.1	20	п			"		
75-69-4	Trichlorofluoromethane (Freon 11)	< 20.0		μg/l	20.0	12.6	20	п		п	"		
75-01-4	Vinyl chloride	< 20.0		μg/l	20.0	16.1	20	п			"		
Surrogate rec	coveries:												
460-00-4	4-Bromofluorobenzene	98			70-13	0 %		п			"		
2037-26-5	Toluene-d8	103			70-13	0 %		п			"		
17060-07-0	1,2-Dichloroethane-d4	109			70-13	0 %					"		
1868-53-7	Dibromofluoromethane	105			70-13	0 %							

MW-1	dentification				<u>Project #</u> 05185		<u>Matrix</u> Ground Wa		ection Date 4-Feb-12 12			ceived Feb-12	
SB44670 <i>CAS No.</i>	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
V-1-41- O)									<u> </u>			
	Organic Compounds												
	<u>lanic Halocarbons</u> I by method SW846 5030 V	Vater MS											
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.5	1	SW846 8260C	07-Mar-12	07-Mar-12	ek	1205029	
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1	п			"		
74-83-9	Bromomethane	< 2.0		μg/l	2.0	1.1	1				"		
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.5	1	п			"		
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.7	1				"		
75-00-3	Chloroethane	< 2.0		μg/l	2.0	1.0	1				"		
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.7	1				"		
74-87-3	Chloromethane	< 2.0		μg/l	2.0	1.5	1				"		
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.3	1				"		
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.7	1				"		
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.7	1				"		
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.6	1				"		
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.4	1			ı	"		
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.7	1				"		
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.8	1				"		
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1				"		
156-59-2	cis-1,2-Dichloroethene	15.9		μg/l	1.0	0.7	1				"		
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.7	1				"		
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.7	1				"		
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.3	1	н			"		
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1				"		
75-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.7	1				"		
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.3	1				"		
127-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.7	1				"		
71-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.6	1	н			"		
79-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.6	1				"		
79-01-6	Trichloroethene	27.0		μg/l	1.0	0.8	1				"		
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	0.6	1	н			"		
75-01-4	Vinyl chloride	< 1.0		μg/l	1.0	0.8	1	ı			"		
Surrogate red	coveries:												
460-00-4	4-Bromofluorobenzene	98			70-13	0 %					"		
2037-26-5	Toluene-d8	103			70-13						"		
17060-07-0	1,2-Dichloroethane-d4	105			70-13						"		
1868-53-7	Dibromofluoromethane	104			70-13						"		

MW-4 SB44670	dentification -04			Client F 04-20	Project # 05185		<u>Matrix</u> Ground Wa	· · · · · · · · · · · · · · · · · · ·	ection Date -Feb-12 11			ceived Feb-12	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cei
Volatile O	Organic Compounds												
	anic Halocarbons by method SW846 5030 V	Vator MS											
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.5	1	SW846 8260C	07-Mar-12	07-Mar-12	ek	1205029	
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1	"	# I	07 Mai 12	"	"	
74-83-9	Bromomethane	< 2.0		μg/l	2.0	1.1	1				"		
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.5	1				"		
08-90-7	Chlorobenzene	< 1.0		μg/I	1.0	0.7	1	ı			"		
75-00-3	Chloroethane	< 2.0		μg/I	2.0	1.0	1						
37-66-3	Chloroform	< 1.0		μg/l	1.0	0.7	1				"		
4-87-3	Chloromethane	< 2.0		μg/l	2.0	1.5	1						
24-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.3	1	п					
5-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.7	1						
341-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.7	1				"		
06-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.7	1				"		
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.4	1	1			"		
5-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.7	1				"		
07-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.8	1				"		
5-35-4	1,1-Dichloroethene	1.4		μg/l	1.0	0.5	1						
56-59-2	cis-1,2-Dichloroethene	414	E	μg/l	1.0	0.7	1						
56-60-5	trans-1,2-Dichloroethene	2.9		μg/l	1.0	0.7	1						
8-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.7	1						
0061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/I	0.5	0.3	1						
0061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/I	0.5	0.5	1						
5-09-2	Methylene chloride	< 2.0		μg/I	2.0	0.7	1						
9-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.3	1						
27-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.7	1						
1-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.6	1						
9-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.6	1						
9-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.8	1						
5-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	0.6	1	и	н		"		
5-01-4	Vinyl chloride	31.9		μg/l	1.0	0.8	1				"		
Surrogate red	coveries:												
60-00-4	4-Bromofluorobenzene	97			70-13	0 %		п			"		
2037-26-5	Toluene-d8	102			70-13			п			"		
7060-07-0	1,2-Dichloroethane-d4	105			70-13						"		
868-53-7	Dibromofluoromethane	103			70-13								
	of Volatile Organic Halocarbons		GS1										
Prepared	by method SW846 5030 V	Vater MS											
75-27-4	Bromodichloromethane	< 5.0		μg/I	5.0	4.8	10	SW846 8260C	08-Mar-12	08-Mar-12	ek	1205152	
5-25-2	Bromoform	< 10.0		μg/l	10.0	6.0	10	п			"		
4-83-9	Bromomethane	< 20.0		μg/l	20.0	11.4	10	п			"		
6-23-5	Carbon tetrachloride	< 10.0		μg/l	10.0	5.5	10	п			"		
08-90-7	Chlorobenzene	< 10.0		μg/l	10.0	6.5	10	ı			"		
5-00-3	Chloroethane	< 20.0		μg/l	20.0	10.3	10	п			"		
67-66-3	Chloroform	< 10.0		μg/l	10.0	6.9	10			п	"		

Sample I MW-4 SB44670	dentification			<u>Client F</u> 04-20	<u>Project #</u> 05185		<u>Matrix</u> Ground Wa	· · · · · · · · · · · · · · · · · · ·	ection Date 1-Feb-12 11			ceived Feb-12	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile C	Organic Compounds												
Re-analysis	of Volatile Organic Halocarbons		GS1										
Prepared	l by method SW846 5030 V	Vater MS											
74-87-3	Chloromethane	< 20.0		μg/l	20.0	14.7	10	SW846 8260C	08-Mar-12	08-Mar-12	ek	1205152	
124-48-1	Dibromochloromethane	< 5.0		μg/l	5.0	2.9	10			н	"		
95-50-1	1,2-Dichlorobenzene	< 10.0		μg/l	10.0	6.7	10				"		
541-73-1	1,3-Dichlorobenzene	< 10.0		μg/l	10.0	7.1	10				"		
106-46-7	1,4-Dichlorobenzene	< 10.0		μg/l	10.0	6.2	10				"		
75-71-8	Dichlorodifluoromethane (Freon12)	< 20.0		μg/l	20.0	4.5	10	п			"		
75-34-3	1,1-Dichloroethane	< 10.0		μg/l	10.0	6.8	10				"		
107-06-2	1,2-Dichloroethane	< 10.0		μg/l	10.0	7.8	10	н			"		
75-35-4	1,1-Dichloroethene	< 10.0		μg/l	10.0	4.9	10	п		н	"		
156-59-2	cis-1,2-Dichloroethene	497		μg/l	10.0	7.2	10	п			"		
156-60-5	trans-1,2-Dichloroethene	< 10.0		μg/l	10.0	6.8	10	п			"		
78-87-5	1,2-Dichloropropane	< 10.0		μg/l	10.0	7.1	10	п			"		
10061-01-5	cis-1,3-Dichloropropene	< 5.0		μg/l	5.0	2.5	10	п			"		
10061-02-6	trans-1,3-Dichloropropene	< 5.0		μg/l	5.0	5.0	10	п			"		
75-09-2	Methylene chloride	< 20.0		μg/l	20.0	6.9	10	п			"		
79-34-5	1,1,2,2-Tetrachloroethane	< 5.0		μg/l	5.0	3.5	10	п			"		
127-18-4	Tetrachloroethene	< 10.0		μg/l	10.0	7.4	10	п			"		
71-55-6	1,1,1-Trichloroethane	< 10.0		μg/l	10.0	5.8	10	п			"		
79-00-5	1,1,2-Trichloroethane	< 10.0		μg/l	10.0	6.4	10	п			"		
79-01-6	Trichloroethene	< 10.0		μg/l	10.0	7.6	10	п			"		
75-69-4	Trichlorofluoromethane (Freon 11)	< 10.0		μg/l	10.0	6.3	10				W .	•	
75-01-4	Vinyl chloride	37.1		μg/l	10.0	8.1	10	п			"		
Surrogate red	coveries:												
460-00-4	4-Bromofluorobenzene	101			70-13	0 %		п			"		

70-130 %

70-130 %

70-130 %

2037-26-5

17060-07-0

1868-53-7

Toluene-d8

1,2-Dichloroethane-d4

Dibromofluoromethane

102

108

104

MW-5 SB44670	dentification -05			<u>Client F</u> 04-20	<u>Project #</u> 05185		<u>Matrix</u> Ground Wa	· · · · · · · · · · · · · · · · · · ·	ection Date I-Feb-12 11			reb-12	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile O	rganic Compounds												
	anic Halocarbons by method SW846 5030 V	Jator MS											
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.5	1	SW846 8260C	07-Mar-12	07-Mar-12	ek	1205029	
75-25-2	Bromoform	< 1.0		μg/I	1.0	0.6	1	"		"	"	"	
74-83-9	Bromomethane	< 2.0		μg/l	2.0	1.1	1	ı			"		
6-23-5	Carbon tetrachloride	< 1.0		μg/I	1.0	0.5	1	ı			"		
08-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.7	1						
75-00-3	Chloroethane	< 2.0		μg/l	2.0	1.0	1				"		
7-66-3	Chloroform	< 1.0		μg/l	1.0	0.7	1						
4-87-3	Chloromethane	< 2.0		μg/l	2.0	1.5	1						
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.3	1				"		
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.7	1				"		
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.7	1				"		
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.6	1				"		
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.4	1	п			"		
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.7	1						
07-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.8	1						
5-35-4	1,1-Dichloroethene	1.4		μg/l	1.0	0.5	1						
56-59-2	cis-1,2-Dichloroethene	354	E	μg/l	1.0	0.7	1	ı			"		
56-60-5	trans-1,2-Dichloroethene	2.2		μg/l	1.0	0.7	1				"		
8-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.7	1				"		
0061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.3	1				"		
0061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1				"		
5-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.7	1				"		
9-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.3	1				"		
127-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.7	1				"		
1-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.6	1						
79-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.6	1						
79-01-6	Trichloroethene	83.3	E	μg/l	1.0	0.8	1						
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	0.6	1	н			"		
75-01-4	Vinyl chloride	23.4		μg/l	1.0	0.8	1	п			"		
Surrogate rec	coveries:												
160-00-4	4-Bromofluorobenzene	101			70-13	0 %		п			"		
2037-26-5	Toluene-d8	102			70-13						"		
7060-07-0	1,2-Dichloroethane-d4	102			70-13			ı			"		
868-53-7	Dibromofluoromethane	104			70-13			и			"		
Re-analysis	of Volatile Organic Halocarbons		GS1										
Prepared	by method SW846 5030 V	Vater MS											
75-27-4	Bromodichloromethane	< 5.0		μg/l	5.0	4.8	10	SW846 8260C	08-Mar-12	08-Mar-12	ek	1205152	
5-25-2	Bromoform	< 10.0		μg/l	10.0	6.0	10	п			"		
4-83-9	Bromomethane	< 20.0		μg/l	20.0	11.4	10	п			"		
6-23-5	Carbon tetrachloride	< 10.0		μg/l	10.0	5.5	10				"		
08-90-7	Chlorobenzene	< 10.0		μg/l	10.0	6.5	10	ı			"		
75-00-3	Chloroethane	< 20.0		μg/l	20.0	10.3	10	ı			"		
7-66-3	Chloroform	< 10.0		μg/l	10.0	6.9	10	п		п	"		

Sample Io MW-5 SB44670	dentification				<u>Project #</u> 05185		<u>Matrix</u> Ground Wa	· · · · · · · · · · · · · · · · · · ·	ection Date 1-Feb-12 11			reb-12	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	Organic Compounds												
Re-analysis	of Volatile Organic Halocarbons		GS1										
Prepared	by method SW846 5030 V	Vater MS											
74-87-3	Chloromethane	< 20.0		μg/l	20.0	14.7	10	SW846 8260C	08-Mar-12	08-Mar-12	ek	1205152	
124-48-1	Dibromochloromethane	< 5.0		μg/l	5.0	2.9	10				"		
95-50-1	1,2-Dichlorobenzene	< 10.0		μg/l	10.0	6.7	10			"	"		
541-73-1	1,3-Dichlorobenzene	< 10.0		μg/l	10.0	7.1	10	п		II .	"		
106-46-7	1,4-Dichlorobenzene	< 10.0		μg/l	10.0	6.2	10	п		ıı	"		
75-71-8	Dichlorodifluoromethane (Freon12)	< 20.0		μg/l	20.0	4.5	10	и		ıı	"		
75-34-3	1,1-Dichloroethane	< 10.0		μg/l	10.0	6.8	10				"		
107-06-2	1,2-Dichloroethane	< 10.0		μg/l	10.0	7.8	10				"		
75-35-4	1,1-Dichloroethene	< 10.0		μg/l	10.0	4.9	10				"		
156-59-2	cis-1,2-Dichloroethene	362		μg/l	10.0	7.2	10	п		п	"		
156-60-5	trans-1,2-Dichloroethene	< 10.0		μg/l	10.0	6.8	10	п		п	"		
78-87-5	1,2-Dichloropropane	< 10.0		μg/l	10.0	7.1	10	п			"		
10061-01-5	cis-1,3-Dichloropropene	< 5.0		μg/l	5.0	2.5	10	п			"		
10061-02-6	trans-1,3-Dichloropropene	< 5.0		μg/l	5.0	5.0	10	п			"		
75-09-2	Methylene chloride	< 20.0		μg/l	20.0	6.9	10	п			"		
79-34-5	1,1,2,2-Tetrachloroethane	< 5.0		μg/l	5.0	3.5	10	п			"		
127-18-4	Tetrachloroethene	< 10.0		μg/l	10.0	7.4	10				"		
71-55-6	1,1,1-Trichloroethane	< 10.0		μg/l	10.0	5.8	10				"		
79-00-5	1,1,2-Trichloroethane	< 10.0		μg/l	10.0	6.4	10				"		
79-01-6	Trichloroethene	77.3		μg/l	10.0	7.6	10				"		
75-69-4	Trichlorofluoromethane (Freon 11)	< 10.0		μg/l	10.0	6.3	10		н	u	"		
75-01-4	Vinyl chloride	26.9		μg/l	10.0	8.1	10	и			"		
Surrogate red	coveries:												
460-00-4	4-Bromofluorobenzene	97			70-13	0 %					"		

70-130 %

70-130 %

70-130 %

2037-26-5

17060-07-0

1868-53-7

Toluene-d8

1,2-Dichloroethane-d4

Dibromofluoromethane

105

109

105

OS-11SR SB44670					<u>Project #</u> 05185		<u>Matrix</u> Ground Wa		ection Date 4-Feb-12 09			reived Feb-12	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	Organic Compounds												
	anic Halocarbons												
	by method SW846 5030 V												
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.5	1	SW846 8260C	08-Mar-12	08-Mar-12	ek	1205152	
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1				"		
74-83-9	Bromomethane	< 2.0		μg/l	2.0	1.1	1				"		
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.5	1				"		
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.7	1				"		
75-00-3	Chloroethane	< 2.0		μg/l	2.0	1.0	1				"		
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.7	1			н	"		
74-87-3	Chloromethane	< 2.0		μg/l	2.0	1.5	1			н	"		
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.3	1			н	"		
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.7	1			н	"		
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.7	1			н	"		
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.6	1				"		
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.4	1			ı	"		
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.7	1			н	"		
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.8	1				"		
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1				"		
156-59-2	cis-1,2-Dichloroethene	7.3		μg/l	1.0	0.7	1				"		
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.7	1				"		
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.7	1				"		
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.3	1			н	"		
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1			н	"		
75-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.7	1			н	"		
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.3	1	н			"		
127-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.7	1	н			"		
71-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.6	1				"		
79-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.6	1				"		
79-01-6	Trichloroethene	4.8		μg/l	1.0	0.8	1				"		
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	0.6	1	и			"		
75-01-4	Vinyl chloride	< 1.0		μg/l	1.0	0.8	1			н	"		
Surrogate red	coveries:												
460-00-4	4-Bromofluorobenzene	99			70-13	0 %					"		
2037-26-5	Toluene-d8	103			70-13						"		
17060-07-0	1,2-Dichloroethane-d4	106			70-13						"		
1868-53-7	Dibromofluoromethane	104			70-13								

Sample 16 Trip SB44670	dentification 1-07				<u>Project #</u> 05185		<u>Matrix</u> Trip		ection Date I-Feb-12 09			ceived Feb-12	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	Organic Compounds												
	anic Halocarbons												
	by method SW846 5030 V												
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.5	1	SW846 8260C	07-Mar-12	07-Mar-12	ek	1205029	
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1	п			"		
74-83-9	Bromomethane	< 2.0		μg/l	2.0	1.1	1				"		
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.5	1	ı		"	"		
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.7	1	ı		"	"		
75-00-3	Chloroethane	< 2.0		μg/l	2.0	1.0	1	ı		"	"		
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.7	1				"		
74-87-3	Chloromethane	< 2.0		μg/l	2.0	1.5	1	н		"	"		
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.3	1				"		
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.7	1			"	"		
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.7	1	II .			"		
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.6	1	II .			"		
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.4	1	u .			"		
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.7	1	п			"		
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.8	1	п			"		
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	п			"		
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.7	1	п			"		
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.7	1				"		
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.7	1				"		
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.3	1	п			"		
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1	п			"		
75-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.7	1	п			"		
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.3	1	п			"		
127-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.7	1	п			"		
71-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.6	1	п			"		
79-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.6	1	п			"		
79-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.8	1	п			"		
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	0.6	1				"		
75-01-4	Vinyl chloride	< 1.0		μg/l	1.0	0.8	1				"		
Surrogate red	coveries:												
460-00-4	4-Bromofluorobenzene	101			70-13	0 %		п			"		
2037-26-5	Toluene-d8	102			70-13	0 %		п			"		
17060-07-0	1,2-Dichloroethane-d4	102			70-13	0 %		п			"		
1868-53-7	Dibromofluoromethane	102			70-13	0 %					"		

alyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
tch 1205029 - SW846 5030 Water MS										
Blank (1205029-BLK1)					Pre	pared & Analy	zed: 07-Mar-12			
Bromodichloromethane	< 0.5		μg/l	0.5						
Bromoform	< 1.0		μg/l	1.0						
Bromomethane	< 2.0		μg/l	2.0						
Carbon tetrachloride	< 1.0		μg/l	1.0						
Chlorobenzene	< 1.0		μg/l	1.0						
Chloroethane	< 2.0		μg/l	2.0						
Chloroform	< 1.0		μg/l	1.0						
Chloromethane	< 2.0		μg/l	2.0						
Dibromochloromethane	< 0.5		μg/l	0.5						
1,2-Dichlorobenzene	< 1.0		μg/l	1.0						
1,3-Dichlorobenzene	< 1.0		μg/l	1.0						
1,4-Dichlorobenzene	< 1.0		μg/l	1.0						
Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0						
1,1-Dichloroethane	< 1.0		μg/l	1.0						
1,2-Dichloroethane	< 1.0		μg/l	1.0						
1,1-Dichloroethene	< 1.0		μg/l	1.0						
cis-1,2-Dichloroethene	< 1.0		μg/l	1.0						
trans-1,2-Dichloroethene	< 1.0		μg/l	1.0						
1,2-Dichloropropane	< 1.0		μg/l	1.0						
cis-1,3-Dichloropropene	< 0.5		μg/l	0.5						
trans-1,3-Dichloropropene	< 0.5		μg/l	0.5						
Methylene chloride	< 2.0		μg/l	2.0						
1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5						
Tetrachloroethene	< 1.0		μg/l	1.0						
1,1,1-Trichloroethane	< 1.0		μg/l	1.0						
1,1,2-Trichloroethane	< 1.0		μg/l	1.0						
Trichloroethene	< 1.0		μg/l	1.0						
Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0						
Vinyl chloride	< 1.0		μg/l	1.0						
Surrogate: 4-Bromofluorobenzene	48.5		μg/l		50.0		97	70-130		
Surrogate: Toluene-d8	51.4		μg/l		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	52.0		μg/l		50.0		104	70-130		
Surrogate: Dibromofluoromethane	52.4		μg/l		50.0		105	70-130		
LCS (1205029-BS1)			10			nared & Analy	zed: 07-Mar-12			
Bromodichloromethane	20.6		μg/l		20.0	parou a Analy	103	70-130		
Bromoform	20.4		μg/l		20.0		102	70-130		
Bromomethane	23.2		μg/l		20.0		116	70-130		
Carbon tetrachloride	21.2		μg/l		20.0		106	70-130		
Chlorobenzene	20.1		μg/l		20.0		100	70-130		
Chloroethane	21.8		μg/l		20.0		100	70-130		
Chloroform	20.5		μg/l		20.0		102	70-130		
Chloromethane	22.5		μg/l		20.0		112	70-130		
Dibromochloromethane	21.4		μg/l		20.0		107	70-130		
1,2-Dichlorobenzene	21.2		μg/l		20.0		106	70-130		
1,3-Dichlorobenzene	20.6		μg/l		20.0		103	70-130		
1,4-Dichlorobenzene	19.4		μg/l		20.0		97	70-130		
Dichlorodifluoromethane (Freon12)	22.4		μg/I μg/I		20.0		112	70-130		
1,1-Dichloroethane	20.4		μg/I μg/I		20.0		102	70-130		
1,2-Dichloroethane	20.4				20.0		102	70-130		
	20.5		μg/l		۵.0		100	10-100		
1,1-Dichloroethene	20.2		μg/l		20.0		101	70-130		

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
Batch 1205029 - SW846 5030 Water MS										
LCS (1205029-BS1)					Pre	pared & Analy	zed: 07-Mar-12	<u>)</u>		
trans-1,2-Dichloroethene	21.5		μg/l		20.0		107	70-130		
1,2-Dichloropropane	20.5		μg/l		20.0		103	70-130		
cis-1,3-Dichloropropene	21.2		μg/l		20.0		106	70-130		
trans-1,3-Dichloropropene	21.7		μg/l		20.0		109	70-130		
Methylene chloride	20.0		μg/l		20.0		100	70-130		
1,1,2,2-Tetrachloroethane	21.5		μg/l		20.0		107	70-130		
Tetrachloroethene	19.4		μg/l		20.0		97	70-130		
1,1,1-Trichloroethane	20.2		μg/l		20.0		101	70-130		
1,1,2-Trichloroethane	19.9		μg/l		20.0		99	70-130		
Trichloroethene	18.8		μg/l		20.0		94	70-130		
Trichlorofluoromethane (Freon 11)	20.4		μg/l		20.0		102	70-130		
Vinyl chloride	21.9		μg/l		20.0		109	70-130		
Surrogate: 4-Bromofluorobenzene	51.4		μg/l		50.0		103	70-130		
Surrogate: Toluene-d8	50.1		μg/l		50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	50.1		μg/l		50.0		100	70-130		
Surrogate: Dibromofluoromethane	49.5		μg/l		50.0		99	70-130		
LCS Dup (1205029-BSD1)					<u>Pr</u> ei	pared & Analy	zed: 07-Mar-12	<u>)</u>		
Bromodichloromethane	21.4		μg/l		20.0	•	107	70-130	4	25
Bromoform	20.9		μg/l		20.0		105	70-130	2	25
Bromomethane	20.3		μg/l		20.0		101	70-130	14	50
Carbon tetrachloride	20.0		μg/l		20.0		100	70-130	6	25
Chlorobenzene	19.4		μg/l		20.0		97	70-130	4	25
Chloroethane	20.6		μg/l		20.0		103	70-130	6	50
Chloroform	20.1		μg/I		20.0		100	70-130	2	25
Chloromethane	21.6		μg/I		20.0		108	70-130	4	25
Dibromochloromethane	21.5				20.0		108	70-130	0.5	50
1,2-Dichlorobenzene	20.6		μg/l		20.0		103	70-130	3	25
1,3-Dichlorobenzene	19.9		μg/l		20.0		99	70-130	4	25 25
			μg/l				99			25
1,4-Dichlorobenzene	18.4		μg/l		20.0			70-130	5	
Dichlorodifluoromethane (Freon12)	20.6		μg/l		20.0		103	70-130	8	50
1,1-Dichloroethane	20.5		μg/l		20.0		102	70-130	0.3	25
1,2-Dichloroethane	20.4		μg/l		20.0		102	70-130	0.4	25
1,1-Dichloroethene	19.2		μg/l		20.0		96	70-130	5	25
cis-1,2-Dichloroethene	20.1		μg/l		20.0		100	70-130	2	25
trans-1,2-Dichloroethene	20.0		μg/l		20.0		100	70-130	7	25
1,2-Dichloropropane	19.2		μg/l		20.0		96	70-130	7	25
cis-1,3-Dichloropropene	20.4		μg/l		20.0		102	70-130	4	25
trans-1,3-Dichloropropene	21.1		μg/l		20.0		106	70-130	3	25
Methylene chloride	20.0		μg/l		20.0		100	70-130	0.05	25
1,1,2,2-Tetrachloroethane	21.4		μg/l		20.0		107	70-130	0.7	25
Tetrachloroethene	17.4		μg/l		20.0		87	70-130	11	25
1,1,1-Trichloroethane	18.8		μg/l		20.0		94	70-130	7	25
1,1,2-Trichloroethane	20.4		μg/l		20.0		102	70-130	2	25
Trichloroethene	18.6		μg/l		20.0		93	70-130	1	25
Trichlorofluoromethane (Freon 11)	19.9		μg/l		20.0		100	70-130	2	50
Vinyl chloride	20.9		μg/l		20.0		104	70-130	5	25
Surrogate: 4-Bromofluorobenzene	52.4		μg/l		50.0		105	70-130		
Surrogate: Toluene-d8	51.4		μg/l		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	50.0		μg/l		50.0		100	70-130		
Surrogate: Dibromofluoromethane	51.1		μg/l		50.0		102	70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1205152 - SW846 5030 Water MS										
Blank (1205152-BLK1)					Pre	pared & Analy	zed: 08-Mar-12			
Bromodichloromethane	< 0.5		μg/l	0.5						
Bromoform	< 1.0		μg/l	1.0						
Bromomethane	< 2.0		μg/l	2.0						
Carbon tetrachloride	< 1.0		μg/l	1.0						
Chlorobenzene	< 1.0		μg/l	1.0						
Chloroethane	< 2.0		μg/l	2.0						
Chloroform	< 1.0		μg/l	1.0						
Chloromethane	< 2.0		μg/l	2.0						
Dibromochloromethane	< 0.5		μg/l	0.5						
1,2-Dichlorobenzene	< 1.0		μg/l	1.0						
1,3-Dichlorobenzene	< 1.0		μg/l	1.0						
1,4-Dichlorobenzene	< 1.0		μg/l	1.0						
Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0						
1,1-Dichloroethane	< 1.0		μg/l	1.0						
1,2-Dichloroethane	< 1.0		μg/l	1.0						
1,1-Dichloroethene	< 1.0		μg/l	1.0						
cis-1,2-Dichloroethene	< 1.0		μg/l	1.0						
trans-1,2-Dichloroethene	< 1.0		μg/l	1.0						
1,2-Dichloropropane	< 1.0		μg/l	1.0						
cis-1,3-Dichloropropene	< 0.5		μg/l	0.5						
trans-1,3-Dichloropropene	< 0.5		μg/l	0.5						
Methylene chloride	< 2.0		μg/l	2.0						
1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5						
Tetrachloroethene	< 1.0		μg/l	1.0						
1,1,1-Trichloroethane	< 1.0		μg/l	1.0						
1,1,2-Trichloroethane	< 1.0		μg/l	1.0						
Trichloroethene	< 1.0		μg/l	1.0						
Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0						
Vinyl chloride	< 1.0		μg/l	1.0						
Surrogate: 4-Bromofluorobenzene	50.0		μg/l		50.0		100	70-130		
Surrogate: Toluene-d8	51.1		μg/l		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	52.9		μg/l		50.0		106	70-130		
Surrogate: Dibromofluoromethane	52.8		μg/l		50.0		106	70-130		
LCS (1205152-BS1)	02.0		r9·			narod & Analy	zed: 08-Mar-12			
Bromodichloromethane	22.4		μg/l		20.0	paicu & Alidly	112	70-130		
Bromoform	20.8		μg/I μg/I		20.0		104	70-130		
Bromomethane	18.8		μg/I μg/I		20.0		94	70-130		
Carbon tetrachloride	22.2		μg/l		20.0		111	70-130		
Chlorobenzene	19.7		μg/I μg/I		20.0		99	70-130		
Chloroethane	22.3		μg/l		20.0		111	70-130		
Chloroform	21.7		μg/I μg/I		20.0		108	70-130		
Chloromethane	21.4		μg/l		20.0		107	70-130		
Dibromochloromethane	22.2		μg/l		20.0		111	70-130		
1,2-Dichlorobenzene	21.6		μg/l		20.0		108	70-130		
1,3-Dichlorobenzene	19.9		μg/I μg/I		20.0		99	70-130		
1,4-Dichlorobenzene	20.4		μg/I μg/I		20.0		102	70-130		
Dichlorodifluoromethane (Freon12)	23.4				20.0		117	70-130		
1,1-Dichloroethane	21.9		μg/l μg/l		20.0		109	70-130 70-130		
1,2-Dichloroethane	21.9		μg/l		20.0		112	70-130		
1,1-Dichloroethene	23.1		μg/l		20.0		112	70-130 70-130		
			μg/l							
cis-1,2-Dichloroethene	21.1		μg/l		20.0		106	70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
atch 1205152 - SW846 5030 Water MS										
LCS (1205152-BS1)					Pre	pared & Analy	zed: 08-Mar-12	2		
trans-1,2-Dichloroethene	21.8		μg/l		20.0		109	70-130		
1,2-Dichloropropane	21.2		μg/l		20.0		106	70-130		
cis-1,3-Dichloropropene	21.8		μg/l		20.0		109	70-130		
trans-1,3-Dichloropropene	21.8		μg/l		20.0		109	70-130		
Methylene chloride	21.5		μg/l		20.0		107	70-130		
1,1,2,2-Tetrachloroethane	21.2		μg/l		20.0		106	70-130		
Tetrachloroethene	20.4		μg/l		20.0		102	70-130		
1,1,1-Trichloroethane	20.9		μg/l		20.0		104	70-130		
1,1,2-Trichloroethane	21.1		μg/l		20.0		105	70-130		
Trichloroethene	20.0		μg/l		20.0		100	70-130		
Trichlorofluoromethane (Freon 11)	21.8		μg/l		20.0		109	70-130		
Vinyl chloride	20.9		μg/l		20.0		104	70-130		
Surrogate: 4-Bromofluorobenzene	51.0 50.2		μg/l		50.0		102 100	70-130 70-130		
Surrogate: Toluene-d8	50.2		μg/l		50.0		100 102	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	50.9		μg/l		50.0		102	70-130		
Surrogate: Dibromofluoromethane	50.5		μg/l		50.0		101	70-130		
LCS Dup (1205152-BSD1)						pared & Analy	zed: 08-Mar-12			
Bromodichloromethane	20.8		μg/l		20.0		104	70-130	7	25
Bromoform	19.9		μg/l		20.0		99	70-130	5	25
Bromomethane	18.3		μg/l		20.0		91	70-130	3	50
Carbon tetrachloride	20.4		μg/l		20.0		102	70-130	8	25
Chlorobenzene	18.5		μg/l		20.0		93	70-130	6	25
Chloroethane	21.4		μg/l		20.0		107	70-130	4	50
Chloroform	20.3		μg/l		20.0		101	70-130	7	25
Chloromethane	19.8		μg/l		20.0		99	70-130	8	25
Dibromochloromethane	21.9		μg/l		20.0		109	70-130	1	50
1,2-Dichlorobenzene	20.6		μg/l		20.0		103	70-130	5	25
1,3-Dichlorobenzene	18.8		μg/l		20.0		94	70-130	5	25
1,4-Dichlorobenzene	18.8		μg/l		20.0		94	70-130	8	25
Dichlorodifluoromethane (Freon12)	22.1		μg/l		20.0		110	70-130	6	50
1,1-Dichloroethane	20.4		μg/l		20.0		102	70-130	7	25
1,2-Dichloroethane	22.3		μg/l		20.0		111	70-130	0.4	25
1,1-Dichloroethene	20.5		μg/l		20.0		102	70-130	12	25
cis-1,2-Dichloroethene	20.4		μg/l		20.0		102	70-130	4	25
trans-1,2-Dichloroethene	21.0		μg/l		20.0		105	70-130	4	25
1,2-Dichloropropane	20.8		μg/l		20.0		104	70-130	2	25
cis-1,3-Dichloropropene	20.9		μg/l		20.0		104	70-130	4	25
trans-1,3-Dichloropropene	21.8		μg/l		20.0		109	70-130	0	25
Methylene chloride	21.1		μg/l		20.0		106	70-130	2	25
1,1,2,2-Tetrachloroethane	20.6		μg/l		20.0		103	70-130	3	25
Tetrachloroethene	19.0		μg/l		20.0		95	70-130	7	25
1,1,1-Trichloroethane	19.4		μg/l		20.0		97	70-130	7	25
1,1,2-Trichloroethane	20.8		μg/l		20.0		104	70-130	1	25
Trichloroethene	19.0		μg/l		20.0		95	70-130	5	25
Trichlorofluoromethane (Freon 11)	20.2		μg/l		20.0		101	70-130	8	50
Vinyl chloride	20.3		μg/l		20.0		101	70-130	3	25
Surrogate: 4-Bromofluorobenzene	49.4		μg/l		50.0		99	70-130		
Surrogate: Toluene-d8	51.2		μg/l		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.8		μg/l		50.0		104	70-130		
Surrogate: Dibromofluoromethane	51.6		μg/l		50.0		103	70-130 70-130		

Notes and Definitions

E The concentration indicated for this analyte is an estimated value. This value is considered an estimate (CLP E-flag).

GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: Nicole Leja

5B44670- DC

SPECTRUM ANALYTICAL, INC-Featuring HANIBAL TECHNOLOGY

CHAIN OF CUSTODY RECORD

Page ____ of ____

Special Handling:

X Standard TAT - 7 to 10 business days

Rush TAT - Date Needed:

- · All TATs subject to laboratory approval.
- · Min. 24-hour notification needed for rushes.
- · Samples disposed of after 60 days unless otherwise instructed.

Report To: _	ECS Brattle 30 Herris P Brattlebaro, U	То:	ECS Agawam							Project No.: 04-205185 Site Name: 100 Mohawk Trail					
Telephone #: 802-257-1195					P.O. No.: RQN: <u>0</u> 002							Sampler(s): W. Verman, D. N. codimi			
	$S2O_3$ 2=HCl 3=H SO_4 9= Deionized V				orbic A	cid	7=0	CH ₃ O	Н		List 2,10	t preservative code below:	QA/QC Reporting Notes: * additional charges may apply		
O=Oil SW	ng Water GW=Grou = Surface Water SC P X2=	Soil SL=Slud X3=	ge A=Air		7	Vials	of Amber Glass	. Glass			VOCS enty Edgo	Analyses:	MA DEP MCP CAM Repert: Yes Soo CT DPH RCP Report: Yes No O QA/QC Reporting Level Standard No QC DQA* NY ASP A* NY ASP B*		
Lab Id:	G=Grab C=0 Sample Id:	Composite Date:	Time:	Type	Matrix	# of VOA	# of Amb	# of Clear Glass	# of Plastic		halogeneted		□ NJ Reduced* □ NJ Full* □ TIER II* □ TIER V* 1 Other <u>Gい-2/6ω-2</u> State-specific reporting standards:		
14670 0	1 Mw-3	2/24/12	10:57	G	GW	3					X				
1 0	205-17	1 1	10=12	G	GW	3					Х				
	3 MW-1		12:52	G	GW	3					Х				
	4 MW-4		11:22	G	GW	3					Χ				
	5 MW-5		11:56	6	GW	3					X				
	6 05-115R		9=38	G	GW	3					X				
V 0	7 TRIP	V	9=00	G	XI	i			1		X				
		1													
Redinquished by: Received by:					Date: Time:				Temp°C	p°C □ EDD Format					
MA Ja				2/29/12		1:42		1.3	H E mail to Coffee Coffee Coffee Coffee						
						7	,						☐ Fridge temp °C ☐ Freezer temp °C		

ATTACHMENT III

MACRIS DATABASE SEARCH RESULTS

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Greenfield; Street No: 100; Street Name: Mohawk Trail; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year