

### UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

### Region 1 5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

# CERTIFIED MAIL RETURN RECEIPT REQUESTED JUN 1 5 2011

Marcella Albanese, President Albanese Brothers, Inc. 28 Loon Hill Road Dracut, MA01826

Re: Authorization to discharge under the Remediation General Permit (RGP) – MAG910000. Lynnfield/Saugus Pipeline Project: MWRA Contract 6584 site located at Broadway (Route 1) from Walnut Street in Saugus North to Lynnfield Town line, Saugus, MA 01906, Essex County; Authorization # MAG910488

### Dear Ms. Albanese:

Based on the review of a Notice of Intent (NOI) submitted on behalf of Massachusetts Water Resources Authority (MWRA) by the firm SAK Environmental, for the site referenced above, the U.S. Environmental Protection Agency (EPA) hereby authorizes you, as the named Operator, to discharge in accordance with the provisions of the RGP at that site. Your authorization number is listed above.

The checklist enclosed with this RGP authorization indicates the pollutants which you are required to monitor. Also indicated on the checklist are the effluent limits, test methods and minimum levels (MLs) for each pollutant. Please note that the checklist does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of this permit, including influent and effluent monitoring, narrative water quality standards, record keeping, and reporting requirements, found in Parts I and II, and Appendices I – VIII of the RGP. See EPA's website for the complete RGP and other information at: <a href="http://www.epa.gov/region1/npdes/mass.html#dgp">http://www.epa.gov/region1/npdes/mass.html#dgp</a>.

Please note the enclosed checklist includes parameters that you have marked "Believed Present". The checklist also includes other parameters for which your laboratory reports indicated there was insufficient sensitivity to detect these parameters at the minimum levels established in Appendix VI of the RGP.

Also, please note that the metals included on the checklist are dilution dependent pollutants and subject to limitations based on selected dilution ranges and technology-based ceiling limitations. For each parameter the dilution factor 72.7 for this site is within a dilution range greater than fifty to one hundred (>50-100), established in the RGP. (See

the RGP Appendix IV for Massachusetts facilities). Therefore, the limits for arsenic of 500ug/L, copper of 260ug/L, lead of 66ug/L, selenium of 250ug/L, zinc of 1480ug/L and iron of 5,000ug/L, are required to achieve permit compliance at your site.

Finally, please note the checklist of pollutants attached to this authorization is subject to a recertification if the operations at the site result in a discharge lasting longer than six months. A recertification can be submitted to EPA within six (6) to twelve (12) months of operations in accordance with the 2010 RGP regulations.

This general permit and authorization to discharge will expire on September 9, 2015. You have reported that this project will terminate on 10/31/2012. If for any reason the discharge terminates sooner you are required to submit a Notice of Termination (NOT) to the attention of the contact person indicated below within 30 days of project completion.

Thank you in advance for your cooperation in this matter. Please contact Victor Alvarez at 617-918-1572 or Alvarez. Victor@epa.gov, if you have any questions.

required to a smitter. Also undirested on the elucidist are the efficient limits, test at

Sincerely,

David M. Webster, Chief
Industrial Permits Branch

Jans M. Walnet

Enclosure

cc:

Kathleen Keohane, MassDEP

Eleanor Duffy, MWRA

Mark P. Grady Jr. SAK Environmental, Inc.

## 2010 Remediation General Permit Summary of Monitoring Parameters [1]

| NPDES Authorization<br>Number:     | ) (him   | MAG910488                                                                                                                                                                             |
|------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Authorization Issued:              | June,    | 2011                                                                                                                                                                                  |
| Facility/Site Name:                | Lynnf    | ield/Saugus Pipeline Project: MWRA Contract 6584                                                                                                                                      |
| Facility/Site Address:             | Broa     | dway (Route 1) from Walnut Street in Saugus North to Lynnfield<br>line, Saugus, MA 01906, Essex County                                                                                |
|                                    | Email    | address of owner: eleonor.duffy@mwra.state.ma.us                                                                                                                                      |
| Legal Name of Operate              | or:      | Albanese Brothers, Inc.                                                                                                                                                               |
| Operator contact name and Address: | , title, | Marcella Albanese, President, 28 Loon Hill Road<br>Dracut, MA01826                                                                                                                    |
| and Address.                       |          | Email: GLabonte@albanesebros.com                                                                                                                                                      |
| Estimated Date of Com              | pletion  | : 10/31/2012                                                                                                                                                                          |
| Category and Sub-Cate              | egory:   | Category I. Petroleum Related Site Remediation. Sub-category A. Gasoline Only Sites and Category III. Contaminated Construction Dewatering. Sub-category A. General Urban Fill Sites. |
| Receiving Water:                   |          | Hawkes Brook and Saugus River                                                                                                                                                         |

# Monitoring & Limits are applicable if checked. All samples are to be collected as grab samples

|          | Vans TW Coase Premi                                                             | Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily                       |
|----------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|          | <u>Parameter</u>                                                                | Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit) |
| <b>√</b> | Total Suspended Solids     (TSS)                                                | 30 milligrams/liter (mg/L) **, 50 mg/L for hydrostatic testing **, Me#60.2/ML5ug/L      |
| √        | Total Residual Chlorine     (TRC)   1                                           | Freshwater = 11 ug/L ** Saltwater = 7.5 ug/L **/ Me#330.5/ML 20ug/L                     |
| <b>√</b> | 3. Total Petroleum<br>Hydrocarbons (TPH)                                        | 5.0 mg/L/ Me# 1664A/ML 5.0mg/L                                                          |
|          | 4. Cyanide (CN) 2,3                                                             | Freshwater = 5.2 ug/l ** Saltwater = 1.0 ug/L **/ Me#335.4/ML 10ug/L                    |
| √        | 5. Benzene (B)                                                                  | 5ug/L /50.0 ug/L for hydrostatic testing only/ Me#8260C/ML 2 ug/L                       |
|          | 6. Toluene (T)                                                                  | (limited as ug/L total BTEX)/ Me#8260C/<br>ML 2ug/L                                     |
| √        | 7. Ethylbenzene (E)                                                             | (limited as ug/L total BTEX) Me#8260C/<br>ML 2ug/L                                      |
| ✓        | 8. (m,p,o) Xylenes (X)                                                          | (limited as ug/L total BTEX) Me#8260C/<br>ML 2ug/L                                      |
| √        | 9. Total Benzene, Toluene,<br>Ethyl Benzene, and Xylenes<br>(BTEX) <sup>4</sup> | 100 ug/L/ Me#8260C/ ML 2ug/L                                                            |

|          | <u>Parameter</u>                                              | Effluent Limit/Method#/ML  (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit) |
|----------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | 10. Ethylene Dibromide (EDB) (1,2- Dibromoethane)             | 0.05 ug/l/ Me#8260C/ ML 10ug/L                                                                                                                             |
| <b>√</b> | 11. Methyl-tert-Butyl Ether (MtBE)                            | 70.0 ug/l/Me#8260C/ML 10ug/L                                                                                                                               |
|          | 12.tert-Butyl Alcohol (TBA)<br>(TertiaryButanol)              | Monitor Only(ug/L)/Me#8260C/ML 10ug/L                                                                                                                      |
|          | 13. tert-Amyl Methyl Ether (TAME)                             | Monitor Only(ug/L)/Me#8260C/ML 10ug/L                                                                                                                      |
| √        | 14. Naphthalene <sup>5</sup>                                  | 20 ug/L /Me#8260C/ML 2ug/L                                                                                                                                 |
|          | 15. Carbon Tetrachloride                                      | 4.4 ug/L /Me#8260C/ ML 5ug/L                                                                                                                               |
|          | 16. 1,2 Dichlorobenzene (o-DCB)                               | 600 ug/L /Me#8260C/ ML 5ug/L                                                                                                                               |
| NO HOND  | 17. 1,3 Dichlorobenzene (m-DCB)                               | 320 ug/L /Me#8260C/ ML 5ug/L                                                                                                                               |
|          | 18. 1,4 Dichlorobenzene (p-DCB)                               | 5.0 ug/L /Me#8260C/ ML 5ug/L                                                                                                                               |
|          | 18a. Total dichlorobenzene                                    | 763 ug/L - NH only /Me#8260C/ ML 5ug/L                                                                                                                     |
|          | 19. 1,1 Dichloroethane (DCA)                                  | 70 ug/L /Me#8260C/ ML 5ug/L                                                                                                                                |
|          | 20. 1,2 Dichloroethane (DCA)                                  | 5.0 ug/L /Me#8260C/ ML 5ug/L                                                                                                                               |
| uni un   | 21. 1,1 Dichloroethene (DCE)                                  | 3.2 ug/L/Me#8260C/ ML 5ug/L                                                                                                                                |
|          | 22. cis-1,2 Dichloroethene (DCE)                              | 70 ug/L/Me#8260C/ ML 5ug/L                                                                                                                                 |
|          | 23. Methylene Chloride                                        | 4.6 ug/L/Me#8260C/ ML 5ug/L                                                                                                                                |
|          | 24. Tetrachloroethene (PCE)                                   | 5.0 ug/L/Me#8260C/ ML 5ug/L                                                                                                                                |
| 9.0      | 25. 1,1,1 Trichloro-ethane (TCA)                              | 200 ug/L/Me#8260C/ ML 5ug/L                                                                                                                                |
| red      | 26. 1,1,2 Trichloro-ethane (TCA)                              | 5.0 ug/L /Me#8260C/ ML 5ug/L                                                                                                                               |
| Jvo      | 27. Trichloroethene (TCE)                                     | 5.0 ug/L /Me#8260C/ ML 5ug/L                                                                                                                               |
|          | 28. Vinyl Chloride (Chloroethene)                             | 2.0 ug/L /Me#8260C/ ML 5ug/L                                                                                                                               |
|          | 29. Acetone                                                   | Monitor Only(ug/L)/Me#8260C/ML 50ug/L                                                                                                                      |
|          | 30. 1,4 Dioxane                                               | Monitor Only /Me#1624C/ML 50ug/L                                                                                                                           |
| g:i      | 31. Total Phenols                                             | 300 ug/L Me#420.1&420.2/ML 2 ug/L/<br>Me# 420.4 /ML 50ug/L                                                                                                 |
| Û        | 32. Pentachlorophenol (PCP)                                   | 1.0 ug/L /Me#8270D/ML 5ug/L,Me#604<br>&625/ML 10ug/L                                                                                                       |
| 1,5      | 33. Total Phthalates (Phthalate esters) <sup>6</sup>          | 3.0 ug/L ** /Me#8270D/ML 5ug/L,<br>Me#606/ML 10ug/L& Me#625/ML 5ug/L                                                                                       |
| <b>√</b> | 34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate] | 6.0 ug/L /Me#8270D/ML<br>5ug/L,Me#606/ML 10ug/L & Me#625/ML<br>5ug/L                                                                                       |
| √        | 35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)      | 10.0 ug/L                                                                                                                                                  |
|          | a. Benzo(a) Anthracene <sup>7</sup>                           | 0.0038 ug/L /Me#8270D/ ML 5ug/L,<br>Me#610/ML 5ug/L& Me#625/ML 5ug/L                                                                                       |

| ag<br>ag     | <u>Parameter</u>                                              | Effluent Limit/Method#/ML  (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit) |
|--------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | 10. Ethylene Dibromide (EDB) (1,2- Dibromoethane)             | 0.05 ug/l/ Me#8260C/ ML 10ug/L                                                                                                                             |
| √            | 11. Methyl-tert-Butyl Ether (MtBE)                            | 70.0 ug/l/Me#8260C/ML 10ug/L                                                                                                                               |
|              | 12.tert-Butyl Alcohol (TBA)<br>(TertiaryButanol)              | Monitor Only(ug/L)/Me#8260C/ML 10ug/L                                                                                                                      |
|              | 13. tert-Amyl Methyl Ether (TAME)                             | Monitor Only(ug/L)/Me#8260C/ML 10ug/L                                                                                                                      |
| $\checkmark$ | 14. Naphthalene <sup>5</sup>                                  | 20 ug/L /Me#8260C/ML 2ug/L                                                                                                                                 |
|              | 15. Carbon Tetrachloride                                      | 4.4 ug/L /Me#8260C/ ML 5ug/L                                                                                                                               |
|              | 16. 1,2 Dichlorobenzene (o-DCB)                               | 600 ug/L /Me#8260C/ ML 5ug/L                                                                                                                               |
| _            | 17. 1,3 Dichlorobenzene (m-DCB)                               | 320 ug/L /Me#8260C/ ML 5ug/L                                                                                                                               |
|              | 18. 1,4 Dichlorobenzene (p-DCB)                               | 5.0 ug/L /Me#8260C/ ML 5ug/L                                                                                                                               |
|              | 18a. Total dichlorobenzene                                    | 763 ug/L - NH only /Me#8260C/ ML 5ug/L                                                                                                                     |
|              | 19. 1,1 Dichloroethane (DCA)                                  | 70 ug/L /Me#8260C/ ML 5ug/L                                                                                                                                |
|              | 20. 1,2 Dichloroethane (DCA)                                  | 5.0 ug/L /Me#8260C/ ML 5ug/L                                                                                                                               |
|              | 21. 1,1 Dichloroethene (DCE)                                  | 3.2 ug/L/Me#8260C/ ML 5ug/L                                                                                                                                |
|              | 22. cis-1,2 Dichloroethene (DCE)                              | 70 ug/L/Me#8260C/ ML 5ug/L                                                                                                                                 |
|              | 23. Methylene Chloride                                        | 4.6 ug/L/Me#8260C/ ML 5ug/L                                                                                                                                |
|              | 24. Tetrachloroethene (PCE)                                   | 5.0 ug/L/Me#8260C/ ML 5ug/L                                                                                                                                |
|              | 25. 1,1,1 Trichloro-ethane (TCA)                              | 200 ug/L/Me#8260C/ ML 5ug/L                                                                                                                                |
|              | 26. 1,1,2 Trichloro-ethane (TCA)                              | 5.0 ug/L /Me#8260C/ ML 5ug/L                                                                                                                               |
|              | 27. Trichloroethene (TCE)                                     | 5.0 ug/L /Me#8260C/ ML 5ug/L                                                                                                                               |
| Ap           | 28. Vinyl Chloride<br>(Chloroethene)                          | 2.0 ug/L /Me#8260C/ ML 5ug/L                                                                                                                               |
|              | 29. Acetone                                                   | Monitor Only(ug/L)/Me#8260C/ML 50ug/L                                                                                                                      |
|              | 30. 1,4 Dioxane                                               | Monitor Only /Me#1624C/ML 50ug/L                                                                                                                           |
|              | 31. Total Phenols                                             | 300 ug/L Me#420.1&420.2/ML 2 ug/L/<br>Me# 420.4 /ML 50ug/L                                                                                                 |
|              | 32. Pentachlorophenol (PCP)                                   | 1.0 ug/L /Me#8270D/ML 5ug/L,Me#604<br>&625/ML 10ug/L                                                                                                       |
|              | 33. Total Phthalates (Phthalate esters) <sup>6</sup>          | 3.0 ug/L ** /Me#8270D/ML 5ug/L,<br>Me#606/ML 10ug/L& Me#625/ML 5ug/L                                                                                       |
| <b>√</b>     | 34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate] | 6.0 ug/L /Me#8270D/ML<br>5ug/L,Me#606/ML 10ug/L & Me#625/ML<br>5ug/L                                                                                       |
| <b>√</b>     | 35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)      | 10.0 ug/L                                                                                                                                                  |
|              | a. Benzo(a) Anthracene <sup>7</sup>                           | 0.0038 ug/L /Me#8270D/ ML 5ug/L,<br>Me#610/ML 5ug/L& Me#625/ML 5ug/L                                                                                       |

| ACT A CHARGE OF THE PARTY OF THE PARTY OF                     | Effluent Limit/Method#/ML                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| to an investment surpline of the property in                  | (All Effluent Limits are shown as Daily                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <u>Parameter</u>                                              | Maximum Limit, unless denoted by a **,                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Charle (Starle)                                               | in that case it will be a Monthly Average Limit)                                                                                                                                                                                                                                                                                                                                                                                                                |
| b. Benzo(a) Pyrene <sup>7</sup>                               | 0.0038 ug/L /Me#8270D/ ML 5ug/L,<br>Me#610/ML 5ug/L& Me#625/ML 5ug/L                                                                                                                                                                                                                                                                                                                                                                                            |
| c. Benzo(b)Fluoranthene 7                                     | 0.0038 ug/L /Me#8270D/ ML 5ug/L,<br>Me#610/ML 5ug/L& Me#625/ML 5ug/L                                                                                                                                                                                                                                                                                                                                                                                            |
| d. Benzo(k)Fluoranthene <sup>7</sup>                          | 0.0038 ug/L /Me#8270D/ ML 5ug/L,<br>Me#610/ML 5ug/L& Me#625/ML 5ug/L                                                                                                                                                                                                                                                                                                                                                                                            |
| e. Chrysene <sup>7</sup>                                      | 0.0038 ug/L /Me#8270D/ML 5ug/L,<br>Me#610/ML 5ug/L& Me#625/ML 5ug/L                                                                                                                                                                                                                                                                                                                                                                                             |
| f. Dibenzo(a,h)anthracene <sup>7</sup>                        | 0.0038 ug/L /Me#8270D/ML 5ug/L,<br>Me#610/ML 5ug/L& Me#625/ML 5ug/L                                                                                                                                                                                                                                                                                                                                                                                             |
| g. Indeno(1,2,3-cd) Pyrene <sup>7</sup>                       | 0.0038 ug/L /Me#8270D/ML 5ug/L,<br>Me#610/ML 5ug/L& Me#625/ML5ug/L                                                                                                                                                                                                                                                                                                                                                                                              |
| 36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)     | 100 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| h. Acenaphthene                                               | X/Me#8270D/ML 5ug/L,Me#610/ML<br>5ug/L & Me#625/ML 5ug/L                                                                                                                                                                                                                                                                                                                                                                                                        |
| i. Acenaphthylene                                             | X/Me#8270D/ML 5ug/L,Me#610/ML<br>5ug/L & Me#625/ML 5ug/L                                                                                                                                                                                                                                                                                                                                                                                                        |
| j. Anthracene                                                 | X/Me#8270D/ML 5ug/L,Me#610/ML<br>5ug/L & Me#625/ML 5ug/L                                                                                                                                                                                                                                                                                                                                                                                                        |
| k. Benzo(ghi) Perylene                                        | X/Me#8270D/ML 5ug/L,Me#610/ML<br>5ug/L & Me#625/ML 5ug/L                                                                                                                                                                                                                                                                                                                                                                                                        |
| I. Fluoranthene                                               | X/Me#8270D/ML 5ug/L,Me#610/ML<br>5ug/L & Me#625/ML 5ug/L                                                                                                                                                                                                                                                                                                                                                                                                        |
| m. Fluorene                                                   | X/Me#8270D/ML 5ug/L,Me#610/ML<br>5ug/L & Me#625/ML 5ug/L                                                                                                                                                                                                                                                                                                                                                                                                        |
| n. Naphthalene <sup>5</sup>                                   | 20 ug/l / Me#8270/ML 5ug/L, Me#610/Ml<br>5ug/L & Me#625/ML 5ug/L                                                                                                                                                                                                                                                                                                                                                                                                |
| o. Phenanthrene                                               | X/Me#8270D/ML 5ug/L,Me#610/ML<br>5ug/L & Me#625/ML 5ug/L                                                                                                                                                                                                                                                                                                                                                                                                        |
| p. Pyrene                                                     | X/Me#8270D/ML5ug/L,Me#610/ML 5ug/L<br>& Me#625/ML 5ug/L                                                                                                                                                                                                                                                                                                                                                                                                         |
| 37. Total Polychlorinated<br>Biphenyls (PCBs) <sup>8, 9</sup> | 0.000064 ug/L/Me# 608/ ML 0.5 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 38. Chloride                                                  | Monitor only/Me# 300.0/ ML 0.1ug/L                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                               | c. Benzo(b)Fluoranthene <sup>7</sup> d. Benzo(k)Fluoranthene <sup>7</sup> e. Chrysene <sup>7</sup> f. Dibenzo(a,h)anthracene <sup>7</sup> g. Indeno(1,2,3-cd) Pyrene <sup>7</sup> 36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH) h. Acenaphthene i. Acenaphthylene j. Anthracene k. Benzo(ghi) Perylene l. Fluoranthene m. Fluorene n. Naphthalene <sup>5</sup> o. Phenanthrene p. Pyrene 37. Total Polychlorinated Biphenyls (PCBs) <sup>8, 9</sup> |

|              | QAL ** /Mee2270D/ML Sug/L<br>QB/ML 1002/LB Me#625/ML Sug/L<br>QAL /Me#8270D/MI<br>.Me#606/ML 100g/L B Me#625/MI | Total Recoverable Metal Limit @ H <sup>10</sup> = 50 mg/l CaCO3 for discharges in Massachusetts (ug/l) <sup>11/12</sup> | Minimum<br>level=ML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | Metal parameter                                                                                                 | Freshwater                                                                                                              | HART RETURNS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 39. Antimony                                                                                                    | 5.6/ML 10                                                                                                               | A STATE OF THE STA |
| $\checkmark$ | 40. Arsenic **                                                                                                  | 500/L20                                                                                                                 | (L)asnas a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|              |                                 | Total Recoverable Metal Limit @ H 10= 50 mg/l CaCO3 for discharges in Massachusetts (ug/l) 11/12 | <u>Minimum</u><br>level=ML |
|--------------|---------------------------------|--------------------------------------------------------------------------------------------------|----------------------------|
|              | Metal parameter                 | Freshwater                                                                                       |                            |
|              | 41. Cadmium **                  | 0.2/ML10                                                                                         |                            |
|              | 42. Chromium III (trivalent) ** | 48.8/ML15                                                                                        |                            |
|              | 43. Chromium VI (hexavalent) ** | 11.4/ML10                                                                                        |                            |
| <b>√</b>     | 44. Copper **                   | 260/ML15                                                                                         |                            |
| <b>√</b>     | 45. Lead **                     | 66/ML20                                                                                          |                            |
|              | 46. Mercury **                  | 0.9/ML0.2                                                                                        |                            |
|              | 47. Nickel **                   | 1,451/ML20                                                                                       |                            |
| $\checkmark$ | 48. Selenium **                 | 250/ML20                                                                                         |                            |
|              | 49. Silver                      | 1.2/ML10                                                                                         |                            |
| <b>√</b>     | 50. Zinc **                     | 1,480/ML15                                                                                       |                            |
| $\checkmark$ | 51. Iron                        | 5,000/ML 20                                                                                      |                            |

|           | Other Parameters                                                                              | <u>Limit</u>                        |
|-----------|-----------------------------------------------------------------------------------------------|-------------------------------------|
| <b>√</b>  | 52. Instantaneous Flow                                                                        | Site specific in CFS                |
| $\sqrt{}$ | 53. Total Flow                                                                                | Site specific in CFS                |
| $\sqrt{}$ | 54. pH Range for Class A & Class B Waters in MA                                               | 6.5-8.3; 1/Month/Grab <sup>13</sup> |
|           | 55. pH Range for Class SA & Class SB Waters in MA                                             | 6.5-8.3; 1/Month/Grab <sup>13</sup> |
|           | 56. pH Range for Class B Waters in NH                                                         | 6.5-8; 1/Month/Grab <sup>13</sup>   |
|           | 57. Daily maximum temperature - Warm water fisheries                                          | 83°F; 1/Month/Grab <sup>14</sup>    |
|           | 58. Daily maximum temperature - Cold water fisheries                                          | 68°F; 1/Month/Grab14                |
|           | 59. Maximum Change in Temperature in MA - Any<br>Class A water body                           | 1.5°F; 1/Month/Grab <sup>14</sup>   |
|           | 60. Maximum Change in Temperature in MA - Any<br>Class B water body- Warm Water               | 5°F; 1/Month/Grab <sup>14</sup>     |
|           | 61. Maximum Change in Temperature in MA – Any Class B water body - Cold water and Lakes/Ponds | 3°F; 1/Month/Grab <sup>14</sup>     |
|           | 62. Maximum Change in Temperature in MA – Any<br>Class SA water body - Coastal                | 1.5°F; 1/Month/Grab <sup>14</sup>   |
|           | 63. Maximum Change in Temperature in MA – Any Class SB water body - July to September         | 1.5°F; 1/Month/Grab <sup>14</sup>   |
|           | 64. Maximum Change in Temperature in MA –Any Class<br>SB water body - October to June         | 4°F; 1/Month/Grab <sup>14</sup>     |

### Footnotes:

<sup>&</sup>lt;sup>1</sup> Although the maximum values for TRC are 11ug/l and 7.5 ug/l for freshwater, and saltwater respectively, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., Method 330.5, 20 ug/l).

| E.S.B.3; I/Month/Grab" |  |
|------------------------|--|
|                        |  |
|                        |  |
|                        |  |
|                        |  |
|                        |  |
|                        |  |
|                        |  |
|                        |  |
|                        |  |
|                        |  |

### asilon huril

<sup>\*</sup> Ammongs the maximum values for TRC are I Light and 2.5 sign for frontwater and gathwater respectively, the compliance units are some to the minimum lever McC Light section attends of Appendix VI (Light Method 130.5, 20 sign).

<sup>2</sup> Limits for cyanide are based on EPA's water quality criteria expressed as micrograms per liter. There is currently no EPA approved test method for free cyanide. Therefore, total cyanide must be reported.

Although the maximum values for cyanide are 5.2 ug/l and 1.0 ug/l for freshwater and saltwater, respectively, the compliance limits are equal to the minimum level (ML) of the Method 335.4 as listed in Appendix VI (i.e., 10 ug/l).

BTEX = sum of Benzene, Toluene, Ethylbenzene, and total Xylenes.

<sup>5</sup> Naphthalene can be reported as both a purgeable (VOC) and extractable (SVOC) organic compound. If both VOC and SVOC are analyzed, the highest value must be used unless the QC criteria for one of the analyses is not met. In such cases, the value from the analysis meeting the QC criteria must be used.

<sup>6</sup> The sum of individual phthalate compounds(not including the #34, Bis (2-Ethylhexyl) Phthalate . The compliance limits are equal to the minimum level (ML) of

the test method used as listed in Appendix VI.

Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measurement of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

Although the maximum value for the individual PAH compounds is 0.0038 ug/l, the compliance limits are equal to the minimum level (ML) of the test method used as

listed in Appendix VI.

<sup>8</sup> In the November 2002 WQC, EPA has revised the definition of Total PCBs for aquatic life as total PCBs is the sum of all homologue, all isomer, all congener, or all "Oroclor analyses."Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measure of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

9Although the maximum value for total PCBs is 0.000064 ug/l, the compliance limit is equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., 0.5 ug/l for Method 608 or 0.00005 ug/l when Method 1668a is approved).

10 Hardness. Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc are

Hardness Dependent.

<sup>11</sup> For a Dilution Factor (DF) from 1 to 5, metals limits are calculated using DF times the base limit for the metal. See Appendix IV. For example, iron limits are calculated using DF x 1,000ug/L (the iron base limit). Therefore DF is 1.5, the iron limit will be 1,500 ug/L; DF 2, then iron limit =1,000 x 2 =2,000 ug/L., etc. not to exceed the DF=5.

Minimum Level (ML) is the lowest level at which the analytical system gives a recognizable signal and acceptable calibration point for the analyte. The ML represents the lowest concentration at which an analyte can be measured with a known level of confidence. The ML is calculated by multiplying the laboratorydetermined method detection limit by 3.18 (see 40 CFR Part 136, Appendix B).

pH sampling for compliance with permit limits may be performed using field

methods as provided for in EPA test Method 150.1.

Temperature sampling per Method 170.1

advise • remediate • sustain

May 25, 2011

US Environmental Protection Agency RGP – NOC Processing Municipal Assistance Unit One Congress Street, Suite 1100 Boston, Massachusetts 02114

Re: Lynnfield/Saugus Pipelines Project: MWRA Contract No. 6584

US Route 1 (Broadway) Saugus, Massachusetts 01906

Construction Dewatering Remediation General Permit Application

Under Massachusetts General Permit No. MAG910000

To Whom It May Concern:

### 1. Introduction

This Remediation General Permit (RGP) was prepared for the Massachusetts Water Resources Authority (MWRA) Contract No. 6584 - Saugus/Lynnfield Pipeline Project ("Project"). The Project is located in Saugus, Massachusetts along Route 1 (a.k.a Broadway) extending approximately 6,400 feet south from the Lynnfield town line (See Figure 1). The Project consists of the installation of approximately 1,815 ft. of 36-inch diameter and 4,585 ft. of 24-inch diameter water mains. In addition, 6,000 ft of 12-inch water main will be installed for the Town of Saugus which will run parallel to the MWRA water main for most of the length. The water mains are located at depths which will require approximately 8 to 12 foot excavations and near continuous dewatering. A National Pollution Discharge Elimination System (NPDES) Remediation General Permit (RGP) is required for this project due to contaminants in groundwater above RGP thresholds, and is attached. The Project is expected to generate water that will be discharged to local storm drains via catch basins. Proposed groundwater treatment will consist of a fractionation tank(s) for particulate settling throughout the Project. Bag filters may be used for removal of suspended solids and granular activated carbon may be added to remove petroleum at locations where groundwater concentrations are potentially elevated. It is anticipated that the proposed dewatering will commence in April of 2011 and be completed on or before November 2012. There will be a winter shutdown period required by the MassDOT permit from 11/14/2011 to 4/15/2012 where no work related to this permit (RGP) will be completed. Project information listed below:

Permit Applicant: Albanese Brothers Inc.

P.O. Box 518 28 Loon Hill Road Dracut, MA 01826

Permit Preparer: SAK Environmental LLC

231 Sutton Street, Suite 2G North Andover, MA 01845

Project Owner: Massachusetts Water Resources Authority (MWRA)

Charlestown Navy Yard

100 First Street

Charlestown, MA 02129

According to Albanese's dewatering consultant, GSI, the average rate of rate of dewatering rate is estimated at 50 gallons per minute (gpm) and the maximum rate is 90 gpm. Storm drains along the Project route discharge to various water bodies that include Hawkes Brook, Saugus River and Camp Nihan Pond.

### 2. Site Conditions

Information in this section was, in part, taken from reports prepared by the Owner's engineer, Fay Spofford and Thorndike (FST) of Burlington, MA. During a combined geotechnical/environmental investigation, gasoline-related volatile organic compounds (VOCs) and lead were detected in groundwater at several locations above applicable reportable concentrations under the Massachusetts Contingency Plan (MCP), 310 CMR 40.0000.

### 2.1. Site Setting

The proposed construction route is shown on Figure 1 – Site Location. At the southern end, the proposed route will follow the eastern shoulder of the northbound lane, cross Route 1 to the western shoulder of the southbound lane near the Walnut Street bridge, and extend to the Lynnfield town line. As described above, the water mains will be installed along Route 1 in Saugus where the highway is a major three-lane thoroughfare with commercial and industrial businesses located just off the shoulders. Uncontrolled access and egress to commercial and industrial properties is prevalent on Route 1.

U.S. Geological Survey (USGS) topographic maps of the Boston Quadrangle (USGS 1903) and Lawrence Quadrangle (USGS 1893) show a road in similar location and geometry as the present-day road. The interchange of Route 1 and Route 129 (Walnut Street) is located near MWRA Station 15+50NB, where the Walnut Street Bridge crosses over and connects with Route 1 via on- and off-ramps. Hawkes Pond, retained by Hawkes Pond Dam, is located immediately west of Route 1 between Stations 51+50NB and 60+00NB. According to the National Inventory of Dams database (NID, 2008), Hawkes Pond Dam (NID ID No. MA00245) is owned by the Lynn Water and Sewer Department and was constructed in 1895. The Lynnfield Water District Pump Station is the Site northern terminus, on the eastern side of Rte. 1 near Sta. 64+00NB.

Ground surface elevations generally increase from south to north along Route 1. Based on the Existing Conditions Plan, the topography slopes gently upward south of the Walnut St. Bridge (approx. Stations 0+00 to 15+50NB) from about El. 48 to El 53. North of the Walnut St. Bridge, topography slopes moderately upward to a peak of about El. 69.7 near Sta. 28+00NB, and then slopes gently downward to a relatively level section of about El. 63 to 66 between Stations 31+00NB and 45+00NB. From Sta. 45+00, the Site slopes to about El. 115 ft. near Sta. 63+00NB, and then gently downward to about El. 113 near the Pump Station. (1)

A review of the Massachusetts Department of Environmental Protection (MADEP) Priority Resource Map (Figure 5) indicates Saugus River passes through the southern extent of the Project. Hawkes Brook is a sub-basin which drains to the Saugus River. The watershed is approximately 47 square miles and passes through Wakefield, Lynnfield, Saugus, and Lynn as it meanders east and south from its source in Lake Quannapowitt in Wakefield to its mouth at Boston Broad Sound. It has at least eight tributaries including: Hawkes Brooks; the Mill River; Bennets Pond Brook; the Pines River; Crystal Pond Brook; Beaver Dam Brook; Strawberry Brook; and Shute Brook. The northern extent of the project passes through two (2) Zone A Public Water Supplies (Hawkes Pond and Walden Pond). Zone A designation indicates the area is located within 400 feet laterally from the bank of a Class A surface drinking water source (as identified in 314 CMR 4.00) and 200 feet laterally from the banks of its tributaries. Though the project passes between these water bodies, no catch basins discharge to them. The Priority Resource Map did not identify any other environmentally pertinent settings.

### 2.2. Subsurface Investigation

Fay, Spofford & Thorndike (FST) prepared a Hazardous Materials Assessment Memorandum dated September 28, 2008 (Appendix A) that identified locations along the pipeline route where oil and/or hazardous materials (OHM) could potentially be encountered in soil or groundwater during the Project. FST advanced 27 borings and installed 9 monitoring wells along the proposed pipeline alignment between March 30 and April 25, 2008 during a combined geotechnical/environmental investigation to evaluate soil structural properties and to obtain samples for environmental assessment. The boring and monitoring well locations are shown on Figure 2 and included sites identified as current or former "Disposal Sites" under the Massachusetts Contingency Plan (MCP), 310 CMR 40.0000, as well as sites likely to have known or suspected underground storage tanks (USTs) such as gas stations. These locations are listed in Table 1 of the FST memorandum (9/2008). Boring locations not listed in this table were advanced for geotechnical purposes only. Boring logs are included in Stephen's Associate's Inc. Geotechnical Report (Appendix B).

The subsurface conditions encountered during drilling consisted of asphalt and sub-base overlying fill consisting of mostly dense to very dense fine to coarse sand with varying proportions of silt and gravel extending about 3 to 12 ft. below ground surface. The fill unit was underlain by medium dense to very dense sand with varying proportions of silt and gravel or bedrock consisting of granitic, dioritic, or granodioritic rock. Where encountered, bedrock depths ranged from about 3 to 15 feet below ground surface.

Stephens Associates performed various geotechnical testing of soil samples collected from the borings with results summarized in Table 2 of their report (See Appendix B). The estimated vertical permeability using the Kozeny-Carmen Formula ranged from  $3.6 \times 10^{-2}$  to  $5.9 \times 10^{-7}$  cm/s. FST performed field permeability tests ("slug tests") in the observation wells and the estimated permeability ranged from  $1 \times 10^{-2}$  and  $4.7 \times 10^{-4}$  cm/s. These values are presented in Table 3 of the Stephens Associates report.

### 2.3. Soil and Groundwater Sample Collection and Analyses

### 2.3.1. Soil

Soil samples collected during the field program were screened for total volatile organic compounds (TVOCs) using a photoionization detector (PID) and submitted for laboratory analyses for the following:

- Volatile organic compounds (VOCs) by EPA Method 8260
- Semi-volatile organic compounds (SVOCs) by EPA Method 8270
- Total petroleum hydrocarbon (TPH) by EPA Method modifed 8100
- Volatile/extractable petroleum hydrocarbon (VPH/EPH) parameters with target VOCs and polycyclic aromatic hydrocarbons (PAHs) by MADEP method
- RCRA 8 metals by EPA Methods 6010, E200.7
- Polychlorinated biphenyls (PCBs) by EPA Method 8082
- RCRA hazardous waste characteristics: conductivity, pH, ignitablity, reactive cyanide and sulfide, and toxicity characteristic leaching procedure (TCLP)

All TVOC concentrations were below 5 parts per million by volume air (ppmv) except for B-3 at a 3-ft depth (265 ppmv) and B-25 at 5-ft depth (49 ppmv). Soil analytical results are summarized in the FST memorandum as Table 3. In general detected petroleum concentrations were below the MCP reportable concentrations for S-1 soil (RCS-1) and/or were consistent with MADEP's concentrations for PAHs and metals in urban fill containing coal and/or wood ash.

### 2.3.2. Groundwater

Groundwater was analyzed for the following using the RGP Appendix VI Methods which included the same parameters as soil (excluding RCRA hazardous waste characteristics) plus: cyanide, iron, copper, antimony, nickel, hexavalent chromium, total suspended solids, and total residual chlorine.

Groundwater analytical results are shown in Table 4 of the FST memorandum (Appendix B). Lead, copper and arsenic were detected in groundwater at concentrations that exceed RGP (no dilution) limits, but are below RGP limits when the dilution factor for the project is applied. Iron was detected in groundwater at concentrations that exceed RGP (no dilution) limits and RGP limits with the dilution factor; consequently, treatment to remove iron is necessary under the permit conditions.

The maximum detected concentrations of benzene and MTBE were 69.2 and 371 micrograms per liter (" $\mu$ g/L"), respectively and exceeded the RGP limits of  $5\mu$ g/L for benzene and 70  $\mu$ g/L for MTBE. In areas where VOC concentrations do not exceed the RCs, dewatering could potentially draw in contaminants resulting in concentrations that do exceed the RCs. Treatment under the RGP will be site-specific and monitored, as contaminant levels and chemical compounds detected in preconstruction studies are not consistent at all monitoring well locations.

### 3. Dilution Factor for Metals (Calculations)

A Dilution Factor (DF) was calculated (Appendix C) in order to identify the RGP limits for total metals. The DF calculation was performed in accordance with the procedure contained in MAG 910000, Appendix V "Calculation of Dilution Factor for Applications in Massachusetts." The purpose of the DF calculation is to establish the Total Recoverable Limits for metals, taking into consideration the anticipated dilution of the detected analytes upon discharge of effluent to the discharge waters.

The calculated DF was then used to find the appropriate Dilution Range Concentrations (DRCs) contained in MAG91000, Appendix IV.

The Project DF was calculated using the following equation:

$$DF = (Qd + Qs)/Qd$$

Where: Qd is the maximum discharge flow rate, cubic feet per second

Qs is the receiving water flow rate (minimum for 7 consecutive days with a recurrence

interval of 10 years – 7Q10), cubic feet per second

The value for Qs used for identifying the DRCs contained in MAG91000 Appendix IV is based on information provided by the US Geological Survey (USGS) – Massachusetts Stream Flow Data for the Saugus River. The Saugus River is the closest river with stream flow data that will receive discharges from the Project. The average flow rate reported for the Saugus Iron Works gauge station was 33.6 cubic feet per second (cfs) over a 16-year period. This value was used for the Qs to calculate the DF. Saugus River flow data is provided in Appendix C. The resulting DF equals 72.75. The applicable DRCs are those shown for a DF between 50 and 100. A summary of the metals Total Recoverable Limits (TRL) is presented in Table 1.

### 4. Dewatering and Groundwater Treatment System

The new water mains will be installed generally at 8 to 9 feet below grade and the trench excavations will extend up to 12 feet in depth. Measured groundwater levels were 4.1 to 13.7 feet below grade. Stephens Associates recommended water levels be maintained a minimum of 1 foot below the trench bottom at all times while the trench is open. According to Albanese's dewatering consultant, GSI, the volume of water pumped during dewatering will range from 10 to 90 gpm.

The treatment system will consist of the following components – a fractank to remove readily settable sediment (and Iron). FlocLogs which are non-hazardous polymer blocks may be placed in the tank to aid in sediment deposition. This will be followed by bag filters to remove suspended solids (and Iron) not captured by the fractank, followed by granular activated carbon to remove petroleum and related volatile organic compounds. Final treated effluent will be discharged to storm water catch basins along the length of the Project. An oil/water separator will be added to the beginning of the treatment system, in areas where unexpected gross petroleum contamination (i.e. separate phase petroleum product) is of concern.

Treatment components, excluding the fractank, may be removed from the system, subject to EPA approval, if monitoring results demonstrate reliable compliance with RGP effluent discharge limits.

### 5. Monitoring

Sampling and chemical testing of the treatment system influent and effluent will be performed in accordance with the requirements contained in the US EPA's Authorization to Discharge. Startup monitoring, as defined in the RGP, will be conducted once at commencement of the project. If monitoring results reveal effluent contamination that exceed the RGP limits, appropriate corrective measures will be implemented and additional confirmatory monitoring will be performed. Additionally, if monitoring results demonstrate reliable compliance with RGP effluent discharge limits, treatment components, not including the fractank, may be removed from the system.

Sincerely,

**SAK Environmental, LLC** 

**Prepared By:** 

Mark P. Grady Jr., EIT

**Reviewed By:** 

Sherry Albert, P.E.

**Approved By:** 

Stephen A. Sakakeeny, LSP, CPG, CHMM

Principal

### **Enclosure**

Notice of Intent (NOI) for the Remediation General Permit

### **Attachments**

Figure 1 – Site Location Map

Figure 2 – Boring Locations

Figure 3 – Schematic of Groundwater Treatment System

Figure 4 – Stormwater Outfall Locations

Figure 5 – Priority Resource Map

Table 1 - Total Recoverable Metals Limitations ( $\mu g/L$ ) At Selected Dilution Ranges and Technology Based Ceiling Limitations For Facilities Located In Massachusetts (For Discharges To Freshwater at H = 50 mg/L CaCO3)

Appendix A – FST Hazardous Material Assessment Technical Memorandum

Appendix B – Stephen's Associates Geotechnical Report

Appendix C – Dilution Factor Calculations and Saugus River Data

Appendix D – Material Safety Data Sheets

# B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit

1. General facility/site information. Please provide the following information about the site:

| a) Name of <b>facility/site</b> : Route 1 Walnut St to Lynnfieid line | o Lynnfieid  | d line             | Facilit                         | Facility/site mailing address:        | ress:                                                |                                                                             |
|-----------------------------------------------------------------------|--------------|--------------------|---------------------------------|---------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------|
| Location of facility/site:                                            | Facility SIC | y SIC              | Street:                         | Broadway (Route 1)                    | from Walnut Street Sa                                | Street: Broadway (Route 1) from Walnut Street Saugus north to the Lynnfield |
| Jonoitude: 71 01' 12" W                                               | code(s):     |                    |                                 | Line                                  |                                                      |                                                                             |
| latitude: 42 29' 01" N                                                | N/A          |                    |                                 |                                       |                                                      |                                                                             |
| b) Name of <b>facility/site owner:</b>                                |              |                    | Town:                           | Town: Saugus                          |                                                      |                                                                             |
| Email address of facility/site owner:                                 |              |                    | State:                          |                                       | Zip:                                                 | County:                                                                     |
| eleanor.duffy@mwra.state.ma.us                                        |              |                    | Jesse M                         | Maccachicotte                         | 01006                                                |                                                                             |
| Telephone no. of facility/site <b>owner</b> : 617-                    | 617-570-5458 |                    | Iviassac                        | llusetts                              | 00610                                                | ESSEX                                                                       |
| Fax no. of facility/site owner:                                       |              |                    | Owne                            | r is (check one): 1                   | Owner is (check one): 1. Federal O 2. State/Tribal O | tate/Tribal <u>©</u>                                                        |
| Address of <b>owner</b> (if different from site):                     |              |                    | 3. Priv                         | ate 0 4. Other                        | 3. Private O 4. Other O if so, describe:             |                                                                             |
| Street: 100 First Avenue                                              |              |                    |                                 |                                       |                                                      |                                                                             |
| Town: Boston                                                          | State: MA    | MA                 | Zip: 02129                      | 12129                                 | County:                                              |                                                                             |
| c) Legal name of <b>operator</b> :                                    | Opera        | tor tele           | aphone                          | Operator telephone no: 978-454-8850   |                                                      |                                                                             |
| Albanese Brothers, Inc.                                               | Opera        | tor fax            | no.:                            | <b>Operator</b> fax no.: 978-458-8710 | Operator email:                                      | Operator email: GLabonte@albanesebros.com                                   |
| Operator contact name and title: Gary Labonte, Project Manager        | onte, Proj   | ect Mana           | ager                            |                                       |                                                      |                                                                             |
| Address of <b>operator</b> (if different from owner):                 | Street:      | Street: PO Box 518 | PO Box 518<br>28 Loon Hill Road | pe                                    |                                                      |                                                                             |
| Town: Dracut                                                          | State: MA    | MA                 | Zip: 01826                      | 1826                                  | County:                                              |                                                                             |

| 1) Check Y Ior "yes" or N Ior "no" Ior the following:<br>Has a prior NPDES permit exclusion been granted for the discharge? Y 🔵 - N 💿 - if Y number | the discharge? V O N O if V number.                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. Has a prior NPDES application (Form 1 & 2C) ever been filed for the discharge?                                                                   | en filed for the discharge?                                                                                                                                                                                              |
| 3. Is the discharge a "new discharge" as defined by 40 CF. For sites in Massachusetts, is the discharge covered uncermitting? Y O N O               | i. Is the discharge a "new discharge" as defined by 40 CFR 122.2? Y O N O  For sites in Massachusetts, is the discharge covered under the Massachusetts Contingency Plan (MCP) and exempt from state bermitting? Y O N O |
| by Is site/facility subject to any State permitting, license, or other action which is causing the generation of lischarge? Y O N O                 | f) Is the site/facility covered by any other EPA permit, including:  1. Multi-Sector General Permit? Y O N O, if Y, number:                                                                                              |
| I Y, please list:  I. site identification # assigned by the state of NH or  MA:                                                                     | if Y, number:  3. EPA Construction General Permit? Y O N O                                                                                                                                                               |
| 2. permit or license # assigned: 3. state agency contact information: name, location, and                                                           | if Y, number:  4. Individual NPDES permit? Y O N O,                                                                                                                                                                      |
| elepnone number:                                                                                                                                    | 11 Y, number:  5. any other water quality related individual or general permit? Y O  N O, if Y, number:                                                                                                                  |
| J Is the site/facility located within or does it discharge to                                                                                       | Is the site/facility located within or does it discharge to an Area of Critical Environmental Concern (ACEC)? YONO                                                                                                       |
| 1) Based on the facility/site information and any historicalischarge falls.                                                                         | Based on the facility/site information and any historical sampling data, identify the sub-category into which the potential charge falls.                                                                                |
| Activity Category                                                                                                                                   | Activity Sub-Category                                                                                                                                                                                                    |
| - Petroleum Related Site Remediation                                                                                                                | A. Gasoline Only Sites   B. Fuel Oils and Other Oil Sites (including Residential Non-Business Remediation Discharges)  C. Petroleum Sites with Additional Contamination                                                  |
| I - Non Petroleum Site Remediation                                                                                                                  | A. Volatile Organic Compound (VOC) Only Sites  B. VOC Sites with Additional Contamination  C. Primarily Heavy Metal Sites                                                                                                |
| II - Contaminated Construction Dewatering                                                                                                           | A. General Urban Fill Sites   B. Known Contaminated Sites                                                                                                                                                                |
|                                                                                                                                                     |                                                                                                                                                                                                                          |

| IV - Miscellaneous Related Discharges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A. Aquifer Pump Testing to Evaluate Formerly Contaminated Sites                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. Discharge information. Please provide information about the discharge, (attaching) Describe the discharge extraction to dis | 2. Discharge information. Please provide information about the discharge, (attaching additional sheets as necessary) including:                                                                                                                             |
| a) Describe the discretize activities for which the Owner all Dewatering for construction activities. Hydrostatic testing and disin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | static testing and disinfection of new water pipeline.                                                                                                                                                                                                      |
| b) Provide the following information about each discharge:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                             |
| 1) Number of discharge 2) What is the maximum and aver points:    Catch Basins along route   Average flow (include units)   0.2453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2) What is the maximum and average flow rate of discharge (in cubic feet per second, ft <sup>3</sup> /s)?  Max. flow 0.4683 Is maximum flow a design value? Y O N O  Average flow (include units) 1. Is average flow a design value or estimate? 1.         |
| 3) Latitude and longitude of each discharge within 100 feet:  pt.1: lat 42°29'75.8"N long 71° 056.17"W pt.2: lat. 42°29'12.349"N  pt.3: lat 42°29'7.66"N long 71° 18.88"W pt.6: lat. 42°29'1.50"N  pt.7: lat long 100 pt.8: lat. 42°29'1.50"N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2°29'13.49"N   long. 71° 1'10.99"W   ;<br>2°29'13.49"N   long. 71° 1'11.23"W   ;<br>2°29'1.50"N   long. 71° 1'14.87"W   ;<br>long.   long.   ? • etc.                                                                                                       |
| 4) If hydrostatic testing, total volume of the list ongoing? Y O N O discharge (gals): 238852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ttent O or seasonal O? O N O                                                                                                                                                                                                                                |
| c) Expected dates of discharge (mm/dd/yy): start 4/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | end 10/2012                                                                                                                                                                                                                                                 |
| d) Please attach a line drawing or flow schematic showing water flow through the facility including:<br>1. sources of intake water. 2. contributing flow from the operation. 3. treatment units, and 4. discharwaters(s) SEE ATTACHED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d) Please attach a line drawing or flow schematic showing water flow through the facility including:  1. sources of intake water. 2. contributing flow from the operation. 3. treatment units, and 4. discharge points and receiving waters(s) SEE ATTACHED |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                             |

# 3. Contaminant information.

a) Based on the sub-category selected (see Appendix III), indicate whether each listed chemical is believed present or believed absent in the potential discharge. Attach additional sheets as needed.

| value               | mass<br>(kg)                                                                      |                                    |                                     |                                          |                 |                |                |                     |                        |                   |                            |                                                               |                                       |                                                    |
|---------------------|-----------------------------------------------------------------------------------|------------------------------------|-------------------------------------|------------------------------------------|-----------------|----------------|----------------|---------------------|------------------------|-------------------|----------------------------|---------------------------------------------------------------|---------------------------------------|----------------------------------------------------|
| Average daily value | concentration (ug/l)                                                              | 175,300                            |                                     | 141.14                                   |                 | 23.26          |                | 28.39               |                        | 34.2              | 97.81                      |                                                               | 158.5                                 |                                                    |
| ly value            | mass<br>(kg)                                                                      |                                    |                                     |                                          |                 |                |                |                     |                        |                   |                            |                                                               |                                       |                                                    |
| Maximum daily value | concentration (ug/l)                                                              | 424,000                            |                                     | 287                                      |                 | 69.2           |                | 99                  |                        | 126               | 402                        |                                                               | 371.0                                 |                                                    |
| Minimum             | $\frac{\text{Level}}{(\text{ML}) \text{ of}}$ $\frac{\text{Test}}{\text{Method}}$ | 4000                               | 162                                 | 247                                      | 19.7            | 2              | 2              | 5                   |                        | വ                 | 5                          | 2                                                             | 9                                     |                                                    |
| Anolytical          | Method Used (method #)                                                            | SM2540                             | HACH 8167                           | 8100M                                    | SM4500          | 8260B          | 8260B          | 8260B               |                        | 8260B             | 8260B                      | 8260B                                                         | MADEP VPH                             |                                                    |
| Complo              | Type<br>(e.g.,<br>grab)                                                           | Grab                               | Grab                                | Grab                                     | Grab            | Grab           | Grab           | GRAB                |                        | GRAB              | GRAB                       | Grab                                                          | GRAB                                  |                                                    |
|                     | # of Samples                                                                      | 9 (3 Detecte Grab                  | 6                                   | 9 (3 Detecte Grab                        | 6               | 9 (3 Detected) | 6              | 9 (5 Detected)      |                        | 9 (5 Detecte GRAB | 9 (5 Detected)             | 6                                                             | 9 (3 Detecte                          |                                                    |
|                     | Believed<br>Present                                                               | ×                                  |                                     | ×                                        |                 | ×              |                | ×                   | [                      | ×                 | ×                          |                                                               | ×                                     |                                                    |
|                     | Believed<br>Absent                                                                |                                    | ×                                   |                                          | ×               |                | ×              |                     | I                      |                   |                            | ×                                                             |                                       | ×                                                  |
|                     | CAS                                                                               |                                    |                                     |                                          | 57125           | 71432          | 108883         | 100414              | 108883;<br>106423;     | 95476;<br>1330207 | n/a                        | 106934                                                        | 1634044                               | 75650                                              |
|                     | Parameter *                                                                       | 1. Total Suspended<br>Solids (TSS) | 2. Total Residual<br>Chlorine (TRC) | 3. Total Petroleum<br>Hydrocarbons (TPH) | 4. Cyanide (CN) | 5. Benzene (B) | 6. Toluene (T) | 7. Ethylbenzene (E) | 8. (m,p,o) Xylenes (X) |                   | 9. Total BTEX <sup>2</sup> | 10. Ethylene Dibromide (EDB) (1,2-Dibromoethane) <sup>3</sup> | 11. Methyl-tert-Butyl<br>Ether (MtBE) | 12. tert-Butyl Alcohol<br>(TBA) (Tertiary-Butanol) |

<sup>\*</sup> Numbering system is provided to allow cross-referencing to Effluent Limits and Monitoring Requirements by Sub-Category included in Appendix III, as well as the Test Methods and Minimum Levels associated with each parameter provided in Appendix VI.

<sup>&</sup>lt;sup>2</sup> BTEX = Sum of Benzene, Toluene, Ethylbenzene, total  $\dot{X}$ ylenes. <sup>3</sup> EDB is a groundwater contaminant at fuel spill and pesticide application sites in New England.

NPDES Permit No. MAG910000 NPDES Permit No. NHG910000

|                                      |               |                    |                     |                | Samule                  | Analytical             | Minimum                            | Maximum daily value  | ly value     | Average daily value     | value        |
|--------------------------------------|---------------|--------------------|---------------------|----------------|-------------------------|------------------------|------------------------------------|----------------------|--------------|-------------------------|--------------|
| Parameter *                          | CAS<br>Number | Believed<br>Absent | Believed<br>Present | # of Samples   | Type<br>(e.g.,<br>grab) | Method Used (method #) | Level<br>(ML) of<br>Test<br>Method | concentration (ug/l) | mass<br>(kg) | concentration<br>(ug/l) | mass<br>(kg) |
| 13. tert-Amyl Methyl<br>Ether (TAME) | 9940508       | ×                  |                     |                |                         |                        |                                    |                      |              |                         |              |
| 14. Naphthalene                      | 91203         |                    | ×                   | 9 (3 Detected) | Grab                    | 8270C                  | 1.08                               | 66.30                |              | 23.55                   |              |
| 15. Carbon Tetrachloride             | 56235         | ×                  |                     | 6              | Grab                    | 8260B                  | 2                                  |                      |              |                         |              |
| 16. 1,2 Dichlorobenzene (o-DCB)      | 95501         | ×                  |                     | 6              | Grab                    | 8260B                  | 5                                  |                      |              |                         |              |
| 17. 1,3 Dichlorobenzene (m-DCB)      | 541731        | ×                  |                     | 6              | Grab                    | 8260B                  | 5                                  |                      |              |                         |              |
| 18. 1,4 Dichlorobenzene (p-DCB)      | 106467        | ×                  |                     | 6              | Grab                    | 8260B                  | 5                                  |                      |              |                         |              |
| 18a. Total<br>dichlorobenzene        |               | ×                  |                     | 6              | Grab                    | 8260B                  | 5                                  |                      |              |                         |              |
| 19. 1,1 Dichloroethane (DCA)         | 75343         | ×                  |                     | 6              | Grab                    | 8260B                  | 5                                  |                      |              |                         |              |
| 20. 1,2 Dichloroethane (DCA)         | 107062        | ×                  |                     | 6              | Grab                    | 8260B                  | 2                                  |                      |              |                         |              |
| 21. 1,1 Dichloroethene (DCE)         | 75354         | ×                  |                     | 6              | Grab                    | 8260B                  | 5                                  |                      |              |                         |              |
| 22. cis-1,2 Dichloroethene (DCE)     | 156592        | ×                  |                     | 6              | Grab                    | 8260B                  | 5                                  |                      |              |                         |              |
| 23. Methylene Chloride               | 75092         | ×                  |                     | 9              | Grab                    | 8260B                  | 5                                  |                      |              |                         |              |
| 24. Tetrachloroethene (PCE)          | 127184        | ×                  |                     | 6              | Grab                    | 8260B                  | 5                                  |                      |              |                         |              |
| 25. 1,1,1 Trichloro-ethane (TCA)     | 71556         | ×                  |                     | 6              | Grab                    | 8260B                  | 5                                  |                      |              |                         |              |
| 26. 1,1,2 Trichloro-ethane (TCA)     | 20062         | ×                  |                     | 6              | Grab                    | 8260B                  | 5                                  |                      |              |                         |              |
| 27. Trichloroethene (TCE)            | 79016         | ×                  |                     | 6              | Grab                    | 8260B                  | 2                                  |                      |              |                         |              |

| aily value          | m mass (kg)                                                                       |                                   |       |        |        |                             |                                           |                                                               |                                                          |                        |                    |                         |                         |       |                           |                            |                                                           |
|---------------------|-----------------------------------------------------------------------------------|-----------------------------------|-------|--------|--------|-----------------------------|-------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|------------------------|--------------------|-------------------------|-------------------------|-------|---------------------------|----------------------------|-----------------------------------------------------------|
| Average daily value | concentration<br>(ug/l)                                                           |                                   |       |        |        |                             |                                           | 2.39                                                          | 9.33                                                     |                        |                    |                         |                         |       |                           |                            | 9.33                                                      |
| lly value           | mass<br>(kg)                                                                      |                                   |       |        |        |                             |                                           |                                                               |                                                          |                        |                    |                         |                         |       |                           |                            |                                                           |
| Maximum daily value | concentration (ug/l)                                                              |                                   |       |        |        |                             |                                           | 2.39                                                          | 9.33                                                     |                        |                    |                         |                         |       |                           |                            | 9.33                                                      |
| Minimum             | $\frac{\text{Level}}{(\text{ML}) \text{ of}}$ $\frac{\text{Test}}{\text{Method}}$ | 2                                 | 50    |        | 1.08   | 1.08                        |                                           | 1.08                                                          | 1.08                                                     | 1.08                   | 1.08               | 1.08                    | 1.08                    | 1.08  | 1.08                      | 1.08                       | 1.08                                                      |
| Analytical          | Method   Used   (method #)                                                        | 8260B                             | 8260B |        | 8270C  | 8270C                       |                                           | 8270C                                                         | 8270C                                                    | 8270C                  | 8270C              | 8270C                   | 8270C                   | 8270C | 8270C                     | 8270C                      | 8270C                                                     |
| Sample              | <u>Type</u> (e.g., grab)                                                          | Grab                              | Grab  |        | Grab   | Grab                        |                                           | Grab                                                          | Grab                                                     | Grab                   | Grab               | Grab                    | Grab                    | Grab  | Grab                      | Grab                       | GRAB                                                      |
|                     | # of Samples                                                                      | 6                                 | 6     |        | 6      | 9                           |                                           | 9 (1 Detecte                                                  | 9 (1 Detecte Grab                                        | 6                      | 6                  | 6                       | 6                       | 6     | 6                         | 6                          | 9 (1 Detecte GRAB                                         |
|                     | Believed<br>Present                                                               |                                   |       |        |        |                             |                                           | ×                                                             | ×                                                        |                        |                    |                         |                         |       |                           |                            | ×                                                         |
|                     | Believed<br>Absent                                                                | ×                                 | ×     | ×      | ×      | ×                           | ×                                         |                                                               |                                                          | ×                      | ×                  | ×                       | ×                       | ×     | ×                         | ×                          |                                                           |
|                     | <u>CAS</u><br>Number                                                              | 75014                             | 67641 | 123911 | 108952 | 87865                       |                                           | 117817                                                        |                                                          | 56553                  | 50328              | 205992                  | 207089                  | 21801 | 53703                     | 193395                     |                                                           |
|                     |                                                                                   | 28. Vinyl Chloride (Chloroethene) |       |        |        | 32. Pentachlorophenol (PCP) | 33. Total Phthalates (Phthalate esters) 4 | 34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate] | 35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH) | a. Benzo(a) Anthracene | b. Benzo(a) Pyrene | c. Benzo(b)Fluoranthene | d. Benzo(k)Fluoranthene |       | f. Dibenzo(a,h)anthracene | g. Indeno(1,2,3-cd) Pyrene | 36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH) |

<sup>4</sup> The sum of individual phthalate compounds.

Page 15 of 22

Remediation General Permit Appendix V - NOI

NPDES Permit No. MAG910000 NPDES Permit No. NHG910000

|                                               |                                       |                    |                                   |                | Samula                  | Analytical                   | Minimum                            | Maximum daily value  | ly value     | Average daily value     | value        |
|-----------------------------------------------|---------------------------------------|--------------------|-----------------------------------|----------------|-------------------------|------------------------------|------------------------------------|----------------------|--------------|-------------------------|--------------|
|                                               | CAS                                   | Believed<br>Absent | <b>Believed</b><br><b>Present</b> | # of Samples   | Type<br>(e.g.,<br>grab) | Method<br>Used<br>(method #) | Level<br>(ML) of<br>Test<br>Method | concentration (ug/l) | mass<br>(kg) | concentration<br>(ug/l) | mass<br>(kg) |
|                                               | 83329                                 | ×                  |                                   | 6              | Grab                    | 8270C                        | 1.08                               |                      |              |                         |              |
|                                               | 208968                                | ×                  |                                   | 6              | Grab                    | 8270C                        | 1.08                               |                      |              |                         |              |
|                                               | 120127                                | ×                  |                                   | 6              | Grab                    | 8270C                        | 1.08                               |                      |              |                         |              |
| Benzo(ghi) Perylene                           | 191242                                | ×                  |                                   | 6              | Grab                    | 8270C                        | 1.08                               |                      |              |                         |              |
|                                               | 206440                                | ×                  |                                   | 6              | Grab                    | 8270C                        | 1.08                               |                      |              |                         |              |
|                                               | 86737                                 |                    | ×                                 | 9 (1 detected) | Grab                    | 8270C                        | 1.08                               | 1.4                  |              | 1.4                     |              |
|                                               | 91203                                 |                    | ×                                 | 9 (1 detected  | Grab                    | 8270C                        | 1.08                               | 4.15                 |              | 4.15                    |              |
|                                               | 85018                                 | ×                  |                                   | 6              | Grab                    | 8270C                        | 1.08                               |                      |              |                         |              |
|                                               | 129000                                | ×                  |                                   | 6              | Grab                    | 8270C                        | 1.08                               |                      |              |                         |              |
|                                               | 85687;<br>84742;<br>117840;<br>84662. | ×                  |                                   | 6              | Grab                    | 8082                         | .333                               |                      |              |                         |              |
| 37. Total Polychlorinated<br>Biphenyls (PCBs) | 131113;                               | 4                  |                                   |                |                         |                              |                                    |                      |              |                         |              |
|                                               | 16887006                              | ×                  |                                   |                |                         |                              |                                    |                      |              |                         |              |
|                                               | 7440360                               | ×                  |                                   | 6              | Grab                    | 60108                        | 10                                 |                      |              |                         |              |
|                                               | 7440382                               |                    | ×                                 | 9 (4 detected) | Grab                    | 60108                        | 10                                 | 13.02                |              | 8.18                    |              |
|                                               | 7440439                               | ×                  |                                   | 6              | Grab                    | 60108                        | 100                                |                      |              |                         |              |
|                                               | 16065831                              | ×                  |                                   | 6              | Grab                    | 60108                        | 100                                |                      |              |                         |              |
| 12.19                                         | 18540299                              | ×                  |                                   | 6              | Grab                    | SM3500                       | 50                                 |                      |              |                         |              |
|                                               | 7440508                               |                    | ×                                 | 9 (1 detected) | Grab                    | 60108                        | 8                                  | 35                   |              | 35                      |              |
|                                               | 7439921                               |                    | ×                                 | 9 (5 detected) | Grab                    | 60108                        | 10                                 | 4,3                  |              | 3.36                    |              |
|                                               | 7439976                               | ×                  |                                   | 6              | Grab                    | E245.1                       | 0.2                                |                      |              |                         |              |
|                                               | 7440020                               | ×                  |                                   | 6              | Grab                    | 60108                        | 4                                  |                      |              |                         |              |
|                                               | 7782492                               | ×                  |                                   | 6              | Grab                    | 60108                        | 50                                 |                      |              |                         |              |
|                                               | 7440224                               | ×                  |                                   | 6              | Grab                    | E200.7                       | 7                                  |                      |              |                         |              |
|                                               | 7440666                               | ×                  |                                   |                |                         |                              |                                    |                      |              |                         |              |
| -                                             | 7439896                               |                    | ×                                 | 9 (7 detected) |                         | 60108                        | 09                                 | 21900                |              | 7480                    |              |
|                                               |                                       | ×                  |                                   |                |                         |                              |                                    |                      |              |                         |              |

Page 16 of 22

Remediation General Permit Appendix V - NOI

|                                                                                                                                                                                                                                                                                                                                   |                                    |                       |                                   |                              |                                                                   | 1 11 11                        | Minimum                                                                                                                                                                             | Maximum daily value           | faily value                      | Average daily value              | value        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------|-----------------------------------|------------------------------|-------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------|----------------------------------|--------------|
| Parameter *                                                                                                                                                                                                                                                                                                                       | CAS                                | Believed<br>Absent    | <u>Believed</u><br><u>Present</u> | # of<br>Samples              | Type<br>(e.g.,<br>grab)                                           | Method<br>Used<br>(method #)   | Level (ML) of Test Method                                                                                                                                                           | concentration<br>(ug/l)       | n mass (kg)                      | concentration (ug/l)             | mass<br>(kg) |
|                                                                                                                                                                                                                                                                                                                                   |                                    |                       |                                   |                              |                                                                   |                                |                                                                                                                                                                                     |                               |                                  |                                  |              |
|                                                                                                                                                                                                                                                                                                                                   |                                    |                       |                                   |                              |                                                                   |                                |                                                                                                                                                                                     |                               |                                  |                                  |              |
| b) For discharges where <b>metals</b> are believed present,                                                                                                                                                                                                                                                                       | metals are                         | believe               | d present, p                      | lease fill o                 | ut the follow                                                     | ing (attach                    | please fill out the following (attach results of any calculations):                                                                                                                 | y calculatior                 | s):                              |                                  | Γ            |
| Step 1: Do any of the metals in the influent exceed the effluent limits in                                                                                                                                                                                                                                                        | netals in the                      | influen               | t exceed the                      | effluent l                   | imits in                                                          | If yes, v                      | If yes, which metals?                                                                                                                                                               | ۷.                            |                                  |                                  |              |
| Appendix III (i.e., the limits set at zero dilution)? Y O N O                                                                                                                                                                                                                                                                     | limits set at                      | zero dilı             | ution)? Y 6                       | ON                           |                                                                   | Lead, arse                     | Lead, arsenic, copper and iron                                                                                                                                                      | d iron                        |                                  |                                  |              |
| Step 2: For any metals which exceed the <b>Appendix III</b> limits, calculate the <b>dilution factor (DF)</b> using the formula in Part I.A.3.c (step 2) of the NOI instructions or as determined by the State prior to the submission of this NOI                                                                                | which excesing the formined by the | ed the A              | ppendix II Part I.A.3.c           | I limits, ca<br>(step 2) of  | III limits, calculate the constant of the NOI enhance of this NOI | Committee of the               | Look up the limit calculated at the corresponding dilution factor in <b>Appendix IV.</b> Do any of the metals in the <b>influent</b> have the potential to exceed the corresponding | culated at the IV. Do any     | e correspond<br>of the metals    | ing dilution<br>in the           |              |
| What is the dilution factor for applicable metals?                                                                                                                                                                                                                                                                                | ctor for app                       | plicable n            | etals?                            |                              |                                                                   |                                | effluent limits in Appendix IV (i.e., is the influent                                                                                                                               | pendix IV (i                  | e., is the inflat the calcula    | uent<br>uent                     |              |
| Metal: Arsenic                                                                                                                                                                                                                                                                                                                    |                                    | DF 500                | _                                 |                              |                                                                   | factor)?                       |                                                                                                                                                                                     |                               |                                  |                                  |              |
| Metal: Copper                                                                                                                                                                                                                                                                                                                     |                                    | DF 260                |                                   |                              |                                                                   | ⊙<br>≻                         | Y O N O If Y, list which metals:                                                                                                                                                    | list which n                  | netals:                          |                                  |              |
| Metal: Iron                                                                                                                                                                                                                                                                                                                       |                                    | DF 5000               |                                   |                              |                                                                   |                                |                                                                                                                                                                                     |                               |                                  |                                  |              |
| Etc.                                                                                                                                                                                                                                                                                                                              |                                    |                       |                                   |                              |                                                                   |                                |                                                                                                                                                                                     |                               |                                  |                                  | _            |
| 4. Treatment system information. Please describe the treatment system using separate sheets as necessary, including:                                                                                                                                                                                                              | nformation                         | . Please              | describe th                       | e treatmen                   | t system usir                                                     | ng separate                    | sheets as nec                                                                                                                                                                       | essary, inch                  | iding:                           |                                  | Г            |
| a) A description of the treatment system, including a schematic of the proposed or existing treatment system:                                                                                                                                                                                                                     | treatment s                        | system, i             | ncluding a s                      | schematic                    | of the propos                                                     | sed or exist                   | ing treatment                                                                                                                                                                       | system:                       |                                  |                                  |              |
| The treatment system will consist of the following components: a frac tank to remove readily settleable sediment and metals. Floc logs which are non-hazardous polymer blocks may be placed in the tank to enhance sediment deposition. This will be followed by bag filters to remove finer solids down to 25 micron followed by | onsist of the                      | following k to enhar  | components:                       | a frac tank t<br>deposition. | o remove read<br>This will be foll                                | ily settleable<br>lowed by bac | sediment and gillers to remo                                                                                                                                                        | metals. Floc lo               | gs which are no<br>down to 25 mi | on-hazardous<br>cron followed by | . 4          |
| granular activated carbon (GAL) to remove VOLs and trace dissolved metals. Final treated enlinent will be added prior to the frac tank in the event separate-phase product is encountered.                                                                                                                                        | oarator will be                    | ve vous a<br>added pi | nd trace disso                    | tank in the                  | event separate                                                    | e-phase prod                   | uct is encounte                                                                                                                                                                     | ered.                         | Catch Dasins at                  | מווא נווב ובוואנוו כ             | - 1          |
| b) Identify each                                                                                                                                                                                                                                                                                                                  | Frac. tank 🗵                       |                       | Air stripper $\square$            |                              | Oil/water separator $\square$                                     | or $\Box$                      | Equalizatio                                                                                                                                                                         | Equalization tanks Bag filter | 3ag filter ⊠                     | GAC filter 🗵                     | N.           |
| applicable treatment unit (check all that apply):                                                                                                                                                                                                                                                                                 | Chlorination                       |                       | De-<br>chlorination               |                              | r (please desc                                                    | cribe): Floc                   | Other (please describe):   Floc logs (non-toxic polymer) - MSDS attached.                                                                                                           | : polymer) - MS               | DS attached.                     |                                  |              |

NPDES Permit No. MAG910000 NPDES Permit No. NHG910000

| d) A description of chemical additives being used or planned to be used (attach MSDS sheets):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Flog locs if needed to enhance settling of suspended solids in frac tank.<br>Calcium hypochlorite during hydrostatic testing for disinfection.<br>Sodium thiosulfate to neutralize the disinfectant before discharge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5. Receiving surface water(s). Please provide information about the receiving water(s), using separate sheets as necessary:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| a) Identify the discharge pathway:  Direct to receiving receiving water water with a cility receiving water water water with a cility receiving re |
| b) Provide a narrative description of the discharge pathway, including the name(s) of the receiving waters:  Nearest catch basin that discharges to Hawkes Brook (#1-4) and Saugus River (#5-6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| c) Attach a detailed map(s) indicating the site location and location of the outfall to the receiving water:  1. For multiple discharges, number the discharges sequentially.  2. For indirect dischargers, indicate the location of the discharge to the indirect conveyance and the discharge to surface water. The map should also include the location and distance to the nearest sanitary sewer as well as the locus of nearby sensitive receptors (based on USGS topographical mapping), such as surface waters, drinking water supplies, and wetland areas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| d) Provide the state water quality classification of the receiving water SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| e) Provide the reported or calculated seven day-ten year low flow (7Q10) of the receiving water 33.6  Please attach any calculation sheets used to support stream flow and dilution calculations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| f) Is the receiving water a listed 303(d) water quality impaired or limited water? Y O N O If yes, for which pollutant(s)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Is there a final TMDL? Y O N O If yes, for which pollutant(s)? Fecal coliform - turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| ty.     |
|---------|
| igibili |
| PA EI   |
| HN P    |
| SA an   |
|         |

Please provide the following information according to requirements of Permit Parts I.A.4 and I.A.5 Appendices II and VII.

a) Using the instructions in Appendix VII and information on Appendix II, under which criterion listed in Part I.C are you eligible for

coverage under this general permit?

A O B O C O D O E O F O

b) If you selected Criterion D or F, has consultation with the federal services been completed? Y O N O Underway O

c) If consultation with U.S. Fish and Wildlife Service and/or NOAA Fisheries Service was completed, was a written concurrence finding that the discharge is "not likely to adversely affect" listed species or critical habitat received? Y O N O

d) Attach documentation of ESA eligibility as described in the NOI instructions and required by Appendix VII, Part I.C, Step 4.

- e) Using the instructions in Appendix VII, under which criterion listed in Part II.C are you eligible for coverage under this general permit? 1 0 2 0 3 0
- and conditions that outline measures the applicant must follow to mitigate or prevent adverse effects due to activities regulated by the RGP. f) If Criterion 3 was selected, attach all written correspondence with the State or Tribal historic preservation officers, including any terms

# 7. Supplemental information.

Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit. 8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification: I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

| YNNFIELD/SAUGUS PIPELINE PROJECT                                               | Afflaner                   |                                                    |                |
|--------------------------------------------------------------------------------|----------------------------|----------------------------------------------------|----------------|
| Facility/Site Name: MWRA CONTRACT NO. 6584 - LYNNFIELD/SAUGUS PIPELINE PROJECT | Operator signature: Much A | Printed Name & Title: Marcella Albanese, President | Date: 05/25/11 |

**B. Submission of NOI to EPA** - All operators applying for coverage under this General Permit must submit a completed Notice of Intent (NOI) to EPA. Signed and completed NOI forms and attachments must be submitted to EPA-NE at:

U.S. Environmental Protection Agency 5 Post Office Square, Suite 100 Mail Code OEP06-4 Boston, MA 02109-3912 ATTN: Remediation General Permit NOI Processing

or electronically mailed to NPDES.Generalpermits@epa.gov

or faxed to the EPA Office at 617-918-0505

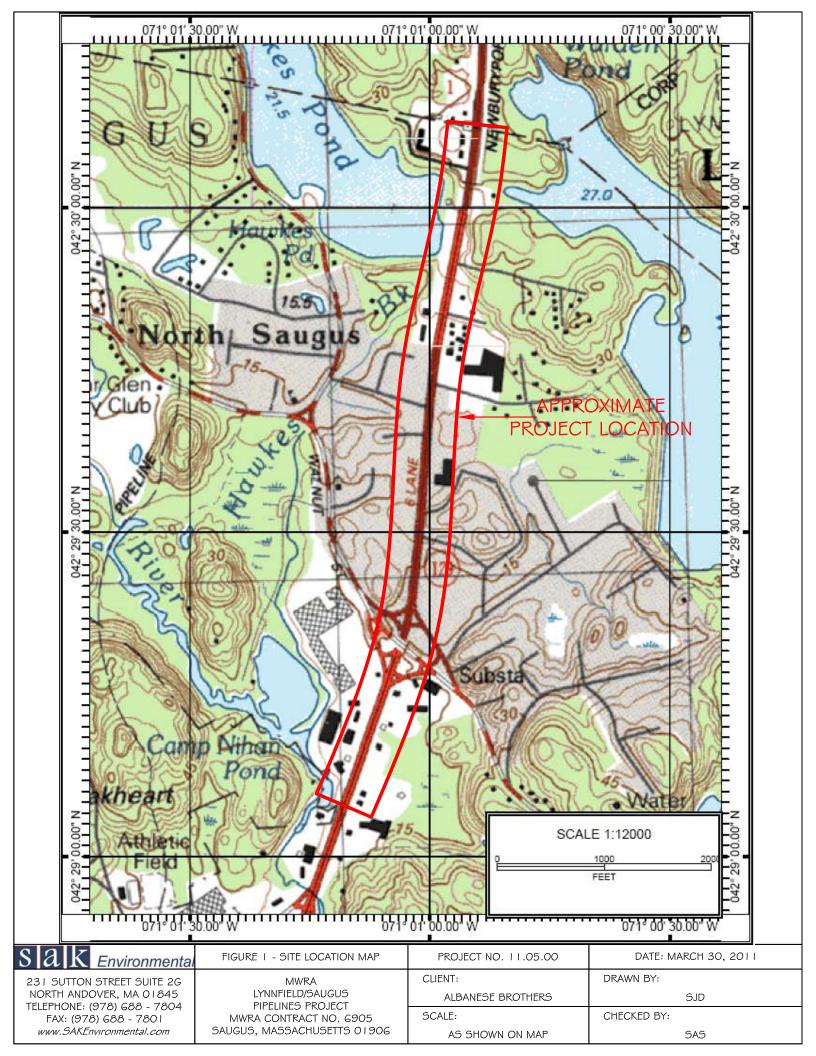
If filling out the suggested NOI form electronically on EPA's website, the signature page must be signed and faxed or mailed to EPA at the fax number and/or address listed above.

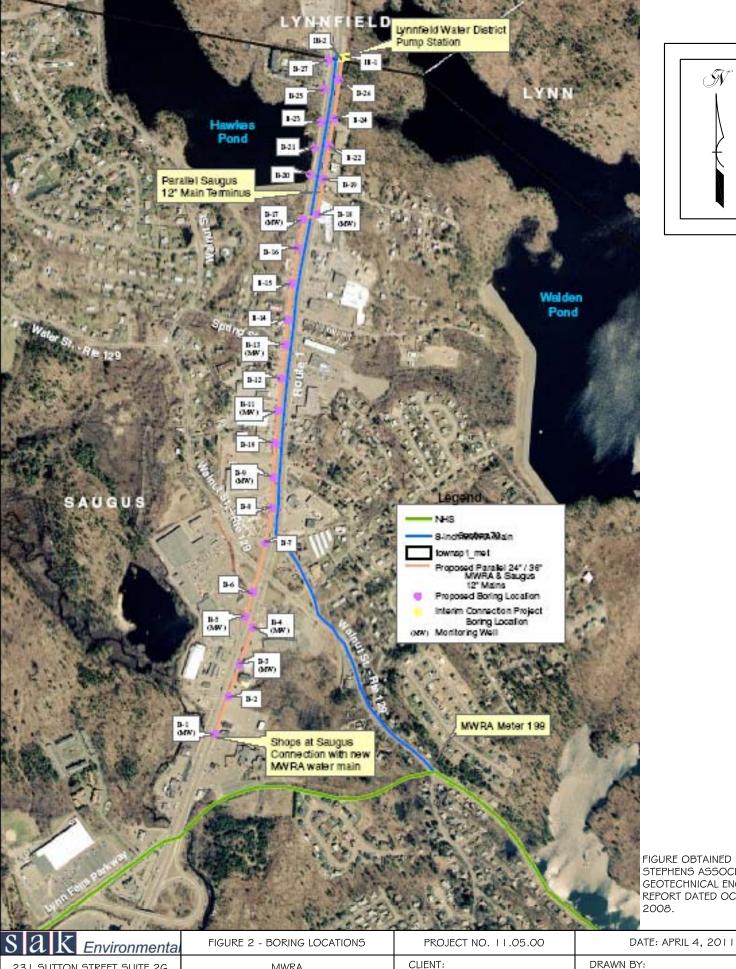
- <u>1. Filing with the states</u> A copy of any NOI form filed with EPA-NE must also be filed with state agencies. The state agency may elect to develop a state specific form or other information requirements.
- a) <u>Discharges in Massachusetts</u> In addition to the NOI, permit applicants must submit copies of the State Application Form BRPWM 12, Request for General Permit coverage for the RGP. The application form and the Transmittal Form for Permit Application and Payment may be obtained from the Massachusetts Department of Environmental Protection (MassDEP) website at <a href="https://www.state.ma.us/dep">www.state.ma.us/dep</a>. Municipalities are fee-exempt, but should send a copy of the transmittal form to that address for project tracking purposes. All applicants should keep a copy of the transmittal form and a copy of the application package for their records.
  - 1) A copy of the NOI, the transmittal form, a copy of the check, and Form BRPWM 12 should be sent to:

Massachusetts Department of Environmental Protection Division of Watershed Management 627 Main Street, 2<sup>nd</sup> floor Worcester, MA 01608

2) A copy of the transmittal form and the appropriate fee should be sent to:

Massachusetts Department of Environmental Protection P.O. Box 4062 Boston, MA 02111


Please note: Applicants for discharges in Massachusetts should note that under 310 CMR 40.000, as a matter of state law, the general permit only applies to discharges that are **not** subject to the


Massachusetts Contingency Plan (MCP) and 310 CMR 40.000. Therefore, discharges subject to the MCP are **not** required to fill out and submit the State Application Form BRPWM 12 or pay the state fees. However, they must submit a NOI to EPA.

b) <u>Discharges in New Hampshire</u> - applicants must provide a copy of the Notice of Intent to:

New Hampshire Department of Environmental Services Water Division Wastewater Engineering Bureau P.O. Box 95 Concord, New Hampshire 03302-0095.

<u>2. Filing with Municipalities</u> - A copy of the NOI must be submitted to the municipality in which the proposed discharge would be located.





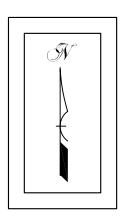


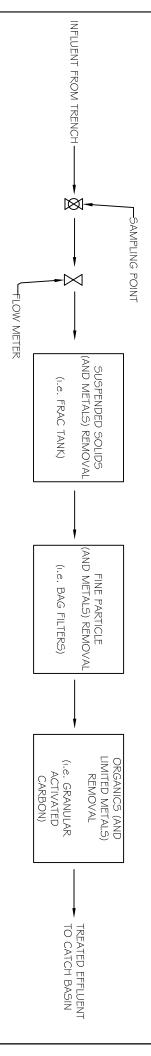

FIGURE OBTAINED FROM STEPHENS ASSOCIATES GEOTECHNICAL ENGINEERING REPORT DATED OCTOBER 6, 2008.

23 I SUTTON STREET SUITE 2G NORTH ANDOVER, MA 01845 TELEPHONE: (978) 688 - 7804 FAX: (978) 688 - 780 I www.SAKEnvironmental.com

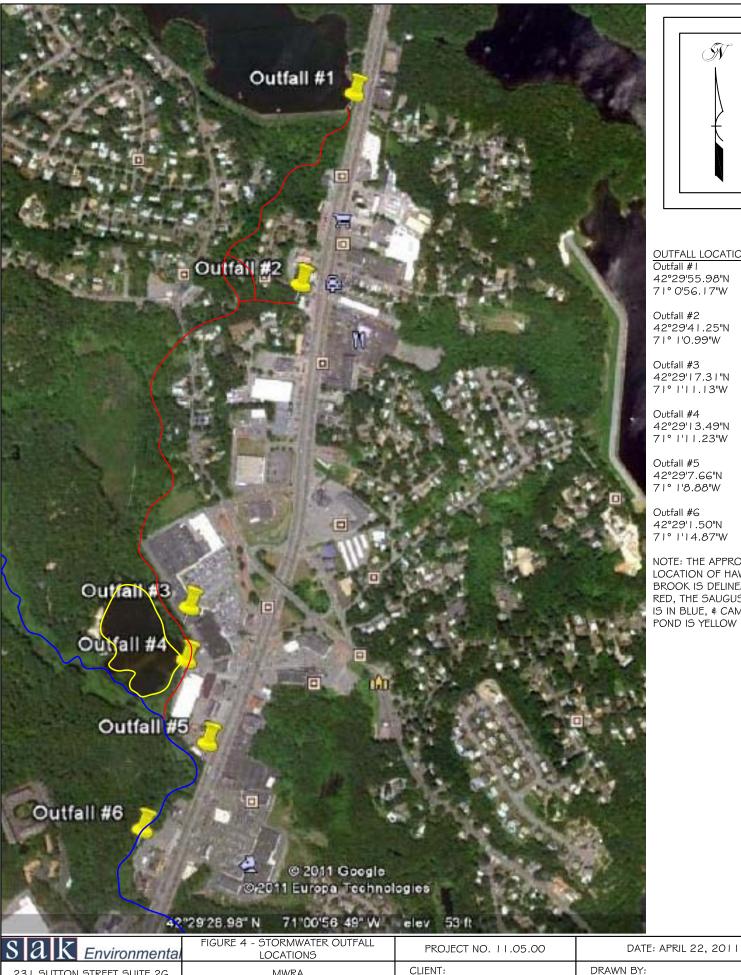
MWRA LYNNFIELD/SAUGUS PIPELINES PROJECT MWRA CONTRACT NO. 6905 SAUGUS, MASSACHUSETTS 01906

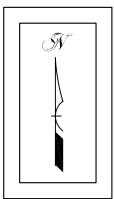
ALBANESE BROTHERS INC.

NTS


SCALE:

DRAWN BY:


CHECKED BY:


SAS

MPG



| SAS                | NTS                    | SAUGUS, MASSACHUSETTS 01906                       | www.SAKEnvironmental.com                       |
|--------------------|------------------------|---------------------------------------------------|------------------------------------------------|
| CHECKED BY:        | SCALE:                 | MWRA CONTRACT NO. 6905                            | FAX: (978) 688 - 7801                          |
| MPG                | ALBANESE BROTHERS INC. | LYNNFIELD/SAUGUS                                  | NORTH ANDOVER, MA 01845                        |
| DRAWN BY:          | CLIENT:                | MWRA                                              | 23 I SUTTON STREET, SUITE 2G                   |
| DATE: MAY 20, 2011 | PROJECT NO. 11.05.00   | FIGURE 3 - GROUNDWATER TREATMENT SYSTEM SCHEMATIC | S 2 K Environmental TREATMENT SYSTEM SCHEMATIC |





OUTFALL LOCATIONS Outfall # I 42°29'55.98"N 71° 0'56.17"W

Outfall #2 42°29'41.25"N 71° 1'0.99"W

Outfall #3 42°29'17.31"N 71° 1'11.13"W

Outfall #4 42°29'13.49"N 71° 1′11.23″W

Outfall #5 42°29'7.66"N 71° 1'8.88"W

Outfall #6 42°29'1.50"N 71° 1′14.87"W

NOTE: THE APPROXIMATE LOCATION OF HAWKES BROOK IS DELINEATED IN RED, THE SAUGUS RIVER IS IN BLUE, & CAMP NIHAN POND IS YELLOW

23 | SUTTON STREET SUITE 2G NORTH ANDOVER, MA 01845 TELEPHONE: (978) 688 - 7804 FAX: (978) 688 - 7801 www.SAKEnvironmental.com

MWRA LYNNFIELD/SAUGUS PIPELINES PROJECT MWRA CONTRACT NO. 6905 SAUGUS, MASSACHUSETTS 01906

ALBANESE BROTHERS INC.

SCALE:

NTS

DRAWN BY:

MPG CHECKED BY:

SAS

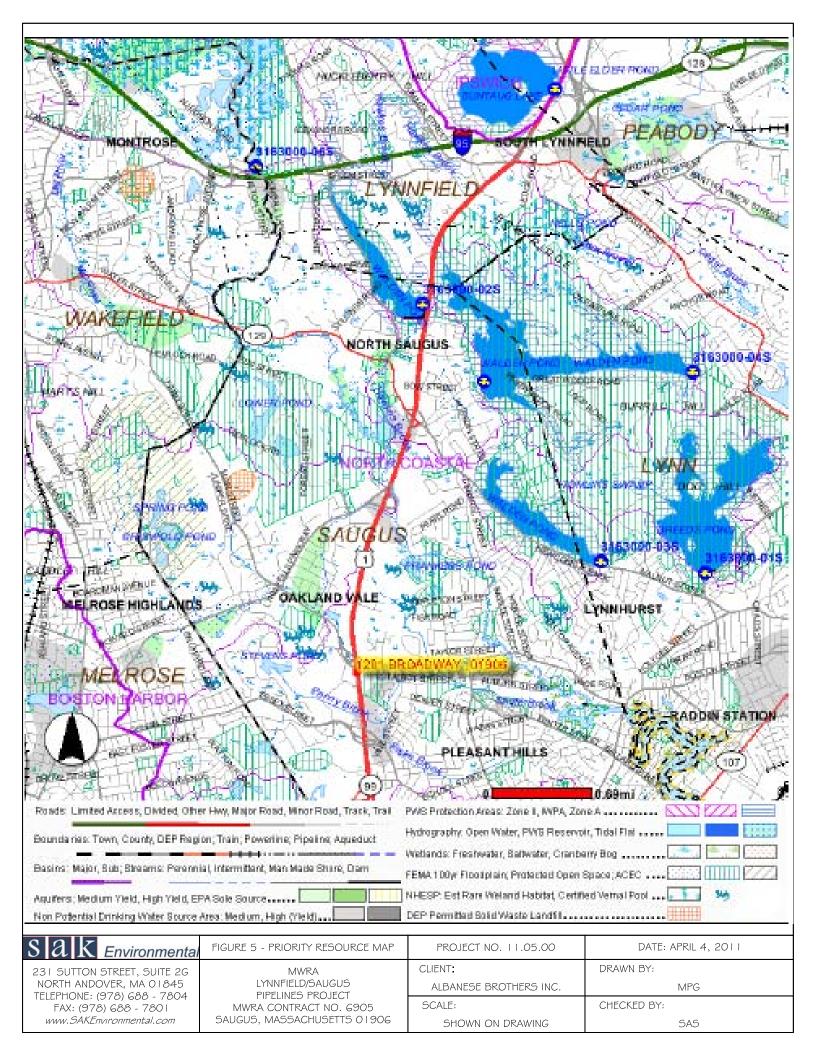
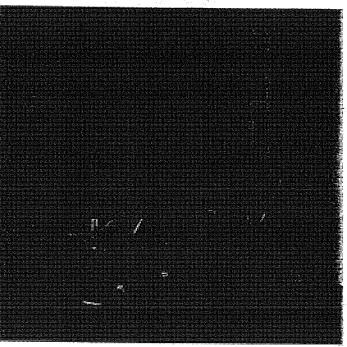



TABLE 1: FROM APPENDIX IV

TOTAL RECOVERABLE METALS LIMITATIONS (ug/L) AT SELECTED DILUTION RANGES AND TECHNOLOGY BASED CEILING LIMITATIONS

FOR FACILITIES LOCATED IN MASSACHUSETTS (for discharges to freshwater at H = 50 mg/L CaCO3)<sup>1</sup>

|                            |       | DI      | LUTION RAI | NGE CONCE | NTRATION |                   | Boring L | ocations |
|----------------------------|-------|---------|------------|-----------|----------|-------------------|----------|----------|
| PARAMETER                  | 0 - 5 | 5 to 10 | 10 to 50   | 50 - 100  | >100     | CEILING VALUE     | Maxium   | Average  |
| 1. Antimony                | 5.6   | 30      | 60         | 141       | 141      | 141 <sup>1</sup>  |          |          |
| 2. Arsenic                 | 10    | 50      | 100        | 500       | 540      | 540 <sup>2</sup>  | 13       | 5.91     |
| 3. Cadmium                 | 0.2   | 1       | 2          | 10        | 20       | 260 <sup>3</sup>  |          |          |
| 4. ChromiumIII (Trivalent) | 48.8  | 244     | 489        | 1710      | 1710     | 1710              |          |          |
| 5. ChromiumVI (Hexavalent) | 11.4  | 57      | 114        | 570       | 1140     | 1710 <sup>4</sup> |          |          |
| 6. Copper                  | 5.2   | 26      | 52         | 260       | 520      | 2070              |          |          |
| 7. Lead                    | 1.3   | 6.5     | 13         | 66        | 132      | 430               | 37       | 35       |
| 8. Mercury                 | 0.9   | 2.3     | 2.3        | 2.3       | 2.3      | 2.3 <sup>5</sup>  |          |          |
| 9. Nickel                  | 29    | 145     | 290        | 1451      | 2380     | 2380              |          |          |
| 10. Selenium               | 5     | 25      | 50         | 250       | 408      | 408 <sup>6</sup>  |          |          |
| 11. Silver                 | 1.2   | 6       | 12         | 57        | 115      | 240               |          |          |
| 12. Zinc                   | 66.6  | 333     | 666        | 1480      | 1480     | 1480              |          |          |
| 13. Iron                   | 1000  | 5000    | 5000       | 5000      | 5000     | 5000              | 21900    | 7480     |


Note: Empty cells represents values below detection limits.

- 1.Based on 7Q10 Flow.
- 2.Based on 40 CFR 437.42, "The Centralized Waste Treatment Point Source Category Subpart D Multiple Wastestreams -Best Practicable Control Technology" (BPT) daily maximum for Antimony
- 3.Based on 40 CFR 445.11, "RCRA Subtitle C Landfill Best Practicable Control Technology" (BPT) for Arsenic.
- 4. Assumes Hexavalent Chromium reduced to Tri-valent Chromium in treatment.
- 5.Based on 40 CFR 437.42, "The Centralized Waste Treatment Point Source Category Subpart D Multiple Wastestreams -Best Practicable Control Technology" (BPT) daily maximum for Mercury
- 6.Based on 40 CFR 437.42, "The Centralized Waste Treatment Point Source Category Subpart D Multiple Wastestreams -Best Practicable Control Technology" (BPT) daily maximum for Selenium

Appendix A FST Hazardous Material Assessment Technical Memorandum

### MASSACHUSETTS WATER RESOURCES AUTHORITY





# $\frac{\text{HAZARDOUS MATERIAL ASSESSMENT TECHNICAL}}{\text{MEMORANDUM}}$

LYNNFIELD/SAUGUS PIPELINES PROJECT MWRA CONTRACT NO. 6905

> FST PROJECT NO. WM-046 SEPTEMBER 26, 2008

> > ENGINEERS
> >
> > Since 1914

### 1. INTRODUCTION

In accordance with the Massachusetts Water Resources Authority's (MWRA) Site Assessment Process for Identifying Hazardous Material; Fay, Spofford & Thorndike (FST) has prepared this Hazardous Material Assessment Memorandum for the Lynnfield/Saugus Pipelines Project. The assessment examined the potential for hazardous chemicals to exist within the soils and groundwater along the pipeline route. This will provide useful information to assist with the design and construction of the pipelines.

To perform the hazardous materials assessment, the following sources were reviewed and subsequent activities performed:

- First Search Technology Corporation (FirstSearch) Database. The database reports identified Massachusetts Department of Environmental Protection (MADEP)-listed sites and spills, Comprehensive Environmental Response Compensation and Liability Act (CERCLA) sites, Resource Conservation and Recovery Act (RCRA) generators, and emergency response notifications. The report was prepared in accordance with ASTM E1903-97 (2002) Standard Guide for Environmental Site Assessments: Phase II Environmental Site Assessment Process.
- MADEP file review was completed to research additional information in MADEP files regarding known releases at disposal sites in the Project Area identified with their release tracking number (RTN).
- Soil borings at twenty-seven (27) locations were drilled and continuously sampled with splitspoon sampling. Each split spoon sample was screened with a photo ionization detector (PID) for the presence of volatiles; and based upon these results and the presence of contamination evidence, soil samples were selected for laboratory analysis.
- At nine (9) of the boring locations, monitoring wells were installed and groundwater samples collected.

### 2. RESULTS

### 2.1 First Search and File Review

Based on review of the First Search Database and file review, the following Table 1 lists the sites of environmental concern that were incorporated into the boring program. The list includes:

- > Sites adjacent to the alignment that are currently either under active investigation or remediation,
- > Sites with a Release Action Outcome (RAO) status indicating contamination levels greater than background, and
- > Properties with either current or past land uses with potential to cause contamination.

WM-046 MWRA Lynnfield/Saugus Pipeline Project Contract 6905 Hazardous Material Assessment Technical Memorandum . . Ċ 1 6 : À **+1** 11. ÷ 4:0 ر ا Table 1.

|                                         |                           | Table 1: Locations along the Alignment with the Potential for Contamination | long the A        | lignment             | with th      | e Potential for (                              | onfamination                                                                                   |                         |
|-----------------------------------------|---------------------------|-----------------------------------------------------------------------------|-------------------|----------------------|--------------|------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------|
|                                         | Address                   | Site Name                                                                   | MA DEP<br>RTN#. ' | Status &<br>Class(a) | Phase<br>(b) | Chemical Type                                  | Comment                                                                                        | Associaled<br>Boring    |
| DEP-listed                              | 595 Broadway, Saugus      | Currently Kelly's Road Beef                                                 | 3-0004725         | HAO-A3               |              | Oil                                            | South of project limits.                                                                       | B-1 (MW) at             |
| siles                                   | 421 Broadway, Saugus      | Commercial Property                                                         | 3-0002497         | RAO-A2               |              | lio                                            | South of project limits. Former Texaco gasoline Station. Site of concern because of RAO class. | southern end of project |
|                                         | 368 Broadway, Saugus      | Currently Exxon Gasoline Station                                            | 3-0026940         | RAO-A1               |              | Hazardous Material                             |                                                                                                | - limits to             |
|                                         | 368 Broadway, Saugus      | Currently Exxon Gasoline Station                                            | 3-0015053         | RAO                  | ΛI           | Oil                                            | Otto conversal brandend food assult of period limits                                           | screen ior<br>potential |
|                                         | 368 Broadway, Saugus      | Exxon Gasoline Station #35879                                               | 3-0011735         | FAO-C1               | ۸I           | Oil                                            | one several number reet south of project firms.                                                | issues from             |
|                                         | 368 Broadway, Saugus      | Exxon Gasoline Station #35879                                               | 3-0002215         | RAO-A2               | Λ            | Hazardous Malerial                             |                                                                                                | these sites             |
|                                         | 300 Broadway, Saugus      | Saugus Animal Hospital                                                      | 3-0021199         | RAO-A1               |              | Oil & Hazardous<br>Material                    | Site of concern because of RAO class and phase.                                                | that are larther south. |
|                                         | 300 Broadway, Saugus      | Saugus Animal Hospital                                                      | 3-0014356         | HAO-A2               | =            | Oil & Hazardous<br>Material                    |                                                                                                | ı                       |
|                                         | 220 Broadway, Saugus      | Merit Oil Stalion                                                           | 3-0003019         | RÁO-A2               | =            | Hazardous Malerial                             | Site currently Hess Gasoline Station. Site of concern because of RAO class and phase.          | B-3 (MW)                |
| -1                                      | 212 Broadway, Saugus      | STAR                                                                        | 3-0016856         | RAO-A2               | =            | Hazardous Material                             | Former Texaco site and site of concern because of RAO class and phase of concern.              | . B-4 (MW)              |
|                                         | 209 Broadway, Saugus      | Salvation Army                                                              | 3-0017338         | RAO-A2               |              | Oil & Hazardous<br>Material                    | Site of concern because of RAO class and phase.                                                | B-11 (MW)               |
|                                         | 190 Broadway              | RTE 1 N @ Walnut Street                                                     | 3-0010122         | RAO-A1               |              | liO                                            | Spill                                                                                          | B-11 (MW)               |
|                                         | 86 Broadway, Saugus       | RTE 1                                                                       | 3-0022140         | RAO-A1               |              |                                                | Spill                                                                                          | B-17 (MW)               |
| Sec 11-41-5 - Annahaman A               | 66 Broadway, Saugus       | Currently U-Haul Site                                                       | 3-0010309         | RAO-A2               | =            | liO                                            | Currently U-Haul site. Site of concern because of RAO class and phase.                         | B-18 (MW)               |
|                                         | 8 Broadway, Lynnfield     | NO LOCATION AID                                                             | 3-0018741         | RTN<br>CLOSED        |              | liO                                            | North and down gradient of LWD Pump Station.                                                   | B-26                    |
|                                         | 8 Broadway, Lynnlield     | Exxon Gasoline Station                                                      | 3-0023299         | RTN<br>CLOSED        |              | Hazardous Material                             |                                                                                                | B-26                    |
|                                         | 141 Broadway              | Former Towing yard                                                          |                   |                      |              | Small Quantity<br>Hazardous Waste<br>Generator | Possible service station at some time.                                                         | B-13 (MW)               |
|                                         | 24-28 Broadway, Lynnfield | RESTAURANT                                                                  | 3-0001842         | DEPNDS               |              |                                                |                                                                                                | B-24                    |
| Land Use                                | 421 Broadway, Saugus      | Opposite Former Texaco Site                                                 |                   |                      |              |                                                | Due to land use, site was chosen for boring                                                    | B-2                     |
| Concerns                                | 421 Broadway, Saugus      | Opposite Former BP Gas Site                                                 |                   |                      |              |                                                | Due to land use, site was chosen for boring                                                    | B-8                     |
| *************************************** | 421 Broadway, Saugus      | Adjacent Former Gulf Site                                                   |                   |                      |              | •                                              | Due to land use, site was chosen for boring                                                    | B-12                    |
|                                         | 421 Broadway, Saugus      | Adjacent to Owen Motors                                                     |                   |                      |              |                                                | Due to land use, site was chosen for boring                                                    | B-15/B-16               |
|                                         |                           |                                                                             |                   |                      |              |                                                |                                                                                                |                         |

<sup>(</sup>a) RAO = Response Action Outcome: A1=Contamination has been reduced to background or threat of release has been eliminated: A2=Contamination has not been reduced to background, and an Activity and Use Limitation has been implemented. DEPNDS=DEP Not a Disposal Site.
(b) II=Comprehensive Site Assessment. III=Identification. Evaluation, and Selection of Comprehensive Remedial Action Alternatives and the Remedial Action Plan. IV=Implementation of the Selected Remedial Action Alternative and Remedy Implementation Plan.

WM-046 MWRA Lynnfield/Saugus Pipeline Project Contract 6905

7

Hazardous Material Assessment Technical Memorandum

# 2.2 Field Program Design & Implementation

The field program was designed to evaluate the areas of concern and general contamination problems. A boring was placed near every site listed in Table 1- Locations Along the Alignment with the Potential for Contamination. Boring B-1 was placed at the southern end of the project area to test for contamination from sites outside of, but close to the project area. Monitoring wells were placed in select borings to test water quality. Borings not listed in the Table 1 were located to provide appropriate structural information for the pipeline route. Locations of the borings can be seen on the attached Figure, "Proposed Boring Locations".

Soil samples collected by split spoon method were collected every two feet and the soil was described. All samples were screened for volatiles by the headspace method using a photo ionization detector (PID). The soil samples for laboratory analysis were collected from the borings with monitoring wells. Any sample exhibiting anomalous PID readings was collected from the borings. Groundwater samples collected from the monitoring wells were sampled and analyzed at an approved lab for the constituents listed in Table 2.

Table 2 List of Laboratory Analyses

| Soil                                                      | Analytical Method | Groundwater             | Analytical Method          |
|-----------------------------------------------------------|-------------------|-------------------------|----------------------------|
| Volatile Organics                                         | 8260              | Volatile Organics       | RGP Appendix VI<br>Methods |
| Semi-Volatile Organics                                    | 8270              | Semi-Volatile Organics  | 11 .                       |
| TPH                                                       | GC/FID Mod 8100   | TPH                     | 11                         |
| VPH                                                       | MADEP*            | VPH .                   | u                          |
| EPH                                                       | MADEP*            | EPH                     | 11                         |
| RCRA 8 Metals                                             | 6010, E200.7      | PCBs                    | 11                         |
| PCBs                                                      | 8082              | Cyanide                 | и                          |
| Conductivity                                              | 9050a             | RCRA 8 Metals           | ť                          |
| pН                                                        | E150.1/SW9045     | Iron                    | tt                         |
| Ignitability                                              | SW-846 method     | Copper                  | 11                         |
| Reactive Cyanide & Sulfide                                | SW-846 method     | Antimony                |                            |
| TCLP**                                                    | 1311              | Nickel                  | n .                        |
|                                                           |                   | Hexavalent Chrome       | ti .                       |
| *Full DEP method, providing aromatics, and individual PA  |                   | Total Suspended Solids  | 11                         |
| ** Assumes full TCLP, orga<br>approximately 10% of sample |                   | Total Residual Chlorine | ti                         |

## 2.3 Soil Analytical Results

Metals, petroleum hydrocarbons, PAHs and gasoline related Volatile Organic Compounds (VOCs) were detected in soil samples. Table 3 presents the results for detected contaminants including RCS-1 and RCS-2 valves for each analyte. RCS-1 standards apply to most of the alignment as it is within 500 feet of residentially zoned properties. Although commercial land use lines both sides of Route 1, the properties just behind the commercial strip are residential.

The results for metals and PAHs are generally consistent with urban fill numbers (Background Levels of Polycyclic Aromatic Hydrocarbons and Metals in Soil, Updates: Section 2.3 *Guidance for Disposal Site Risk Characterization*). In one sample total petroleum hydrocarbons (TPH) measured 1240 µg /kg. This exceeds the RCS-1 limit of 1000 µg/kg but does not exceed the RCS-2 limit of 3000 µg/kg. This sample was analyzed for VPH and EPH. No results exceeded RCS-1 standards. As TPH is utilized only if EPH and VPH analyses were not performed, the TPH results do not represent a reportable concentration. Arsenic measured 20.6 mg /kg in a sample from B-17 taken at a depth of 19-20 feet. Although this exceeds the RCS-1 and RCS-2 limit of 20 mg/kg, it is from below the depth of excavation for the project. Consequently, no soil sample from within the projected bounds of construction activities contained any contaminant that exceeded the applicable reporting concentrations.

Sample B3 S2 contained gasoline components but their concentrations did not exceed a reportable concentration. This sample also had high PID readings from the headspace analysis in the field. This boring was in front of the Hess gas station at 220 Broadway, Saugus.

# 2.4 Groundwater Analytical Results

Analyses of groundwater samples detected gasoline related compounds and lead. Table 4 presents the results for detected contaminants. The table presents reporting concentrations for GW-1 and GW-2 conditions. GW-1 applies on the northern end of the project near the reservoir and is applicable to borings B-17 to B-23. GW-2 conditions apply to the remainder of the project.

Lead concentrations in the samples from B9, B13 and B17 of 0.014, 0.033 and 0037 mg/l respectively exceeded the RCGW-1 and -2 standard of 0.010 mg/l. As the contaminant concentrations exceed the reporting standard, dewatering activities in these areas should be performed under a URAM.

Samples from B3, B5 and B9 contained gasoline contaminants at concentrations above the RCGW-1 standard but below the applicable RCGW-2 STANDARD. This includes benzene in all three samples and MtBE in two samples These concentrations do not trigger a URAM. However, the concentrations do exceed the standards for discharge under an NPDES Remediation General Permit (RGP).

The more restrictive regulatory limits are those that apply to an RGP. These limits will apply to the water quality of any dewatering discharge to a surface water body. Although contaminant concentrations may not exceed a reporting concentration that triggers a required initiation of a URAM, a voluntary initiation of a URAM provides the MWRA a mechanism to regulate dewatering

WM-046 MWRA Lynnfield/Saugus Pipeline Project Contract 6905

Hazardous Material Assessment Technical Memorandum discharges.

While the groundwater data indicates points of contamination, the information gathered to date does not allow for an accurate depiction of how far on either side of the point the contamination may extend. It is recommended that the final design scope include a more thorough review of DEP files on the contaminant sources, and an evaluation of potential effect of dewatering on groundwater contamination.

### 3. CONCLUSIONS

Although some contamination was found in the soil along the alignment, the concentrations are consistent with those seen in urban fill. The concentrations from within areas of construction fall below Massachusetts Contingency Plan (MCP) reportable concentrations and require no special handling. Construction through areas with above background contamination levels but below reporting concentrations will not require the work to be conducted as a Utility-Related Abatement Measure (URAM) under the MCP but will require that excess soil be managed and disposed of in such a manner that complies with the anti-degradation requirements of the MCP. Any soil removed from the project must be reused either in a setting with similar contamination concentrations or as daily cover at a landfill. It is the practice of the MWRA to require restricted disposal of such mildly contaminated soil to a landfill or approved fill site under the oversight of a Licensed Site Professional (LSP).

Detected concentrations above the applicable reporting concentration trigger a URAM under the MCP for pipeline projects. The lab results from the soil sampling detected levels of some contaminants but at low levels. However, only arsenic in one sample exceeded its reporting concentration for this setting (RCS-2) and it exceeded it by less than 1 mg/kg. This sample was taken at a depth below that of the proposed construction activities.

Groundwater results detected VOC levels above reportable concentrations at several locations. It is recommended that dewatering activities in any area with detected gasoline contaminants be undertaken under the auspices of a URAM. In areas with concentrations above the RC, a URAM is needed for dewatering. In areas where the concentrations do not exceed the RC, it should be anticipated that dewatering might draw in contaminants resulting in concentrations that do exceed the RCs. Table 5 provides a summary of groundwater borings which exceed GW1 standards and/or are an area that should be watched.

A National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) would be required for this project due to contaminants in groundwater above RGP thresholds, in additional to the NPDES general permit for construction dewatering. Treatment under the RGP may be decided to be site specific as contaminant levels and chemicals are not consistent at all monitoring well locations. A sampling program during dewatering activities that is overseen by an LSP is recommended as a gauge for treatment options.

As with all construction projects, it is the responsibility of the contractor to ensure the health and safety of its workers.

WM-046 MWRA Lynnfield/Saugus Pipeline Project Contract 6905 Hazardous Material Assessment Technical Memorandum

Hazardous Material Assessment Technical Memorandum

|                                             |            |                              |            | 4       | Lane   | Soum                                    | Miai 1 | אבת הא | JII AII    | laryuc           | Summarized Son Analytical Results | Suits |            |       |      |            |        | -          |           | -          |            |
|---------------------------------------------|------------|------------------------------|------------|---------|--------|-----------------------------------------|--------|--------|------------|------------------|-----------------------------------|-------|------------|-------|------|------------|--------|------------|-----------|------------|------------|
|                                             |            | Sample Identification        | nification | S-8 18. | I-S 68 | 2-S EB                                  | C-S C8 | 1-S 78 | 2-S 58<br> | 82 2-5<br>82 2-5 | 7-S 69                            | 118   | 815<br>2-t | 619   | 918  | 7-S<br>218 | 9-S    | 818<br>S-2 | 7-S       | 2-5<br>853 | 2-3<br>852 |
|                                             | Depth      | Depth (below ground surface) | surface)   | 3-5,    | 1-3    | 3-5                                     | 5-7    | 1-3    | 3-5        | 3-5' 7-9'        | 9, 3-5                            | 7-9   |            |       |      | 7-9.       | 19-20. | 3-5.       | 5-7       | 3-4'       | 7-9.       |
|                                             | Reportable | Reportable Concentrations    |            |         |        |                                         | -      | -      | -          | ١.               | -                                 |       |            |       |      |            |        |            |           |            |            |
| Metals                                      | S          | ZS .                         | Units      |         |        | 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |        |        |            |                  |                                   |       |            | 1     |      |            |        |            |           |            |            |
|                                             | 100        | 200                          | mo/kg      |         |        | -                                       |        | 5.     | 5.39       |                  |                                   |       |            | _     | 2.7  |            |        |            | _         |            |            |
| Arsenic                                     | 20         | R                            | ma/ka      |         |        | ŀ                                       |        |        | <u> </u>   |                  |                                   |       |            |       |      |            | 20.6   |            |           |            |            |
| Barium                                      | 1.000      | 3,000                        | ma/kg      | 15.2    | 11.4   | 13.2                                    | =      | 11.9   | 13.3       |                  |                                   | 29.1  | 14.1       | 25    |      |            | 12.9   | 22.4       |           |            |            |
| Cadmium                                     | 2          | 30                           | ma/ka      |         | T      |                                         |        | -      |            |                  | 1.33                              | ├-    | 1.47       | 1.38  | 1.65 |            | 1.58   |            |           | -          |            |
| Chromium (total)                            | 8          | 200                          | ma/ka      |         | T      | 26.9                                    |        | -      |            | -                |                                   | ┼     | +-         |       | 22.5 |            |        | 23.5       |           | <u> -</u>  |            |
| Lead                                        | 300        | 300                          | marka      |         |        | -                                       |        | -      |            |                  |                                   |       |            | 29.1  |      |            |        | 88.9       |           |            |            |
| Mercury                                     | 8          | 99                           | marka      |         |        |                                         |        |        |            | -                |                                   |       |            | 0.132 |      |            |        | 0.696      |           |            |            |
| Petroleum Hydrocarbons                      |            |                              |            |         |        |                                         |        |        |            |                  |                                   |       |            |       |      |            |        |            |           |            |            |
|                                             | 1000       | 3000                         | mg/kg      |         |        |                                         |        |        | -          |                  |                                   |       |            |       |      |            |        |            |           | 1240       |            |
| MADEP EPH & SVOCs                           |            |                              |            |         |        |                                         |        |        |            |                  |                                   |       |            |       |      |            |        |            |           |            |            |
| 53                                          | 1000       | 3000                         | mg/kg      |         |        |                                         |        |        |            |                  |                                   |       | 115        |       |      |            |        |            |           | 145        |            |
| C09-C18 Aliphatics                          | 000'1      | 3000                         | mg/kg      |         |        |                                         |        |        |            |                  |                                   |       |            |       |      |            |        |            |           | 15.5       |            |
| C19-C36 Aliphatics                          | 3000       | 5,000                        | mg/kg      |         |        |                                         | 1221   |        |            |                  |                                   |       |            |       |      |            |        |            |           | 197        |            |
| Unadjusted C11-C22 Aromatics                |            |                              | µg/L       |         |        |                                         |        |        |            |                  |                                   |       | 115        |       |      |            |        |            | -         | 145        |            |
| Methylnaphthalene, 2-                       | 700        | 90,000                       | пд/ка      |         |        | 154                                     |        |        |            |                  |                                   | -     |            |       |      |            |        |            | 1         | -          |            |
| Benz(a)anthräcene                           | 2000       | 40,000                       | µg/kg      | 22.8    |        |                                         |        | 31     | 4.         |                  |                                   | -     | 17.8       | 22.3  |      |            |        | 13.1       | +         | 14.3       |            |
| Benzo(a)pyrene                              | 2000       | 4,000                        | µg/kg      | 28.9    |        |                                         |        | 38     | 38.8       | -                |                                   | -     | 43.9       | 22.3  |      |            |        |            |           |            | T          |
| bis(2-Ethylhexyl)phthalate                  | 200,000    | 000'002                      | μg/kg      | 113     |        |                                         |        | ਲ      | 39         | +                |                                   | -     | +          |       |      |            |        | 1230       |           | 274        |            |
| Dibenz(a,h)anihracene                       | DQ.        | 4000                         | µg/kg      |         |        |                                         |        |        | -          | -                |                                   | -     | 21.7       | 12.5  |      |            |        |            | +         | +          |            |
| Indeno(1,2,3-cd)pyrene                      | 7000       | 40,000                       | ug/kg      | 18.9    |        |                                         |        | 15     | 19.7       |                  | _                                 |       | -          | 22.3  |      |            |        |            | -         |            |            |
|                                             |            |                              |            |         |        |                                         |        |        |            |                  |                                   |       |            |       |      |            |        |            |           | -          |            |
| Adjusted C5-C8 Aliphatic Hydrocarbons       | 91         | 200                          | mg/kg      |         |        |                                         |        |        |            |                  | _                                 |       |            |       |      |            |        |            |           |            |            |
| Adjusted C9-C12 Aliphatic Hydrocarbons      | 1,000      | 3000                         | mg/kg      |         |        |                                         |        |        |            |                  |                                   |       |            |       |      |            |        |            | -         | 1          |            |
| C9-C10 Aromalle Hydrocarbons                | 100        | 200                          | mg/kg      |         |        |                                         | 3.5    |        |            | -                |                                   |       |            |       |      |            |        |            | 1         | 1          |            |
| M,p-Xylene                                  | 300,000    | 300,000                      | µg/kg      |         |        |                                         |        |        | -          |                  | _                                 |       | -          |       |      | 1          |        | +          |           |            |            |
| Unadjusted C5-C8 Aliphatic Hydrocarbons     |            |                              | µg/kg      |         |        | 47.7                                    |        |        |            | -                | -                                 |       | 1          |       |      |            |        |            | +         |            |            |
| Unadjusted C9-C12 Aliphatic<br>Hydrocarbons |            |                              | рд/ка      |         |        | 36.6                                    |        |        |            |                  |                                   |       |            |       |      |            |        |            |           |            |            |
| Isopropyibenzene                            | 1,000,00   | 10,000,000                   | р д/кд     |         |        | 469                                     |        |        |            |                  |                                   |       |            |       |      |            |        |            |           |            |            |
| n-Butylbenzene                              | 100,000    | 1,000,000                    | µg/kg      |         |        | . 546                                   |        |        |            |                  |                                   | -     |            |       |      |            |        | 1          | +         | +          |            |
| n-Propyibenzene                             | 100,000    | 1,000,000                    | р 9/кд     |         |        | 1050                                    |        | -      |            |                  | -                                 | -     |            |       |      |            |        |            | +         | 1          |            |
| Sec-Butylbenzene                            |            |                              | µg/kg      |         |        | 152                                     |        |        |            |                  | -                                 | -     |            |       |      |            | 1      |            | 1         | 1          |            |
| Elhylbenzene                                | 40,000     | 1,000,000                    | иg/kg      |         |        | 147                                     |        |        |            |                  |                                   | -     | -          |       |      |            |        | +          | $\dagger$ |            |            |
| Ethylene dibromide                          | 100        | 100                          | µg∕kg      |         |        |                                         |        |        |            |                  |                                   |       |            | _     |      |            |        | +          | +         |            | Ī          |
| Methyl ethyl ketone                         | 4000       | 50,000                       | µg/kg      |         |        |                                         |        |        |            |                  | -                                 | -     |            |       |      |            |        |            | +         | +          | T          |
| Methyl Tert-Butyl Ether                     | 100        | 100,000                      | µg/kg      |         |        |                                         | 1000   |        |            | _                | _                                 | -     | _          | _     |      |            | 114    |            | -         | -          | T          |
| SEQ.                                        |            |                              | The second |         |        |                                         |        |        |            |                  |                                   |       |            |       |      |            |        |            | +         | -          |            |
| Aroclor 1260                                | 2000       | 3000                         | µg/kg      | 96.3    |        |                                         |        | 7      | 244        |                  | 4                                 | _     | 315        | 251   |      |            |        | 381        | -         |            |            |
| Noie: blank values were "not detected"      | 34         |                              |            |         |        |                                         |        |        |            |                  |                                   |       |            |       |      |            |        |            |           |            |            |

# Table 4 Summarized Groundwater Analytical Results

| Metals                               | Repor                                                                                                           | Reportable Concentrations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 05127                                   |                              |             |         |                     |             | -                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------|-------------|---------|---------------------|-------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Metals                               | 1                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ations                                  |                              | GW2         | GW2     | GW2                 | GW2         | GW2                                      | GW2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GW2                   | GW2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GW2                                   |
| Metals                               | HGP                                                                                                             | GW1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GW2                                     | Units                        |             |         |                     |             |                                          | the state of the s |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|                                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 7                            |             |         |                     |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Chromium (total)                     | 48.8                                                                                                            | 0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3                                     | l/gm                         |             |         |                     |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Arsenic                              | 10                                                                                                              | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.0                                     | l/gm                         |             |         |                     |             | 1                                        | A TO SECURE SHEET AND SECURE SHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Barium                               | -                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50                                      | l/gm                         |             |         |                     |             |                                          | The state of the s |                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | **                                    |
| Cadmium                              | 0.2                                                                                                             | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.004                                   | ∏g/l                         |             |         |                     |             | and commence contains the                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Lead                                 | 0.0013                                                                                                          | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01                                    | l/gm                         |             |         |                     |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.033                 | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| Selenium                             | 5.0                                                                                                             | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1                                     | l/gm                         |             |         |                     |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Mercury                              | 6:0                                                                                                             | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.02                                    | mg/l                         |             |         |                     |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Petroleum Hydrocarbons               | ale de la companya de | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                              |             |         |                     |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Total Petroleum Hydrocarbons         | 5000                                                                                                            | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5000                                    | µg/L                         |             | 136     |                     |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                     |
| MADEP EPH                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                       |                              |             |         |                     |             | 1                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Lucian de la company de la com |                                       |
| Adjusted C11-C22 Aromatics           |                                                                                                                 | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5000                                    | µg/L                         |             | ·       |                     |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| C09-C18 Aliphatics                   |                                                                                                                 | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5000                                    | hg/L                         |             |         |                     |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| C19-C36 Aliphatics                   |                                                                                                                 | 14,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50,000                                  | µg/L                         |             |         |                     | -           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Tolal PAH                            |                                                                                                                 | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1000                                    | µg/L                         |             | 9.33    |                     |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Naphthalene                          | 20                                                                                                              | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1000                                    | µg/L                         |             | 3.48    |                     |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 2-Methylnaphthalene                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | µg/L                         |             | 5.85    |                     |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| VPH and VOC                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                              |             |         | ***                 | A           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · · |
| Adjusted C5-C8 Aliphatic             |                                                                                                                 | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3000                                    | l µg/L                       |             | 66      |                     |             | 109                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 - Jan 100 BA 67-100 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Hydrocarbons                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                              |             |         |                     |             | 7 00                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | The second secon |                                       |
| Adrocarbons                          |                                                                                                                 | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2000                                    | hg/L                         | 1           | 2.18    |                     |             | 7:00                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| C9-C10 Aromatic                      |                                                                                                                 | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7000                                    | ng/L                         |             |         |                     |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
| Hydrocarbons                         |                                                                                                                 | A CONTRACTOR OF THE CONTRACTOR |                                         |                              |             | 000     |                     | 11.47       | 2023                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| Xylene - mixed isomers               | 100                                                                                                             | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 000                                     | Hg/L                         |             | 0.00    |                     | 20.3        | 66.3                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Naphthalene                          | 20                                                                                                              | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0001                                    | hg/L                         |             | 源水水水で   |                     | #15.A       | 製売の多数                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Benzene                              | 5                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2000                                    | rg/L                         | **          | A CA    | AN .                | 65 T        | 65                                       | 5 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Ethylbenzene                         | 100                                                                                                             | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2000                                    |                              |             | t.0t    | 4                   | 4.68.4      | 1.551S                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 7.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| Methyl Tert-Butyl Ether              | 70                                                                                                              | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2000                                    | hg/L                         |             |         | -93                 | 1000        | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Toluene                              | 100                                                                                                             | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40,000                                  | Hg/L                         |             | 1       |                     | 3           | 3                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 09                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                     |
| Isopropylbenzene                     |                                                                                                                 | 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100,000                                 | µg/L                         |             | 14.7    |                     |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| n-Butylbenzene                       |                                                                                                                 | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10,000                                  | hg/L                         |             | 23.4    |                     |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20.5                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| n-Propylbenzene                      |                                                                                                                 | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10,000                                  | µg/L                         |             |         |                     |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70.6                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| sec-Butylbenzene                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | µg/L                         |             |         | +                   |             |                                          | 7.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.4                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 1,3,5 Trimethylbenzene               |                                                                                                                 | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1000                                    | hg/L                         |             |         |                     |             | 25.1                                     | 11 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 1,2,4 Trimethylbenzene               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100,000                                 | µg/L                         |             | 13.9    | SUPPLIES THE SECOND | 9 1 3 11 12 | .C. 2                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Bold = exceeds regulatory limit GW-2 |                                                                                                                 | nalics a exceeds regulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Joy limit GW-1                          | Exceeds regulatory limit HGP | egulatory I | mit HGP | reaced              | 8 S         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |

Hazardous Material Assessment Technical Memorandum

> WM-046 MWRA Lynnfield/Saugus Pipeline Project Contract 6905.

B-8

Hazardous Material Assessment Technical Memorandum

7.99

40

37

7 96

65

66.5

49.4

hg/L hg/L

1000

7007

66.5

6.35

14.7

hg/L hg/L

100,000

0,000

000

00

Methyl Tert-Butyl Ether

Ethylbenzene

Isopropylbenzene

Toluene

000 000

4000

hg/L

10,000

10,000

7g Hg/I

hg/L

20.5 70.6 28.4

7.09

Exceeds GW-1 & GW-2

Exceeds regulatory limit RGP

Bold = exceeds regulatory limit GW-2 기계(S을 환경환한 Fégulatory limit 면까기

1,3,5 Trimethylbenzene 1,2,4 Trimethylbenzene

sec-Butylbenzene

n-Propylbenzene

n-Butylbenzene

13.9

hg/L hg/L

100,000

10,000

1000

100

25.1

10.7

### B17(GW2) 212+35.51 B13 (GW2) 200+25.08 0.033 200+25.08 B9 (GW2) - 69°5 202.3 88.7 66.3 109 Table 5 GW Borings which Exceed GW1 &/or Areas to be Watch B5 (GW2) 175+40 128 14.47 20.3 171+16.45 B3 (GW2) 27 9.33 3.48 5.85 81.2 136 99.9 66 Sample Identification/Applicable Standard Station Units mg/l mg/l mg/l mg/l mg/l ₩ I/gm hg/L hg/L hg/L µg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L 0.9 30,000 20,000 GW2 50 0.004 0.01 0.02 1000 0001 1000 2000 4000 4000 0.1 1000 1000 500 Reportable Concentrations GW1 0.1 0.01 2 0.004 0.02 0.002 0.05 200 200 1000 5000 200 1000 500 140 400 200 0.0013 48.8 5000 0.2 5.0 0.9 20 5 5 70 20 9 Total Petroleum Hydrocarbons Adjusted C11-C22 Aromatics Hydrocarbons Adjusted C9-C12 Aliphatic Adjusted C5-C8 Aliphatic Xylene - mixed isomers Petroleum Hydrocarbons 2-Methylnaphthalene C09-C18 Aliphatics C19-C36 Aliphatics C9-C10 Aromatic Chromium (total) VPH and VOC Hydrocarbons Hydrocarbons MADEP EPH Naphthalene Naphthalene Total PAH Cadmium Selenium Barium Benzene Mercury Arsenic Lead

0.037

(A)

# Table 4 Summarized Groundwater Analytical Results

|                                           |        | Repo      | Reportable Concentrations | itrations |             | i      | 3        | 5      | 2       | 20        | _     | 513  | 719   | B18 |
|-------------------------------------------|--------|-----------|---------------------------|-----------|-------------|--------|----------|--------|---------|-----------|-------|------|-------|-----|
|                                           | RGP    | RGP w/ DF | GW1                       | GW2       | Units       |        |          |        |         |           |       |      |       |     |
| Metals                                    |        |           |                           |           |             |        |          |        |         |           |       |      |       |     |
| Iron                                      | •      | 2         |                           |           | l/vm        | 186    | 70.3     | 00 0   |         |           | 3     |      |       |     |
| Chromium (total)                          | 0.048  | 1.7       | 0.1                       | 2         | , n         | 2      | 5.0      | 5      | 0.      |           | Z     |      | 90.0  |     |
| Arsenic                                   | .010   | 0.5       | 0.01                      | 0.9       | ma/l        | 0.0130 | 70800    |        | 0.00125 |           | 20.00 |      |       |     |
| Barium                                    |        |           | 2                         | 20        | ma/l        |        |          |        | 00.0    |           | 0.0.0 |      |       |     |
| Cadmium                                   | 0.0002 | 0.01      | 0.004                     | 0.004     | ma/l        |        |          |        |         |           |       |      |       |     |
| Lead                                      | 0.0013 | 990'0     | 0.02                      | 0.01      | ma/l        |        |          | 0.0440 | 000     | 0.044     | 0700  | 000  | 2000  |     |
| Selenium                                  | .0050  | 0.25      | 0.05                      | 0.1       | /ou         |        |          | 2      | 3.5     | 0.014     | 0.043 | .033 | 0.037 |     |
| Mercury                                   | 0.0009 | 0.0023    | 0.002                     | 0.02      | , E         |        |          |        |         |           |       |      |       |     |
| Petroleum Hydrocarbons                    |        |           |                           |           | h           |        |          |        |         |           |       |      |       |     |
| Total Petroleum<br>Hydrocarbons           | 2000   |           | 200                       | 1000      | µg/L        |        | 136      | 287    | 0.42    |           |       |      |       |     |
| MADEP EPH                                 |        |           |                           |           |             |        |          |        |         |           |       |      |       |     |
| Adjusted C11-C22<br>Aromatics             |        |           | 200                       | 30,000    | µg/L        |        |          |        |         |           |       |      |       |     |
| C09-C18 Aliphatics                        |        |           | 1000                      | 1000      | 1/011       |        |          |        |         |           |       |      |       |     |
| C19-C36 Aliphatics                        |        |           | 2000                      | 20,000    | j<br>b      |        |          |        |         |           |       |      |       |     |
| Total PAH                                 | 100    |           | 200                       | 1000      | na/L        |        | 9.33     |        |         |           |       |      |       |     |
| Naphthalene                               | 20     |           | 140                       | 1000      | ng/L        |        | 3.48     |        |         |           |       |      |       |     |
| 2-Methylnaphthalene                       |        |           |                           |           | na/L        |        | 5.85     |        |         |           |       |      |       |     |
| SVOCs                                     |        |           |                           |           | i<br>b      |        | 3        |        |         | 2 2 5 5 5 |       |      |       |     |
| Naphthalene                               | 20     |           | 140                       | 1000      | na/L        |        | 4 15     |        |         |           |       |      |       |     |
| 2-Methylnaphthalene                       |        |           |                           |           | ng/L        |        | 5.60     |        |         |           |       |      |       |     |
| Bis (2-ethylhexyl) phthalate              | 9      |           |                           |           | ng/L        |        | 2.39     |        |         |           |       |      |       |     |
| Di-n-butyl Phthlate                       |        |           |                           |           | hg/L        |        |          |        |         |           | 3 80  |      |       |     |
| Fluorene                                  |        |           |                           |           | hg/L        |        |          |        |         |           | 4 1   |      |       |     |
| VPH                                       |        |           |                           |           |             |        |          |        |         |           |       |      |       |     |
| Adjusted C5-C8 Aliphatic<br>Hydrocarbons  |        |           | 400                       | 1000      | hg/L        |        | 66       |        |         | 109       |       |      |       |     |
| Adjusted C9-C12 Aliphatic<br>Hydrocarbons |        |           | 1000                      | 1000      | µg/L        |        | 81.2     |        |         | 88.7      |       |      |       |     |
| C9-C10 Aromatic<br>Hydrocarbons           |        |           | 200                       | 4000      | µg/L        |        |          |        |         |           |       |      |       |     |
| Benzene                                   | 5      |           | 2                         | 2000      | na/L        |        | O;       |        | 10.6    |           |       |      |       |     |
| Toluene                                   |        |           |                           |           | 2           |        | <b>S</b> |        |         |           |       |      |       |     |
| Ethylbenzene                              |        |           | 700                       | 4000      | na/L        |        | 42.1     |        | 6.35    | 9 17      |       |      |       |     |
| Xylene - mixed isomers                    |        |           | 200                       | 200       | na/L        |        | 99.9     |        | 14.47   | 36.5      |       |      | 100   |     |
| Total BTEX                                | 100    |           |                           |           | na/l        |        | 87.8     |        | 7 7 7   | 78.7      |       |      | 2.0   |     |
| Naphthalene                               | 20     |           | 140                       | 1000      | J/011       |        | 9        |        | 200.    | 1.04      |       |      |       |     |
| MtBE                                      | 70     |           |                           |           |             |        |          |        | 0.02    | 00.0      |       |      | 1     |     |
| 700                                       |        |           |                           |           | i<br>b<br>L |        |          |        | 1.00    | 27.1      |       |      | 7.99  |     |

Hazardous Material Assessment Technical Memorandum

WM-046 MWRA Lynnfield/Saugus Pipelinc Project Contract 6905

| 1,2,4-Trimethylbenzene          |     |                   |                                        |                              |                     | 25.4 | ·    | 400      |      |
|---------------------------------|-----|-------------------|----------------------------------------|------------------------------|---------------------|------|------|----------|------|
| Renzene                         | u   | 1                 |                                        |                              |                     | 1.02 |      | 178      |      |
| Cultoria                        | n   | S                 | 2000                                   |                              | 12.8                | 69.2 |      |          |      |
| Ethylbenzene                    |     | 700               | 4000                                   | 100/1                        | 710                 | u d  | 90   | ç        |      |
| Toluene                         |     |                   |                                        |                              |                     | 3    | 0.30 | 40       |      |
| Xylene                          |     |                   |                                        |                              |                     |      |      | 1        |      |
| Vatal PTCV                      | 007 |                   |                                        |                              |                     | 36.5 |      | 126      |      |
| lotal BIEA                      | 001 |                   |                                        |                              |                     | 402  | 5.98 | 146      | 10.7 |
| Isopropylbenzene                |     |                   |                                        | 14.7                         |                     |      |      | 7 00     | į    |
| n-Propylbenzene                 |     |                   |                                        |                              |                     |      |      | 20.      |      |
|                                 |     |                   |                                        |                              |                     |      |      | 20.5     |      |
| Metnyl Tert-Butyl Ether         | 20  | 70                | 1000                                   | µg/L                         | 96.4                | 371  |      |          | 7 00 |
| sec-Butylbenzene                |     |                   |                                        | na/L                         |                     |      |      | 302      | 9    |
| 1,3,5 Trimethylbenzene          |     | 100               | 1000                                   | ng/L                         |                     | 7.9  | 7 06 | 28.4     |      |
| Bold = exceeds regulatory limit |     | Italics = exceeds | Italics = exceeds regulatory limit GW- | - L                          |                     | ?    | 8    | t.<br>0. |      |
| GW-Z                            |     | -                 |                                        | Exceeds regulatory limit KGP | Exceeds GW-1 & GW-2 | 3W-2 |      |          |      |

Note: Blank values were "not detected"

7

GW-B1

Tuesday, May 13, 2008

Larry Durkin Fay, Spofford & Thorndike 5 Burlington Woods Burlington, MA 01803 GeoLabs, Inc. 45 Johnson Lane Braintree MA 02184 Tele: 781 848 7844 Fax: 781 848 7811

TEL: 781-221-1066 FAX: 781-221-1086

Project:

MWRA 6905

Location:

WM-04, 1.4EXP

Order No.: 0804418

Dear Larry Durkin:

GeoLabs, Inc. received 1 sample(s) on 4/28/2008 for the analyses presented in the following report.

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative.

Analytical methods and results meet requirements of 310CMR 40.1056(J) as per MADEP Compendium of Analytical Methods (CAM).

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Jim Chen

Laboratory Director

Certifications:

CT (PH-0148) - MA (M-MA015) - NH (2508) - NJ (MA009) - NY (11796) - RI (LA000252)

Date: 13-May-08

CLIENT:

Fay. Spofford & Thorndike

Project:

MWRA 6905

Lab Order:

0804418

CASE NARRATIVE

MADEP MCP Response Action Analytical Report Certification Form

Laboratory Name: GeoLabs, Inc.

Project # MW-046, 1.4-EXP

Project Location: MWRA 6905

MADEP RTN #:

This form provides certification for the following data set: 0804418 (001)

Sample Matrix: Groundwater

MCP SW-846 Methods Used: 8260B, VPH, 8270C, EPH, 8082, 8100M, 6010B, 245.1

An affirmative answer to questions A, B and C are required for "Presumptive Certainty" status

- A. Were all samples received by the laboratory in a condition consistent with that described on the Chain of custody documentation for the data set? YES
- B. Were all QA/QC procedures required for the specified method(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate standards or guidelines?
- C. Does the analytical data included in this report meet all the requirements for "Presumptive Certainty" as described in Section 2.0 of the MADEP documents CAM VII A "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"? YES
- D. VPH and EPH Methods only: Was the VPH or EPH Method conducted without significant modifications (see Section 11.3 of respective Methods)

A response to questions E and F are required for "Presumptive Certainty" status

- E. Were all QC performance standards and recommendations for the specified methods achieved? NO
- F. Were results for all analyte-list compounds/elements for the specified method(s) reported?

NO

All NO answers need to be addressed in an attached Environmental Laboratory case narrative.

CLIENT:

Fay, Spofford & Thorndike

Project:

MWRA 6905

Lab Order:

0804418

# CASE NARRATIVE

### CASE NARRATIVE

Physical Condition of Samples

The project was received by the laboratory in satisfactory condition. The sample(s) were received undamaged, in appropriate containers with the correct preservation.

Project Documentation

The project was accompanied by satisfactory Chain of Custody documentation.

Analysis of Sample(s)

The following analytical anomalies or non-conformances were noted by the laboratory during the processing of these samples:

Hexavalent Chromium was received out of holding time.

8260 LCS percent recoveries for 1,2,4-Trimethylbenzene, 1,3,5-Trimethylbenzene, and 2,2-Dichloropropane are outside the recovery limits.

8270 Method Blank percent recovery for 2,4,6-Tribromophenol is outside the recovery limits.

8270 LCS percent recovery for 2,4-Dinitrophenol is outside the recovery limits.

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.

Signature:

Total Change

Position: Lab Director

Printed Name: Jim Chen

Date: May 13, 2008

CLIENT:

Fay, Spofford & Thorndike

Project:

MWRA 6905

Lab Order:

0804418

**CASE NARRATIVE** 

### EPH Methods

Method for Ranges: MADEP EPH 04-1.1 Method for Target Analytes: 8270 GC/MS

Carbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range

C11-C22 Aromatic Hydrocarbons exclude concentrations of Target PAH Analytes

### **CERTIFICATION:**

Were all QA/QC procedures REQUIRED by the EPH Method-followed? YES

Were all performance/acceptance standards achieved? YES

Were any significant modifications made to the EPH method? NO

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

SIGNATURE:

LAB DIRECTOR

PRINTED NAME: Jim Chen

DATE: May 13, 2008

CLIENT:

Fay, Spofford & Thorndike

Project:

MWRA 6905

Lab Order:

0804418

CASE NARRATIVE

### VPH Methods

Method for Ranges: MADEP VPH 04-1.1

Method for Target Analytes: MADEP VPH 04-1.1

Carbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.

C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range. (MTBE, Benzene, Toluene)

C9-C12 Aliphatic Hydrocarbons exclude concentration of Farget Analytes eluting in that range (Ethylbenzene, m&p-Xylenes, o-Xylene) AND concentration of C9-C10 Aromatic Hydrocarbons.

### CERTIFICATION

Were all OA/OC procedures REOUIRED by the VPH Method followed? YES Were all QA/QC performance/acceptance standards achieved? YES Were any significant modifications made to the VPH method, as specified in Sec. 11.3? NO

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge, accurate and complete.

SIGNATURE:

POSITION: LAB DIRECTOR

PRINTED NAME: Jim Chen

DATE: May 13, 2008

Reported Date: 13-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0804418

Client Sample ID: B1

Collection Date: 4/27/2008 10:00:00 AM

Project:

MWRA 6905

Date Received: 4/28/2008

Lab ID: 0804418-001

Matrix: GROUNDWATER

| Analyses                         | Result     | Det. Limit | Qual | Units        | DF  | Date Analyzed                   |
|----------------------------------|------------|------------|------|--------------|-----|---------------------------------|
| TOTAL SUSPENDED SOLIDS - SM25    | 40-D       |            |      |              |     | Analyst: AMS                    |
| Total Suspended Solids           | ND         | . 4.00     |      | mg/L         | 1   | 4/30/2008                       |
| EPH RANGES - MADEP EPH           |            |            |      |              |     | Analysts E.I.                   |
| Adjusted C11-C22 Aromatics       | ND         | 128        |      | μg/L         | 1   | Analyst: <b>RJ</b><br>4/30/2008 |
| C09-C18 Aliphatics               | ND.        | 128        |      | μg/L         | `1  | 4/30/2008                       |
| C19-C36 Aliphatics               | ND         | 128        |      | μg/L         | 1   | 4/30/2008                       |
| Unadjusted C11-C22 Aromatics     | ND         | 128        |      | μg/ <b>L</b> | 1   | 4/30/2008                       |
| Surr: 1-Chloropotadecane         | 69.0       | 40-140     |      | %REC         | 1   | 4/30/2008                       |
| Sum: o-Terphenyl                 | 66.0       | 40-140     |      | %REC         | 1   | 4/30/2008                       |
| OTAL PETROLEUM HYDROCARBO        | NS - 8100M |            |      |              |     | Analyst: RuF                    |
| Total Petroleum Hydrocarbons     | ND         | 0.247      |      | mg/L         | 1   | 5/2/2008                        |
| Surr: o-Terphenyl                | 75.0       | 40-140     |      | %REC         | 1   | 5/2/2008                        |
|                                  |            |            |      |              |     |                                 |
| POLYCHLORINATED BIPHENYLS - S    |            |            |      |              |     | Analyst: GP                     |
| Aroclor 1016/1242                | ND         | 0.333      |      | μg/L         | 1   | 5/1/2008                        |
| Aroclor 1221                     | ND         | 0.333      |      | μg/L         | 1   | 5/1/2008                        |
| Aroclor 1232                     | ND         | 0.333      |      | µg/L         | 1   | 5/1/2008                        |
| Aroclor 1248                     | ND         | 0.333      |      | hâ/r         | 1   | 5/1/2008                        |
| Aroclor 1254                     | ND         | 0.333      |      | μg/Ľ         | 1   | 5/1/2008                        |
| Aroclor 1260                     | ND         | 0.333      |      | μg/L         | 1   | 5/1/2008                        |
| Aroclor 1262                     | ND         | 0.333      |      | μg/L         | 1   | 5/1/2008                        |
| Aroclor 1268                     | ND         | 0.333      |      | μg/L         | 1   | 5/1/2008                        |
| Surr: Decachiorobiphenyl Sig 1   | 86.0       | 30-150     |      | %REC         | 1   | 5/1/2008                        |
| Surr: Decachlorobiphenyl Sig 2   | 100        | 30-150     |      | %REC         | 1   | 5/1/2008                        |
| Surr: Tetrachloro-m-Xylene Sig 1 | 74.0       | 30-150     |      | %REC         | 1   | 5/1/2008                        |
| Surr: Tetrachloro-m-Xylene Sig 2 | 74.0       | 30-150     |      | %REC         | . 1 | 5/1/2008                        |
| TOTAL METALS BY ICP - SW6010B    | ė.         |            |      |              |     | Analyst: <b>QS</b>              |
| Antimony                         | ND         | 0.0100     |      | mg/L         | 1   | 4/29/2008                       |
| Arsenic                          | 0.0130     | 0.0100     |      | mg/L         | 1   | 4/29/2008                       |
| Barium                           | ND         | 2,00       |      | mg/L         | 1   | 4/29/2008                       |
| Cadmium                          | ŅD         | 0.00400    |      | mg/L         | 1   | 4/29/2008                       |
| Chromium                         | ND         | 0.100      |      | mg/L         | 1   | 4/29/2008                       |
| Copper                           | ND         | 0.0400     |      | mg/L         | 1   | 4/29/2008                       |
| Iron                             | 1.86       | 0.0600     |      | mg/L         | 1   | 4/29/2008                       |
| Lead                             | ND         | 0.0100     |      | mg/L         | 1   | 4/29/2008                       |
| Nickel                           | ND         | 0.00400    |      | mg/L         | 1   | 4/29/2008                       |

- Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 13-May-08

CLIENT:

Fay, Spofford & Thorndike

Client Sample ID: B1

Lab Order:

0804418

Collection Date: 4/27/2008 10:00:00 AM

Project:

Date Received: 4/28/2008

Lab ID:

MWRA 6905 0804418-001

Matrix: GROUNDWATER

| Analyses                        | Result | Det. Limit | Qual U | nits | DF | Date Analyzed        |
|---------------------------------|--------|------------|--------|------|----|----------------------|
| TOTAL METALS BY ICP - SW6010B   |        |            |        |      |    | Analyst: QS          |
| Selenium                        | ND     | 0.0500     | n      | ng/L | 1  | 4/29/2008            |
| TOTAL SILVER - E200.7           |        |            |        |      |    | Analyst: QS          |
| Silver                          | ND     | 0.00700    | п      | ng/L | 1  | 4/29/2008            |
| TOTAL MERCURY - E245.1          |        |            |        |      |    | Analyst: <b>EC</b>   |
| Mercury                         | ND     | 0.0002     | п      | ng/L | 1  | 4/30/2008            |
| SEMIVOLATILE ORGANICS - SW8270C |        |            |        |      |    | Analyst: <b>ZYZ</b>  |
| 1,2,4-Trichlorobenzene          | ND     | 1.08       | μ      | g/L  | 1  | 4/29/2008 9:43:00 PM |
| 1,2-Dichlorobenzene             | ND     | 1.08       | μ      | g/L  | 1  | 4/29/2008 9:43:00 PM |
| 1,2-Dinitrobenzene              | ND     | 1.08       | μ      | g/L  | 1  | 4/29/2008 9:43:00 PM |
| 1,3-Dichlorobenzene             | ND     | 1.08       | þ      | g/L  | 1  | 4/29/2008 9:43:00 PM |
| 1,3-Dinitrobenzene              | ND     | 1.08       | μ      | g/L  | 1  | 4/29/2008 9:43:00 PM |
| 1,4-Dichlorobenzene             | ND     | 1.08       | μ      | g/L  | 1  | 4/29/2008 9:43:00 PM |
| 1,4-Dinitrobenzene              | ND     | 1.08       | μ      | g/L  | 1  | 4/29/2008 9:43:00 PM |
| 2,3,4,6-Tetrachiorophenol       | ND     | 1.08       | μ      | ıg/L | 1  | 4/29/2008 9:43:00 PM |
| 2,4,5-Trichlorophenol           | ND     | 1.08       | μ      | ıg/L | 1  | 4/29/2008 9:43:00 PM |
| 2,4,6-Trichlorophenol           | ND     | 1.08       | μ      | ıg/L | 1  | 4/29/2008 9:43;00 PM |
| 2,4-Dichlorophenol              | ND     | 1.08       | ۲      | ıg/L | 1  | 4/29/2008 9:43:00 PM |
| 2,4-Dimethylphenol              | ND     | 1.08       | þ      | rg/L | 1  | 4/29/2008 9:43:00 PM |
| 2,4-Dinitrophenol               | ND     | 5,38       | . μ    | ıg/L | 1  | 4/29/2008 9:43:00 PM |
| 2,4-Dinitrotoluene              | ND     | 1.08       | ۲      | ıg/L | 1  | 4/29/2008 9:43:00 PM |
| 2,6-Dinitrotoluene              | ND     | 1.08       | μ      | ıg/L | 1  | 4/29/2008 9:43:00 PM |
| 2-Chloronaphthalene             | ND     | 1.08       | μ      | ıg/L | 1  | 4/29/2008 9:43:00 PM |
| 2-Chlorophenol                  | ND     | 1.08       | ۲      | ıg/L | 1  | 4/29/2008 9:43:00 PM |
| 2-Methylnaphthalene             | ND     | 1.08       | μ      | ıg/L | 1  | 4/29/2008 9:43:00 PM |
| 2-Methylphenol                  | ND     | 1.08       | ٢      | ıg/L | 1  | 4/29/2008 9:43:00 PM |
| 2-Nitroaniline                  | ND     | 1.08       |        | ıg/L | 1  | 4/29/2008 9:43:00 PM |
| 2-Nitrophenol                   | · ND   | 1.08       | F      | ıg/L | 1  | 4/29/2008 9:43:00 PM |
| 3,3'-Dichlorobenzidine          | ND     | 1.08       | Ļ      | ıg/L | 1  | 4/29/2008 9:43:00 PM |
| 3-Methylphenol/4-Methylphenol   | ND     | 1.08       | ۲      | ıg/L | 1  | 4/29/2008 9:43:00 PM |
| 3-Nitroaniline                  | ND     | 1.08       | 1      | ıg/L | 1  | 4/29/2008 9:43:00 PM |
| 4,6-Dinitro-2-Methylphenol      | ND     | 5.38       | ŀ      | ıg/L | 1  | 4/29/2008 9:43:00 PM |
| 4-Bromophenyl Phenyl Ether      | ND     | 1.08       | ŀ      | ıg/L | 1  | 4/29/2008 9:43:00 PM |
| 4-Chloro-3-Methylphenol         | ND     | 1.08       | ١      | ıg/L | 1  | 4/29/2008 9:43:00 PM |
| 4-Chioroaniline                 | ND     | 1.08       |        | ıg/L | 1  | 4/29/2008 9:43:00 PM |
| 4-Chlorophenyl Phenyl Ether     | ND     | 1.08       | ŀ      | ıg/L | 1  | 4/29/2008 9:43:00 PM |
| 4-Nitroaniline                  | ND     | 1.08       | ļ      | ıg/L | 1  | 4/29/2008 9:43:00 PM |

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 13-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0804418

Project:

MWRA 6905

Lab ID:

0804418-001

Client Sample ID: B1

Collection Date: 4/27/2008 10:00:00 AM

Date Received: 4/28/2008

Matrix: GROUNDWATER

| Analyses                        | Result | Det. Limit | Qual Units | DF | Date Analyzed        |
|---------------------------------|--------|------------|------------|----|----------------------|
| SEMIVOLATILE ORGANICS - SW8270C |        |            |            |    | Analyst: ZYZ         |
| 4-Nitrophenol                   | ND     | 1.08       | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Acenaphthene                    | ND     | 1.08       | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Acenaphthylene                  | ND     | 1.08       | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Acetophenane                    | ND     | 1.08       | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Aniline                         | ND     | 5.38       | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Anthracene                      | ND     | 1.08       | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Azobenzene                      | ND     | 5.38       | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Benz(a)Anthracene               | ND     | 0.108      | μg/L       | 4  | 4/29/2008 9:43:00 PM |
| Benzidine                       | ND     | 5.38       | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Benzo(a)Pyrene                  | ND     | 0,108      | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Benzo(b)Fluoranthene            | ND     | 0.538      | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Benzo(g,h,i)Perylene            | ND     | 1.08       | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Benzo(k)Fluoranthene            | ΝD     | 0.538      | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Benzyl Alcohol                  | ND     | 1.08       | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Bis(2-Chloroethoxy)Methane      | ND     | 1.08       | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Bis(2-Chloroethyl)Ether         | ND     | 1.08       | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Bis(2-Chlaroisopropyl)Ether     | ND     | 1.08       | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Bis(2-Ethylhexyl)Phthalate      | ND     | 1.08       | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Butyl Benzyl Phthalate          | ND     | 1.08       | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Carbazole                       | ND     | 1.08       | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Chrysene                        | ND     | 1.08       | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Dibenz(a,h)Anthracene           | ND     | 0.108      | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Dibenzofuran                    | ND     | 1.08       | µg/L       | 1  | 4/29/2008 9:43:00 PM |
| Diethyl Phthalate               | ND     | 1.08       | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Dimethyl Phthalate              | ИD     | 1.08       | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Di-л-Butyl Phthalate            | ND     | 1.08       | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Di-n-Octyl Phthalate            | ND     | 1.08       | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Fluoranthene                    | ND     | 1.08       | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Fluorene                        | ND     | 1.08       | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Hexachlorobenzene               | ND     | 0.108      | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Hexachlorobutadiene             | ND     | 0.108      | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Hexachlorocyclopentadiene       | ND     | 5.38       | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Hexachloroethane                | ND     | 1.08       | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| ndeno(1,2,3-cd)Pyrene           | ND     | 0.108      | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| sophorone                       | ND     | 1,08       | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Naphthalene                     | ND     | 1.08       | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| Nitrobenzene                    | ND     | 1.08       | μg/L       | 1  | 4/29/2008 9:43:00 PM |
| N-Nitrosodimethylamine          | ND     | 5.38       | µg/L       | 1  | 4/29/2008 9:43:00 PM |
| N-Nitrosodi-n-Propylamine       | ND     | 1.08       | µg/L       | 1  | 4/29/2008 9:43:00 PM |
| N-Nitrosodiphenylamine          | ND     | 5.38       | μg/L       | 1  | 4/29/2008 9:43:00 PM |

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- Holding times for preparation or analysis exceeded H
- ND Not Detected at the Reporting Limit

Reported Date: 13-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0804418

Project:

Lab ID:

MWRA 6905 0804418-001

Client Sample ID: B1 Collection Date: 4/27/2008 10:00:00 AM

Date Received: 4/28/2008

Matrix: GROUNDWATER

| Analyses                              | Result | Det. Limit | Qual | Units        | DF  | Date Analyzed        |
|---------------------------------------|--------|------------|------|--------------|-----|----------------------|
| SEMIVOLATILE ORGANICS - SW8270C       |        |            |      |              |     | Analyst: <b>ZY</b> Z |
| Pentachlorophenol                     | ND     | 1.08       |      | μg/L         | 1   | 4/29/2008 9:43:00 PM |
| Phenanthrene                          | ND     | 1,08       |      | µg/L         | 1   | 4/29/2008 9:43:00 PM |
| Phenof                                | ND     | 1.08       |      | µg/L         | 1   | 4/29/2008 9:43:00 PM |
| Pyrene                                | ND     | 1.08       |      | μg/L         | 1   | 4/29/2008 9:43:00 PM |
| Pyridine                              | . ND   | 5.38       |      | μg/L         | 1   | 4/29/2008 9:43:00 PM |
| Surr. 2,4,6-Tribromophenol            | 4.79   | 15-110     | S    | %REC         | 1   | 4/29/2008 9:43:00 PM |
| Surr. 2-Fluorobiphenyl                | 66.6   | 30-130     |      | %REC         | 1   | 4/29/2008 9:43:00 PM |
| Surr: 2-Fluorophenol                  | 50.2   | 15-110     |      | %REC         | 1   | 4/29/2008 9:43:00 PM |
| Surr: Nitrobenzene-d5                 | 61.9   | 30-130     |      | %REC         | 1   | 4/29/2008 9:43:00 PM |
| Surr: Phenol-d6                       | 33.7   | 15-110     |      | %REC         | 1   | 4/29/2008 9:43:00 PM |
| Surr: Terphenyl-d14                   | 55.5   | 30-130     |      | %REC         | 1   | 4/29/2008 9:43:00 PM |
| EPH TARGET ANALYTES - MADEP EPH       |        |            |      |              |     | Analyst: <b>ZYZ</b>  |
| Naphthalene                           | ND     | 1.28       |      | μg/L         | . 1 | 4/30/2008 4:54:00 PM |
| 2-Methylnaphthalene                   | ND     | 1.28       |      | μg/L         | 1   | 4/30/2008 4:54:00 PM |
| Acenaphthene                          | ND     | 1.28       |      | μg/L         | 1   | 4/30/2008 4:54:00 PM |
| Phenanthrene                          | ND     | 1.28       |      | μg/L         | 4   | 4/30/2008 4:54:00 PM |
| Acenaphthylene                        | ND     | 1.28       |      | μg/L         | 1   | 4/30/2008 4:54:00 PM |
| Fluorene                              | ND     | 1.28       |      | μg/L         | 1   | 4/30/2008 4:54:00 PM |
| Anthracene                            | ND     | 1.28       |      | μg/L         | 1   | 4/30/2008 4:54:00 PM |
| Fluoranthene                          | ND     | 1.28       |      | μg/L         | 4   | 4/30/2008 4:54:00 PM |
| Pyrene                                | ND     | 1.28       |      | μg/L         | 1   | 4/30/2008 4:54:00 PM |
| Benzo(a)Anthracene                    | ND     | 0,513      |      | µg/L         | 4   | 4/30/2008 4:54;00 PM |
| Chrysene                              | ND     | 1.28       |      | μg/L         | 4   | 4/30/2008 4:54:00 PM |
| Benzo(b)Fluoranthene                  | ND     | 1,28       |      | μg/L         | 1   | 4/30/2008 4:54:00 PM |
| Benzo(k)Fluoranthene                  | ND     | 1.28       |      | μg/L         | 1   | 4/30/2008 4:54:00 PM |
| Benzo(a)Pyrene                        | ND     | 0,256      |      | μg/L         | 1   | 4/30/2008 4:54:00 PM |
| Indeno(1,2,3-cd)Pyrene                | ND     | 0.513      |      | μg/L         | 1   | 4/30/2008 4:54:00 PM |
| Dibenz(a,h)Anthracene                 | ND     | 0.513      |      | μg/L         | 1   | 4/30/2008 4:54:00 PM |
| Benzo(g,h,i)Perylene                  | ND     | 1.28       |      | μg/L         | 1   | 4/30/2008 4:54:00 PM |
| Total PAH Target Concentration        | ND     | 0          |      | μg/L         | 1   | 4/30/2008 4:54:00 PM |
| Surr: 2,2'-Difluorobiphenyl           | 54.7   | 40-140     |      | %REC         | 1   | 4/30/2008 4:54:00 PM |
| Surr: 2-Fluorobiphenyl                | 45.2   | 40-140     |      | %REC         | 1   | 4/30/2008 4:54:00 PM |
| /OLATILE ORGANIC COMPOUNDS - SW       | 8260B  |            |      |              |     | Analyst: <b>ZYZ</b>  |
| 1,1,1,2-Tetrachioroethane             | ND     | 5.00       |      | μg/L         | 1   | 5/9/2008 4:29:00 PM  |
| 1,1,1-Trichloroethane                 | ND     | 5.00       |      | μg/L         | 1   | 5/9/2008 4:29:00 PM  |
| 1.1.2.2-Tetrachloroethane             | ND     | 2.00       |      | μg/L<br>μg/L | 1   | 5/9/2008 4:29:00 PM  |
| · · · · · · · · · · · · · · · · · · · | 140    | 5.00       |      | 49/C         | ı   | 3/3/2000 4.28.00 PM  |

- В Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- Analyte detected below quantitation limits J
- S Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- / **Н**. Holding times for preparation or analysis exceeded
  - ND Not Detected at the Reporting Limit

Reported Date: 13-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order: Project: Lab ID:

0804418

MWRA 6905

0804418-001

Client Sample ID: B1

Collection Date: 4/27/2008 10:00:00 AM

Date Received: 4/28/2008

Matrix: GROUNDWATER

| Analyses                    | Result      | Det. Limit | Qual Units | DF | Date Analyzed       |
|-----------------------------|-------------|------------|------------|----|---------------------|
| OLATILE ORGANIC COMPOUNDS   | S - SW8260B |            |            |    | Analyst: ZYZ        |
| 1,1-Dichloroethane          | ND          | 5.00       | µg/L       | 1  | 5/9/2008 4:29:00 PM |
| 1,1-Dichloroethene          | ND          | 5.00       | µg/L       | 1  | 5/9/2008 4:29:00 PM |
| 1,1-Dichloropropene         | ND          | 5.00       | μg/L       | 1  | 5/9/2008 4:29:00 PM |
| 1,2,3-Trichlorobenzene      | ND          | 5.00       | µg/L       | 1  | 5/9/2008 4:29:00 PM |
| 1,2,3-Trichloropropane      | ND          | 5.00       | μg/L       | 1  | 5/9/2008 4:29:00 PM |
| 1,2,4-Trichlorobenzene      | ND          | 5.00       | μg/L       | 1  | 5/9/2008 4:29:00 PM |
| 1,2,4-Trimethylbenzene      | ND          | 5.00       | μg/L       | 1  | 5/9/2008 4:29:00 PM |
| 1,2-Dibromo-3-Chloropropane | ND          | 5.00       | μg/L       | 1  | 5/9/2008 4:29:00 PM |
| 1,2-Dibromoethane           | ND          | 2.00       | μg/L       | 1  | 5/9/2008 4:29:00 PM |
| 1,2-Dichlorobenzene         | ND          | 5.00       | μg/L       | 1  | 5/9/2008 4:29:00 PM |
| 1,2-Dichioroethane          | ND          | 2.00       | μg/L       | 1  | 5/9/2008 4:29:00 PM |
| 1,2-Dichloropropane         | ND          | 2.00       | μg/L       | 1  | 5/9/2008 4:29:00 PM |
| 1,3,5-Trimethylbenzene      | ND          | 5.00       | μg/L       | 1  | 5/9/2008 4:29:00 PM |
| 1,3-Dichlorobenzene         | ND          | 5.00       | µg/L       | 1  | 5/9/2008 4:29:00 PM |
| 1,3-Dichloropropane         | ND          | 5.00       | μg/L       | 1  | 5/9/2008 4:29:00 PM |
| 1,4-Dichlorobenzene         | ND          | 5.00       | ug/L       | 1  | 5/9/2008 4:29:00 PM |
| 2,2-Dichloropropane         | ND          | 5.00       | μg/L       | 1  | 5/9/2008 4:29:00 PM |
| 2-Butanone                  | ND          | 10.0       | μg/L       | 1  | 5/9/2008 4:29:00 PM |
| 2-Chloroethyl Vinyl Ether   | ND          | 5.00       | μg/L       | 1  | 5/9/2008 4:29:00 PM |
| 2-Chiorotoluene             | ND          | 5.00       | µg/L       | 1  | 5/9/2008 4:29:00 PM |
| 2-Hexanone                  | ND          | 10.0       | μg/L       | 1  | 5/9/2008 4:29:00 PM |
| 4-Chlorotoluene             | ND          | 5.00       | μg/L       | 1  | 5/9/2008 4:29:00 PM |
| 4-isopropyltoluene          | ND          | 5.00       | μg/L       | 1  | 5/9/2008 4:29:00 PM |
| 4-Methyl-2-Pentanone        | ND          | 5.00       | μg/L       | 1  | 5/9/2008 4:29:00 PM |
| Acetone                     | ND          | 50.0       | μg/L       | 1  | 5/9/2008 4:29:00 PM |
| Acrolein                    | ND          | 50.0       | μg/L       | 1  | 5/9/2008 4;29:00 PM |
| Acrylonitrile               | ND          | 50.0       | μg/L       | 1  | 5/9/2008 4;29:00 PM |
| Benzene                     | ND          | 5.00       | µg/L       | 1  | 5/9/2008 4:29:00 PM |
| Bromobenzene                | ND          | 5.00       | μg/L       | 1  | 5/9/2008 4:29:00 PM |
| Bromochloromethane          | ND          | 2.00       | μg/L       | 1  | 5/9/2008 4:29:00 PM |
| Bromodichloromethane        | ND          | 2.00       | μg/L       | 1  | 5/9/2008 4;29:00 PM |
| Bromoform                   | ND          | 2.00       | µg/L       | 1  | 5/9/2008 4:29:00 PM |
| Bromomethane                | ND          | 2.00       | μg/L       | 1  | 5/9/2008 4:29:00 PM |
| Carbon Disulfide            | ND          | 5.00       | µg/L       | 1  | 5/9/2008 4:29:00 PM |
| Carbon Tetrachloride        | ND          | 2.00       | μg/L       | 1  | 5/9/2008 4:29:00 PM |
| Chlorobenzene               | ND          | 5.00       | μg/L       | 1  | 5/9/2008 4:29:00 PM |
| Chloroethane                | ND          | 5.00       | μg/L       | 1  | 5/9/2008 4:29:00 PM |
| Chioroform                  | ND          | 5.00       | μg/L       | 1. | 5/9/2008 4:29:00 PM |
| Chloromethane               | ND          | 5.00       | μg/L       | 1  | 5/9/2008 4:29:00 PM |
| cis-1,2-Dichloroethene      | ND          | 5.00       | μg/L       | 1  | 5/9/2008 4:29:00 PM |

- В Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit

Reported Date: 13-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0804418

Project:

MWRA 6905

Lab ID:

0804418-001

Client Sample ID: B1

Collection Date: 4/27/2008 10:00:00 AM

Date Received: 4/28/2008

Matrix: GROUNDWATER

| Analyses                                    | Result    | Det. Limit | Qual Units    | DF  | Date Analyzed         |
|---------------------------------------------|-----------|------------|---------------|-----|-----------------------|
| VOLATILE ORGANIC COMPOUNDS                  | - SW8260B |            |               |     | Analyst: <b>ZY</b> Z  |
| cis-1,3-Dichloropropene                     | ND        | 0.500      | μg/L          | 1   | 5/9/2008 4:29:00 PM   |
| Dibromochloromethane                        | ND        | 2.00       | μg/L          | 1   | 5/9/2008 4:29:00 PM   |
| Dibromomethane                              | ND        | 5.00       | μg/L          | 1   | 5/9/2008 4:29:00 PM   |
| Dichlorodifluoromethane                     | ND        | 5.00       | μg/L          | 1   | 5/9/2008 4:29:00 PM   |
| Ethylbenzene                                | ND        | 5.00       | μg/L          | 1   | 5/9/2008 4:29:00 PM . |
| Hexachlorobutadiene                         | ND        | 0.500      | μg/L          | 1   | 5/9/2008 4:29:00 PM   |
| Isopropylbenzene                            | ND        | 5,00       | μg/L          | 1   | 5/9/2008 4:29:00 PM   |
| Methyl Tert-Butyl Ether                     | ND        | 5.00       | μg/L          | 1   | 5/9/2008 4:29:00 PM   |
| Methylene Chloride                          | ND        | 5.00       | μg/L          | 1   | 5/9/2008 4:29:00 PM   |
| Naphthalene                                 | ND        | 20.0       | μg/L          | 1   | 5/9/2008 4:29:00 PM   |
| n-Butylbenzene                              | ND        | 5.00       | μg/L          | 1   | 5/9/2008 4:29:00 PM   |
| n-Propylbenzene                             | ND        | 5,00       | μg/L          | 1   | 5/9/2008 4:29:00 PM   |
| sec-Butylbenzene                            | ND        | 5.00       | μg/L          | 1   | 5/9/2008 4:29:00 PM   |
| Styrene                                     | ND        | 5.00       | μ <b>g/L</b>  | 1   | 5/9/2008 4:29:00 PM   |
| tert-Butylbenzene                           | ND        | 5.00       | μg/L          | 1   | 5/9/2008 4:29:00 PM   |
| Tetrachioroethene                           | ND        | 5.00       | μ <b>g</b> /L | 1   | 5/9/2008 4:29:00 PM   |
| Toluene                                     | ND        | 5.00       | μg/L          | 1   | 5/9/2008 4:29:00 PM   |
| trans-1,2-Dichloroethene                    | ND        | 5.00       | μg/L          | 1   | 5/9/2008 4:29:00 PM   |
| trans-1,3-Dichloropropene                   | ND        | 0.500      | µg/L          | . 1 | 5/9/2008 4:29:00 PM   |
| Trichloroethene                             | ND        | 5.00       | μg/L          | . 1 | 5/9/2008 4:29:00 PM   |
| Trichlorofluoromethane                      | ND        | 5.00       | μg/L          | 1   | 5/9/2008 4:29:00 PM   |
| Vinyl Chloride                              | ND        | 2.00       | μg/ <b>L</b>  | 1:  | 5/9/2008 4:29:00 PM   |
| Xylenes, Total                              | ND        | 5.00       | μg/L          | 1   | 5/9/2008 4:29:00 PM   |
| Surr: 1,2-Dichloroethane-d4                 | 117       | 70-130     | %REC          | 1   | 5/9/2008 4:29:00 PM   |
| Surr: 4-Bromofluorobenzene                  | 95.9      | 70-130     | %REC          | 1   | 5/9/2008 4:29:00 PM   |
| Surr: Dibromofluoromethane                  | 108       | 70-130     | %REC          | 1   | 5/9/2008 4:29:00 PM   |
| Surr: Toluene-d8                            | 101       | 70-130     | %REC          | 1   | 5/9/2008 4:29:00 PM   |
| PH - MADEP VPH                              |           |            |               |     | Analyst: MR           |
| C9-C10 Aromatic Hydrocarbons                | ND        | 75.0       | μg/L          | 1   | 5/1/2008              |
| Unadjusted C5-C8 Aliphatic<br>Hydrocarbons  | ND        | 75.0       | μg/L          | 1   | 5/1/2008              |
| Unadjusted C9-C12 Aliphatic<br>Hydrocarbons | ND        | 75.0       | μg/Ł          | 1   | 5/1/2008              |
| Methyl Tert-Butyl Ether                     | ND        | 5.00       | μg/L          | 1   | 5/1/2008              |
| Benzene                                     | ND        | 5,00       | μg/L          | 1   | 5/1/2008              |
| Toluene                                     | ND        | 5.00       | μg/L          | 1   | 5/1/2008              |
| Ethylbenzene                                | ND        | 5,00       | μg/L          | 1   | 5/1/2008              |
| m,p-Xylene                                  | ND        | 5.00       | μg/L          | 1   | 5/1/2008              |
| o-Xylene                                    | ND        | 5.00       | μg/L          | 1   | 5/1/2008              |

Qualifiers:

- В Analyte detected in the associated Method Blank
- E Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside recovery limits

BRL Below Reporting Limit

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reported Date: 13-May-08

CLIENT:

Fay, Spofford & Thorndike

Client Sample ID: B1

Lab Order:

0804418

Collection Date: 4/27/2008 10:00:00 AM

Project:

Date Received: 4/28/2008

Lab ID:

MWRA 6905 0804418-001

Matrix: GROUNDWATER

| Analyses                                  | Result    | Det. Limit | Qual | Units | DF  | Date Analyzed       |
|-------------------------------------------|-----------|------------|------|-------|-----|---------------------|
| VPH - MADEP VPH                           |           |            |      |       |     | Analyst: MR         |
| Naphthalene                               | ND        | 20.0       |      | μg/L  | 1   | 5/1/2008            |
| Adjusted C5-C8 Aliphatic<br>Hydrocarbons  | ND        | 75.0       |      | μg/L  | 1   | 5/1/2008            |
| Adjusted C9-C12 Aliphatic<br>Hydrocarbons | ND        | 75.0       |      | μg/L  | 1   | 5/1/2008            |
| Surr: 2,5-Dibromotoluene FID              | 74.2      | 70-130     |      | %REC  | 1   | 5/1/2008            |
| Surr: 2,5-Dibromotoluene PID              | 81.0      | 70-130     |      | %REC  | 4   | 5/1/2008            |
| CYANIDE, TOTAL - SM4500-CN-C,E            |           |            |      |       |     | Analyst: WFR        |
| Cyanide, Total                            | ND        | 0.0197     |      | mg/L  | . 1 | 4/30/2008           |
| HEXAVALENT CHROMIUM - SM3500-CR-E         | )         |            |      |       |     | Analyst: <b>WFR</b> |
| Chromium, Hexavalent                      | ND        | 0.0500     | Н    | mg/L  | 1   | 4/29/2008           |
| TOTAL RESIDUAL CHLORINE - HACH 816        | <b>57</b> |            |      |       |     | Analyst: <b>RP</b>  |
| Total Residual Chlorine                   | ND        | 0.162      |      | mg/L  | 1   | 4/28/2008           |

- В Analyte detected in the associated Method Blank
- E Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Fay, Spofford & Thorndike CLIENT:

0804418 Work Order:

**MWRA 6905** Project:

ANALYTICAL QC SUMMARY REPORT

Date: 13-May-08

TestCode: 6010B\_W

| Sample ID: MB-9991  | SampType: MBLK | TestCoc | TestCode: 6010B_W | Units: mg/L |      | Prep Date:               |                       | RunNo: 23364  | 1364     |      |
|---------------------|----------------|---------|-------------------|-------------|------|--------------------------|-----------------------|---------------|----------|------|
| Client ID: ZZZZZ    | Batch ID: 9991 | Test    | TestNo: SW6010B   | (SW3010A)   |      | Analysis Date: 4/29/2008 | 4/29/2008             | SeqNo: 229512 | 9512     |      |
| Analyte             | Result         | PQL     | SPK value         | SPK Ref Val | %REC | LowLimit                 | HighLimit RPD Ref Val | %RPD          | RPDLimit | Qual |
| Antimony            | QN             | 0.00600 |                   |             |      |                          |                       |               |          |      |
| Arsenic             | QN             | 0.0100  |                   |             |      |                          |                       |               |          |      |
| Baríum              | QN             | 2.00    |                   |             |      |                          |                       |               |          |      |
| Cadmium             | QN             | 0.00400 |                   |             |      |                          |                       |               |          |      |
| Chromium            | <u>N</u>       | 0.100   |                   |             |      |                          |                       |               |          |      |
| Copper              | Q              | 0.0400  |                   |             |      |                          |                       |               |          |      |
| Iron                | QN             | 0.0600  |                   |             |      |                          |                       |               |          |      |
| Lead                | QN             | 0.0100  |                   |             |      |                          |                       |               |          |      |
| Nickel              | QN             | 0.100   |                   |             |      |                          |                       |               |          |      |
| Selenium            | QN             | 0.0500  |                   |             |      |                          |                       |               |          |      |
| Sample ID: LCS-9991 | SampType: LCS  | TestCoc | TestCode; 6010B_W | Units: mg/L |      | Prep Date                | Prep Date: 4/29/2008  | RunNo: 23364  | 364      |      |
| Client ID: ZZZZ     | Batch ID: 9991 | Test    | TestNo: SW6010B   | (SW3010A)   |      | Analysis Date:           | : 4/29/2008           | SeqNo: 229513 | 9513     |      |
| Analyte             | Result         | PQL     | SPK value         | SPK Ref Val | %REC | LowLimit                 | HighLimit RPD Ref Val | %RPD          | RPDLimit | Qual |
| Antimony            | 1,945          | 0.00600 | 2                 | 0           | 97.2 | 80                       | 120                   |               |          |      |
| Arsenic             | 1.930          | 0.0100  | Ġ                 | 0           | 96.5 | 80                       | 120                   |               |          |      |
| Barium              | QN             | 2.00    | ₹                 | 0           | 98.0 | 80                       | 120                   |               |          |      |
| Cadmium             | 1.954          | 0.00400 | 2                 | 0           | 5.76 | 80                       | 120                   |               |          |      |
| Chromium            | 1.952          | 0.100   | 7                 | 0           | 97.6 | 80                       | 120                   |               |          |      |
| Copper              | 2,000          | 0.0400  | 2                 | 0           | 100  | 80                       | 120                   |               |          |      |
| Iron                | 1.656          | 0.0600  | 2                 | 0           | 82.8 | 80                       | 120                   |               |          |      |
| Lead                | 2.000          | 0.0100  | 2                 | 0           | 100  | 80                       | 120                   |               |          |      |
| Nicket              | 1.954          | 0.100   | 2                 | 0           | 5.76 | 80                       | 120                   |               |          |      |
| Selenium            | 1,908          | 0.0500  | 2                 | 0           | 95.4 | 80                       | 120                   |               |          |      |

| Qualifiers: | BRL | BRL Below Reporting Limit                  | E Value above quantitation range      | H Holding times for preparation or analysis exceeded |
|-------------|-----|--------------------------------------------|---------------------------------------|------------------------------------------------------|
|             | 'n  | Analyte detected below quantitation limits | D Not Detected at the Reporting Limit | R RPD outside recovery limits                        |
|             | s   | Spike Recovery outside recovery limits     |                                       | - ·                                                  |

Page 2 of 26

Holding times for preparation or analysis exceeded

RPD outside recovery limits

**E** &

E Value above quantitation range ND Not Detected at the Reporting Limit

Analyte detected below quantitation limits Spike Recovery outside recovery limits

BRL Below Reporting Limit

Qualifiers:

|           | _                                                                            |
|-----------|------------------------------------------------------------------------------|
| 4         | Y                                                                            |
| - 2       |                                                                              |
| (         |                                                                              |
|           | Ī                                                                            |
| r         | Y                                                                            |
| 7         | ū                                                                            |
| THE CHIEF | Z                                                                            |
| A TOWN    | _                                                                            |
| ۲         |                                                                              |
| ŗ         | Ľ                                                                            |
| 4         | 1                                                                            |
|           |                                                                              |
| è         | -                                                                            |
| Ę         | ><br>>                                                                       |
| ď         | 2                                                                            |
| Ė         | ב                                                                            |
|           | _                                                                            |
| ¥         | 7                                                                            |
| r         | ١                                                                            |
| 7         | ζ                                                                            |
|           |                                                                              |
| •         | _                                                                            |
| •         | 7                                                                            |
| _         | -                                                                            |
| LY        | ֚֚֚֚֚֡֝֝֝֝֜֝֟֝֝֟֝֓֓֓֓֓֟֝֓֓֓֓֡֟֜֜֜֟֜֓֓֓֓֡֡֡֜֜֡֡֡֡֓֜֡֡֡֡֓֡֡֡֡֡֡֡֓֡֓֡֡֡֡֡֡֡֡    |
| LYC       |                                                                              |
| LYUI      | ֚֚֚֡֝֝֝֟֝֝֟֝֟֝֝֟֝֓֓֟֝֓֓֓֟֝֓֓֟֟֓֓֓֟֟֝֓֓֓֟֟֓֓֓֓֓֟֜֟֓֓֓֓֓֡֓֡֡֡֡֡֡֡֓֡֓֡֡֡֡֡֡֡֡֡֡ |
| LICTI     |                                                                              |
| J IY DIL  |                                                                              |
|           |                                                                              |
|           |                                                                              |
|           |                                                                              |
|           |                                                                              |
|           |                                                                              |
|           |                                                                              |
|           |                                                                              |
|           |                                                                              |
|           |                                                                              |
|           |                                                                              |
|           |                                                                              |

Fay, Spofford & Thorndike

**MWRA 6905** 0804418

Work Order: CLIENT:

Project:

TestCode: 8082\_w

| RunNo: 23424        | SeaNo: 229922           |
|---------------------|-------------------------|
| Prep Date: 5/1/2008 | Analysis Date: 5/1/2008 |
| Units: µg/L         | (SW3510B)               |
| TestCode: 8082_w    | TestNo: SW8082          |
| SampType: MBLK      | Batch ID: 10025         |
| Sample iD: MB-10025 | Client ID: ZZZZZ        |

| $\Gamma$            |                  |                                | 7            |             |              |              |              |             |              |                                |                                |                                  |                                  |                      |   |                         |                    | ٦                 |              |                              |                                |                                  |                                  | 1                     |                         |   |
|---------------------|------------------|--------------------------------|--------------|-------------|--------------|--------------|--------------|-------------|--------------|--------------------------------|--------------------------------|----------------------------------|----------------------------------|----------------------|---|-------------------------|--------------------|-------------------|--------------|------------------------------|--------------------------------|----------------------------------|----------------------------------|-----------------------|-------------------------|---|
|                     |                  | Qual                           |              |             |              |              |              |             |              |                                |                                |                                  |                                  |                      |   |                         | Qual               |                   |              |                              |                                |                                  |                                  |                       |                         |   |
| 24                  | 922              | RPDLimit                       |              |             |              |              |              |             |              |                                |                                |                                  |                                  | 24                   | i | 923                     | RPDLimit           |                   |              |                              |                                |                                  |                                  | 24                    | 929                     |   |
| RunNo: 23424        | SeqNo: 229922    | %RPD                           |              |             |              |              |              |             |              |                                |                                |                                  |                                  | RunNo: 23424         |   | SeqNo: <b>229923</b>    | %RPD               |                   |              |                              |                                |                                  |                                  | RunNo: 23424          | SeqNo: 229929           |   |
|                     |                  | Ref Val                        |              |             |              |              |              |             |              |                                |                                |                                  |                                  |                      |   |                         | RPD Ref Val        |                   |              |                              |                                |                                  |                                  |                       |                         |   |
| 5/1/2008            | 5/1/2008         | lighLimit F                    |              |             |              |              |              |             |              | 150                            | 150                            | 150                              | 150                              | 5/1/2008             |   | 5/1/2008                |                    | 140               | 140          | 150                          | 150                            | 150                              | 150                              | 5/1/2008              | 5/1/2008                |   |
| Prep Date:          | Analysis Date:   | LowLimit HighLimit RPD Ref Val |              |             |              |              |              |             |              | 30                             | 30                             | 30                               | 30                               | Prep Date:           | - | Analysis Date: 5/1/2008 | LowLimit HighLimit | 40                | 40           | 30                           | 30                             | 30                               | 30                               | Prep Date:            | Analysis Date: 5/1/2008 |   |
|                     | 4                | %REC                           |              |             |              |              | •            |             |              | 88.0                           | 92.0                           | 0.09                             | 0.99                             |                      |   | ∢                       | %REC               | 101               | 104          | 110                          | 106                            | 84.0                             | 92.0                             |                       | ₹                       |   |
| Units: µg/L         | (SW3510B)        | SPK Ref Val                    |              |             |              |              |              |             |              | 0                              | 0                              | 0                                | 0                                | Units: ug/L          | • | (SW3510B)               | SPK Ref Val        | 0                 | 0            | 0                            | 0                              | 0                                | 0                                | Units: µg/L           | (SW3510B)               |   |
| TestCode: 8082_w    | TestNo: SW8082   | SPK value                      |              |             |              |              |              |             |              | 100                            | 100                            | 100                              | 100                              | TestCode: 8082 w     | ı | TestNo: SW8082          | SPK value          | 100               | 100          | 100                          | 100                            | 100                              | 100                              | TestCode: 8082_w      | TestNo: SW8082          |   |
| TestCoc             | Testh            | PQL                            | 0.300        | 0.300       | 0.300        | 0.300        | 0.300        | 0.300       | 0.300        | 0                              | 0                              | 0                                | 0                                | TestCod              |   | TestN                   | PQL                | 0.300             | 0.300        | 0                            | 0                              | 0                                | 0                                | TestCod               | TestN                   | i |
| SampType: MBLK      | Batch ID: 10025  | Result                         | QN           | Q           | Q            | QN           | Q.           | Q           | QN           | 88.00                          | 92.00                          | 60.00                            | 00'99                            | SampType: LCS        |   | Batch ID: 10025         | Result             | 101.0             | 104.0        | 110.0                        | 106.0                          | 84.00                            | 92.00                            | SampType: LCS         | Batch ID: 10025         |   |
| Samp                | Bat              |                                |              |             |              |              |              |             |              | Sig 1                          | Sig 2                          | s Sig 1                          | Sig 2                            | Samp                 | 1 | Batc                    |                    |                   |              | Sig 1                        | Sig 2                          | Sig 1                            | Sig 2                            | Samp                  | Batc                    |   |
| Sample iD: MB-10025 | Client ID: ZZZZZ | 6                              | - 1221       | - 1232      | - 1248       | . 1254       | 1260         | 1262        | - 1268       | Surr: Decachlorobiphenyl Sig 1 | Surr: Decachlorobiphenyl Sig 2 | Surr: Tetrachloro-m-Xylene Sig 1 | Surr: Tetrachloro-m-Xylene Sig 2 | Sample ID: LCS-10025 |   | Client ID: ZZZZ         |                    | Aroclor 1016/1242 | 1260         | Surr: Decachlorobiphenyl Sig | Surr: Decachlorobiphenyl Sig 2 | Surr: Tetrachloro-m-Xylene Sig 1 | Surr: Tetrachloro-m-Xylene Sig 2 | Sample ID: LCS2-10025 | D: <b>ZZZZZ</b> :0      |   |
| Sample              | Client           | Analyte                        | Aroclor 1221 | Arodor 1232 | Aroclor 1248 | Aroclor 1254 | Araclor 1260 | Arodor 1262 | Aroclor 1268 | Surr                           | Surr:                          | Surr:                            | Sur:                             | Sample               | : | Client                  | Analyte            | Aroclor           | Aroclor 1260 | Surr:                        | Surr                           | Surr                             | Surr                             | Sample                | Client ID:              |   |

| Client ID: ZZZZZ  | Batch ID: 10025 | TestNo | TestNo: SW8082 | (SW3510B)                 |      | Analysis Date: 5/1/2008 | le: 5/1/200 | 60                                  |
|-------------------|-----------------|--------|----------------|---------------------------|------|-------------------------|-------------|-------------------------------------|
| Analyte           | Result          | PaL    | SPK value      | POL SPK value SPK Ref Val | %REC | LowLimit                | HighLimit   | %REC LowLimit HighLimit RPD Ref Val |
| Aroclor 1016/1242 | 108.0           | 0.300  | 100            | 0                         | 108  | 40                      | 140         |                                     |
| Aroclor 1221      | Q               | 0.300  |                |                           |      |                         |             |                                     |
| Aroclor 1232      | QN              | 0.300  |                |                           |      |                         |             |                                     |
|                   |                 |        |                |                           |      |                         |             |                                     |

Qua

%RPD RPDLimit

Holding times for preparation or analysis exceeded

RPD outside recovery limits

**#** ~

ND Not Detected at the Reporting Limit Value above quantitation range

> Analyte detected below quantitation limits Spike Recovery outside recovery limits

BRL Below Reporting Limit

Qualifiers:

[<u>7</u>]

Fay, Spofford & Thorndike CLIENT:

0804418 Work Order: **MWRA 6905** Project:

TestCode: 8082\_w

ANALYTICAL QC SUMMARY REPORT

| Sample ID: LCS2-10025            | SampType: LCS   | TestCod | TestCode: 8082_w | Units: µg/L           |      | Prep Date               | Prep Date: 5/1/2008                 | RunNo: 23424       |      |
|----------------------------------|-----------------|---------|------------------|-----------------------|------|-------------------------|-------------------------------------|--------------------|------|
| Client ID: ZZZZ                  | Batch ID: 10025 | TestN   | TestNo: SW8082   | (SW3510B)             | -    | Analysis Date: 5/1/2008 | s: 5/1/2008                         | SeqNo: 229929      |      |
| Analyte                          | Result          | Pal     | SPK value        | SPK value SPK Ref Val | %REC | LowLimit                | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual | Qual |
| Aroclor 1248                     | ON              | 0.300   |                  |                       |      |                         |                                     |                    |      |
| Aroclor 1254                     | <u>N</u>        | 0.300   |                  |                       |      |                         |                                     |                    |      |
| Aroclor 1260                     | 118.0           | 0,300   | 100              | 0                     | 118  | 40                      | 140                                 |                    |      |
| Aroclor 1262                     | R               | 0.300   |                  |                       |      |                         |                                     |                    |      |
| Aroctor 1268                     | <u>N</u>        | 0.300   |                  |                       |      |                         |                                     |                    |      |
| Surr: Decachlorobiphenyl Sig 1   | 1 124.0         | 0       | 100              | 0                     | 124  | 30                      | 150                                 |                    |      |
| Surr: Decachlorobiphenyl Sig 2   | 2 126.0         | 0       | 100              | 0                     | 126  | 30                      | 150                                 |                    |      |
| Surr: Tetrachloro-m-Xylene Sig 1 | ig 1 84.00      | 0       | 100              | 0                     | 84.0 | 30                      | 150                                 |                    |      |
| Surr: Tetrachtoro-m-Xylene Sig 2 | ig 2 92.00      | 0       | 100              | 0                     | 92.0 | 30                      | 150                                 |                    |      |
|                                  |                 |         |                  |                       |      |                         |                                     |                    |      |

Fay,Spofford & Thorndike 0804418 CLIENT:

Work Order:

MWRA 6905 Project:

ANALYTICAL QC SUMMARY REPORT

| S         |  |
|-----------|--|
|           |  |
| •         |  |
| ≂         |  |
| ನ         |  |
| ₹         |  |
| 8790B     |  |
|           |  |
| ٠.        |  |
| نە        |  |
| ਰ         |  |
| 0         |  |
| _)        |  |
| Ţ         |  |
| 3         |  |
| TestCode: |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |

| Sample ID: MB                         | SampType: MBLK                             | TestCo | TestCode: 8260B W | Units: ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>a</u> | Prop Date:     |                                                      | RunNo: 23634    | 634            |              |
|---------------------------------------|--------------------------------------------|--------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|------------------------------------------------------|-----------------|----------------|--------------|
| Client ID: 2777                       | Betch ID: B73634                           | Toot   | Toethio: CW0360D  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , C C C  | ٠ نون          |                                                      |                 |                |              |
|                                       | Date: 10. K23034                           | i est  | VOT SAVBZOUB      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Anai     | Anaiysis Date: | 5/9/2008                                             | seqNo: 232472   | 2472           |              |
| Analyte                               | Result                                     | Pal    | SPK value         | SPK Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %REC Lov | LowLimit       | HighLimit RPD Ref Val                                | %RPD            | RPDLimit       | Qual         |
| 1,1,1,2-Tetrachloroethane             | ON                                         | 5.00   |                   | THE STATE OF THE S |          |                |                                                      |                 |                |              |
| 1,1,1-Trichloroethane                 | QN                                         | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      |                 |                |              |
| 1,1,2,2-Tetrachloroethane             | QN                                         | 2.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      |                 |                |              |
| 1,1,2-Trichloroethane                 | QN                                         | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      |                 |                |              |
| 1,1-Dichloroethane                    | QN                                         | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      | -               |                |              |
| 1,1-Dichloroethene                    | Q                                          | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      |                 |                |              |
| 1,1-Dichloropropene                   | Q.                                         | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      |                 |                |              |
| 1,2,3-Trichlorobenzene                | QN                                         | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      |                 |                |              |
| 1,2,3-Trichloropropane                | QN                                         | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      |                 |                |              |
| 1,2,4-Trichlorobenzene                | QN                                         | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      |                 |                |              |
| 1,2,4-Trimethylbenzene                | <u>Q</u>                                   | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      |                 |                |              |
| 1,2-Dibromo-3-Chloropropane           | QN                                         | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      |                 |                |              |
| 1,2-Dibromoethane                     | QN                                         | 2.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      |                 |                |              |
| 1,2-Dichlorobenzene                   | ON .                                       | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      |                 |                |              |
| 1,2-Dichloroethane                    | QN                                         | 2.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      |                 |                | ٠            |
| 1,2-Dichloropropane                   | QN                                         | 2.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      |                 |                |              |
| 1,3,5-Trimethylbenzene                | QN                                         | 5,00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      |                 |                |              |
| 1,3-Dichlorobenzene                   | QN                                         | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      |                 |                |              |
| 1,3-Dichloropropane                   | QN                                         | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      |                 |                |              |
| 1,4-Dichlorobenzene                   | QN                                         | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      |                 |                |              |
| 2,2-Dichloropropane                   | QN                                         | 5,00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      |                 |                |              |
| 2-Butanone                            | QN                                         | 10.0   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      |                 |                |              |
| 2-Chloroethyl Vinyl Ether             | ND                                         | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      |                 |                |              |
| 2-Chlorotoluene                       | QN                                         | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •        |                |                                                      | -               |                |              |
| 2-Hexanone                            | QN                                         | 10.0   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      |                 |                |              |
| 4-Chlorotoluene                       | QN                                         | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      |                 |                |              |
| 4-Isopropylfoluene                    | Q.                                         | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      |                 |                |              |
| 4-Methyl-2-Pentanone                  | QN                                         | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      |                 |                |              |
| Acetone                               | ND                                         | 50.0   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      |                 |                |              |
| Acrolein                              | 2                                          | 50.0   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      |                 |                |              |
| Acrylonitrile                         | ON                                         | 50.0   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      |                 |                |              |
| Qualifiers: BRL Below Reporting Limit | rting Limit                                |        | E Value           | Value above quantitation range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ege -    |                | H Holding times for preparation or analysis exceeded | reparation or a | nalysis exceed | pa           |
|                                       | Analyte detected below quantitation limits |        | ND Not De         | Not Detected at the Reporting Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g Limit  |                | R RPD outside recovery limits                        | ry limits       |                |              |
| S Spike Recove                        | Spike Recovery outside recovery limits     |        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |                                                      |                 | pa             | Page 4 of 26 |

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260B\_W

| Fay, Spofford & Thorndike | 0804418     | MWRA 6905 |
|---------------------------|-------------|-----------|
| CLIENT:                   | Work Order: | Project:  |

| Client ID: ZZZZ                       |                                            | 20000   | estonge: azona A |                                     |                | -             |                                                    |                   |               |            |
|---------------------------------------|--------------------------------------------|---------|------------------|-------------------------------------|----------------|---------------|----------------------------------------------------|-------------------|---------------|------------|
|                                       |                                            |         |                  | •                                   | יקט טמני       |               |                                                    | 1000 F0001        | ţ             |            |
|                                       | Batch ID: R23634                           | TestNo; | TestNo: SW8260B  |                                     | Analysis Date: | ate: 5/9/2008 | 800                                                | SeqNo: 232472     | 472           |            |
| Analyte                               | Result                                     | PQL     | SPK value        | SPK Ref Val                         | %REC LowLimit  | HighLimit     | it RPD Ref Val                                     | %RPD              | RPDLimit      | Qual       |
| Benzene                               | QN                                         | 5.00    |                  |                                     |                |               |                                                    |                   |               |            |
| Bromobenzene                          | QN                                         | 5.00    |                  |                                     | •              |               |                                                    |                   |               |            |
| Bromochloromethane                    | QN                                         | 2.00    | *                |                                     |                |               |                                                    |                   |               |            |
| Bromodichloromethane                  | QN                                         | 2.00    |                  |                                     |                |               |                                                    |                   |               |            |
| Bromoform                             | QN                                         | 2.00    |                  |                                     |                |               | -                                                  |                   |               |            |
| Bromomethane                          | QN                                         | 2.00    |                  |                                     |                |               |                                                    |                   |               |            |
| Carbon Disulfide                      | QN                                         | 5.00    |                  |                                     |                |               |                                                    |                   |               |            |
| Carbon Tetrachloride                  | QN                                         | 2.00    |                  |                                     |                |               |                                                    |                   |               |            |
| Chlorobenzene                         | QN                                         | 5.00    |                  |                                     |                |               |                                                    |                   |               |            |
| Chloroethane                          | QN                                         | 5.00    |                  |                                     |                |               |                                                    |                   |               |            |
| Chloroform                            | QN                                         | 5.00    |                  |                                     |                |               |                                                    |                   |               |            |
| Chloromethane                         | QN                                         | 5.00    |                  |                                     |                |               |                                                    |                   |               |            |
| cis-1,2-Dichloroethene                | QN                                         | 5.00    |                  | ÷                                   |                |               |                                                    |                   |               |            |
| cis-1,3-Dichloropropene               | QN                                         | 0.500   |                  |                                     |                |               |                                                    |                   |               |            |
| Dibromochloromethane                  | QN                                         | 2.00    |                  | ٠                                   |                |               |                                                    |                   |               |            |
| Dibromomethane                        | QN                                         | 5.00    |                  |                                     |                |               |                                                    |                   |               |            |
| Dichlorodifluoromethane               | QN                                         | 5.00    |                  |                                     |                |               |                                                    |                   |               |            |
| Ethylbenzene                          | QN                                         | 5.00    |                  |                                     |                |               |                                                    |                   |               |            |
| Hexachlorobutadiene                   | QN                                         | 0.500   |                  |                                     |                |               |                                                    |                   |               |            |
| Isopropylbenzene                      | QN                                         | 5.00    |                  |                                     |                |               |                                                    |                   |               |            |
| Methyl Tert-Butyl Ether               | QN                                         | 5.00    |                  |                                     |                |               |                                                    |                   |               |            |
| Methylene Chloride                    | QN                                         | 5.00    |                  |                                     |                |               |                                                    |                   |               |            |
| Naphthalene                           | QN                                         | 20.0    |                  |                                     |                |               |                                                    |                   |               |            |
| n-Butyibenzene                        | QN                                         | 5.00    |                  |                                     |                |               |                                                    |                   |               |            |
| n-Propylbenzene                       | QN                                         | 5.00    |                  |                                     |                |               |                                                    |                   |               |            |
| sec-Butylbenzene                      | QN ·                                       | 5.00    |                  |                                     |                |               |                                                    |                   |               |            |
| Styrene                               | QN                                         | 5.00    |                  |                                     |                |               |                                                    |                   |               |            |
| tert-Butylbenzene                     | QN                                         | 5.00    |                  |                                     |                |               | ,                                                  |                   |               |            |
| Tetrachloroethene                     | QN                                         | 5.00    |                  |                                     |                |               |                                                    |                   |               |            |
| Toluene                               | QN                                         | 5.00    |                  |                                     |                |               |                                                    |                   |               |            |
| trans-1,2-Dichloroethene              | QN                                         | 5,00    |                  |                                     |                |               |                                                    |                   |               |            |
| Qualifiers: BRL Below Reporting Limit | ting Limit                                 |         | E Valuea         | Value above quantitation range      |                | H             | Holding times for preparation or analysis exceeded | reparation or and | lysis exceede |            |
|                                       | Analyte detected below quantitation limits | _       | ND Not De        | Not Detected at the Reporting Limit | nit            | 2             | RPD outside recovery limits                        | ry limits         |               |            |
| S Spike Recove                        | Spike Recovery outside recovery limits     |         |                  |                                     |                |               |                                                    |                   | Dag           | Dam tof 16 |

Page 6 of 26

Analyte detected below quantitation limits Spike Recovery outside recovery limits

~~ (2)

| FOCASE VILVILLATIONS SIMMAND AND FOCAS | THE TANKE OF SUMMERS IN THE OWN | TestCode: 8260B_W |  |
|----------------------------------------|---------------------------------|-------------------|--|
| Fay, Spofford & Thomdike               | 0804418                         | MWRA 6905         |  |

Work Order: CLIENT:

Project:

| Sample ID: MB                            | SampType: MBLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TestCode:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TestCode: 8260B W | Units: µg/L                         |                                         | Prep Date:                                     | le;                           | RunNo: 23634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------|-----------------------------------------|------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Client ID: ZZZZZ                         | Batch ID: R23634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TestNo:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TestNo: SW8260B   |                                     |                                         | Analysis Date:                                 | te: 5/9/2008                  | SeaNo: 232472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                          | Higgs B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | o IOa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SPK value         | SPK Bef Val                         | Д<br>П                                  | - Francisco                                    | ۷.                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Analyte                                  | TERROLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | l vaide           | O IV IVO                            | 79.15                                   | LOWEIIIII                                      | - 1                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| trans-1,3-Dichloropropene                | Ð                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                     |                                         |                                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Trichloroethene                          | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                     |                                         |                                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Trichlorofluoromethane                   | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                     |                                         |                                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Vinyl Chloride                           | Q.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                     |                                         |                                                |                               | ٠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Xylenes, Total                           | - Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                     |                                         |                                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Surr: 1,2-Dichloroethane-d4              | 34.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                | 0                                   | 114                                     | 02                                             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Surr: 4-Bromofluorobenzene               | 31.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                | 0                                   | 104                                     | 20                                             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Surr: Dibromofluoromethane               | 31.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                | 0                                   | 104                                     | 70                                             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Surr: Toluene-d8                         | 30.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30                | 0                                   | 101                                     | 70                                             | 130                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sample ID: LCS                           | SampType: LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TestCode: 8260B_W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8260B_W           | Units: pg/L                         |                                         | Prep Date:                                     | te;                           | RunNo: 23634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Client ID: ZZZZZ                         | Batch ID: R23634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TestNo:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FestNo: SW8260B   |                                     |                                         | Analysis Date:                                 | te: 5/9/2008                  | SeqNo: 232473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Analyte                                  | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | POLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SPK value         | SPK Ref Val                         | %REC                                    | LowLimit                                       | HighLimit RPD Ref Val         | %RPD RPDLimit Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1,1,1,2-Tetrachloroethane                | 55,59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                | 0                                   | 111                                     | 02                                             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,1,1-Trichloroethane                    | 52,85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                 | 0                                   | 106                                     | 70                                             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,1,2,2-Tetrachloroethane                | 53.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                | 0                                   | 108                                     | 70                                             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,1,2-Trichloroethane                    | 53.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                | 0                                   | 108                                     | 70                                             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,1-Dichloroethane                       | 52.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                | 0                                   | 106                                     | 70                                             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,1-Dichloroethene                       | 50.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                | 0                                   | 101                                     | 70                                             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,1-Dichloropropene                      | 54.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                | 0                                   | 108                                     | 70                                             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2,3-Trichlorobenzene                   | 49,43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                | 0                                   | 98.9                                    | 20                                             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2,3-Trichloropropane                   | 53.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                | 0                                   | 107                                     | 70                                             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2,4-Trichlorobenzene                   | 57.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                | 0                                   | 115                                     | 70                                             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2,4-Trimethylbenzene                   | 67.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                | 0                                   | 134                                     | 70                                             | 130                           | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1,2-Dibromo-3-Chloropropane              | 52.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                | 0                                   | 105                                     | 20                                             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2.Dibromoethane                        | 53.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                | 0                                   | 107                                     | 70                                             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2-Dichlorobenzene                      | 64.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 50              | 0                                   | 129                                     | 70                                             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2-Dichloroethane                       | 52.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                | 0                                   | 105                                     | 70                                             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2-Dichloropropane                      | 51.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90                | 0                                   | 103                                     | 70                                             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| On all the Date Delaw Descriptor I imite | Vennum municipal de la constante de la constan | THE A PROPERTY OF THE PARTY OF | T. Volue          | Walne obeste mineral tentent        | *************************************** | FB./F18 4 VANIMINAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |                               | To the contract of the contrac |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | soove quantitization rai            | ය<br>දු                                 |                                                |                               | notable unies for preparation of analysis exceeded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte detec                            | Analyte detected below quantitation nimits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND NOT DE         | Not Detected at the reporting Limit | g Limit                                 |                                                | K KFD outside recovery limits | overy timits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Analyte detected below quantitation limits Spike Recovery outside recovery limits

| r .               |
|-------------------|
| REPORT            |
| 5                 |
| 7                 |
|                   |
| $\simeq$          |
| $\succ$           |
| R                 |
|                   |
| $\mathbf{z}$      |
| Σ                 |
| Þ                 |
| $\mathcal{O}_{2}$ |
| Q.                |
| 0                 |
| ICAL QC SUMM      |
| CAJ               |
| 2                 |
|                   |
|                   |
| 7                 |
| Y                 |
| ANAL              |
| 7                 |
|                   |
|                   |
|                   |

TestCode: 8260B\_W

| 5      |
|--------|
| 4 6905 |
| MWR    |
|        |

Fay, Spofford & Thorndike 0804418 Work Order: Project:

CLIENT:

|                           |                       |       |                 | 102                            |      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | į            |                    | TOTAL TOTAL                                        |               |      |
|---------------------------|-----------------------|-------|-----------------|--------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------|----------------------------------------------------|---------------|------|
| Client ID: ZZZZZ          | Batch ID: R23634      | Test  | TestNo: SW8260B |                                |      | Analysis Date;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | te: 5/9/2008 | ~                  | SeqNo: 232473                                      | 73            |      |
| Analyte                   | Result                | PaL   | SPK value       | SPK Ref Val                    | %REC | LowLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HighLimit    | RPD Ref Val        | %RPD F                                             | RPDLimit      | Quai |
| 1,3,5-Trimethylbenzene    | 65,37                 | 5.00  | 50              | 0                              | 131  | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130          |                    |                                                    |               | S    |
| 1,3-Dichlorobenzene       | 64.40                 | 5.00  | 50              | 0                              | 129  | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130          |                    |                                                    |               |      |
| 1,3~Dichloropropane       | 52.53                 | 5.00  | . 50            | 0                              | 105  | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130          |                    |                                                    |               |      |
| 1,4-Dichlorobenzene       | 63.75                 | 5,00  | 50              | 0                              | 128  | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 130          |                    |                                                    |               |      |
| 2,2-Dichloropropane       | 27.18                 | 5.00  | 50              | 0                              | 54.4 | 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 130          |                    |                                                    |               | S    |
| 2-Butanone                | 47.61                 | 10.0  | 50              | 0                              | 95.2 | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130          |                    |                                                    |               |      |
| 2-Chloroethyl Vinyl Ether | 58.22                 | 5.00  | 50              | 0                              | 116  | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130          |                    |                                                    |               |      |
| 2-Chlorotoluene           | 61.76                 | 5.00  | 50              | 0                              | 124  | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130          |                    |                                                    |               |      |
| 2-Hexanone                | 47.38                 | 10.0  | 90              | 0                              | 94.8 | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130          |                    |                                                    |               |      |
| 4-Chlorotoluene           | 61.76                 | 5.00  | 50              | 0                              | 124  | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130          |                    |                                                    |               |      |
| 4-Methyl-2-Pentanone      | 52.79                 | 5.00  | 20              | 0                              | 106  | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130          |                    |                                                    |               |      |
| Acetone                   | QN                    | 50.0  | 50              | 0                              | 99.0 | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130          | ě                  |                                                    |               |      |
| Acrolein                  | 96.15                 | 50.0  | 100             | 0                              | 96.2 | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130          |                    |                                                    |               |      |
| Acrylonitrile             | 115.2                 | 50.0  | 100             | 0                              | 115  | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130          |                    |                                                    |               |      |
| Benzene                   | 54.97                 | 5.00  | 50              | 0                              | 110  | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130          |                    |                                                    |               |      |
| Bromobenzene              | 57.89                 | 5,00  | 90              | 0                              | 116  | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130          |                    |                                                    |               |      |
| Bromochloromethane        | 50.24                 | 2.00  | 50              | 0                              | 100  | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130          |                    |                                                    |               |      |
| Bromodichloromethane      | 52.31                 | 2.00  | 50              | 0                              | 105  | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130          |                    |                                                    |               |      |
| Bromoform                 | 54.96                 | 2.00  | 20              | 0                              | 110  | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130          |                    |                                                    |               |      |
| Carbon Disulfide          | 49.42                 | 5.00  | 90              | 0                              | 98.8 | . 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 130          |                    |                                                    |               |      |
| Carbon Tetrachloride      | 54,54                 | 2.00  | 50              | 0                              | 109  | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130          |                    |                                                    |               |      |
| Chlorobenzene             | 57.68                 | 5.00  | 50              | 0                              | 115  | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130          |                    |                                                    |               |      |
| Chloroform                | 53.75                 | 5.00  | 50              | 0                              | 108  | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130          |                    |                                                    |               |      |
| Chioromethane             | 51.07                 | 5.00  | 50              | 0                              | 102  | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130          |                    |                                                    |               |      |
| cis-1,2-Dichloroethene    | 50.95                 | 5.00  | 50              | 0                              | 102  | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130          |                    |                                                    |               |      |
| cis-1,3-Dichloropropene   | 46.90                 | 0.500 | 50              | 0                              | 93.8 | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130          |                    |                                                    |               |      |
| Dibromochloromethane      | 54.16                 | 2.00  | 50              | 0                              | 108  | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130          |                    |                                                    |               |      |
| Dibromomethane            | 51.81                 | 5.00  | 50              | 0                              | 104  | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130          |                    |                                                    |               |      |
| Dichlorodifluoromethane   | 41.37                 | 5.00  | 50              | 0                              | 82.7 | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130          |                    |                                                    |               |      |
| Ethylbenzene              | 61.50                 | 5.00  | 50              | 0                              | 123  | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130          |                    |                                                    |               |      |
| Hexachlorobutadiene       | 61.93                 | 0.500 | 20              | 0                              | 124  | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130          |                    |                                                    |               |      |
| Oualifiers: BRL Below Reg | Below Reporting Limit |       | E Value         | Value above quantitation range | 'ge  | AND THE PROPERTY OF THE PROPER | н Но         | olding times for r | Holding times for preparation or analysis exceeded | vsis exceeder |      |
|                           | ĭ                     |       |                 | •                              | )    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                    |                                                    |               |      |

Holding times for preparation or analysis exceeded

RPD outside recovery limits

H X

ANALYTICAL QC SUMMARY REPORT

Fay, Spofford & Thorndike

**MWRA 6905** 0804418

Work Order: CLIENT:

Project:

TestCode: 8260B\_W

| 00 - 00                     | F                | į      |                   |             |      |              |                                |                    |
|-----------------------------|------------------|--------|-------------------|-------------|------|--------------|--------------------------------|--------------------|
| Sample ID: LCS              | sambilype: LCS   | TestCo | TestCode: 8260B_W | Units: µg/L |      | Prep Date:   |                                | RunNo: 23634       |
| Client ID: ZZZZZ            | Batch ID: R23634 | Test   | TestNo: SW8260B   |             | •    | Analysis Dat | Analysis Date: 5/9/2008        | SeqNo: 232473      |
| Analyte                     | Result           | POL    | SPK value         | SPK Ref Val | %REC | LowLimit     | LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual |
| Isopropylbenzene            | 63.26            | 5.00   | 50                | 0           | 127  | 70           | 130                            |                    |
| Methyl Tert-Butyl Ether     | 54,30            | 5.00   | 50                | 0           | 109  | 70           | 130                            |                    |
| Methylene Chloride          | 49.72            | 5.00   | 50                | 0           | 99.4 | 70           | 130                            |                    |
| Naphthalene                 | 42.94            | 20.0   | 50                | 0           | 85.9 | 20           | 130                            |                    |
| Styrene                     | 57,91            | 5.00   | 90                | 0           | 116  | 20           | 130                            |                    |
| tert-Butyfbenzene           | 64.20            | 5.00   | 90                | 0           | 128  | 20           | 130                            |                    |
| Tetrachloroethene           | 57.45            | 5.00   | 50                | 0           | 115  | 70           | 130                            |                    |
| Toluene                     | 59.25            | 5.00   | 50                | 0           | 118  | 70           | 130                            |                    |
| trans-1,2-Dichloroethene    | 51.37            | 5.00   | 50                | 0           | 103  | 70           | 130                            |                    |
| trans-1,3-Dichloropropene   | 48.56            | 0.500  | 50                | 0           | 97.1 | 70           | 130                            |                    |
| Trichtoroethene             | 55.19            | 5.00   | 50                | 0           | 110  | 70           | 130                            |                    |
| Vinyl Chloride              | 58.79            | 2.00   | 50                | 0           | 118  | 20           | 130                            |                    |
| Xylenes, Total              | 187.7            | 5.00   | 150               | 0           | 125  | 0.2          | 130                            |                    |
| Surr: 1,2-Dichloroethane-d4 | 30,28            | 0      | 30                | 0           | 101  | 70           | 130                            |                    |
| Surr: 4-Bromofluorobenzene  | 29.97            | 0      | 30                | 0           | 666  | 20           | 130                            |                    |
| Surr: Dibromoftuoromethane  | 30.37            | 0      | 30                | 0           | 101  | 20           | 130                            |                    |
| Surr: Toluene-d8            | 29.87            | 0      | 30                | 0           | 9.66 | 70           | 130                            |                    |

| BRL | BRL Below Reporting Limit                  | ī   | Vatue above qua   |
|-----|--------------------------------------------|-----|-------------------|
| 'n  | Analyte detected below quantitation limits | ON. | Not Detected at ( |
| S   | Spike Recovery outside recovery limits     |     |                   |

| Value above quantitation range | Not Detected at the Reporting Limit |
|--------------------------------|-------------------------------------|
| H                              | ΩN                                  |
|                                | æ                                   |

Page 9 of 26

J. Analyte detected below quantitation limitsS. Spike Recovery outside recovery limits Spike Recovery outside recovery limits

ANALYTICAL QC SUMMARY REPORT

Fay, Spofford & Thorndike 0804418

Work Order: CLIENT:

**Project:** 

**MWRA** 6905

TestCode: 8270\_W

|   | RunNo: 2:          |
|---|--------------------|
|   | 4/29/2008          |
|   | Prep Date;         |
|   | Units: pg/L        |
|   | TestCode: 8270_W   |
| П | SampType: MBLK     |
|   | Sample ID: MB-9986 |
|   |                    |

|                                       | ) idea                                     | - C              |                                     | 1                       |                 |                                                    |      |
|---------------------------------------|--------------------------------------------|------------------|-------------------------------------|-------------------------|-----------------|----------------------------------------------------|------|
| sample IU: MB-9986                    | Sampiype: MBLM                             | lestCode: 82/0_W | W Onits: pg/L                       | Frep Date; 4/2          | 4/29/2008       | KunNo: 23388                                       |      |
| Client ID: ZZZZZ                      | Batch ID: 9986                             | TestNo: SW8270C  | (SW3510)                            | Analysis Date: 4/2      | 4/29/2008       | SeqNo: 229412                                      |      |
| Analyte                               | Result                                     | PQL SPK value    | alue SPK Ref Val                    | %REC LowLimit HighLimit | mit RPD Ref Val | %RPD RPDLimit                                      | Qual |
| 1,2,4-Trichlorobenzene                | ON                                         | 1.00             |                                     |                         |                 |                                                    |      |
| 1,2-Dichlorobenzene                   | ON                                         | 1.00             |                                     |                         |                 |                                                    |      |
| 1,2-Dínitrobenzene                    | ON                                         | 1.00             |                                     |                         |                 |                                                    |      |
| 1,3-Dichlorobenzene                   | QN                                         | 1,00             |                                     |                         |                 |                                                    |      |
| 1,3-Dinitrobenzene                    | QN                                         | 1.00             |                                     |                         |                 |                                                    |      |
| 1,4-Dichlorobenzene                   | QN                                         | 1.00             |                                     |                         | ·               |                                                    |      |
| 1,4-Dinitrobenzene                    | ON .                                       | 1.00             |                                     | -                       |                 |                                                    |      |
| 2,3,4,6-Tetrachlorophenol             | QN                                         | 1.00             |                                     |                         |                 |                                                    |      |
| 2,4,5-Trichlorophenol                 | QV                                         | 1.00             |                                     |                         |                 |                                                    |      |
| 2,4,6-Trichlorophenol                 | QN                                         | 1.00             |                                     |                         |                 |                                                    |      |
| 2,4-Dichlorophenol                    | QN                                         | 1.00             |                                     |                         |                 |                                                    |      |
| 2,4-Dimethylphenol                    | ON                                         | 1.00             |                                     |                         |                 |                                                    |      |
| 2,4-Dinitrophenol                     | <u>Q</u>                                   | 5.00             |                                     |                         |                 |                                                    |      |
| 2,4-Dinitrotoluene                    | Q                                          | 1.00             |                                     |                         |                 |                                                    |      |
| 2,6-Dinitrotoluene                    | QN                                         | 1.00             |                                     |                         |                 |                                                    |      |
| 2-Chloronaphthalene                   | QN                                         | 1.00             |                                     |                         | ٠               |                                                    |      |
| 2-Chlorophenol                        | ΩN                                         | 1.00             |                                     |                         |                 |                                                    |      |
| 2-Methylnaphthalene                   | ON                                         | 1.00             |                                     |                         |                 |                                                    |      |
| 2-Methylphenol                        | ON                                         | 1.00             |                                     |                         |                 |                                                    |      |
| 2-Nitroaniline                        | QN                                         | 1.00             |                                     |                         |                 |                                                    |      |
| 2-Nitrophenol                         | QN                                         | 1.00             |                                     |                         |                 |                                                    |      |
| 3,3'-Dichlorobenzidine                | P                                          | 1.00             |                                     |                         |                 |                                                    |      |
| 3-Methylphenol/4-Methylphenol         | ON                                         | 1.00             |                                     |                         |                 |                                                    |      |
| 3-Nitroaniline                        | <u>P</u>                                   | 1.00             |                                     |                         |                 |                                                    |      |
| 4,6-Dinitro-2-Methylphenol            | ₽.                                         | 5.00             |                                     |                         |                 |                                                    |      |
| 4-Bromophenyl Phenyl Ether            | QN                                         | 1.00             |                                     |                         |                 |                                                    |      |
| 4-Chioro-3-Methylphenol               | ~ ON                                       | 1.00             |                                     |                         |                 |                                                    |      |
| 4-Chloroaniline                       | QN                                         | 1.00             |                                     |                         |                 |                                                    | •    |
| 4-Chlorophenyl Phenyl Ether           | QN                                         | 1.00             |                                     |                         |                 |                                                    |      |
| 4-Nitroaniline                        | QN                                         | 1.00             |                                     |                         |                 |                                                    |      |
| 4-Nitrophenol                         | Ð                                          | 1.00             |                                     |                         |                 |                                                    |      |
| Qualifiers: BRL Below Reporting Limit | ting Limit                                 | E                | Value above quantitation range      | ange                    |                 | Holding times for preparation or analysis exceeded | - F  |
| -                                     | Analyte detected below quantitation limits | QN.              | Not Detected at the Reporting Limit | ing Lamit R             |                 | r limits                                           |      |
|                                       |                                            |                  |                                     |                         |                 | , J                                                |      |

S Spike Recovery outside recovery limits

CLIENT: Fay, Spofford & Thorndike

Work Order: 0804418

Project: MWRA 6905

TestCode: 8270\_W

ANALYTICAL QC SUMMARY REPORT

| Sample ID: MB-9986                    | SampType: MBLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TestCode | Code: 8270_W                            | Units: µg/L                             | Prep Date:      | 4/29/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RunNo: 23388                                       |      |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------|-----------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------|
| Client ID: ZZZZ                       | Batch ID: 9986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TestNo   | TestNo: SW8270C                         | (SW3510)                                | Analysis Date:  | 4/29/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SeqNo: 229412                                      |      |
| Analyte                               | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | POL      | SPK value                               | SPK Ref Val                             | %REC LowLimit H | HighLimit RPD Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %RPD RPDLimit                                      | Qual |
| Acenaphthene                          | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00     | *************************************** | *************************************** |                 | THE PROPERTY OF THE PROPERTY O |                                                    |      |
| Acenaphthylene                        | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00     |                                         |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |      |
| Acetophenone                          | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00     |                                         |                                         |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |      |
| Aniline                               | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.00     | *                                       |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |      |
| Anthracene                            | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,00     |                                         |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |      |
| Azobenzene                            | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.00     |                                         |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |      |
| Benz(a)Anthracene                     | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.100    |                                         |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |      |
| Benzo(a)Pyrene                        | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.100    |                                         |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |      |
| Benzo(b)Fluoranthene                  | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.500    |                                         |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |      |
| Benzo(g,h,i)Perylene                  | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00     |                                         |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |      |
| Benzo(k)Fluoranthene                  | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.500    |                                         |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |      |
| Benzył Alcohoł                        | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00     |                                         |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |      |
| Bis(2-Chloroethoxy)Methane            | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00     |                                         |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                  |      |
| Bis(2-Chloroethyl)Ether               | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00     |                                         |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |      |
| Bis(2.Chloroisopropyl)Ether           | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00     |                                         |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |      |
| Bis(2-Ethylhexyl)Phthalate            | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,00     |                                         |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |      |
| Butyi Benzyi Phthalate                | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00     |                                         |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |      |
| Carbazole                             | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00     |                                         |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |      |
| Chrysene                              | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00     |                                         |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |      |
| Dibenz(a,h)Anthracene                 | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.100    |                                         |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |      |
| Dibenzofuran                          | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00     |                                         |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |      |
| Diethyl Phthalate                     | Q.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00     |                                         |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |      |
| Dimethyl Phthafate 🔅                  | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00     |                                         |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |      |
| Di-n-Butyl Phthalate                  | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00     |                                         |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |      |
| Fluoranthene                          | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00     |                                         |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |      |
| Fluorene                              | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00     |                                         |                                         | -               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |      |
| Hexachlorobenzene                     | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.100    |                                         |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |      |
| Hexachlorobutadiene                   | QV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.100    |                                         |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |      |
| Hexachlorocyclopentadiene             | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.00     |                                         |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |      |
| Hexachloroethane                      | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00     |                                         |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |      |
| Indeno(1,2,3-cd)Pyrene                | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.100    |                                         |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |      |
| Onalifiers: BRL Below Reporting Limit | ing Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | E Value ab                              | Value above quantitation range          | . 9             | H Holding times for r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Holding times for preparation or analysis exceeded |      |
| <b>,</b> -                            | Analyte detected below quantitation limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | ND Not Dete                             | Not Detected at the Reporting I imit    | in the second   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The factor                                         |      |
|                                       | control of the second s |          |                                         | Atha at an Incponses                    | LABOUR.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aly mater                                          |      |

| 9                        |             |
|--------------------------|-------------|
| Fay, Spofford & Thorndik | 0804418     |
| CLIENT:                  | Work Order: |

MWRA 6905 Project:

TestCode: 8270\_W

ANALYTICAL QC SUMMARY REPORT

| Sample ID: MB-9986                    | SampType: MBLK                             | TestCoc                               | TestCode: 8270_W | Units: pg/L                         |          | Prep Date:     | te: 4/29/2008 |                             | RunNo: 23388                                       | 888             |               |
|---------------------------------------|--------------------------------------------|---------------------------------------|------------------|-------------------------------------|----------|----------------|---------------|-----------------------------|----------------------------------------------------|-----------------|---------------|
| Citent ID: ZZZZZ                      | Batch ID: 9986                             | Test                                  | TestNo: SW8270C  | (SW3510)                            |          | Analysis Date: | te: 4/29/2008 |                             | SeqNo: 229412                                      | 412             |               |
| Analyte                               | Result                                     | PQL                                   | SPK value        | SPK Ref Val                         | %REC     | LowLimit       | HighLimit Ri  | RPD Ref Val                 | %RPD                                               | RPDLimit        | Qual          |
| Isophorone                            | ON                                         | 1.00                                  |                  |                                     |          |                |               |                             |                                                    |                 |               |
| Naphthalene                           | QN                                         | 1.00                                  |                  |                                     |          |                |               |                             |                                                    |                 |               |
| Nitrobenzene                          | QN                                         | 1.00                                  |                  |                                     |          |                |               |                             |                                                    | -               |               |
| N-Nitrosodimethylamine                | ON                                         | 5.00                                  |                  |                                     |          |                |               |                             |                                                    |                 |               |
| N-Nitrosodi-n-Propylamine             | QN                                         | 1.00                                  |                  |                                     |          |                |               |                             |                                                    |                 |               |
| N-Nitrosodiphenylamine                | QN                                         | 5.00                                  |                  |                                     |          |                |               |                             |                                                    |                 |               |
| Pentachlorophenol                     | QN                                         | 1.00                                  |                  |                                     |          |                |               |                             |                                                    |                 |               |
| Phenanthrene                          | QN                                         | 1.00                                  |                  |                                     |          |                |               |                             |                                                    |                 |               |
| Phenoi                                | QN                                         | 1.00                                  |                  |                                     |          |                |               |                             |                                                    |                 |               |
| Pyrene                                | QN                                         | 1.00                                  |                  |                                     |          |                |               |                             |                                                    |                 |               |
| Pyridine                              | QN                                         | 5.00                                  |                  |                                     |          |                |               |                             |                                                    |                 |               |
| Surr: 2,4,6-Tribromophenol            | 10.23                                      | 0                                     | 75               | 0                                   | 13.6     | 15             | 150           |                             |                                                    |                 | S             |
| Surr: 2-Fluorobiphenyl                | 27.88                                      | 0                                     | 20               | 0                                   | 55.8     | 30             | 130           |                             |                                                    |                 |               |
| Surr: 2-Fluorophenol                  | 27.47                                      | 0                                     | 75               | 0                                   | 36.6     | 15             | 110           |                             |                                                    |                 |               |
| Surr; Nitrobenzene-d5                 | 25.36                                      | 0                                     | 50               | 0                                   | 50.7     | 30             | 130           |                             |                                                    |                 |               |
| Surr: Phenol-d6                       | 18.96                                      | 0                                     | 75               | 0                                   | 25.3     | 15             | 110           |                             |                                                    |                 |               |
| Surr: Terphenyl-d14                   | 30.64                                      | 0                                     | 20               | 0                                   | 61.3     | 30             | 130           |                             |                                                    |                 |               |
| Sample ID: LCS2-9986                  | SampType: LCS                              | TestCoc                               | TestCode: 8270_W | Units: µg/L                         |          | Prep Date:     | te: 4/29/2008 |                             | RunNo: 23388                                       | 88              |               |
| Client ID: ZZZZZ                      | Batch ID: 9986                             | Test                                  | TestNo: SW8270C  | (SW3510)                            |          | Analysis Date: | te: 4/29/2008 |                             | SeqNo: 229413                                      | 413             |               |
| Analyte                               | Result                                     | PQL                                   | SPK value        | SPK Ref Val                         | %REC     | LowLimit       | HighLimit RI  | RPD Ref Val                 | %RPD                                               | RPDLimit        | Qual          |
| 1,2,4-Trichlorobenzene                | 14.10                                      | 1.00                                  | 25               | 0                                   | 56.4     | 40             | 140           |                             |                                                    |                 |               |
| 1,2.Dichlorobenzene                   | 12.37                                      | 1.00                                  | 25               | 0                                   | 49.5     | 40             | 140           |                             |                                                    |                 |               |
| 1,2-Dinitrobenzene                    | 19.20                                      | 1,00                                  | 25               | 0                                   | 76.8     | 40             | 140           |                             |                                                    |                 |               |
| 1,3-Dichlorobenzene                   | 11.58                                      | 1.00                                  | 25               | 0                                   | 46.3     | 40             | 140           |                             |                                                    |                 |               |
| 1,3-Dinitrobenzene                    | 17,30                                      | 1.00                                  | 25               | 0                                   | 69.2     | 40             | 140           |                             |                                                    |                 |               |
| 1,4-Dichlorobenzene                   | 12.03                                      | 1.00                                  | 25               | 0                                   | 48.1     | 40             | 140           |                             |                                                    |                 |               |
| 1,4-Dinitrobenzene                    | 15.76                                      | 1.00                                  | 25               | 0                                   | 63.0     | 40             | 140           |                             |                                                    |                 |               |
| 2,3,4,6-Tetrachlorophenol             | 10.82                                      | 1.00                                  | 25               | 0                                   | 43.3     | 30             | 130           |                             |                                                    |                 |               |
| Qualifiers: BRL Below Reporting Limit | rting Limit                                | A A A A A A A A A A A A A A A A A A A | E Value          | Value above quantitation range      | ıge      |                | H Hok         | ding times for p            | Holding times for preparation or analysis exceeded | nalysis exceede | *             |
| -                                     | Analyte detected below quantitation limits | -                                     | ND Not Do        | Not Detected at the Reporting Limit | ng Limit | •              | R RPD         | RPD outside recovery limits | ery limits                                         | ,               |               |
| S Spike Recov                         | Spike Recovery outside recovery limits     |                                       |                  |                                     |          |                |               |                             |                                                    | Page            | Page 11 of 26 |

J Analyte detected below quantitation limits Spike Recovery outside recovery limits

TestCode: 8270\_W

| HOLD OF THE | 00011100  |
|-------------|-----------|
| Project:    | MWRA 6905 |

Fay,Spofford & Thorndike 0804418 Work Order:

CLIENT:

| Sample ID: LCS2-9986                  | SampType: LCS                              | TestCoc | TestCode: 8270_W | Units: µg/L                         |         | Prep Date:     | 4/29/2008                                             | RunNo: 23388      | 8              |      |
|---------------------------------------|--------------------------------------------|---------|------------------|-------------------------------------|---------|----------------|-------------------------------------------------------|-------------------|----------------|------|
| Client ID: ZZZZ                       | Batch ID; 9986                             | Testh   | TestNo: SW8270C  | (SW3510)                            |         | Analysis Date: | 4/29/2008                                             | SeqNo: 229413     | 13             |      |
| Analyte                               | Result                                     | Pal     | SPK value        | SPK Ref Val                         | %REC    | LowLimit Hi    | HighLimit RPD Ref Val                                 | %RPD              | RPDLimit       | Qual |
| 2,4,5-Trichlorophenol                 | 12:38                                      | 1,00    | 25               | 0                                   | 49,5    | 30             | 130                                                   |                   |                | ]    |
| 2,4,6-Trichlorophenoi                 | 8.940                                      | 1.00    | 25               | 0                                   | 35.8    | 30             | 130                                                   | ÷                 | -              |      |
| 2,4-Dichlorophenol                    | 15.30                                      | 1.00    | 25               | 0                                   | 61.2    | 30             | 130                                                   | ,                 |                |      |
| 2,4-Dimethylphenol                    | 14.73                                      | 1.00    | 25               | 0                                   | 58.9    | 30             | 130                                                   |                   |                |      |
| 2,4-Dinitrophenol                     | QN                                         | 5.00    | 25               | 0                                   | 10.1    | 30             | 130                                                   |                   |                | ဟ    |
| 2,4-Dinitrotoluene                    | 18.48                                      | 1.00    | 25               | 0                                   | 73.9    | 40             | 140                                                   |                   |                |      |
| 2,6-Dinitrotoluene                    | 16.81                                      | 1.00    | 25               | 0                                   | 67.2    | 40             | 140                                                   |                   |                |      |
| 2-Chloronaphthalene                   | 14.79                                      | 1.00    | 25               | 0                                   | 59.2    | 40             | 140                                                   |                   |                |      |
| 2-Chlorophenol                        | 12.55                                      | 1.00    | 25               | 0                                   | 50.2    | 30             | 130                                                   |                   |                |      |
| 2-Methyinaphthalene                   | 15.14                                      | 1.00    | 25               | 0                                   | 9.09    | 40             | 140                                                   |                   |                | -    |
| 2-Methylphenol                        | 12.50                                      | 1.00    | 25               | 0                                   | 50.0    | 30             | 130                                                   |                   |                |      |
| 2-Nitroaniline                        | 17,48                                      | 1.00    | . 25             | 0                                   | 669     | 40             | 140                                                   |                   |                |      |
| 2-Nifrophenol                         | 10.71                                      | 1.00    | 25               | 0                                   | 42.8    | 30             | 130                                                   |                   |                |      |
| 3,3'-Díchlorobenzidine                | 17.53                                      | 1.00    | 25               | Ó                                   | 70.1    | 40             | 140                                                   |                   |                |      |
| 3-Methylphenol/4-Methylphenol         | 11.95                                      | 1.00    | 25               | 0                                   | 47.8    | 30             | 130                                                   |                   |                | ٠    |
| 3-Nitroaniline                        | 17.32                                      | 1.00    | 25               | 0                                   | 69.3    | 40             | 140                                                   | •                 |                |      |
| 4,6-Dinitro-2-Methylphenol            | 8.285                                      | 5.00    | 25               | 0                                   | 33.1    | 30             | 130                                                   |                   |                |      |
| 4-Bromophenyl Phenyl Ether            | 17.31                                      | 1.00    | 25               | 0                                   | 69.2    | 40             | 140                                                   |                   |                |      |
| 4-Chloro-3-Methylphenoi               | 14.50                                      | 1.00    | 25               | 0                                   | 58.0    | 30             | 130                                                   |                   |                |      |
| 4-Chloroaniline                       | 23.18                                      | 1.00    | 25               | 0                                   | 92.7    | 40             | 140                                                   |                   |                |      |
| 4-Chlorophenyl Phenyl Ether           | 14.82                                      | 1.00    | 25               | 0                                   | 59.3    | 40             | 140                                                   |                   |                |      |
| 4-Nitroaniline                        | 17.35                                      | 1.00    | 25               | 0                                   | 69.4    | 40             | 140                                                   |                   |                |      |
| 4-Nitrophenof                         | 11.64                                      | 1.00    | 25               | 0                                   | 46.5    | 30             | 130                                                   |                   |                |      |
| Acenaphthene                          | 15.60                                      | 1.00    | 25               | 0                                   | 62.4    | 40             | 140                                                   |                   |                |      |
| Acenaphthylene                        | 15.72                                      | 1,00    | 25               | 0                                   | 62.9    | 40             | 140                                                   |                   |                |      |
| Acetophenone                          | 14.13                                      | 1.00    | 25               | 0                                   | 56.5    | 40             | 140                                                   |                   |                |      |
| Aniline                               | 19.22                                      | 5.00    | 25               | 0                                   | 76.9    | 40             | 140                                                   |                   |                |      |
| Anthracene                            | 18.03                                      | 1.00    | 25               | 0                                   | 72.1    | 40             | 140                                                   |                   |                |      |
| Azobenzene                            | 16.08                                      | 5.00    | 25               | 0                                   | 64.3    | 40             | 140                                                   |                   |                |      |
| Benz(a)Anthracene                     | 17.98                                      | 0.100   | 25               | 0                                   | 71.9    | 40             | 140                                                   | ٠                 |                |      |
| Benzo(a)Pyrene                        | 18.74                                      | 0.100   | 52               | 0                                   | 75.0    | 40             | 140                                                   |                   |                |      |
| Onalifiers: BRL Below Reporting Limit | ing Limit                                  |         | E Value a        | Value above quantitation range      | ge      |                | H Holding titues for preparation or analysis exceeded | reparation or ana | lysis exceeded |      |
| _                                     | Analyte detected below quantitation limits |         | _                | Not Detected at the Reporting Limit | o Limit |                | -                                                     | ery limits        | ,              |      |
| אייים שונגאואא ל                      | and below spanning manner                  |         |                  | การครั้งสามาราชาชา                  | g Lunus |                |                                                       | ci, y minus       |                |      |

Fay, Spofford & Thorndike CLIENT:

0804418 Work Order:

**MWRA** 6905

Project:

TestCode: 8270\_W

ANALYTICAL QC SUMMARY REPORT

| Sample ID: LCS2-9986                  | SampType: LCS                              | TestCod | TestCode: 8270_W | Units: µg/L                         |         | Prep Date:     | e: 4/29/2008  |                             | RunNo: 23388                                       | 388            |               |
|---------------------------------------|--------------------------------------------|---------|------------------|-------------------------------------|---------|----------------|---------------|-----------------------------|----------------------------------------------------|----------------|---------------|
| Client ID: ZZZZZ                      | Batch ID: 9986                             | TestN   | estNo: SW8270C   | (SW3510)                            |         | Analysis Date: | e: 4/29/2008  |                             | SeqNo: 229413                                      | 9413           |               |
| Analyte                               | Result                                     | Pal     | SPK value        | SPK Ref Val                         | %REC    | LowLimit       | HighLimit RPD | RPD Ref Val                 | %RPD                                               | RPDLimit       | Qual          |
| Benzo(b)Fluoranthene                  | 20,30                                      | 0.500   | 25               | 0                                   | 81.2    | 40             | 140           |                             | <del></del>                                        |                |               |
| Benzo(g,h,i)Perylene                  | 20,31                                      | 1.00    | 25               | 0                                   | 81.2    | 40             | 140           |                             |                                                    |                |               |
| Benzo(k)Fluoranthene                  | 19.58                                      | 0.500   | 25               | 0                                   | 78.3    | 40             | 140           |                             |                                                    |                |               |
| Benzyl Alcohol                        | 11.20                                      | 1.00    | 25               | . 0                                 | 44.8    | 40             | 140           |                             |                                                    | ٠              |               |
| Bis(2-Chloroethoxy)Methane            | 16.09                                      | 1.00    | 25               | 0                                   | 64.4    | 40             | 140           |                             |                                                    |                |               |
| Bis(2-Chloroethyl)Ether               | 14.26                                      | 1.00    | 25               | 0                                   | 57.0    | 40             | 140           |                             |                                                    |                |               |
| Bis(2-Chloroisopropyl)Ether           | 12.18                                      | 1.00    | 25               | 0                                   | 48.7    | 40             | 140           |                             |                                                    |                |               |
| Bis(2-Ethythexyl)Phthalate            | 15.06                                      | 1.00    | 25               | 0                                   | 60.2    | 40             | 140           |                             |                                                    |                |               |
| Butyl Benzyl Phthalate                | 14.72                                      | 1.00    | 25               | . 0                                 | 58.9    | 40             | 140           |                             |                                                    |                |               |
| Carbazole                             | 19.56                                      | 1.00    | 25               | 0                                   | 78.3    | 40             | 140           |                             |                                                    |                |               |
| Chrysene                              | 19.16                                      | 1.00    | . 25             | 0                                   | 76.6    | 40             | 140           |                             |                                                    |                |               |
| Dibenz(a,h)Anthracene                 | 16.22                                      | 0.100   | 25               | 0                                   | 64.9    | 40             | 140           |                             |                                                    |                |               |
| Dibenzofuran                          | 16.24                                      | 1.00    | 25               | 0                                   | 64.9    | 40             | 140           |                             |                                                    |                |               |
| Diethyl Phthalate                     | 16.13                                      | 1.00    | 25               | 0                                   | 64.5    | 40             | 140           |                             |                                                    |                | ٠.            |
| Dimethyl Phthalate                    | 10.96                                      | 1.00    | 25               | 0                                   | 43.9    | 40             | 140           |                             |                                                    |                | -             |
| Di-n-Butyl Phthalate                  | 15.78                                      | 1,00    | 25               | 0                                   | 63.1    | 40             | 140           |                             |                                                    |                |               |
| Di-n-Octyl Phthalate                  | 15.74                                      | 1.00    | 25               | 0                                   | 67.9    | 40             | 140           |                             |                                                    |                |               |
| Fluoranthene                          | 19.72                                      | 1.00    | 25               | 0                                   | 78.9    | 40             | 140           |                             |                                                    |                |               |
| Fluorene                              | 14.27                                      | 1.00    | 25               | 0                                   | 57,1    | 40             | 140           |                             | •                                                  | •              |               |
| Hexachlorobenzene                     | 16.90                                      | 0.100   | 25               | 0                                   | 9.79    | 40             | 140           |                             |                                                    |                | .*            |
| Hexachlorobutadiene                   | 13.88                                      | 0.100   | 25               | 0                                   | 55.5    | 40             | 140           |                             |                                                    |                |               |
| Hexachlorocyclopentadiene             | 28.25                                      | 5.00    | 25               | 0                                   | 113     | 40             | 140           |                             |                                                    |                |               |
| Hexachloroethane                      | 11.76                                      | 1.00    | 25               | 0                                   | 47.0    | 40             | 140           |                             |                                                    |                |               |
| Indeno(1,2,3-cd)Pyrene                | 17.36                                      | 0.100   | 25               | 0                                   | 69.4    | 40             | 140           |                             |                                                    |                |               |
| Isophorone                            | 27.98                                      | 1.00    | 25               | 0                                   | 112     | 40             | 140           |                             |                                                    |                |               |
| Naphthalene                           | 14.60                                      | 1.00    | 25               | 0                                   | 58,4    | 40             | 140           |                             |                                                    |                |               |
| Nitrobenzene                          | 14.04                                      | 1.00    | 25               | 0                                   | 299     | 40             | 140           |                             |                                                    |                |               |
| N-Nitrosodimethylamine                | 11.14                                      | 5.00    | 25               | 0                                   | 44.6    | 40             | 140           |                             |                                                    | -              |               |
| N-Nitrosodi-n-Propylamine             | 14.21                                      | 1.00    | 25               | 0                                   | 56.8    | 40             | 140           |                             |                                                    |                |               |
| N-Nitrosodiphenylamine                | 17.10                                      | 5.00    | 25               | . 0                                 | 68.4    | 40             | 140           |                             |                                                    |                |               |
| Pentachlorophenol                     | 11.39                                      | 1.00    | 25               | 0                                   | 45.6    | 30             | 130           |                             |                                                    |                | . *           |
| Qualifiers: BRL Below Reporting Limit | rting Limit                                |         | E Value          | Value above quantitation range      | ıge     |                | H Holding     | g times for p               | Holding times for preparation or analysis exceeded | nalysis exceed | Þ             |
| J Analyte detec                       | Analyte detected below quantitation limits |         | ND Not De        | Not Detected at the Reporting Limit | g Limit |                | R RPD or      | RPD outside recovery limits | ary limits                                         |                |               |
| S Spike Recove                        | Spike Recovery outside recovery limits     |         |                  |                                     |         |                |               |                             |                                                    | Pag            | Page 13 of 26 |

Holding times for preparation or analysis exceeded RPD outside recovery limits

нж

ANALYTICAL QC SUMMARY REPORT

Fay, Spofford & Thorndike

**MWRA 6905** 0804418

Work Order: CLIENT:

Project:

TestCode: 8270\_W

| Sample ID: LCS2-9986       | SampType: LCS  | TestCoc | TestCode: 8270_W |             |      | Prep Date                | Prep Date: 4/29/2008                |         | RunNo; 23388       |          |      |
|----------------------------|----------------|---------|------------------|-------------|------|--------------------------|-------------------------------------|---------|--------------------|----------|------|
| Cilent ID: ZZZZ            | Batch ID: 9986 | Test    | estNo: SW8270C   | (SW3510)    |      | Analysis Date: 4/29/2008 | :: 4/29/2008                        |         | SeqNo: 229413      | <b>~</b> | -    |
| Analyte                    | Result         | PQL     | SPK value        | SPK Ref Val | %REC | LowLimit                 | %REC LowLimit HighLimit RPD Ref Val | Ref Val | %RPD RPDLimit Qual | PDLimit  | Quai |
| Phenanthrene               | 17.71          | 1.00    | 25               | 0           | 70.8 | 40                       | 140                                 |         |                    |          |      |
| Phenoi                     | 7.975          | 1.00    | 25               | 0           | 31.9 | 30                       | 130                                 |         |                    |          |      |
| Pyrene                     | 15.48          | 1.00    | 25               | 0           | 61.9 | 40                       | 140                                 | •       |                    |          |      |
| Pyridine                   | 10.66          | 5.00    | 25               | 0           | 42.6 | 40                       | 140                                 |         |                    |          |      |
| Surr: 2,4,6-Tribromophenol | 12.16          | 0       | . 75             | 0           | 16,2 | 15                       | 110                                 |         |                    |          |      |
| Surr: 2-Fluorobiphenyl     | 30.36          | 0       | 20               | 0           | 60.7 | 30                       | 130                                 |         |                    |          |      |
| Surr: 2-Fluorophenol       | 23.87          | 0       | 75               | 0           | 31.8 | 15                       | 110                                 |         |                    |          |      |
| Surr; Nitrobenzene-d5      | 27.87          | 0       | 20               | 0           | 22.7 | 30                       | 130                                 |         |                    |          |      |
| Surr: Phenol-d6            | 18.28          | 0       | 75               | 0           | 24.4 | 15                       | 110                                 |         |                    |          |      |
| Surr: Terphenyl-d14        | 33.91          | 0       | 20               | 0           | 67.8 | 30                       | 130                                 |         |                    |          |      |

| Below Reporting Limit                      | Щ. | Value above quantitation range      |
|--------------------------------------------|----|-------------------------------------|
| Analyte detected below quantitation limits | ND | Not Detected at the Reporting Limit |
| Spike Recovery outside recovery limits     |    |                                     |

BRL Below Reporting Limit

ANALYTICAL QC SUMMARY REPORT

Fay, Spofford & Thorndike

0804418 MWRA 6905

CLIENT: Work Order:

Project:

TestCode: AG\_W

| Sample ID: MB-9991  | SampType: MBLK | TestCoc | TestCode: AG_W      | Units: mg/L           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prep Date:                          | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RunNo: 23365       |      |
|---------------------|----------------|---------|---------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------|
| Client ID: ZZZZZ    | Batch ID: 9991 | Test    | TestNo: 200.7       | (SW3010A)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analysis Date: 4/29/2008            | /2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SeqNo: 229202      |      |
| Analyte             | Result         | Pal     | SPK value           | SPK value SPK Ref Val | %REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | "REC LowLimit HighLimit RPD Ref Val | nit RPD Ref Vai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %RPD RPDLimit Qual | Qual |
| Silver              | QN             | 0.00700 |                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | The state of the s |                    |      |
| Sample ID: LCS-9991 | SampType: LCS  | TestCoo | TestCode; ag_w      | Units: mg/L           | The state of the s | Prep Date: 4/29/2008                | /2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RunNo: 23365       |      |
| Client ID: ZZZZZ    | Batch ID: 9991 | Test    | estNo: <b>200.7</b> | (SW3010A)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analysis Date: 4/29/2008            | /2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SeqNo: 229197      |      |
| Analyte             | Result         | Pal     | SPK value           | SPK value SPK Ref Val | %REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | %REC LowLimit HighLimit RPD Ref Val | iit RPD Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %RPD RPDLimit Qual | Qual |
| Silver              | 0.4870         | 0.00700 | 0.5                 | 0                     | 97.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80 120                              | 0;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |      |

| BRL  | BRL Below Reporting Limit                  | ш | Value above qua |
|------|--------------------------------------------|---|-----------------|
| ···· | Analyte detected below quantitation limits | S | Not Detected at |
| S    | Spike Recovery outside recovery limits     |   |                 |

Qualifiers:

Holding times for preparation or analysis exceeded

RPD outside recovery limits

ve quantitation range led at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside recovery limits

**#** 2

E Value above quantitation range ND Not Detected at the Reporting Limit

Analyte detected below quantitation limits Spike Recovery outside recovery limits

-S

BRL Below Reporting Limit

Qunlifiers:

Fay, Spofford & Thorndike CLIENT:

0804418 Work Order: **MWRA 6905** Project:

TestCode: CN\_W\_SM

ANALYTICAL QC SUMMARY REPORT

| Sample ID; MB-R23376  | SampType: MBLK          | TestCo  | TestCode: CN_W_SM     | Units: mg/L |      | Prep Date:                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | RunNo: 23376  | 921                |      |
|-----------------------|-------------------------|---------|-----------------------|-------------|------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|--------------------|------|
| Client ID: ZZZZ       | Batch ID: R23376        | Test    | estNo: SM 4500-CN-    | Ž           |      | Analysis Date: 4/30/2008            | 4/30/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | SeqNo: 229286 | 286                |      |
| Analyte               | Result                  | Pal     | SPK value SPK Ref Val | SPK Ref Val | %REC | %REC LowLimit HighLimit RPD Ref Val | HighLimit RF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ⊃D Ref Val | %RPD          | %RPD RPDLimit      | Qual |
| Cyanide, Total        | ND                      | 0.0197  |                       |             |      |                                     | and a fact of the restriction and the second and th |            |               |                    |      |
| Sample ID: LCS-R23376 | SampType: LCS           | TestCor | TestCode: CN_W_SM     | Units: mg/L |      | Prep Date:                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | RunNo: 23376  | 76                 |      |
| Client ID: ZZZZZ      | Batch ID: <b>R23376</b> | Test    | estNo: SM 4500-CN-    | ż           |      | Analysis Date: 4/30/2008            | : 4/30/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | SeqNo: 229287 | 287                |      |
| Analyte               | Result                  | PQL     | SPK value SPK Ref Val | SPK Ref Val | %REC | %REC LowLimit HighLimit RPD Ref Val | highLimit RF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ²O Ref Val | %RPD          | %RPD RPDLimit Qual | Qual |
| Cyanide, Total        | 0.1625                  | 0.0197  | 0.183                 | 0           | 88.8 | 85                                  | 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |               |                    |      |
|                       |                         |         |                       |             |      |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                    |      |

H Holding times for preparation or analysis exceeded R RPD outside recovery limits

E Value above quantitation range
ND Not Detected at the Reporting Limit

Analyte detected below quantitation limits Spike Recovery outside recovery limits

BRL Below Reporting Limit

Qualifiers:

| CLIENT: Fay, Spofford & Thorndike | 6)       |
|-----------------------------------|----------|
| T: Fay, Spofford &                | ющ       |
| T: Fay,Sp                         | <b>ઝ</b> |
| T:                                | y,Spoff  |
| CLIENT:                           | Fa       |
|                                   | IENT:    |

0804418 Work Order: Project:

**MWRA 6905** 

|   |                 | 4      |
|---|-----------------|--------|
|   | 7               | 3      |
|   | <b>C</b>        | J      |
|   |                 | _      |
|   | _               | 7      |
|   | 1               |        |
|   | PFP             | Į      |
|   |                 | 4      |
|   | _               | _      |
|   |                 | 7      |
|   | $\sim$          | S      |
|   | ARV             | {      |
|   | <               | q      |
|   | ₹               | ď      |
|   | -               | くていて   |
|   | -               | ì      |
|   | 2               | -      |
|   | $\vdash$        | Š      |
|   |                 |        |
|   | V,              | )      |
|   | ,               |        |
|   | <b>_</b>        | į      |
|   | F               | ر<br>د |
|   | •               | /      |
|   |                 | }      |
|   | -               | Į      |
|   | 4               | (      |
|   | ~               | ٠      |
|   | ~               | ₹      |
|   | Ç,              | ì      |
|   | <u>_</u>        | ì      |
|   |                 | )<br>1 |
|   | MILL OF TACIFIC | )      |
|   |                 | )      |
|   | $\geq$          | 1      |
|   | $\geq$          | 1      |
| • | $\geq$          | 1      |
|   | $\geq$          | 1      |
| - |                 | 1      |
|   | $\geq$          |        |
|   | $\geq$          | 1      |

TestCode: Cr6\_WW

| Sample ID: MB-R23344  | SampType: MBLK   | TestCo  | TestCode: Cr6_WW   | Units: mg/L           |      | Prep Date:    | <b>6</b> ;                          | RunNo: 23344  |               |      |
|-----------------------|------------------|---------|--------------------|-----------------------|------|---------------|-------------------------------------|---------------|---------------|------|
| Client ID: ZZZZZ      | Batch ID: R23344 | Test    | stNo: M3500-Cr D   | 0                     | -    | Analysis Dati | Analysis Date: 4/29/2008            | SeqNo: 228873 |               |      |
| Analyte               | Result           | PQL     | SPK value          | SPK value SPK Ref Val | %REC | LowLimit      | %REC LowLimit HighLimit RPD Ref Val | %RPD RP       | RPDLímit      | Qual |
| Chromium, Hexavalent  | ON               | 0.0500  |                    |                       |      |               |                                     |               |               |      |
| Sample ID: LCS-R23344 | SampType: LCS    | TestCor | TestCode: Cr6_WW   | Units: mg/L           |      | Prep Date:    | B.                                  | RunNo; 23344  |               |      |
| Citent ID: ZZZZZ      | Batch (D: R23344 | Test    | TestNo: M3500-Cr D |                       | -    | Analysis Dat  | Analysis Date: 4/29/2008            | SeqNo: 228874 |               |      |
| Analyte               | Result           | Pal     | SPK value          | SPK Ref Val           | %REC | LowLimit      | %REC LowLimit HighLimit RPD Ref Val | %RPD RP       | RPDLimit Qual | Qual |
| Chromium, Hexavalent  | 0.4655           | 0.0500  | 0.5                | 0                     | 93.1 | 85            | 115                                 |               |               |      |

Page 18 of 26

Holding times for preparation or analysis exceeded

RPD outside recovery limits

H X

ND Not Detected at the Reporting Limit E Value above quantitation range

> Analyte detected below quantitation limits Spike Recovery outside recovery limits

BRL Below Reporting Limit

Qualifiers:

ANALYTICAL QC SUMMARY REPORT

TestCode: ephP\_W

| 0804418        | MWRA 6905  |
|----------------|------------|
| Work Order: 08 | Project: N |

Project:

Fay, Spofford & Thorndike

CLIENT:

| Sample ID: MB-10000 | SampType: MBLK  | TestCode: ephP_W Units: µg/L | Prep Date: 4/30/2008             | RunNo: 23430  |
|---------------------|-----------------|------------------------------|----------------------------------|---------------|
| Client ID: ZZZZZ    | Batch ID: 10000 | TestNo: MADEP EPH_ (eph_Wpr) | Analysis Date: 4/30/2008         | SeqNo: 230000 |
| Anolydo             | Bosnit          | IN THE YOR SHEW YOR I'VE     | SPEC Loudinait High imit DOD CAR |               |

| Sample to MD*1000              | Sampighe. Morn  | 200     | escone epul-                 | OHES. PG/L   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fieb Date: 4/30/2008 | 4/30/2008                           | KUNNO: 23430  | 430      |      |
|--------------------------------|-----------------|---------|------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------|---------------|----------|------|
| Client ID: ZZZZ                | Batch ID: 10000 | Test    | TestNo: MADEP EPH_ (eph_Wpr) | H_ (eph_Wpr) | .*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analysis Date:       | 4/30/2008                           | SeqNo: 230000 | 0000     |      |
| Analyte                        | Result          | PQL     | SPK value                    | SPK Ref Val  | %REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LowLimit Hi          | %REC LowLimit HighLimit RPD Ref Val | i %RPD        | RPDLimit | Quai |
| Naphthalene                    | QN              | 1.00    |                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                     |               |          |      |
| 2-Methylnaphthalene            | QN              | 1.00    |                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                     |               |          |      |
| Acenaphthene                   | QN              | 1.00    |                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                     |               |          |      |
| Phenanthrene                   | Q               | .1,00   |                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                     |               |          |      |
| Acenaphthylene                 | QN.             | 1.00    |                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                     |               |          |      |
| Fluorene                       | QN.             | 1.00    |                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                     |               |          |      |
| Anthracene                     | QN              | 1.00    |                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                     |               |          |      |
| Fluoranthene                   | Q               | 1.00    |                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                     |               |          |      |
| Pyrene                         | QN              | 1.00    |                              |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                     |               |          |      |
| Benzo(a)Anthracene             | Q               | 0.400   |                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                     |               |          |      |
| Chrysene                       | g               | 1.00    |                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | •                                   |               |          |      |
| Benzo(b)Fluoranthene           | QN              | 1,00    |                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                     |               |          |      |
| Benzo(k)Fluoranthene           | Q.              | 1.00    |                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                     |               |          |      |
| Benzo(a)Pyrene                 | QN.             | 0.200   |                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                     |               |          |      |
| Indeno(1,2,3-cd)Pyrene         | Q.              | 0.400   |                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                     |               |          |      |
| Dibenz(a,h)Anthracene          | g.              | 0.400   |                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                     | ,             |          |      |
| Benzo(g,h,i)Perylene           | Q               | 1.00    |                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                     |               |          |      |
| Total PAH Target Concentration | QN              | 0       |                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                     |               |          |      |
| Surr: 2,2'-Difluorobiphenyl    | 18.82           | 0       | 25                           | 0            | 75.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                   | 140                                 |               |          |      |
| Surr: 2-Fluorobiphenyl         | 14.22           | 0       | 25                           | 0            | 56.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                   | 140                                 |               |          |      |
| Sample ID: LCS-10000           | SampType: LCS   | TestCoc | estCode; EPHP W              | Units: µg/L  | The state of the s | Prep Date:           | 4/30/2008                           | RunNo: 23430  | 430      |      |

| Sample ID: LCS-10000 | SampType: LCS   | TestCo | estCode: EPHP_W          | Units: pg/L                  |      | Prep Dat     | Prep Date: 4/30/2008                | RunNo: 23430       |
|----------------------|-----------------|--------|--------------------------|------------------------------|------|--------------|-------------------------------------|--------------------|
| Client ID: ZZZZ      | Batch ID: 10000 | Test   | No: MADEP EP             | TestNo: MADEP EPH_ (eph_Wpr) |      | Analysis Dat | Analysis Date: 4/30/2008            | SeqNo: 230001      |
| Analyte              | Result          | Pal    | OL SPK value SPK Ref Val | SPK Ref Val                  | %REC | LowLimit     | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual |
| Naphthalene          | 20.02           | 1.00   | 50                       | 0                            | 40.0 | 40           | 140                                 |                    |
| 2-Methylnaphthalene  | 24.60           | 1.00   | 90                       | 0                            | 49.2 | 40           | 140                                 |                    |
| Acenaphthene         | 26.47           | 1.00   | 50                       | 0                            | 52.9 | 40           | 140                                 |                    |
| Phenanthrene         | 27.11           | 1.00   | 50                       | 0                            | 54.2 | 40           | 140                                 |                    |
| Acenaphthylene       | 26.61           | 1.00   | 90                       | 0                            | 53.2 | 40           | 140                                 |                    |

Holding times for preparation or analysis exceeded

RPD outside recovery limits

ня

E Value above quantitation range ND Not Detected at the Reporting Limit

> Analyte detected below quantitation limits Spike Recovery outside recovery limits

BRL Below Reporting Limit

Qualifiers:

CLIENT: Fay, Spofford & Thorndike

Work Order: 0804418

MWRA 6905

**Project**:

TestCode: ephP\_W

ANALYTICAL QC SUMMARY REPORT

| Sample ID: LCS-10000           | SampType: LCS   | cs     | TestCoc | TestCode: EPHP_W | Units: pg/L                  |      | Prep Date:         | e: 4/30/2008          |        | RunNo: 23430  |          |      |
|--------------------------------|-----------------|--------|---------|------------------|------------------------------|------|--------------------|-----------------------|--------|---------------|----------|------|
| Client ID; ZZZZ                | Batch ID: 10000 | 0000   | Testh   | lo: MADEP EI     | TestNo: MADEP EPH_ (eph_Wpr) |      | Analysis Date:     | e: 4/30/2008          |        | SeqNo: 230001 | -<br>-   |      |
| Analyte                        | <u>.</u>        | Result | Pal     | SPK value        | SPK Ref Val                  | %REC | LowLimit HighLimit | HighLimit RPD Ref Val | ef Vai | «RPD R        | RPDLimit | Qual |
| Fluorene                       |                 | 31,73  | 1.00    | 50               | 0                            | 63.5 | 40                 | 140                   |        |               |          |      |
| Anthracene                     | ı               | 26.94  | 1.00    | 90               | 0                            | 53.9 | 40                 | 140                   |        |               |          |      |
| Fluoranthene                   |                 | 29.63  | 1,00    | . 50             | 0                            | 59.3 | 40                 | 140                   |        |               |          |      |
| Pyrene                         | •               | 34.65  | 1.00    | 50               | 0                            | 69.3 | 40                 | 140                   |        |               |          |      |
| Benzo(a)Anthracene             | •               | 38.23  | 0.400   | 50               | 0                            | 76.5 | 40                 | 140                   |        |               |          |      |
| Chrysene                       | ,               | 41.46  | 1.00    | 90               | 0                            | 82.9 | 40                 | 140                   |        |               | •        |      |
| Benzo(b)Fluoranthene           |                 | 39.49  | 1.00    | 50               | 0                            | 79.0 | 40                 | 140                   |        |               |          |      |
| Benzo(k)Fluoranthene           |                 | 57.83  | 1.00    | 90               | 0                            | 116  | 40                 | 140                   |        |               |          |      |
| Benzo(a)Pyrene                 |                 | 47.16  | 0.200   | 20               | 0                            | 94.3 | 40                 | 140                   |        |               |          |      |
| Indeno(1,2,3-cd)Pyrene         |                 | 39.96  | 0,400   | 50               | 0                            | 79.9 | 40                 | 140                   |        |               |          |      |
| Dibenz(a,h)Anthracene          | •               | 37.09  | 0,400   | 50               | 0                            | 74.2 | 40                 | 140                   |        |               |          |      |
| Benzo(g,h,i)Perylene           | 7               | 43.44  | 1.00    | 50               | 0                            | 86.9 | 40                 | 140                   |        |               |          | -    |
| Total PAH Target Concentration |                 | 592.4  | 0       |                  |                              |      |                    |                       |        |               |          |      |
| Surr: 2,2'-Difluorobiphenyl    |                 | 16.96  | 0       | 25               | 0                            | 67.8 | 40                 | 140                   |        |               |          |      |
| Surr: 2-Fluorobiphenyl         |                 | 11.79  | 0       | 25               | 0                            | 47.2 | 40                 | 140                   |        |               |          |      |

Page 20 of 26

H Holding times for preparation or analysis exceeded R RPD outside recovery limits

RPD outside recovery limits

Not Detected at the Reporting Limit Value above quantitation range

9

Analyte detected below quantitation limits Spike Recovery outside recovery limits

BRL Below Reporting Limit

Qualifiers:

ANALYTICAL QC SUMMARY REPORT

Fay, Spofford & Thorndike

**MWRA** 6905 0804418

Work Order: CLIENT:

Project:

TestCode: EPHT\_W

| Sample ID: MB-10000          | SampType: MBLK  | TestCo  | TestCode: EPHT_W           | Units: µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | Prep Date:               | Prep Date: 4/30/2008                | RunNo: 23380       |      |
|------------------------------|-----------------|---------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------|-------------------------------------|--------------------|------|
| Client ID: ZZZZZ             | Batch ID: 10000 | Test    | estNo: MADEP EPH (eph_Wpr) | f (eph_Wpr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •    | Analysis Date: 4/30/2008 | 4/30/2008                           | SeqNo: 230418      |      |
| Analyte                      | Result          | Pal     | SPK value SPK Ref Val      | SPK Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %REC | LowLimit H               | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual | Quai |
| Adjusted C11-C22 Aromatics   | . ON            | 100     |                            | The statement of the st |      |                          |                                     |                    |      |
| C09-C18 Aliphatics           | O.              | 100     |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                          |                                     |                    |      |
| C19-C36 Aliphatics           | QN              | 100     |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                          |                                     |                    |      |
| Unadjusted C11-C22 Aromatics | S ND            | 100     |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                          |                                     |                    |      |
| Surr: 1-Chlorooctadecane     | 92.00           | 0       | 100                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 92.0 | 40                       | 140                                 |                    |      |
| Surr: o-Terphenyl            | 72.00           | 0       | 100                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72.0 | 40                       | 140                                 |                    |      |
| Sample ID: LCS-10000         | SampType: LCS   | TestCoc | TestCode: FPHT W           | Hoits: not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | Pren Dafer               | Pren Date: 4/20/2008                | Dunkler 22200      |      |

| Sample ID: LCS-10000         | SampType: LCS   | TestCo | TestCode: EPHT W            | Units: pg/L |      | Prep Da      | Prep Date: 4/30/2008                | RunNo: 23380       |         |      |
|------------------------------|-----------------|--------|-----------------------------|-------------|------|--------------|-------------------------------------|--------------------|---------|------|
| Client ID: ZZZZZ             | Batch ID: 10000 | Test   | TestNo: MADEP EPH (eph_Wpr) | (eph_Wpr)   |      | Analysis Daf | Analysis Date: 4/30/2008            | SeqNo: 230419      | o.      |      |
| Analyte                      | Result          | Pol    | SPK value SPK Ref Val       | ok Ref Val  | %REC | LowLimit     | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual | PDLímit | Qual |
| Adjusted C11-C22 Aromatics   | QN              | 100    |                             |             |      |              |                                     |                    |         |      |
| C09-C18 Aliphatics           | QN              | 100    | 100                         | 0           | 41.1 | 40           | 140                                 |                    |         |      |
| C19-C36 Aliphatics           | QN              | 100    | 100                         | 0           | 55.6 | 40           | 140                                 |                    |         |      |
| Unadjusted C11-C22 Aromatics | QN              | 100    | 100                         |             | 56.6 | 40           | 140                                 |                    |         |      |
| Surr: 1-Chlorooctadecane     | 67.00           | 0      | 100                         | 0           | 67.0 | 40           | 140                                 |                    |         |      |
| Surr: o-Terphenyl            | 75.00           | 0      | 100                         | 0           | 75.0 | 40           | 140                                 |                    |         |      |

Holding times for preparation or analysis exceeded

RPD outside recovery limits

E Value above quantitation range
ND Not Detected at the Reporting Limit

Analyte detected below quantitation limits Spike Recovery outside recovery limits

BRL Below Reporting Limit

Qualifiers:

Fay, Spofford & Thorndike CLIENT:

0804418 Work Order: **MWRA 6905** Project:

TestCode: hg-245.1\_w

ANALYTICAL QC SUMMARY REPORT

| Sample ID: MBLK-10018                    | SampType: MBLK                   | TestCo          | TestCode: hg-245.1_w               | Units: mg/L                                                    |      | Prep Date:                                       | Prep Date: 4/30/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RunNo: 23383                  |      |
|------------------------------------------|----------------------------------|-----------------|------------------------------------|----------------------------------------------------------------|------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------|
| Client ID: ZZZZZ                         | Batch ID; 10018                  | Test            | estNo: <b>E245.</b> 1              | (SW7470A/E2                                                    | -    | Analysis Date: 4/30/2008                         | 4/30/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SeqNo: 229382                 |      |
| Analyte                                  | Result                           | POL             | SPK value SPK Ref Val              | SPK Ref Val                                                    | %REC | LowLimit H                                       | %REC LowLimit HighLimit RPD Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %RPD RPDLimit Qual            | Quai |
| Mercury                                  | ΩN                               | 0.000500        |                                    |                                                                |      |                                                  | THE THE PROPERTY OF THE PROPER |                               |      |
| Sample ID; LCS-10018<br>Client ID; ZZZZZ | SampType: LCS<br>Batch ID: 10018 | TestCo<br>Testh | tCode: hg-245.1_w<br>estNo: E245.1 | TestCode: hg-245.1_w Units: mg/L<br>TestNo: E245.1 (SW7470A/E2 |      | Prep Date: 4/30/2008<br>Analysis Date: 4/30/2008 | Prep Date: 4/30/2008<br>alysis Date: 4/30/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RunNo: 23383<br>SeqNo: 229365 |      |
| ,<br>Analyte                             | Result                           | POL             | SPK value SPK Ref Val              | SPK Ref Val                                                    | %REC | LowLimit H                                       | "REC LowLimit HighLimit RPD Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %RPD RPDLimit                 | Qual |
| Mercury                                  | 0.004760                         | 0.000500        | 0.005                              | 0                                                              | 95.2 | 80                                               | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |      |

| orndike                  |  |
|--------------------------|--|
| Fay, Spofford & Thorndik |  |
| LIENT:                   |  |

0804418 Work Order:

**MWRA** 6905 Project:

TestCode: TPH W

ANALYTICAL QC SUMMARY REPORT

| Sample ID: MB-10037<br>Client ID: ZZZZZ           | SampType: MBLK<br>Batch ID: 10037 | TestCor<br>Testh | TestCode: TPH_W TestNo: 8100M    | Units: mg/L<br>(8100M) |              | Prep Da                  | Prep Date: 5/2/2008<br>Analysis Date: 5/2/2008 | RunNo: 23455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
|---------------------------------------------------|-----------------------------------|------------------|----------------------------------|------------------------|--------------|--------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Analyte                                           | Result                            | PQL              | SPK value                        | SPK value SPK Ref Val  | %REC         | LowLimit                 | %REC LowLimit HighLimit RPD Ref Val            | %RPD RPDLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Qua  |
| Total Petroleum Hydrocarbons<br>Surr: o-Terphenyl | ND<br>84.00                       | 0,200            | 100                              | 0                      | 84.0         | 40                       | 140                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Sample ID: LCS-10037                              | SampType: LCS                     | TestCoc          | TestCode: TPH_W                  | Units: mg/L            |              | Prep Dat                 | Prep Date: 5/2/2008                            | RunNo: 23455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| Cilent ID: ZZZZZ                                  | Batch ID: 10037                   | TestA            | TestNo: 8100M                    | (8100M)                | -            | Analysis Dat             | Analysis Date: 5/2/2008                        | SeqNo: 230329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| Analyte                                           | Resulf                            | PQĹ              | SPK value                        | SPK Ref Val            | %REC         | LowLimit                 | %REC LowLimit HighLimit RPD Ref Val            | %RPD RPDLimit Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Qual |
| Total Petroleum Hydrocarbons<br>Sur: o-Terphenyl  | 1,536<br>82.00                    | 0.200            | 100                              | 0                      | 76.8<br>82.0 | 40                       | 140                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Sample ID: LCS2-10037<br>Client ID: ZZZZZ         | SampType: LCS<br>Batch ID: 10037  | TestCoc          | TestCode: TPH_W<br>TestNo: 8100M | Units: mg/L<br>(8100M) |              | Prep Dat<br>Analysis Dat | Prep Date: 5/2/2008<br>Analysis Date: 5/2/2008 | RunNo: 23455<br>SeqNo: 230336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| Analyte                                           | Result                            | PQL              | SPK value                        | SPK Ref Val            | %REC         | LowLimit                 | LowLimit HighLimit RPD Ref Val                 | %RPD RPDLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Qual |
| Total Petroleum Hydrocarbons<br>Surr: o-Terphenyl | 1.217                             | 0.200            | 100                              | 0                      | 60.9         | 40                       | 140                                            | Management and the second seco |      |

Qualifiers:

BRL Below Reporting Limit

J Analyte detected below quantitation limits J Analyte detected below quantitation limit
S Spike Recovery outside recovery limits

Holding times for preparation or analysis exceeded RPD outside recovery limits H &

H Holding times for preparation or analysis exceeded R RPD outside recovery limits

E Value above quantitation range ND Not Detected at the Reporting Limit

Analyte detected below quantitation limits Spike Recovery outside recovery limits

BRL Below Reporting Limit

Qualifiers:

RPD outside recovery limits

| CLIENT: Fay, Spoff: Work Order: 0804418  | Fay,Spofford & Thorndike<br>0804418 |                                      |             | ANALYTICAL Q                           | ANALYTICAL QC SUMMARY REPORT  |
|------------------------------------------|-------------------------------------|--------------------------------------|-------------|----------------------------------------|-------------------------------|
| Project: MWRA 6905                       | 905                                 |                                      |             | TestCod                                | TestCode: TRC_W               |
| Sample ID: MB-R23331<br>Client ID: ZZZZZ | SampType: MBLK<br>Batch ID: R23331  | TestCode: TRC_W<br>TestNo: Hach 8167 | Units: mg/L | Prep Date:<br>Analysis Date: 4/28/2008 | RunNo: 23331<br>SeqNo: 228746 |
| Analyte                                  | Result                              | SPK value                            | SPK Ref Vai | %REC LowLimit HighLimit RPD Ref Val    | of Val %RPD RPDLimit Qual     |
| Total Residual Chlorine                  | QN                                  | 0,162                                |             |                                        |                               |
|                                          | SampType: LCS                       | TestCode: TRC_W                      | Units: mg/L | Prep Date:                             | RunNo: 23331                  |
| Client ID: ZZZZ                          | Batch ID: <b>R23331</b>             | TestNo: Hach 6167                    |             | Analysis Date: 4/28/2008               | SeqNo: 228747                 |
| Analyte                                  | Result                              | PQL SPK value                        | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val    | sf Val %RPD RPDLimit Qual     |
| Total Residual Chlorine                  | 1.020                               | 0.162 1                              | 0           | 102 85 115                             |                               |
|                                          |                                     |                                      |             | ·                                      |                               |
|                                          |                                     |                                      |             |                                        |                               |
|                                          |                                     |                                      |             |                                        |                               |
|                                          |                                     |                                      |             |                                        |                               |
|                                          |                                     |                                      |             |                                        |                               |
|                                          |                                     |                                      |             |                                        |                               |
|                                          |                                     |                                      |             |                                        |                               |
|                                          |                                     |                                      |             |                                        |                               |
|                                          |                                     |                                      |             | ÷                                      |                               |
|                                          |                                     |                                      |             |                                        |                               |
|                                          |                                     |                                      |             |                                        |                               |
|                                          |                                     |                                      |             |                                        |                               |
|                                          |                                     |                                      |             |                                        |                               |
|                                          |                                     |                                      |             |                                        |                               |

| SampType:         MBLK         TestCode:         TSS         Units:         mg/L         Prep Date:         4/30/2008         RunNo:           Client ID:         ZZZZZ         Batch ID:         Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val         %RPD           Analyse         SampType:         LCS         TestCode:         TSPK value         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val         %RPD           Samptyee         SampType:         LCS         TestCode:         TSS         Units:         Mg/L         Prep Date:         Analysis Date: | CLIENT: Fay, Spofford Work Order: 0804418 Project: MWRA 6905 | Fay,Spofford & Thomdike 0804418 MWRA 6905 |                  |                       |             |      | ANALYTIC                          | AL QC SUM<br>TestCode: TSS | ANALYTICAL QC SUMMARY REPORT<br>TestCode: TSS | KT   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|------------------|-----------------------|-------------|------|-----------------------------------|----------------------------|-----------------------------------------------|------|
| Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val           SampType:         LCS         TestCode:         TSS         Units:         mg/L         Prep Date:         Run           Batch ID:         R23392         TestNo:         E160.2         Analysis Date:         4/30/2008         Seq           Result         PQL         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val           75.50         4.00         66.5         0         114         80         120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              | SampType: MBLK<br>Batch ID: R23392        | TestCod          | Je: TSS<br>Jo: E160.2 | Units: mg/L |      | Prep Date:<br>Analysis Date: 4/30 | 2008                       | RunNo; 23392<br>SeqNo; 229438                 |      |
| ND         4.00           SampType: LCS         TestCode: TSS         Units: mg/L         Prep Date:         Result         Result         POL         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val           75.50         4.00         66.5         0         114         80         120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              | Result                                    | PQL              | SPK value             | SPK Ref Val | %REC | LowLimit HighLim                  | it RPD Ref Val             | %RPD RPDLimit Qual                            | Qual |
| SampType:         LCS         TestCode:         TSS         Units:         mg/L         Prep Date:         4/30/2008         Run           Batch ID:         R23392         TestNo:         E160.2         Analysis Date:         4/30/2008         Seq           Result         POL:         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val           75.50         4.00         66.5         0         114         80         120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | QN                                        | 4.00             |                       |             |      |                                   |                            |                                               |      |
| PQL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val           4.00         66.5         0         114         80         120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                            | SampType: LCS<br>Batch ID: R23392         | TestCoc<br>TestN | le: TSS<br>lo: E160.2 | Units: mg/L |      | Prep Date:<br>\nalysis Date: 4/30 | 2008                       | RunNo: 23392<br>SeqNo: 229439                 |      |
| 4.00 66.5 0 114 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              | Result                                    | POL              | SPK value             | SPK Ref Val | %REC | LowLimit HighLim                  | it RPD Ref Val             | %RPD RPDLimit Qual                            | Qual |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              | 75.50                                     | 4.00             | 999                   | 0           | 114  |                                   | ·                          |                                               |      |

| BRL | Below Reporting Limit                      | Ш | Value above quantitation range      |
|-----|--------------------------------------------|---|-------------------------------------|
| · · | Analyte detected below quantitation limits | Ŕ | Not Detected at the Reporting Limit |
| נעז | Spike Recovery outside recovery limits     |   |                                     |

Spike Recovery outside recovery limits

BRL Below Reporting Limit

Qualifiers:

жж

Holding times for preparation or analysis exceeded RPD outside recovery limits

Page 25 of 26

|    | ~          |
|----|------------|
|    | Ö          |
|    | <u>+</u>   |
| į  | ~          |
| i  | ≥          |
|    | $\leq$     |
|    |            |
|    | 5          |
| 7  | <b>7</b> 2 |
| (  | Ξ          |
| •  | 7          |
|    |            |
|    |            |
| į  |            |
| j. |            |
|    |            |
|    |            |

TestCode: VPH W2

| ay,Spofford & Thorndike |             |           |
|-------------------------|-------------|-----------|
| 114                     | 0804418     | MWRA 6905 |
| CLIENT:                 | Work Order: | Project:  |

| Sample ID: MBLK                       | SampType: MBLK                             | E: MBLK          | TestCod | TestCode: VPH_W2 | Units: µg/L                         |         | Prep Date:     |                               | RunNo: 23429                                       | 29             |               |
|---------------------------------------|--------------------------------------------|------------------|---------|------------------|-------------------------------------|---------|----------------|-------------------------------|----------------------------------------------------|----------------|---------------|
| Client ID: ZZZZZ                      | Batch ID                                   | Batch ID: R23429 | TestN   | TestNo: VPH      |                                     |         | Analysis Date: | 5/1/2008                      | SeqNo: 229999                                      | 666            |               |
| Analyte                               |                                            | Result           | Pal     | SPK value        | SPK Ref Val                         | %REC    | LowLimit H     | HighLimit RPD Ref Val         | %RPD                                               | RPDLimit       | Quai          |
| C9-C10 Aromatic Hydrocarbons          | arbons                                     | QN               | 75.0    |                  |                                     |         |                |                               |                                                    |                |               |
| Unadjusted C5-C8 Aliphatic Hydrocarbo | atic Hydrocarbo                            | Q                | 75.0    |                  |                                     |         |                |                               |                                                    |                |               |
| Unadjusted C9-C12 Aliphatic Hydrocarb | natic Hydrocarb                            | ND               | 75.0    |                  |                                     |         |                |                               |                                                    |                |               |
| Methyl Tert-Butyl Ether               |                                            | ON               | 5.00    |                  |                                     | -       |                |                               |                                                    |                |               |
| Benzene                               |                                            | S                | 5.00    |                  |                                     |         |                |                               |                                                    |                |               |
| Toluene                               |                                            | 2                | 5.00    |                  |                                     |         |                |                               |                                                    |                |               |
| Ethylbenzene                          |                                            | 2                | 5.00    |                  |                                     |         |                |                               |                                                    |                |               |
| m,p-Xylene                            |                                            | Q.               | 5.00    |                  |                                     |         |                |                               |                                                    |                |               |
| o-Xylene                              |                                            | ,<br>QN          | 5.00    |                  |                                     |         |                |                               |                                                    |                |               |
| Naphthalene                           |                                            | Q.               | 20.0    |                  |                                     |         |                |                               |                                                    |                |               |
| Adjusted C5-C8 Aliphatic Hydrocarbons | : Hydrocarbons                             | Q                | 75.0    |                  |                                     |         |                |                               |                                                    |                |               |
| Adjusted C9-C12 Aliphatic Hydrocarbon | ic Hydrocarbon                             | ΩN               | 75.0    |                  |                                     |         |                |                               |                                                    |                |               |
| Surr; 2,5-Dibromotoluene FID          | ne FID                                     | 72.39            | 0       | 100              | 0                                   | 72.4    | 70             | 130                           |                                                    |                |               |
| Surr; 2,5-Dibromotoluene PID          | ine PID                                    | 73.18            | 0       | 100              | 0                                   | 73.2    | 70             | 130                           |                                                    |                |               |
| Sample ID: LCS                        | SampType: LCS                              | S: FCS           | TestCod | TestCode: VPH_W2 | Units: µg/L                         |         | Prep Date:     |                               | RunNo: 23429                                       | 29             |               |
| Client ID: ZZZZZ                      | Batch ID                                   | Batch ID: R23429 | TestN   | TestNo: VPH      |                                     |         | Analysis Date: | 5/1/2008                      | SeqNo: 229997                                      | 266            |               |
| Analyte                               |                                            | Result           | Pal     | SPK value        | SPK Ref Val                         | %REC    | LowLimit H     | HighLimit RPD Ref Val         | %RPD                                               | RPDLimit       | Qual          |
| C9-C10 Aromatic Hydrocarbons          | arbons                                     | 82.90            | 75.0    | 100              | 3,664                               | 79.2    | 70             | 130                           |                                                    |                |               |
| Unadjusted C5-C8 Aliphatic Hydrocarbo | itic Hydrocarbo                            | 614.9            | 75.0    | 009              | 54.1                                | 93.5    | 70             | 130                           |                                                    |                |               |
| Unadjusted C9-C12 Aliphatic Hydrocarb | natic Hydrocarb                            | 483.2            | 75.0    | 009              | 11.39                               | 78.6    | 70             | 130                           |                                                    |                |               |
| Methyl Tert-Butyl Ether               |                                            | 126.0            | 5.00    | 100              | 0                                   | 126     | 70             | 130                           |                                                    |                |               |
| Benzene                               |                                            | 81.28            | 5.00    | 100              | 0                                   | 81.3    | 7.0            | 130                           |                                                    |                |               |
| Toluene                               |                                            | 87.85            | 5,00    | 100              | 0                                   | 87.8    | 20             | 130                           |                                                    |                |               |
| Ethylbenzene                          |                                            | 91.06            | 5.00    | 100              | 0                                   | 91.1    | 70             | 130                           |                                                    |                |               |
| m,p-Xylene                            |                                            | 198,4            | 5.00    | 200              | 0                                   | 99.2    | 70             | 130                           |                                                    |                |               |
| o-Xylene                              |                                            | 88.76            | 5.00    | 100              | 0                                   | 88.8    | 70             | 130                           |                                                    |                |               |
| Naphthalene                           |                                            | 81,86            | 20.0    | 100              | 0                                   | 81.9    | 0,             | 130                           |                                                    |                |               |
| Surr; 2,5-Dibromotoluene FID          | ine FID                                    | 86.10            | 0       | 100              | 0                                   | 86.1    | 20             | 130                           |                                                    |                |               |
| Qualifiers: BRL Belo                  | Below Reporting Linit                      |                  |         | E Value          | Value above quantitation range      | ıge     |                | H Holding times for           | Holding times for preparation or analysis exceeded | alysis exceede | P             |
| J Anal                                | Analyte detected below quantitation limits | mtitation limits |         | ND Not De        | Not Detected at the Reporting Limit | g Limit |                | R RPD outside recovery limits | very limits                                        |                |               |
| S Spik                                | Spike Recovery outside recovery limits     | overy limits     |         |                  |                                     |         |                |                               |                                                    | Paer           | Page 25 of 26 |
|                                       |                                            |                  |         |                  |                                     |         |                |                               |                                                    | 727            | こうこういい        |

Page 26 of 26

ANALYTICAL QC SUMMARY REPORT

Fay, Spofford & Thorndike

0804418 MWRA 6905

CLIENT: Work Order:

Project:

TestCode: VPH\_W2

| Sample ID: LCS               | SampType: LCS    | TestCod | TestCode: VPH_W2 | Units: µg/L           |        | Prep Date:              | 'nì        |                                        | RunNo: 23429  | 129                |      |
|------------------------------|------------------|---------|------------------|-----------------------|--------|-------------------------|------------|----------------------------------------|---------------|--------------------|------|
| Client ID: ZZZZZ             | Batch (D: R23429 | TestN   | TestNo: VPH      |                       | *      | Analysis Date: 5/1/2008 | e: 5/1/200 |                                        | SeqNo: 229997 | 766                |      |
| Analyte                      | Result           | PaL     | SPK value        | SPK value SPK Ref Val | %REC   | LowLimit                | HighLimit  | %REC LowLimit HighLimit RPD Ref Vai    | %RPD          | %RPD RPDLimit Qual | Qual |
| Surr: 2,5-Dibromotolvene PID | 71.16            | 0       | 100              | 0                     | . 71.2 | 70                      | 130        | ###################################### |               |                    |      |

|                                              |                                        | THE PARTY OF THE P |
|----------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BRL Below Reporting Limit                    | E Value above quantitation range       | H Holding times for preparation or analysis exceeded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| J Analyte detected below quantitation limits | ND Not Detected at the Reporting Limit | R RPD outside recovery limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| S Spike Recovery outside recovery limits     |                                        | Dawn JK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

CHAIN OF CUSTODY RECORD GeoLabs, Inc. Environmental Laboratories 45 Johnson Lane, Braintree, MA D2184 p 781.848.7844 • f 781.848.7811 www.geolabs.com GeoLabs, Inc.

Sample Handling: circle choice Preservation Filtration

Not Needed Lab to do Lab to do Y/N

かららなる

1 85H BC つかけるとして Special Instructions のいかしない ひいろ けて Ĉ IT III

٥Ę

Page

CT RCP (Reasonable Confidence Protocols) State / Fed Program - Criteria Requirements: circle choice (s)

MCP Methods

GW-1

Fax

Turnaround: circle one

3-day

1-day 2-day いい

Address:

Client:

Contact:

Data Delivery: circle choice (s)

入むなしてもにら

≯ ⊘ 11 4 そのひょ しょ アクライ 5 UM-046 アトロア invoice to \*:\_ Project PO: Project. Other S-1 OC PDF Phone: email: Zax: Format: いだろう ちいけいととしている  $\Box$ 5 / 7-days トロロナ

J 45 16 ᅀᄑ 0 = 0ther **TEMPERATURE** 5,5 B = Bag P = Plastic V = Voa CH JOUN Analysis Requested छद **`**24 A = Amber G = Glass S = Summa Containers: えいいろんつ 401 7 = Other 40d 783 4 0170 5 = NaOH7 110 Ja / Preserative: Geolabs SAMPLE NUMBER 00 3 = H2S04Preservatives 2 = HN031= 15 ധാനം <7 സ Received on ice 우리돌토 3 CONTAINER 3 <u>C</u> A = Air 4 SAMPLE LOCATION / ID S = Soil N DW = Drinking Water 0 ra >-٦ COLLECTION <u>ි</u> GW = Ground Water --- ∑ u. **Matrix Codes:** 1715 5 < F W

CT (PH-0148) NY(11796) \* Terms. Payment due within 30 days unless other arrangements are made. Past due balances subject to interest and cellection cost. Note: Homeowners and Law Firms must bay when desping off samples. We accept cash, check and credit cards.

MA (MA - 015) PA (68-03417)

NH (2508) NJ (MA-009) RI (LA000252)

9

Date / Time

6 = ME0H

4 = Na2S203

Received by

4

Date / Time

0T = Other

0 = 0il

SL = Sludge

WW = Waste Water

Relinquished by

280265 J&P.C of CR.03/07/08

9.7

28108



# GW B3, B4, B19

Wednesday, May 14, 2008

Larry Durkin Fay, Spofford & Thorndike 5 Burlington Woods Burlington, MA 01803 GeoLabs, Inc. 45 Johnson Lane Braintree MA 02184 Tele: 781 848 7844 Fax: 781 848 7811

TEL: 781-221-1066 FAX: 781-221-1086

Project:

WM-046, 1.4 Exp

Location:

MWRA 6905

Order No.: 0804475

Dear Larry Durkin:

GeoLabs, Inc. received 3 sample(s) on 4/30/2008 for the analyses presented in the following report.

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative.

Analytical methods and results meet requirements of 310CMR 40.1056(J) as per MADEP Compendium of Analytical Methods (CAM).

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Jim Chen

Laboratory Director

Certifications:

CT (PH-0148) - MA (M-MA015) - NH (2508) - NJ (MA009) - NY (11796) - RI (LA000252)

Fay, Spofford & Thorndike

CLIENT: Project:

WM-046, 1.4 Exp

Lab Order:

0804475

CASE NARRATIVE

Date: 14-May-08

MADEP MCP Response Action Analytical Report Certification Form

Laboratory Name: GeoLabs, Inc.

Project # WM-046, 1.4 EXP

Project Location: MWRA 6905

MADEP RTN #:

This form provides certification for the following data set: 0804475 (001-003)

Sample Matrix: Groundwater

MCP SW-846 Methods Used: 8260B, VPH, 8270C, EPH, 8082, 8100M, 6010B, 245.1

An affirmative answer to questions A, B and C are required for "Presumptive Certainty" status

- A. Were all samples received by the laboratory in a condition consistent with that described on the Chain of custody documentation for the data set? YES
- B. Were all QA/QC procedures required for the specified method(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate standards or guidelines?
- C. Does the analytical data included in this report meet all the requirements for "Presumptive Certainty" as described in Section 2.0 of the MADEP documents CAM VII A "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"? YES
- D. VPH and EPH Methods only: Was the VPH or EPH Method conducted without significant modifications (see Section 11.3 of respective Methods)

A response to questions E and F are required for "Presumptive Certainty" status

- E. Were all QC performance standards and recommendations for the specified methods achieved? NO NO
- F. Were results for all analyte-list compounds/elements for the specified method(s) reported?

All NO answers need to be addressed in an attached Environmental Laboratory case narrative.

CLIENT:

Fay, Spofford & Thorndike

Project:

WM-046, 1.4 Exp

Lab Order:

0804475

CASE NARRATIVE

#### CASE NARRATIVE

Physical Condition of Samples

The project was received by the laboratory in satisfactory condition. The sample(s) were received undamaged, in appropriate containers with the correct preservation.

Project Documentation

The project was accompanied by satisfactory Chain of Custody documentation.

Analysis of Sample(s)

Selected metals on 6010B analyzed per client request.

The following analytical anomalies or non-conformances were noted by the laboratory during the processing of these samples:

8260 LCS percent recovery for 2-Chloroethyl Vinyl Ether is outside the recovery limits.

8270 Method Blank percent recovery for 2,4,6-Tribromophenol is outside the recovery limits.

8270 LCS percent recovery for 2,4,6-Tribromophenol is outside the recovery limits.

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.

Signature:

Jan Chan

Position: Lab Director

Printed Name: Jim Chen

Date: May 14, 2008

CLIENT:

Fay, Spofford & Thorndike

Project:

WM-046, 1.4 Exp

Lab Order:

0804475

CASE NARRATIVE

#### **EPH Methods**

Method for Ranges: MADEP EPH 04-1.1 Method for Target Analytes: 8270 GC/MS

Carbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range

C11-C22 Aromatic Hydrocarbons exclude concentrations of Target PAH Analytes

#### **CERTIFICATION:**

Were all QA/QC procedures REQUIRED by the EPH Method followed? YES

Were all performance/acceptance standards achieved? YES

Were any significant modifications made to the EPH method? NO

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

SIGNATURE:

Brown Chang

LAB DIRECTOR

PRINTED NAME: Jim Chen

DATE: May 14, 2008

CLIENT:

Fay, Spofford & Thorndike

Project:

WM-046, 1.4 Exp

Lab Order:

0804475

CASE NARRATIVE

#### VPH Methods

Method for Ranges: MADEP VPH 04-1.1

Method for Target Analytes: MADEP VPH 04-1.1

Carbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.

C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range. (MTBE, Benzene, Toluene)

C9-C12 Aliphatic Hydrocarbons exclude concentration of Target Analytes eluting in that range (Ethylbenzene, m&p-Xylenes, o-Xylene) AND concentration of C9-C10 Aromatic Hydrocarbons.

#### **CERTIFICATION**

Were all QA/QC procedures REQUIRED by the VPH Method followed? YES Were all QA/QC performance/acceptance standards achieved? YES Were any significant modifications made to the VPH method, as specified in Sec. 11.3? NO

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge, accurate and complete.

SIGNATURE:

Charge of the

POSITION: LAB DIRECTOR

PRINTED NAME: Jim Chen

DATE: May 14, 2008

Reported Date: 14-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0804475

Project:

WM-046, 1.4 Exp

Lab ID:

0804475-001

Client Sample ID: B3

Collection Date: 4/29/2008 10:30:00 PM

**Date Received:** 4/30/2008

Matrix: GROUNDWATER

| Analyses                         | Result     | Det. Limit | Qual Ur | nits     | DF | Date Analyzed       |
|----------------------------------|------------|------------|---------|----------|----|---------------------|
| TOTAL SUSPENDED SOLIDS - SM25    | 40-D       |            |         |          |    | Analyst: AMS        |
| Total Suspended Solids           | 90.0       | 4.00       | mg      | /L       | 1  | 5/1/2008            |
| TOTAL PETROLEUM HYDROCARBO       | NS - 8100M |            |         |          |    | Analyst: <b>RuP</b> |
| Total Petroleum Hydrocarbons     | 1.36       | 0.217      | mg      | /L       | 1  | 5/2/2008            |
| Surr: o-Terphenyl                | 69.0       | 40-140     | %F      | REC      | 1  | 5/2/2008            |
| POLYCHLORINATED BIPHENYLS - S    | W8082      |            |         |          |    | Analyst: <b>GP</b>  |
| Aroclor 1016/1242                | NÐ         | 0.326      | μg/     | ′L       | 1  | 5/1/2008            |
| Aroclor 1221                     | . ND       | 0.326      | µg/     | <b>L</b> | 1  | 5/1/2008            |
| Arocfor 1232                     | ND         | 0.326      | μg/     |          | 1  | 5/1/2008            |
| Aroclor 1248                     | ND         | 0.326      | μg/     | L        | 1  | 5/1/2008            |
| Aroclor 1254                     | ND         | 0.326      | μg/     | L.       | 1  | 5/1/2008            |
| Arocior 1260                     | ND         | 0.326      | μg/     | Ľ        | 1  | 5/1/2008            |
| Aroclor 1262                     | ND         | 0.326      | µg/     |          | 1  | 5/1/2008            |
| Araclar 1268                     | ND         | 0.326      | µg/     |          | 1  | 5/1/2008            |
| Surr: Decachlorobiphenyl Sig 1   | 68.0       | 30-150     | %F      | REC      | 1  | 5/1/2008            |
| Surr: Decachlorobiphenyl Sig 2   | 74.0       | 30-150     | %F      | REC      | 1  | 5/1/2008            |
| Surr: Tetrachloro-m-Xylene Sig 1 | 80.0       | 30-150     | %R      | REC      | 1  | 5/1/2008            |
| Surr: Tetrachloro-m-Xylene Sig 2 | 92.0       | 30-150     | %R      | REC      | 1  | 5/1/2008            |
| TOTAL METALS BY GFAA - E200,9    |            |            |         |          |    | Analyst: <b>QS</b>  |
| Antimony                         | ND         | 0.00100    | mg      | /L       | 1  | 5/1/2008            |
| Arsenic                          | 0.00827    | 0.00100    | mg.     |          | 1  | 5/1/2008            |
| TOTAL METALS BY ICP - SW6010B    |            |            |         |          |    | Analyst: <b>QS</b>  |
| Barium                           | ďИ         | 2.00       | mg.     | /L       | 1  | 5/1/2008            |
| Cadmium                          | ND         | 0.00400    | mg.     |          | 1  | 5/1/2008            |
| Chromium                         | ND         | 0.100      | mg.     |          | 1  | 5/1/2008            |
| Copper                           | ND         | 0,0400     | mg,     |          | 1  | 5/1/2008            |
| Iron                             | 6.97       | 0.0600     | .mg/    |          | 1  | 5/1/2008            |
| Lead                             | ND         | 0.0100     | mg/     |          | 1  | 5/1/2008            |
| Nickel                           | ND         | 0.100      | mg,     |          | 1  | 5/1/2008            |
| Selenium                         | ND         | 0.0500     | mg,     |          | 1  | 5/1/2008            |
| TOTAL SILVER - E200.7            |            |            |         |          |    | Analyst: QS         |
| Silver                           | ND         | 0.00700    | mg      | л        | 1  | 5/1/2008            |

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 14-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0804475

Project:

WM-046, 1.4 Exp

Lab ID:

0804475-001

Client Sample ID: B3

Collection Date: 4/29/2008 10:30:00 PM

Date Received: 4/30/2008

Matrix: GROUNDWATER

| Analyses                        | Result     | Det. Limit | Qual U | nits     | DF | Date Analyzed       |
|---------------------------------|------------|------------|--------|----------|----|---------------------|
| TOTAL MERCURY - E245.1          |            |            |        |          |    | Analyst: EC         |
| Mercury                         | ND         | 0.0005     | m      | g/L      | 1  | 5/5/2008            |
| SEMIVOLATILE ORGANICS - SW8270C | <u>.</u> % |            |        |          |    | Analyst: <b>ZYZ</b> |
| 1,2,4-Trichlorobenzene          | ND         | 1.06       | μg     | g/L      | 1  | 5/2/2008 6:18:00 AM |
| 1,2-Dichlorobenzene             | ND         | 1.06       | μg     | g/L      | 1  | 5/2/2008 6:18:00 AM |
| 1,2-Dinitrobenzene              | ND         | 1.06       | μ      | g/L      | 1  | 5/2/2008 6:18:00 AM |
| 1,3-Dichlorobenzene             | ND         | 1.06       | μ      | g/L      | 1  | 5/2/2008 6:18:00 AM |
| 1,3-Dinitrobenzene              | ND         | 1.06       | μç     | g/L      | 1  | 5/2/2008 6:18:00 AM |
| 1,4-Dichlorobenzene             | ND         | 1.06       | μ      | g/L      | 1  | 5/2/2008 6:18:00 AM |
| 1,4-Dinitrobenzene              | ND         | 1.06       | μί     | g/L      | 1  | 5/2/2008 6:18:00 AM |
| 2,3,4.6-Tetrachlorophenol       | ND         | 1.06       | μg     | g/L      | 1  | 5/2/2008 6:18:00 AM |
| 2,4,5-Trichlorophenol           | ND         | 1.06       | μg     | g/L      | 1  | 5/2/2008 6:18:00 AM |
| 2,4,6-Trichlorophenal           | ND         | 1.06       |        | -<br>g/L | 1  | 5/2/2008 6:16:00 AM |
| 2,4-Dichlorophenol              | ND         | 1.06       |        | g/L      | 1  | 5/2/2008 6:18:00 AM |
| 2,4-Dimethylphenol              | ND         | 1.06       |        | g/L      | 1  | 5/2/2008 6:18:00 AM |
| 2,4-Dinitrophenol               | ИD         | 5.29       |        | g/L      | 1  | 5/2/2008 6:18:00 AM |
| 2,4-Dinitrotoluene              | ND -       | 1.06       | μς     | g/L      | 1  | 5/2/2008 6:18:00 AM |
| 2,6-Dinitrotoluene              | ND         | 1.06       | μί     | g/L      | 1  | 5/2/2008 6:18:00 AM |
| 2-Chioronaphthalene             | ND         | 1.06       | μg     | g/L      | 1  | 5/2/2008 6:18:00 AM |
| 2-Chiorophenol                  | ND         | 1.06       | μg     | g/L      | 1  | 5/2/2008 6:18:00 AM |
| 2-Methylnaphthalene             | 5.60       | 1.06       | μç     | g/L      | 1  | 5/2/2008 6:18:00 AM |
| 2-Methylphenol                  | ND         | 1.06       | μ      | g/L      | 1  | 5/2/2008 6:18:00 AM |
| 2-Nitroaniline                  | ND.        | 1:06       | μg     | g/L      | 1  | 5/2/2008 6:18:00 AM |
| 2-Nitrophenol                   | ND         | 1.06       | μ      | g/L      | 1  | 5/2/2008 6:18:00 AM |
| 3,3'-Dichlorobenzidine          | ND         | 1.06       | hi     | g/L      | 1  | 5/2/2008 6:18:00 AM |
| 3-Methylphenol/4-Methylphenol   | ND         | 1.06       |        | g/L      | 1  | 5/2/2008 6:18:00 AM |
| 3-Nitroaniline                  | ND         | 1.06       | þí     | g/L      | 1  | 5/2/2008 6:18:00 AM |
| 4,6-Dinitro-2-Methylphenol      | ND         | 5.29       | μ      | g/L      | 1  | 5/2/2008 6:18:00 AM |
| 4-Bromophenyl Phenyl Ether      | ND         | 1.06       | րյ     | g/L      | 1  | 5/2/2008 6:18:00 AM |
| 4-Chloro-3-Methylphenol         | ND         | 1.06       | μg     | g/L      | 1  | 5/2/2008 6:18:00 AM |
| 4-Chloroaniline                 | ND         | 1.06       | μς     | g/L      | 1  | 5/2/2008 6:18:00 AM |
| 4-Chlorophenyl Phenyl Ether     | ND         | 1.06       | μς     | g/L      | 1  | 5/2/2008 6:18:00 AM |
| 4-Nitroaniline                  | ND         | 1.06       | μç     | g/L      | 1  | 5/2/2008 6:18:00 AM |
| 4-Nitrophenol                   | ND         | 1.06       | րց     | -<br>g/L | 1  | 5/2/2008 6:18:00 AM |
| Acenaphthene                    | ND         | 1.06       | μ      | g/L      | 1  | 5/2/2008 6:18:00 AM |
| Acenaphthylene                  | ND         | 1.06       |        | g/L      | 1  | 5/2/2008 6:18:00 AM |
| Acetophenone                    | ND         | 1.06       |        | -<br>g/L | 1  | 5/2/2008 6:18:00 AM |
| Anitine                         | ND         | 5.29       |        | g/L      | 1  | 5/2/2008 6:18:00 AM |
| Anthracene                      | ND         | 1.06       |        | g/L      | 1  | 5/2/2008 6:18:00 AM |
| Azobenzene                      | ND         | 5.29       |        | g/L      | 1  | 5/2/2008 6:18:00 AM |

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 14-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0804475

Project: WM-046, 1.4 Exp

Lab ID:

0804475-001

Client Sample ID: B3

Collection Date: 4/29/2008 10:30:00 PM

Date Received: 4/30/2008

Matrix: GROUNDWATER

| Analyses                        | Result          | Det. Limit    | Qual Units   | DF  | Date Analyzed       |
|---------------------------------|-----------------|---------------|--------------|-----|---------------------|
| SEMIVOLATILE ORGANICS - SW8270C |                 |               |              |     | Analyst: <b>ZY</b>  |
| Benz(a)Anthracene               | ND              | 0.106         | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| Benzidine                       | ND              | 5.29          | μg/Ĺ         | 1   | 5/2/2008 6:18:00 AM |
| Benzo(a)Pyrene                  | ND              | 0.106         | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| Benzo(b)Fluoranthene            | ND              | 0.529         | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| Benzo(g,h,i)Perylene            | ND              | 1.06          | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| Benzo(k)Fluoranthene            | ND              | 0.529         | μg/Ľ         | 1   | 5/2/2008 6:18:00 AM |
| Benzyl Alcohol                  | ND <sup>.</sup> | 1.06          | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| Bis(2-Chloroethoxy)Methane      | ND              | 1.06          | µg/L         | 1   | 5/2/2008 6:18:00 AM |
| Bis(2-Chloroethyl)Ether         | ND              | 1.06          | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| Bis(2-Chioroisopropyl)Ether     | ND              | 1.06          | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| Bis(2-Ethylhexyl)Phthalate      | 2.39            | 1.06          | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| Butyl Benzyl Phthalate          | ND              | 1.06          | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| Carbazole                       | ND              | 1.06          | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| Chrysene                        | ИD              | 1.06          | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| Dibenz(a,h)Anthracene           | ND              | 0.106         | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| Dibenzofuran                    | ND              | 1.06          | μg/L         | · 1 | 5/2/2008 6:18:00 AM |
| Diethyl Phthalate               | ND              | 1.06          | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| Dimethyl Phthalate              | ND              | 1.06          | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| Di-n-Butyl Phthalate            | ND              | 1.06          | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| Di-n-Octyl Phthalate            | ND              | 1.06          | μg/ <b>L</b> | 1   | 5/2/2008 6:18:00 AM |
| Fluoranthene                    | ND              | 1.06          | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| Fluorene                        | ND              | 1.06          | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| Hexachlorobenzene               | ND              | 0.106         | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| Hexachlorobutadiene             | ND              | 0.106         | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| Hexachlorocyclopentadiene       | ND              | 5.29          | μg/L         | 1   | 5/2/2008 8:18:00 AM |
| Hexachloroethane                | ND              | 1,06          | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| Indeno(1,2,3-cd)Pyrene          | ND              | 0.106         | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| Isophorone                      | ND              | 1.06          | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| Naphthalene                     | 4.15            | 1.06          | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| Nitrobenzene                    | ND              | 1.06          | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| N-Nitrosodimethylamine          | ND              | 5.29          | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| N-Nitrosodi-n-Propylamine       | ND              | 1.06          | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| N-Nitrosodiphenylamine          | ND              | 5. <b>2</b> 9 | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| Pentachlorophenol               | ND              | 1.06          | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| Phenanthrene                    | ND              | 1.06          | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| Phenol                          | ND              | 1.06          | μg/L         | 1   | 5/2/2008 6:18:00 AM |
| Pyrene                          | ND              | 1.06          | μg/L         | 1   | 5/2/2008 8:18:00 AM |
| Pyridine                        | ND              | 5.29          | µg/L         | 1   | 5/2/2008 6:18:00 AM |
| Surr: 2,4,6-Tribromophenol      | 98.6            | 15-110        | %REC         | 1   | 5/2/2008 6:18:00 AM |
| Surr: 2-Fluorobiphenyl          | 76.4            | 30-130        | %REC         | 1   | 5/2/2008 6:18:00 AM |

- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 14-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0804475

WM-046, 1.4 Exp

Project: Lab ID:

0804475-001

Client Sample ID: B3

Collection Date: 4/29/2008 10:30:00 PM

Date Received: 4/30/2008

Matrix: GROUNDWATER

| Analyses                       | Result       | Det. Limit | Qual Units | DF  | Date Analyzed        |
|--------------------------------|--------------|------------|------------|-----|----------------------|
| SEMIVOLATILE ORGANICS - SW82   | 70C          | ,          |            |     | Analyst: <b>ZY</b> 2 |
| Surr: 2-Fluorophenol           | 39.7         | 15-110     | %REC       | 1   | 5/2/2008 6:18:00 AM  |
| Surr: Nitrobenzene-d5          | 70.7         | 30-130     | %REC       | 1   | 5/2/2008 6:18:00 AM  |
| Surr: Phenol-d6                | 25.9         | 15-110     | %REC       | 1   | 5/2/2008 6:18:00 AM  |
| Surr: Terphenyl-d14            | 79.6         | 30-130     | %REC       | 1   | 5/2/2008 6:18:00 AM  |
| EPH TARGET ANALYTES - MADEP    | EPH          |            |            |     | Analyst: <b>ZY</b>   |
| Naphthalene .                  | 3.48         | 1.01       | μg/L       | 1   | 5/6/2008 12:42:00 PM |
| 2-Methylnaphthalene            | 5.8 <b>5</b> | 1.01       | μg/L       | 1   | 5/6/2008 12:42:00 PM |
| Acenaphthene                   | ND           | 1.01       | μg/L       | 1   | 5/6/2008 12:42:00 PM |
| Phenanthrene                   | ND           | 1.01       | μg/L       | 1   | 5/6/2008 12:42:00 PM |
| Acenaphthylene                 | ND           | 1.01       | μg/L       | 1   | 5/6/2008 12:42:00 PM |
| Fluorene                       | ND           | 1.01       | μg/L       | 1   | 5/6/2008 12:42:00 PM |
| Anthracene                     | ND           | 1.01       | μg/L       | 1   | 5/6/2008 12:42:00 PM |
| Fluoranthene                   | ND           | 1.01       | μg/L       | 1   | 5/6/2008 12:42:00 PM |
| Pyrene                         | ND           | 1,01       | μg/L       | 1   | 5/6/2008 12:42:00 PM |
| Benzo(a)Anthracene             | ND           | 0.404      | μg/L       | 1 . | 5/6/2008 12:42:00 PM |
| Chrysene                       | ND           | 1.01       | μg/L       | 1   | 5/6/2008 12:42:00 PM |
| Benzo(b)Fluoranthene           | ND           | 1.01       | μg/L       | 1   | 5/6/2008 12:42:00 PM |
| Benzo(k)Fluoranthene           | ND           | 1.01       | μg/L       | 1   | 5/6/2008 12:42:00 PM |
| Benzo(a)Pyrene                 | ND           | 0.202      | μg/L       | 1   | 5/6/2008 12:42:00 PM |
| Indeno(1,2,3-cd)Pyrene         | ND           | 0.404      | μg/L       | 1   | 5/6/2008 12:42:00 PM |
| Dibenz(a,h)Anthracene          | ND           | 0.404      | μg/L       | 1   | 5/6/2008 12:42:00 PM |
| Benzo(g,h,i)Perylene           | ND           | 1.01       | μg/L       | 1   | 5/6/2008 12:42:00 PM |
| Total PAH Target Concentration | 9.33         | 0          | μg/L       | 1   | 5/6/2008 12:42:00 PM |
| Surr: 2,2'-Difluorobiphenyl    | 89.6         | 40-140     | %REC       | 1   | 5/6/2008 12:42:00 PM |
| Surr: 2-Fluorobiphenyl         | 82.8         | 40-140     | %REC       | 1   | 5/6/2008 12:42:00 PM |
| OLATILE ORGANIC COMPOUNDS      | - SW8260B    |            |            |     | Analyst: <b>MR</b>   |
| 1,1,1,2-Tetrachloroethane      | ND           | 5.00       | μg/L       | 1   | 5/12/2008 3:38:00 PM |
| 1,1,1-Trichloroethane          | ND           | 5,00       | μg/L       | 1   | 5/12/2008 3:38:00 PM |
| 1,1,2,2-Tetrachloroethane      | ND           | 2.00       | μg/L       | 1   | 5/12/2008 3:38:00 PM |
| 1,1,2-Trichloroethane          | ND           | 5.00       | μg/L       | 1   | 5/12/2008 3:38:00 PM |
| 1,1-Dichloroethane             | ND           | 5,00       | μg/L       | 1   | 5/12/2008 3:38:00 PM |
| 1,1-Dichloroethene             | ND           | 5.00       | μg/L       | 1   | 5/12/2008 3:38:00 PM |
| 1,1-Dichloropropene            | ND           | 5.00       | μg/L       | 1   | 5/12/2008 3:38:00 PM |
| 1,2,3-Trichlorobenzene         | ND           | 5.00       | μg/L       | 1   | 5/12/2008 3:38:00 PM |
| 1,2,3-Trichloropropane         | ND           | 5.00       | μg/L       | 1   | 5/12/2008 3:38:00 PM |
| 1,2,4-Trichlorobenzene         | ND.          | 5.00       | μg/L       | 1   | 5/12/2008 3:38:00 PM |
| 1,2,4-Trimethylbenzene         | 13.9         | 5.00       | μg/L       | 1   | 5/12/2008 3:38:00 PM |

Qualifiers:

BRL Below Reporting Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reported Date: 14-May-08

CLIENT: Lab Order: Fay, Spofford & Thorndike

0804475

Project: Lab ID:

WM-046, 1.4 Exp

0804475-001

Client Sample ID: B3

Collection Date: 4/29/2008 10:30:00 PM

Date Received: 4/30/2008

Matrix: GROUNDWATER

| Analyses                    | Result      | Det. Limit | Qual Units   | DF  | Date Analyzed        |
|-----------------------------|-------------|------------|--------------|-----|----------------------|
| VOLATILE ORGANIC COMPOUND   | S - SW8260B |            |              |     | Analyst: MF          |
| 1,2-Dibromo-3-Chloropropane | ND          | 5.00       | μg/L         | . 1 | 5/12/2008 3:38:00 PM |
| 1,2-Dibromoethane           | ND          | 2.00       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| 1,2-Dichlorobenzene         | ND          | 5.00       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| 1,2-Dichloroethane          | ND          | 2.00       | μ <b>g/L</b> | 1   | 5/12/2008 3:38:00 PM |
| 1,2-Dichloropropane         | ND          | 2.00       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| 1,3,5-Trimethylbenzene      | ND          | 5.00       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| 1,3-Dichlorobenzene         | ND          | 5.00       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| 1,3-Dichloropropane         | ND          | 5.00       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| 1,4-Dichlorobenzene         | ND          | 5.00       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| 2,2-Dichloropropane         | ND          | 5.00       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| 2-Butanone                  | ND          | 10.0       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| 2-Chloroethyl Vinyl Ether   | ND          | 5.00       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| 2-Chlorotoluene             | ND          | 5.00       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| 2-Hexanone                  | ND          | 10.0       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| 4-Chlorotoluene             | ND          | 5.00       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| 4-isopropyitoluene          | ND          | 5.00       | µg/L         | 1   | 5/12/2008 3:38:00 PM |
| 4-Methyl-2-Pentanone        | ND          | 5.00       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| Acetone                     | ND          | 50.0       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| Acrolein                    | ND          | 50.0       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| Acrylonitrile               | ND          | 50.0       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| Benzene                     | 12.7        | 5.00       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| Bromobenzene                | ND          | 5.00       | μg/L         | . 1 | 5/12/2008 3:38:00 PM |
| Bromochloromethane          | ND          | 2.00       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| Bromodichloromethane        | ND          | 2.00       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| Bromoform                   | ND          | 2.00       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| Bromomethane                | ND          | 2.00       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| Carbon Disuffide            | ND          | 5.00       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| Carbon Tetrachloride        | ND          | 2.00       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| Chlorobenzene               | ND          | 5.00       | μg/L         | 4   | 5/12/2008 3:38:00 PM |
| Chloroethane                | ND          | 5.00       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| Chloroform                  | ИD          | 5.00       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| Chloromethane               | ND          | 5.00       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| cis-1,2-Dichloroethene      | ND          | 5.00       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| cis-1,3-Dichloropropene     | ND          | 0.500      | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| Dibromochloromethane        | ND          | 2.00       | µg/L         | 1   | 5/12/2008 3:38:00 PM |
| Dibromomethane              | ND          | 5.00       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| Dichlorodifluoromethane     | ND          | 5.00       | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| Ethylbenzene                | 49.4        | 5.00       | µg/L         | 1   | 5/12/2008 3:38:00 PM |
| Hexachlorobutadiene         | ND          | 0.500      | μg/L         | 1   | 5/12/2008 3:38:00 PM |
| isopropylbenzene            | 14.7        | 5.00       | μg/L         | 4   | 5/12/2008 3:38:00 PM |

- В Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit

Reported Date: 14-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0804475

Project:

WM-046, 1.4 Exp

Lab ID:

0804475-001

Client Sample ID: B3

Collection Date: 4/29/2008 10:30:00 PM

Date Received: 4/30/2008

Matrix: GROUNDWATER

| Analyses                                    | Result    | Det. Limit | Qual Units                | DF  | Date Analyzed        |
|---------------------------------------------|-----------|------------|---------------------------|-----|----------------------|
| VOLATILE ORGANIC COMPOUNDS                  | - SW8260B |            |                           |     | Analyst: MR          |
| Methyl Tert-Butyl Ether                     | ND        | 5.00       | μ <del>g</del> / <b>L</b> | 1   | 5/12/2008 3:38:00 PM |
| Methylene Chloride                          | ND        | 5.00       | μg/L                      | 1   | 5/12/2008 3:38:00 PM |
| Naphthalene                                 | ND        | 20.0       | μg/L                      | 1   | 5/12/2008 3:38:00 PM |
| n-Butylbenzene                              | ND        | 5.00       | μg/L                      | 1.  | 5/12/2008 3:38:00 PM |
| n-Propyłbenzene                             | 23.4      | 5.00       | µg/L                      | 1   | 5/12/2008 3:38:00 PM |
| sec-Butylbenzene                            | ND        | 5.00       | μg/L                      | 1   | 5/12/2008 3:38:00 PM |
| Styrene                                     | ND        | 5.00       | μg/L                      | 1   | 5/12/2008 3:38:00 PM |
| tert-Butylbenzene                           | ND        | 5.00       | μg/L                      | 1   | 5/12/2008 3:38:00 PM |
| Tetrachloroethene                           | ND        | 5.00       | μg/L                      | 1   | 5/12/2008 3:38:00 PM |
| Toluene                                     | ND        | 5.00       | μg/L                      | 1   | 5/12/2008 3:38:00 PM |
| trans-1,2-Dichloroethene                    | ND        | 5.00       | μg/L                      | 1   | 5/12/2008 3:38:00 PM |
| trans-1,3-Dichloropropene                   | ND        | 0.500      | μg/L                      | 1   | 5/12/2008 3:38:00 PM |
| Trichloroethene                             | ND        | 5.00       | μg/L                      | 1   | 5/12/2008 3:38:00 PM |
| Trichlorofluoromethane                      | ND        | 5.00       | μg/L                      | 1 . | 5/12/2008 3:38:00 PM |
| Vinyl Chloride                              | ND        | 2.00       | pg/L                      | 1   | 5/12/2008 3:38:00 PM |
| Xylenes, Total                              | 8.83      | 5.00       | µg/L                      | 1   | 5/12/2008 3:38:00 PM |
| Surr: 1,2-Dichloroethane-d4                 | 89.6      | 70-130     | %REC                      | 1   | 5/12/2008 3:38:00 PM |
| Surr: 4-Bromofluorobenzene                  | 85.0      | 70-130     | %REC                      | 1   | 5/12/2008 3:38:00 PM |
| Surr: Dibromofluoromethane                  | 107       | 70-130     | %REC                      | 1   | 5/12/2008 3:38:00 PM |
| Surr: Toluene-d8                            | 96.8      | 70-130     | %REC                      | 1   | 5/12/2008 3:38:00 PM |
| /PH - MADEP VPH                             |           |            |                           | •   | Analyst: MR          |
| C9-C10 Aromatic Hydrocarbons                | ND        | 75.0       | μg/L                      | 1   | 5/1/2008             |
| Unadjusted C5-C8 Aliphatic<br>Hydrocarbons  | 108       | 75.0       | μg/L                      | 1   | 5/1/2008             |
| Unadjusted C9-C12 Aliphatic<br>Hydrocarbons | 130       | 75.0       | μg/L                      | 1   | 5/1/2008             |
| Methyi Tert-Butyl Ether                     | ND        | 5.00       | μg/L                      | 1   | 5/1/2008             |
| Benzene                                     | 9.00      | 5.00       | μg/L                      | 1   | 5/1/2008             |
| Toluene                                     | ND        | 5.00       | μg/L                      | 1   | 5/1/2008             |
| Ethylbenzene                                | 42.1      | 5.00       | μg/L                      | 1   | 5/1/2008             |
| m,p-Xylene                                  | 6.56      | 5.00       | μg/L                      | 1   | 5/1/2008             |
| o-Xylene                                    | ND        | 5.00       | µg/L                      | 1   | 5/1/2008             |
| Naphthalene                                 | ND        | 20.0       | μg/L                      | 1   | 5/1/2008             |
| Adjusted C5-C8 Aliphatic<br>Hydrocarbons    | 99.0      | 75.0       | h@\r                      | 1   | 5/1/2008             |
| Adjusted C9-C12 Aliphatic<br>Hydrocarbons   | 81.2      | 75.0       | hã\ŗ                      | 1.  | 5/1/2008             |
| Surr: 2,5-Dibromotoluene FID                | 79.5      | 70-130     | %REC                      | 1   | 5/1/2008             |
| Surr: 2,5-Dibromotoluene PiD                | 70.8      | 70-130     | %REC                      | 1   | 5/1/2008             |

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 14-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0804475

Project:

WM-046, 1.4 Exp

Lab ID:

0804475-001

Client Sample ID: B3

Collection Date: 4/29/2008 10:30:00 PM

Date Received: 4/30/2008

Matrix: GROUNDWATER

| Analyses                                                    | Result  | Det. Limit | Qual | Units | DF  | Date Analyzed                    |
|-------------------------------------------------------------|---------|------------|------|-------|-----|----------------------------------|
| CYANIDE, TOTAL - SM4500-CN-C,E<br>Cyanide, Total            | П       | 0.0197     |      | mg/L  | 1   | Analyst: <b>WFR</b><br>5/12/2008 |
| HEXAVALENT CHROMIUM - SM3500-CR-E<br>Chromium, Hexavalent   | )<br>ND | 0.0500     |      | mg/L  | 1   | Analyst: <b>RP</b><br>5/1/2008   |
| TOTAL RESIDUAL CHLORINE - HACH 816  Total Residual Chlorine | 7<br>ND | 0.162      |      | mg/L  | . 1 | Analyst: <b>RP</b><br>4/30/2008  |

J Analyte detected below quantitation limits

S Spike Recovery outside recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reported Date: 14-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0804475

Project: Lab ID: WM-046, 1.4 Exp 0804475-002 Client Sample ID: B4

Collection Date: 4/30/2008 12:00:00 PM

Date Received: 4/30/2008

Matrix: GROUNDWATER

|                                  | •       |            |            | Wathx: GROUNDWATER |                    |  |  |
|----------------------------------|---------|------------|------------|--------------------|--------------------|--|--|
| Analyses                         | Result  | Det. Limit | Qual Units | DF                 | Date Analyzed      |  |  |
| TOTAL SUSPENDED SOLIDS - SM2540- | ·D      |            |            |                    | Analyst: AMS       |  |  |
| Total Suspended Solids           | ND      | 4.00       | mg/L       | 1                  | 5/1/2008           |  |  |
| TOTAL PETROLEUM HYDROCARBONS     | - 8100M |            |            |                    | Analyst: RuP       |  |  |
| Total Petroleum Hydrocarbons     | 0.287   | 0.217      | mg/L       | 1                  | 5/2/2008           |  |  |
| Surr: o-Terphenyl                | 74.0    | 40-140     | %REC       | · 1                | 5/2/2008           |  |  |
| POLYCHLORINATED BIPHENYLS - SWI  | B082    |            |            | •                  | Analyst: <b>GP</b> |  |  |
| Aroclor 1016/1242                | ND      | 0.309      | μg/L       | 1                  | 5/1/2008           |  |  |
| Aroclor 1221                     | ND      | 0.309      | μg/L       | 1                  | 5/1/2008           |  |  |
| Aroclor 1232                     | ND      | 0.309      | μg/L       | 1                  | 5/1/2008           |  |  |
| Aroclor 1248                     | ND      | 0.309      | μg/L       | 1                  | 5/1/2008           |  |  |
| Arocior 1254                     | ND      | 0.309      | μg/L       | 1                  | 5/1/2008           |  |  |
| Aroclor 1260                     | ND      | 0.309      | μg/L       | 1                  | 5/1/2008           |  |  |
| Aroclor 1262                     | ND      | 0.309      | μg/L       | 1                  | 5/1/2008           |  |  |
| Aroclor 1268                     | ND      | . 0.309    | μg/L       | 1                  | 5/1/2008           |  |  |
| Surr: Decachlorobiphenyl Sig 1   | 98.0    | 30-150     | %REC       | 1                  | 5/1/2008           |  |  |
| Surr: Decachlorobiphenyl Sig 2   | 104     | 30-150     | %REC       | 1 .                | 5/1/2008           |  |  |
| Surr: Tetrachioro-m-Xylene Sig 1 | 72.0    | 30-150     | %REC       | 1                  | 5/1/2008           |  |  |
| Surr: Tetrachioro-m-Xylene Sig 2 | 0.08    | 30-150     | %REC       | 1                  | 5/1/2008           |  |  |
| TOTAL METALS BY GFAA - E200.9    |         |            |            |                    | Analyst: <b>QS</b> |  |  |
| Antimony                         | ND      | 0.00100    | mg/L       | 1                  | 5/1/2008           |  |  |
| Arsenic                          | ND      | 0.00100    | mg/L       | 1 .                | 5/1/2008           |  |  |
| TOTAL METALS BY ICP - SW6010B    |         |            |            |                    | Analyst: <b>QS</b> |  |  |
| Barium                           | ND      | 2.00       | mg/L       | 1                  | 5/1/2008           |  |  |
| Cadmium .                        | ND      | 0.00400    | mg/L       | 1                  | 5/1/2008           |  |  |
| Chromium                         | ND      | 0.100      | mg/L       | 1                  | 5/1/2008           |  |  |
| Copper                           | ND      | 0.0400     | mg/L       | 1                  | 5/1/2008           |  |  |
| Iron                             | 6.56    | 0.0600     | mg/L       | 1                  | 5/1/2008           |  |  |
| Lead                             | 0.0110  | 0.0100     | mg/L       | 1                  | 5/1/2008           |  |  |
| Nickel                           | ND      | 0,100      | mg/L       | 1 .                | 5/1/2008           |  |  |
| Selenium                         | ND      | 0.0500     | mg/L       | 1                  | 5/1/2008           |  |  |
| TOTAL SILVER - E200.7            |         |            |            |                    | Analyst: <b>QS</b> |  |  |
| Silver                           | ND      | 0.00700    | mg/L       | 1                  | 5/1/2008           |  |  |

| Qua | lif | ier | S |
|-----|-----|-----|---|
|-----|-----|-----|---|

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 14-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0804475

Project:

WM-046, 1.4 Exp

Lab ID:

0804475-002

Client Sample ID: B4

Collection Date: 4/30/2008 12:00:00 PM

Date Received: 4/30/2008

Matrix: GROUNDWATER

| Analyses                        | Result | Det. Limit | Qual | Units        | DF  | Date Analyzed       |
|---------------------------------|--------|------------|------|--------------|-----|---------------------|
| TOTAL MERCURY - E245.1          |        |            |      |              |     | Analyst: EC         |
| Mercury                         | ND     | 0.0005     |      | mg/L         | 1   | 5/5/2008            |
| SEMIVOLATILE ORGANICS - SW8270C |        |            |      |              |     | Analyst: <b>ZYZ</b> |
| 1,2,4-Trichlorobenzene          | ND     | 1.01       |      | μg/L         | 1   | 5/2/2008 6:51:00 AM |
| 1,2-Dichlorobenzene             | ND     | 1.01       |      | μg/L         | 1   | 5/2/2008 6:51:00 AM |
| 1,2-Dinitrobenzene              | ND     | 1.01       |      | μg/L         | 1   | 5/2/2008 6:51:00 AM |
| 1,3-Dichlorobenzene             | ND     | 1.01       |      | µg/L         | 1   | 5/2/2008 6:51:00 AM |
| 1,3-Dinitrobenzene              | ND     | 1.01       |      | μg/L         | 1   | 5/2/2008 6:51:00 AM |
| 1,4-Dichlorobenzene             | ND     | 1.01       |      | µg/L         | 1   | 5/2/2008 6:51:00 AM |
| 1,4-Dinitrobenzene              | ND     | 1.01       |      | μg/L         | . 1 | 5/2/2008 6:51:00 AM |
| 2,3,4,6-Tetrachiorophenol       | ND     | 1.01       |      | μg/L         | 1   | 5/2/2008 6:51:00 AM |
| 2,4,5-Trichlorophenol           | ND     | 1.01       |      | μg/L         | 1   | 5/2/2008 6:51:00 AM |
| 2,4,6-Trichlorophenol           | ND     | 1.01       |      | µg/L         | 1   | 5/2/2008 6:51:00 AM |
| 2,4-Dichlorophenol              | ND     | 1.01       |      | μg/L         | 1   | 5/2/2008 6:51:00 AM |
| 2,4-Dimethylphenol              | ND     | 1.01       |      | μg/L         | 1   | 5/2/2008 6:51:00 AM |
| 2,4-Dinitrophenol               | ND     | 5.03       |      | µg/L         | 1   | 5/2/2008 6:51:00 AM |
| 2,4-Dinitrotoluene              | ND     | 1.01       | ,    | µg/L         | 1   | 5/2/2008 6:51:00 AM |
| 2,6-Dinitrotoluene              | ND     | 1.01       |      | µg/L         | 1   | 5/2/2008 6:51;00 AM |
| 2-Chloronaphthalene             | ND     | 1.01       |      | µg/L         | 1   | 5/2/2008 6:51:00 AM |
| 2-Chlorophenol                  | ND     | 1.01       |      | μg/L         | 1   | 5/2/2008 6:51:00 AM |
| 2-Methylnaphthalene             | ND     | 1.01       | ĺ    | μg/L         | 1   | 5/2/2008 6:51:00 AM |
| 2-Methylphenol                  | , ND   | 1.01       |      | μg/L         | 1   | 5/2/2008 6:51:00 AM |
| 2-Nitroaniline                  | ND     | 1.01       |      | μg/L         | 1   | 5/2/2008 6:51:00 AM |
| 2-Nitrophenol                   | ND     | 1.01       | j    | μg/L         | 1   | 5/2/2008 6:51:00 AM |
| 3,3'-Dichlorobenzidine          | ND     | 1.01       |      | μg/L         | 1   | 5/2/2008 6:51:00 AM |
| 3-Methylphenol/4-Methylphenol   | ND     | 1.01       | J    | μg/L         | 1   | 5/2/2008 6:51:00 AM |
| 3-Nitroaniline                  | ND     | 1.01       |      | μg/L         | 1   | 5/2/2008 6:51:00 AM |
| 4,6-Dinitro-2-Methylphenol      | ND     | 5.03       | İ    | μg/L         | 1   | 5/2/2008 6:51:00 AM |
| 4-Bromophenyl Phenyl Ether      | ND     | 1.01       | i    | μg/L         | 1   | 5/2/2008 6:51:00 AM |
| 4-Chloro-3-Methylphenol         | ND     | 1.01       |      | μg/L         | 1   | 5/2/2008 6:51:00 AM |
| 4-Chloroaniline                 | ND     | 1.01       |      | μg/L         | 1   | 5/2/2008 6:51:00 AM |
| 4-Chlorophenyl Pheпyl Ether     | ND     | 1.01       |      | μg/L         | 1   | 5/2/2008 6:51:00 AM |
| 4-Nitroaniline                  | ND     | 1.01       |      | μg/L         | 1   | 5/2/2008 6:51:00 AM |
| 4-Nitrophenol                   | ND     | 1.01       |      | μg/L         | 1   | 5/2/2008 6:51:00 AM |
| Acenaphthene                    | ND     | 1.01       |      | μg/L         | 1   | 5/2/2008 6:51:00 AM |
| Acenaphthylene                  | ND     | 1.01       |      | μg/ <b>L</b> | 1   | 5/2/2008 6:51:00 AM |
| Acetophenone                    | ND     | 1.01       |      | μg/L         | 1   | 5/2/2008 6:51:00 AM |
| Aniline                         | ND     | 5.03       |      | μg/L         | 1   | 5/2/2008 6:51:00 AM |
| Anthracene                      | ND     | 1.01       |      | μg/L         | 1   | 5/2/2008 6:51:00 AM |
| Azobenzene                      | ND     | 5.03       |      | μg/L         | 1   | 5/2/2008 6:51:00 AM |

- Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- Analyte detected below quantitation limits Spike Recovery outside recovery limits
- BRL Below Reporting Limit
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 14-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0804475

WM-046, 1.4 Exp

Project: Lab ID:

0804475-002

Client Sample ID: B4

Collection Date: 4/30/2008 12:00:00 PM

Date Received: 4/30/2008

Matrix: GROUNDWATER

| Analyses                        | ResuIt | Det. Limit | Qual Units   | DF             | Date Analyzed       |
|---------------------------------|--------|------------|--------------|----------------|---------------------|
| SEMIVOLATILE ORGANICS - SW8270C |        |            |              |                | Analyst: <b>ZY</b>  |
| Benz(a)Anthracene               | ND     | 0.101      | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| Benzidine                       | ND     | 5.03       | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| Benzo(a)Pyrene                  | ND     | 0,101      | μg/ <b>L</b> | 1              | 5/2/2008 6:51:00 AM |
| Benzo(b)Fluoranthene            | ND     | 0.503      | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| Benzo(g,h,i)Perylene            | ND     | 1.01       | µg/L         | <sup>1</sup> 1 | 5/2/2008 6:51:00 AM |
| Benzo(k)Fluoranthene            | ND     | 0.503      | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| Benzyl Alcohol                  | ND     | 1.01       | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| Bis(2-Chloroethoxy)Methane      | ND     | 1.01       | µg/L         | 1              | 5/2/2008 6:51:00 AM |
| Bis(2-Chloroethyl)Ether         | ND     | 1.01       | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| Bis(2-Chloroisopropyl)Ether     | ND     | 1.01       | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| Bis(2-Ethylhexyl)Phthalate      | ND     | 1.01       | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| Butyl Benzyl Phthaiate          | ND     | 1.01       | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| Carbazole                       | ND     | 1.01       | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| Chrysene                        | ИD     | 1.01       | μg/L         | . 1            | 5/2/2008 6:51:00 AM |
| Dibenz(a,h)Anthracene           | ND     | 0.101      | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| Dibenzofuran                    | ND     | 1.01       | μg/L         | . 1            | 5/2/2008 6:51:00 AM |
| Diethyl Phthalate               | ND     | 1.01       | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| Dimethyl Phthalate              | ND     | 1.01       | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| Di-n-Butyl Phthalate            | ND     | 1.01       | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| Di-n-Octyl Phthalate            | ND     | 1.01       | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| Fluoranthene                    | ND     | 1.01       | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| Fluorene                        | ИD     | 1.01       | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| Hexachiorobenzene               | ND     | 0.101      | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| Hexachlorobutadiene             | ND     | 0.101      | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| Hexachlorocyclopentadiene       | ND     | 5.03       | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| Hexachloroethane                | ND     | 1.01       | μg/L         | 1              | 5/2/2008 6:51;00 AM |
| Indeno(1,2,3-cd)Pyrene          | ND     | 0.101      | μg/L         | . 1            | 5/2/2008 6:51:00 AM |
| Sophorone                       | ND     | 1.01       | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| Naphthalene                     | ND     | 1.01       | µg/L         | 1              | 5/2/2008 6:51:00 AM |
| Nitrobenzene                    | ND     | 1.01       | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| N-Nitrosodimethylamine          | ND     | 5.03       | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| N-Nitrosodi-n-Propylamine       | ND     | 1.01       | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| N-Nitrosodiphenylamine          | ND     | 5.03       | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| Pentachiorophenol               | ND     | 1.01       | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| Phenanthrene                    | ND     | 1.01       | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| Phenol                          | ND     | 1.01       | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| Pyrene                          | ND     | 1.01       | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| Pyridine                        | ND     | 5.03       | μg/L         | 1              | 5/2/2008 6:51:00 AM |
| Surr: 2,4.6-Tribromophenol      | 89.4   | 15-110     | %REC         | 1              | 5/2/2008 6:51:00 AM |
| Surr: 2-Fluorobiphenyl          | 72.0   | 30-130     | %REC         | 1              | 5/2/2008 6:51:00 AM |

Qualifiers:

BRL Below Reporting Limit

В Analyte detected in the associated Method Blank

E Value above quantitation range

Analyte detected below quantitation limits

Spike Recovery outside recovery limits

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reported Date: 14-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0804475

Client Sample ID: B4

Collection Date: 4/30/2008 12:00:00 PM

Project:

WM-046, 1.4 Exp

Date Received: 4/30/2008

Lab ID:

0804475-002

Matrix: GROUNDWATER

| Analyses                       | Result         | Det. Limit | Qual Units                               | DF    | Date Analyzed                              |
|--------------------------------|----------------|------------|------------------------------------------|-------|--------------------------------------------|
| SEMIVOLATILE ORGANICS - SW827  | WOM-1October 1 |            | Z 2212 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | F/ 1. |                                            |
| Surr: 2-Fluorophenol           | 44.1           | 15-110     | %REC                                     | 1     | Analyst: ZYZ                               |
| Surr: Nitrobenzene-d5          | 68.2           | 30-130     | %REC                                     | 1     | 5/2/2008 6:51:00 AM<br>5/2/2008 6:51:00 AM |
| Surr: Phenol-d6                | 27.0           | 15-110     | %REC                                     | 1     |                                            |
| Surr: Terphenyl-d14            | 95.0           | 30-130     | %REC                                     | 1     | 5/2/2008 6:51:00 AM<br>5/2/2008 6:51:00 AM |
|                                | 30.0           | 50-150     | MINEC                                    | ı     | 5/2/2006 6.5 1:00 AM                       |
| EPH TARGET ANALYTES - MADEP I  | =рн            |            |                                          |       | Analysts 7V3                               |
| Naphthalene                    | ND ND          | 1.04       | μg/L                                     | 1     | Analyst: <b>ZYZ</b><br>5/6/2008 1:16:00 PM |
| 2-Methylnaphthalene            | ND             | 1.04       | ug/L                                     | 1     | 5/6/2008 1:16:00 PM                        |
| Acenaphthene                   | ND             | 1.04       | μg/L                                     | 1     | 5/6/2008 1:16:00 PM                        |
| Phenanthrene                   | ND             | 1.04       | μg/L                                     | 1     | 5/6/2008 1:16:00 PM                        |
| Acenaphthylene                 | ND             | 1.04       | µg/L                                     | 1     | 5/6/2008 1:16:00 PM                        |
| Fluorene                       | ND             | 1.04       | µg/L                                     | 1     | 5/6/2008 1:16:00 PM                        |
| Anthracene                     | ND             | 1.04       | hg/L                                     | 1     | 5/6/2008 1:16:00 PM                        |
| Fluoranthene                   | ND             | 1.04       | μg/L                                     | 1     | 5/6/2008 1:16:00 PM                        |
| Pyrene                         | ND             | 1.04       | µg/L                                     | 1     | 5/6/2008 1:16:00 PM                        |
| Benzo(a)Anthracene             | ND             | 0.415      | µg/L                                     | 1     | 5/6/2008 1:16:00 PM                        |
| Chrysene                       | ND             | 1.04       | µg/L                                     | 1     | 5/6/2008 1:16:00 PM                        |
| Benzo(b)Fluoranthene           | ND             | 1.04       | μg/L                                     | 1     | 5/6/2008 1:16:00 PM                        |
| Benzo(k)Fluoranthene           | ND             | 1.04       | μg/L                                     | . 1   | 5/6/2008 1:16:00 PM                        |
| Benzo(a)Pyrene                 | ND             | 0.207      | μg/L                                     | 1     | 5/6/2008 1:16:00 PM                        |
| Indeno(1,2,3-cd)Pyrene         | МĎ             | 0,415      | μg/L                                     | 1     | 5/6/2008 1:16:00 PM                        |
| Dibenz(a,h)Anthracene          | ND             | 0.415      | μg/L                                     | 1     | 5/6/2008 1:16:00 PM                        |
| Benzo(g,h,i)Perylene           | ND             | 1.04       | ha\r                                     | 1     | 5/6/2008 1:16:00 PM                        |
| Total PAH Target Concentration | ND             | 0          | μg/L                                     | 1     | 5/6/2008 1:16:00 PM                        |
| Surr: 2,2'-Difluorobiphenyl    | 89.6           | 40-140     | %REC                                     | 1     | 5/6/2008 1:16:00 PM                        |
| Surr: 2-Fluorobiphenyl         | 87.4           | 40-140     | %REC                                     | 1     | 5/6/2008 1:16:00 PM                        |
|                                |                |            |                                          |       |                                            |
| OLATILE ORGANIC COMPOUNDS      |                |            |                                          |       | Analyst: MR                                |
| 1,1,1,2-Tetrachloroethane      | ND             | 5.00       | μg/L                                     | 1     | 5/12/2008 4:12:00 PM                       |
| 1,1,1-Trichloroethane          | ND             | 5.00       | μg/L                                     | 1     | 5/12/2008 4:12:00 PM                       |
| 1,1,2,2-Tetrachloroethane      | ND             | 2.00       | µg/L                                     | 1     | 5/12/2008 4:12:00 PM                       |
| 1,1,2-Trichloroethane          | ND             | 5,00       | μg/L                                     | 1     | 5/12/2008 4:12:00 PM                       |
| 1,1-Dichloroethane             | ND             | 5.00       | µg/L                                     | ዝ     | 5/12/2008 4:12:00 PM                       |
| 1,1-Dichloroethene             | ND.            | 5.00       | µg/L                                     | 1     | 5/12/2008 4:12:00 PM                       |
| 1,1-Dichloropropene            | ND             | 5.00       | μg/L                                     | 1 .   | 5/12/2008 4:12:00 PM                       |
| 1,2,3-Trichlorobenzene         | ND             | 5.00       | μg/L                                     | 1     | 5/12/2008 4:12:00 PM                       |
| 1,2,3-Trichloropropane         | ND             | 5.00       | μg/ <b>L</b>                             | 1     | 5/12/2008 4:12:00 PM                       |
| 1,2,4-Trichlorobenzene         | ND             | 5.00       | μg/L                                     | 1     | 5/12/2008 4:12:00 PM                       |
| 1,2,4-Trimethylbenzene         | ND             | 5.00       | µg/L                                     | 1     | 5/12/2008 4:12:00 PM                       |

В Analyte detected in the associated Method Blank

Е Value above quantitation range

Analyte detected below quantitation limits

Spike Recovery outside recovery limits

BRL Below Reporting Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reported Date: 14-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0804475

Project:

WM-046, 1.4 Exp

Lab ID:

0804475-002

Client Sample ID: B4

Collection Date: 4/30/2008 12:00:00 PM

Date Received: 4/30/2008

Matrix: GROUNDWATER

| Analyses                    | Result    | Det. Limit | Qual Units   | DF           | Date Analyzed        |
|-----------------------------|-----------|------------|--------------|--------------|----------------------|
| VOLATILE ORGANIC COMPOUNDS  | - SW8260B |            |              |              | Analyst: MR          |
| 1,2-Dibromo-3-Chloropropane | ND        | 5.00       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| 1,2-Dibromoethane           | ND        | 2.00       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| 1,2-Dichlorobenzene         | ND        | 5.00       | μg/ <b>L</b> | 1            | 5/12/2008 4:12:00 PM |
| 1,2-Dichloroethane          | ND        | 2.00       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| 1,2-Dichloropropane         | ND        | 2.00       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| 1,3,5-Trimethylbenzene      | ND        | 5.00       | μ <b>g/L</b> | 1            | 5/12/2008 4:12:00 PM |
| 1,3-Dichlorobenzene         | ND        | 5.00       | μg/L         | . 1          | 5/12/2008 4:12:00 PM |
| 1,3-Dichloropropane         | ND        | 5.00       | μg/L         | . 1          | 5/12/2008 4:12:00 PM |
| 1,4-Dichlorobenzene         | ND        | 5.00       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| 2,2-Dichloropropane         | ND        | 5.00       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| 2-Butanone                  | ND        | 10.0       | μg/L         | . <b>1</b> , | 5/12/2008 4:12:00 PM |
| 2-Chloroethyl Vinyl Ether   | ND        | 5.00       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| 2-Chlorotoluene             | ND        | 5.00       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| 2-Hexanone                  | ND        | 10.0       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| 4-Chlorotoiuene             | ND        | 5.00       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| 4-Isopropyltoluene          | ND        | 5.00       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| 4-Methyl-2-Pentaпone        | ND        | 5.00       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| Acetone                     | ND        | 50.0       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| Acrolein                    | ND        | 50.0       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| Acrylonitrile               | ND        | 50,0       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| Benzene                     | ND        | 5.00       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| Bromobenzene                | ND        | 5.00       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| Bromochloromethane          | ND        | 2,00       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| Bromodichloromethane        | ND        | 2.00       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| Bromoform                   | ND        | 2.00       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| Bromomethane                | ND        | 2.00       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| Carbon Disulfide            | ND        | 5.00       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| Carbon Tetrachloride        | ND        | 2.00       | μg/L         | . 1          | 5/12/2008 4:12:00 PM |
| Chlorobenzene               | ND        | 5.00       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| Chioroethane                | ND        | 5.00       | μg/L         | . 1          | 5/12/2008 4:12:00 PM |
| Chloroform                  | ND        | 5.00       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| Chloromethane               | ND        | 5.00       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| cis-1,2-Dichloroethene      | ND        | 5.00       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| cis-1,3-Dichloropropene     | ND        | 0.500      | μg/L         | 4            | 5/12/2008 4:12:00 PM |
| Dibromochloromethane        | ND        | 2.00       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| Dibromomethane              | ND        | 5.00       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| Dichlorodifiuoromethane     | ND        | 5.00       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| Ethylbenzene                | ND        | 5.00       | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| Hexachlorobutadiene         | . ND      | 0.500      | μg/L         | 1            | 5/12/2008 4:12:00 PM |
| sopropylbenzene             | ND        | 5.00       | μg/L         | 1            | 5/12/2008 4:12:00 PM |

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 14-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0804475

Project:

WM-046, 1.4 Exp

Lab ID:

0804475-002

Client Sample ID: B4

Collection Date: 4/30/2008 12:00:00 PM

Date Received: 4/30/2008

Matrix: GROUNDWATER

| Analyses                                    | Result    | Det. Limit | Qual Units    | DF  | Date Analyzed        |
|---------------------------------------------|-----------|------------|---------------|-----|----------------------|
| VOLATILE ORGANIC COMPOUNDS                  | - SW8260B |            |               |     | Analyst: MR          |
| Methyl Tert-Butyl Ether                     | ND        | 5.00       | µg/L          | 1   | 5/12/2008 4:12:00 PM |
| Methylene Chloride                          | ND        | 5.00       | µg/L          | 1   | 5/12/2008 4:12:00 PM |
| Naphthalene                                 | ND        | 20.0       | μg/L          | 1   | 5/12/2008 4:12:00 PM |
| n-Butylbenzene                              | ND        | 5.00       | μg/L          | 1   | 5/12/2008 4:12:00 PM |
| n-Propylbenzene                             | ND        | 5.00       | μ <b>g/</b> L | 1   | 5/12/2008 4:12:00 PM |
| sec-Butylbenzene                            | ND        | 5.00       | µg/L          | 1   | 5/12/2008 4:12:00 PM |
| Styrene                                     | ND        | 5.00       | μg/L          | 1   | 5/12/2008 4:12:00 PM |
| tert-Butylbenzene                           | ND        | 5.00       | μg/L          | . 1 | 5/12/2008 4:12:00 PM |
| Tetrachloroethene                           | ND        | 5.00       | μg/L          | 1   | 5/12/2008 4:12:00 PM |
| Toluene                                     | ND        | 5.00       | μg/L          | 1   | 5/12/2008 4:12:00 PM |
| trans-1,2-Dichloroethene                    | ND        | 5.00       | μg/L          | 1   | 5/12/2008 4:12:00 PM |
| trans-1,3-Dichloropropene                   | ND        | 0.500      | μ <b>g/L</b>  | 1   | 5/12/2008 4:12:00 PM |
| Trichloroethene                             | ND        | 5.00       | µg/L          | 1   | 5/12/2008 4:12:00 PM |
| Trichlorofluoromethane                      | ND        | 5.00       | μg/L          | 1   | 5/12/2008 4:12:00 PM |
| Vinyl Chloride                              | ND        | 2.00       | μg/L          | 1   | 5/12/2008 4:12:00 PM |
| Xylenes, Total                              | ND        | 5.00       | μg/L          | 1   | 5/12/2008 4:12:00 PM |
| Surr: 1,2-Dichloroethane-d4                 | 88.5      | 70-130     | %REC          | 1   | 5/12/2008 4:12:00 PM |
| Surr: 4-Bromofluorobenzene                  | 81.9      | 70-130     | %REC          | 1   | 5/12/2008 4:12:00 PM |
| Surr: Dibromofluoromethane                  | 95.8      | 70-130     | %REC          | 1   | 5/12/2008 4:12:00 PM |
| Surr: Toluene-d8                            | 98.8      | 70-130     | %REC          | 1   | 5/12/2008 4:12:00 PM |
| VPH - MADEP VPH                             |           |            |               |     | Analyst: <b>MR</b>   |
| C9-C10 Aromatic Hydrocarbons                | ND        | 75.0       | μg/L          | 1   | 5/6/2008             |
| Unadjusted C5-C8 Aliphatic<br>Hydrocarbons  | ND        | 75.0       | μg/L          | 1   | 5/6/2008             |
| Unadjusted C9-C12 Aliphatic<br>Hydrocarbons | ND        | 75.0       | µg/L          | 1   | 5/6/2008             |
| Methyl Tert-Butyl Ether                     | ND        | 5.00       | μg/L          | 1   | 5/6/2008             |
| Benzene                                     | ND        | 5.00       | μg/L          | 1   | 5/6/2008             |
| Toluene                                     | ND        | 5.00       | µg/L          | 1   | 5/6/2008             |
| Ethylbenzene                                | ND        | 5.00       | μg/ <b>L</b>  | 1   | 5/6/2008             |
| m,p-Xylene                                  | ND        | 5.00       | μ <b>g/</b> L | 1   | 5/6/2008             |
| o-Xylene                                    | ND        | 5.00       | μg/L          | 1 - | 5/6/2008             |
| Naphthalene                                 | ND        | 20.0       | μg/L          | ĺ   | 5/6/2008             |
| Adjusted C5-C8 Aliphatic<br>Hydrocarbons    | ND        | 75.0       | μg/L          | 1   | 5/6/2008             |
| Adjusted C9-C12 Aliphatic<br>Hydrocarbons   | ND        | 75.0       | μg/L          | 1   | 5/6/2008             |
| Surr: 2,5-Dibromotoluene FID                | 73.4      | 70-130     | %REC          | 1   | 5/6/2008             |
| Surr: 2,5-Dibromotoluene PID                | 72.1      | 70-130     | %REC          | 1   | 5/6/2008             |

Qualifiers:

BRL Below Reporting Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reported Date: 14-May-08

CLIENT:

Fay, Spofford & Thorndike

Client Sample ID: B4

Lab Order:

0804475

Collection Date: 4/30/2008 12:00:00 PM

Project:

WM-046, 1.4 Exp

Date Received: 4/30/2008

Lab ID:

0804475-002

Matrix: GROUNDWATER

| Analyses                                                   | Result           | Det. Limit | Qual | Units | DF | Date Analyzed                   |
|------------------------------------------------------------|------------------|------------|------|-------|----|---------------------------------|
| CYANIDE, TOTAL - SM4500-CN-C,E Cyanide, Total              | ND               | 0,0197     |      | mg/L  | 1  | Analyst: <b>WFR</b> 5/12/2008   |
| HEXAVALENT CHROMIUM - SM3500-CR-I<br>Chromium, Hexavalent  | <b>)</b><br>ND   | 0.0500     |      | mg/L  | 1  | Analyst: <b>RP</b><br>5/1/2008  |
| TOTAL RESIDUAL CHLORINE - HACH 816 Total Residual Chlorine | 5 <b>7</b><br>ND | 0.162      |      | mg/L  | 1  | Analyst: <b>RP</b><br>4/30/2008 |

J Analyte detected below quantitation limits

S Spike Recovery outside recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reported Date: 14-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order: Project:

0804475

WM-046, 1.4 Exp

Lab ID:

0804475-003

Client Sample ID: B18

Collection Date: 4/30/2008 2:15:00 AM

Date Received: 4/30/2008

Matrix: GROUNDWATER

| Analyses                         | Result        | Det. Limit | Qual U  | nits DF | Date Analyzed       |
|----------------------------------|---------------|------------|---------|---------|---------------------|
| TOTAL SUSPENDED SOLIDS - SM254   | 0-D           |            |         |         | Analyst: AMS        |
| Total Suspended Solids           | ND            | 4.00       | mg      | g/L 1   | 5/1/2008            |
| TOTAL PETROLEUM HYDROCARBON      | S - 8100M     |            |         |         | Analyst: <b>RuP</b> |
| Total Petroleum Hydrocarbons     | ND            | 0.208      | mg      | g/L 1   | 5/2/2008            |
| Surr: o-Terphenyl                | 65.0          | 40-140     | %1      | REC 1   | 5/2/2008            |
| POLYCHLORINATED BIPHENYLS - SV   | V8082         |            |         |         | Analyst: <b>GP</b>  |
| Arodor 1016/1242                 | ND            | 0.309      | μg      | /L 1    | 5/1/2008            |
| Arocior 1221                     | ND            | 0.309      | μg      |         | 5/1/2008            |
| Aroclor 1232                     | ND            | 0.309      | μд      | /L 1    | 5/1/2008            |
| Araclor 1248                     | ND            | 0.309      | μg      |         | 5/1/2008            |
| Aroclor 1254                     | МD            | 0.309      | µg      | /L 1    | 5/1/2008            |
| Aroclor 1260                     | ND            | 0.309      | рg      | /L 1    | 5/1/2008            |
| Aroclor 1262                     | ND            | 0.309      | þд      | /L 1    | 5/1/2008            |
| Aroclor 1268                     | ND            | 0.309      | ь<br>Би | /L 1    | 5/1/2008            |
| Sur: Decachlorobiphenyl Sig 1    | 108           | 30-150     | %       | REC 1   | 5/1/2008            |
| Surr: Decachiorobiphenyl Sig 2   | 124           | 30-150     | %F      | REC 1   | 5/1/2008            |
| Surr: Tetrachloro-m-Xylene Sig 1 | 82.0          | 30-150     | %F      | REC 1   | 5/1/2008            |
| Sum: Tetrachloro-m-Xylene Sig 2  | 94.0          | 30-150     | %1      | REC 1   | 5/1/2008            |
| OTAL METALS BY GFAA - E200.9     |               | at         |         |         | Analyst: <b>QS</b>  |
| Antimony                         | ND            | 0.00100    | mg      | g/L 1   | 5/1/2008            |
| Arsenic                          | ND            | 0.00100    | mç      | g/L 1   | 5/1/2008            |
| OTAL METALS BY ICP - SW6010B     |               |            |         |         | Analyst: <b>QS</b>  |
| Barium                           | ND            | 2.00       | mg      | ı/L 1   | 5/1/2008            |
| Cadmium                          | ND            | 0.00400    | mg      | •       | 5/1/2008            |
| Chromium                         | ND            | 0.100      | mg      |         | 5/1/2008            |
| Copper                           | ND            | 0.0400     | mg      |         | 5/1/2008            |
| iron                             | ND            | 0.0600     | mç      |         | 5/1/2008            |
| Lead                             | ND            | 0.0100     | mg      |         | 5/1/2008            |
| Nickel                           | ND            | 0.100      | mg      |         | 5/1/2008            |
| Selenium                         | ND            | 0.0500     | mg      | g/L 1   | 5/1/2008            |
| OTAL SILVER - E200.7             |               |            |         |         | Analyst: <b>QS</b>  |
| Silver                           | ND            | 0.00700    | mç      | g/L 1   | 5/1/2008            |
|                                  | √₹ <u>.</u> . |            |         |         |                     |

- В Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside recovery limits
- BRL Below Reporting Limit
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 14-May-08

CLIENT: Lab Order: Fay, Spofford & Thorndike

0804475

Project:

Lab ID:

WM-046, 1.4 Exp

0804475-003

Client Sample ID: B18

Collection Date: 4/30/2008 2:15:00 AM

Date Received: 4/30/2008

Matrix: GROUNDWATER

| Analyses                        | Result | Det. Limit | Qual | Units        | DF | Date Analyzed       |
|---------------------------------|--------|------------|------|--------------|----|---------------------|
| TOTAL MERCURY - E245.1          |        |            |      |              |    | Analyst: EC         |
| Mercury                         | ND     | 0.0005     |      | mg/L         | 1  | 5/5/2008            |
|                                 |        |            |      |              |    |                     |
| SEMIVOLATILE ORGANICS - SW8270C |        |            |      |              |    | Analyst: <b>ZYZ</b> |
| 1,2,4-Trichlorobenzene          | ND     | 1.03       |      | μg/L         | 1  | 5/2/2008 7:24:00 AM |
| 1,2-Dichiorobenzene             | ND     | 1.03       |      | μg/L         | 1  | 5/2/2008 7:24:00 AM |
| 1,2-Dinitrobenzene              | ND     | 1.03       |      | μg/L         | 1  | 5/2/2008 7:24:00 AM |
| 1,3-Dichlorobenzene             | ND     | 1.03       |      | μg/L         | 1  | 5/2/2008 7:24:00 AM |
| 1,3-Dinitrobenzene              | ND     | 1.03       |      | μg/L         | 1  | 5/2/2008 7:24:00 AM |
| 1,4-Dichiorobenzene             | ND     | 1.03       |      | μg/L         | 1  | 5/2/2008 7:24:00 AM |
| 1,4-Dinitrobenzene              | ND     | 1.03       |      | μg/L         | 1  | 5/2/2008 7:24:00 AM |
| 2,3,4,6-Tetrachlorophenol       | ND     | 1.03       |      | μg/L         | 1  | 5/2/2008 7:24:00 AM |
| 2,4,5-Trichlorophenol           | ND     | 1.03       |      | µg/L         | 1  | 5/2/2008 7:24:00 AM |
| 2,4,6-Trichlorophenol           | ND     | 1.03       |      | μg/L         | 1  | 5/2/2008 7:24:00 AM |
| 2,4-Dichlorophenol              | ND     | 1.03       |      | μg/L         | 1  | 5/2/2008 7:24:00 AM |
| 2,4-Dimethylphenol              | ND     | 1.03       |      | μg/L         | 1  | 5/2/2008 7:24:00 AM |
| 2,4-Dinitrophenol               | ND     | 5.15       |      | μg/L         | 1  | 5/2/2008 7:24:00 AM |
| 2,4-Dinitrotoluene              | ND     | 1.03       |      | μg/L         | 1  | 5/2/2008 7:24:00 AM |
| 2,6-Dinitrotoluene              | ND     | 1.03       |      | μg/L         | 1  | 5/2/2008 7:24:00 AM |
| 2-Chloronaphthalene             | ND     | 1.03       |      | μg/L         | 1  | 5/2/2008 7:24:00 AM |
| 2-Chlorophenol                  | ND     | 1.03       |      | μg/L         | 1  | 5/2/2008 7:24:00 AM |
| 2-Methylnaphthalene             | ND     | 1.03       |      | μg/L         | 1  | 5/2/2008 7:24:00 AM |
| 2-Methylphenol                  | ND     | 1.03       |      | μg/L         | 1  | 5/2/2008 7:24:00 AM |
| 2-Nitroaniline                  | ND     | 1.03       |      | µg/L         | 1  | 5/2/2008 7:24:00 AM |
| 2-Nitrophenol                   | ND     | 1.03       |      | μg/L         | 1  | 5/2/2008 7:24:00 AM |
| 3,3'-Dichlorobenzidine          | ND     | 1.03       |      | µg/L         | 1  | 5/2/2008 7:24:00 AM |
| 3-Methylphenoi/4-Methylphenoi   | ND     | 1.03       |      | μg/L         | 1  | 5/2/2008 7:24:00 AM |
| 3-Nitroaniline                  | ND     | 1.03       |      | μg/L         | 1  | 5/2/2008 7:24:00 AM |
| 4,6-Dinitro-2-Methylphenol      | ND     | 5.15       |      | <i></i>      | 1  | 5/2/2008 7:24:00 AM |
| 4-Bromophenyl Phenyl Ether      | ND     | 1.03       |      | µg/L         | 1  | 5/2/2008 7:24:00 AM |
| 4-Chloro-3-Methylphenol         | ND     | 1.03       |      | μg/L         | 1  | 5/2/2008 7:24:00 AM |
| 4-Chloroaniline                 | ND     | 1.03       |      | μg/L         | 1  | 5/2/2008 7:24:00 AM |
| 4-Chiorophenyl Phenyl Ether     | ND     | 1.03       |      | μ <b>g/L</b> | 1  | 5/2/2008 7:24:00 AM |
| 4-Nitroaniline                  | ND     | 1.03       |      | µg/L         | 1  | 5/2/2008 7:24:00 AM |
| 4-Nitrophenol                   | ND     | 1.03       |      | μg/L         | 1  | 5/2/2008 7:24:00 AM |
| Acenaphthene                    | ND     | 1.03       |      | μg/L         | 1  | 5/2/2008 7:24:00 AM |
| Acenaphthylene                  | ND     | 1.03       |      | μg/L         | 1  | 5/2/2008 7:24:00 AM |
| Acetophenone                    | ND     | 1.03       |      | μg/L         | 1  | 5/2/2008 7:24:00 AM |
| Aniline                         | ND     | 5.15       |      | μg/L         | 1  | 5/2/2008 7:24:00 AM |
| Anthracene                      | ND     | 1.03       |      | μg/L         | 1  | 5/2/2008 7:24:00 AM |
| Azobenzene                      | ND     | 5.15       |      | µg/L         | 1  | 5/2/2008 7:24:00 AM |

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 14-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0804475

Project:

WM-046, 1.4 Exp

Lab ID:

0804475-003

Client Sample ID: B18

Collection Date: 4/30/2008 2:15:00 AM

Date Received: 4/30/2008

Matrix: GROUNDWATER

| Analyses                        | Result | Det. Limit | Qual U | Inits    | DF  | Date Analyzed       |
|---------------------------------|--------|------------|--------|----------|-----|---------------------|
| SEMIVOLATILE ORGANICS - SW8270C |        |            |        |          |     | Analyst: ZYZ        |
| Benz(a)Anthracene               | ND     | 0.103      | μ      | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Benzidine                       | ND     | 5.15       | μ      | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Benzo(a)Pyrene                  | ND     | 0.103      | μ      | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Benzo(b)Fluoranthene            | ND     | 0.515      | μ      | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Benzo(g,h,i)Perylene            | ND     | 1.03       | μ      | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Benzo(k)Fluoranthene            | ND     | 0.515      | μ      | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Benzyl Alcohol                  | ND     | 1.03       | , μ    | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Bis(2-Chloroethoxy)Methane      | ND     | 1.03       | μ      | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Bis(2-Chloroethyl)Ether         | ND     | 1.03       | μ      | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Bis(2-Chloroisopropyl)Ether     | ND     | 1.03       | μ      | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Bis(2-Ethylhexyl)Phthalate      | ND     | 1.03       | μ      | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Butyl Benzyl Phthalate          | ND     | 1.03       | إذا    | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Carbazole                       | ND     | 1.03       | μ      | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Chrysene                        | ND     | 1.03       | þ      | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Dibenz(a,h)Anthracene           | ND     | 0.103      | μ      | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Dibenzofuran                    | ND     | 1.03       | μ      | g/L      | . 1 | 5/2/2008 7:24:00 AM |
| Diethyl Phthalate               | ПD     | 1.03       | μ      | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Dimethyl Phthalate              | ND     | 1.03       | μ      | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Di-n-Butyl Phthalate            | ND     | 1.03       | μ      | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Di-n-Octyl Phthalate            | ND     | 1.03       | μ      | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Fluoranthene                    | ND     | 1.03       | μ      | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Fluorene                        | МD     | 1.03       | μ,     | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Hexachlorobenzene               | ND     | 0.103      | μ      | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Hexachlorobutadiene             | ND     | 0.103      |        | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Hexachlorocyclopentadiene       | ND     | 5.15       | μ      | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Hexachloroethane                | ND     | 1.03       | μ      | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Indeno(1,2,3-cd)Pyrene          | ND     | 0.103      | μ      | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Isophorone                      | ND     | 1.03       | μ      | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Naphthalene                     | ND     | 1.03       | IJ     | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Nitrobenzene                    | ND     | 1.03       | μ      | -<br>g/L | 1   | 5/2/2008 7:24:00 AM |
| N-Nitrosodimethylamine          | ND     | 5.15       | μ      | g/L      | 1   | 5/2/2008 7:24:00 AM |
| N-Nitrosodi-n-Propylamine       | ND     | 1.03       | μ      | g/L      | 1   | 5/2/2008 7:24:00 AM |
| N-Nitrosodiphenylamine          | ND     | 5.15       |        | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Pentachiorophenol               | ND     | 1.03       | hi     | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Phenanthrene                    | ND     | 1.03       | μg     | -<br>g/L | 1   | 5/2/2008 7:24:00 AM |
| Phenoi                          | ND     | 1.03       | μį     | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Pyrene                          | ND     | 1.03       |        | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Pyridine                        | ND     | 5.15       |        | g/L      | 1   | 5/2/2008 7:24:00 AM |
| Surr: 2,4,6-Tribromophenol      | 83.9   | 15-110     |        | REC      | 1   | 5/2/2008 7:24:00 AM |
| Surr: 2-Fluorobiphenyl          | 63.4   | 30-130     |        | REC      | 1   | 5/2/2008 7:24:00 AM |

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 14-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0804475

Project:

WM-046, 1.4 Exp

Lab ID:

0804475-003

Client Sample ID: B18

Collection Date: 4/30/2008 2:15:00 AM

Date Received: 4/30/2008

Matrix: GROUNDWATER

| Analyses                       | Result    | Det. Limit | Qual Units    | DF  | Date Analyzed        |
|--------------------------------|-----------|------------|---------------|-----|----------------------|
| SEMIVOLATILE ORGANICS - SW827  | '0C       |            |               |     | Analyst: <b>ZYZ</b>  |
| Surr: 2-Fluorophenol           | 41.1      | 15-110     | %REC          | 1   | 5/2/2008 7:24:00 AM  |
| Surr: Nitrobenzene-d5          | 55.6      | 30-130     | %REC          | 1   | 5/2/2008 7:24:00 AM  |
| Surr: Phenol-d6                | 26.3      | 15-110     | %REC          | 1   | 5/2/2008 7:24:00 AM  |
| Surr: Terphenyl-d14            | 81.9      | 30-130     | %REC          | 1   | 5/2/2008 7:24:00 AM  |
| EPH TARGET ANALYTES - MADEP    | EPH       |            |               |     | Analyst: <b>ZYZ</b>  |
| Naphthalene                    | ND        | 1.03       | μg/L          | 1   | 5/6/2008 1:51:00 PM  |
| 2-Methylnaphthalene            | ND        | 1.03       | μg/L          | 1   | 5/6/2008 1:51:00 PM  |
| Acenaphthene                   | ND        | 1.03       | μg/L          | 1   | 5/6/2008 1:51:00 PM  |
| Phenanthrene                   | ND        | 1.03       | μg/L          | 1   | 5/6/2008 1:51:00 PM  |
| Acenaphthylene                 | ND        | 1.03       | μg/L          | 1 . | 5/6/2008 1:51:00 PM  |
| Fluorene                       | ND        | 1.03       | μg/L          | 1   | 5/6/2008 1:51:00 PM  |
| Anthracene                     | ND        | 1.03       | μ <b>g/L</b>  | 1   | 5/6/2008 1:51:00 PM  |
| Fluoranthene                   | ND        | 1.03       | μg/L          | 1   | 5/6/2008 1:51:00 PM  |
| Pyrene                         | ND        | 1.03       | μg/L          | 1   | 5/6/2008 1:51:00 PM  |
| Benzo(a)Anthracene             | ND        | 0.412      | μg/L          | 1   | 5/6/2008 1:51:00 PM  |
| Chrysene                       | ND        | 1,03       | μ <b>g/</b> L | 1   | 5/6/2008 1:51:00 PM  |
| Benzo(b)Fiuoranthene           | ПN        | 1.03       | μg/L          | 1   | 5/6/2008 1:51:00 PM  |
| Benzo(k)Fluoranthene           | ND        | 1,03       | μg/Ĺ          | 1   | 5/6/2008 1:51:00 PM  |
| Benzo(a)Pyrene                 | ND        | 0.206      | μg/L          | 1.  | 5/6/2008 1:51:00 PM  |
| Indeno(1,2,3-cd)Pyrene         | ND        | 0.412      | μg/L          | . 1 | 5/6/2008 1:51:00 PM  |
| Dibenz(a,h)Anthracene          | ND        | 0,412      | µg/L          | 1   | 5/6/2008 1:51:00 PM  |
| Benzo(g,h,i)Perylene           | ND        | 1.03       | μg/L          | 1   | 5/6/2008 1:51:00 PM  |
| Total PAH Target Concentration | ND        | c          | ) μg/L        | 1   | 5/6/2008 1:51:00 PM  |
| Surr: 2,2'-Difluorobiphenyl    | 86.0      | 40-140     | %REC          | 1   | 5/6/2008 1:51:00 PM  |
| Surr: 2-Fluorobiphenyl         | 82.1      | 40-140     | %REC          | 1   | 5/6/2008 1:51:00 PM  |
| VOLATILE ORGANIC COMPOUNDS     | - SW8260B |            |               |     | Analyst: MR          |
| 1,1,1,2-Tetrachloroethane      | ND        | 5.00       | ) µg/L        | 1   | 5/13/2008 3:31:00 PM |
| 1,1,1-Trichloroethane          | ND        | 5.00       | ) µg/L        | 1   | 5/13/2008 3:31:00 PM |
| 1,1,2,2-Tetrachloroethane      | ND        | 2.00       | . •           | 1   | 5/13/2008 3:31:00 PM |
| 1,1,2-Trichloroethane          | ND        | 5.00       | ) µg/L        | 1   | 5/13/2008 3:31:00 PM |
| 1,1-Dichloroethane             | ND        | 5.00       | ) μg/L        | 1   | 5/13/2008 3:31:00 PM |
| 1,1-Dichloroethene             | ND        | 5.00       | ) μg/L        | 1   | 5/13/2008 3:31:00 PM |
| 1,1-Dichloropropene            | ND        | 5.00       | ) μg/L        | 1   | 5/13/2008 3:31:00 PM |
| 1,2,3-Trichlorobenzene         | ND        | 5.0        | o µg/L        | 1   | 5/13/2008 3:31:00 PM |
| 1,2,3-Trichloropropane         | . ND      | 5.0        | , 0           | 1   | 5/13/2008 3:31:00 PN |
| 1,2,4-Trichlorobenzene         | ND        | 5.0        | D μg/L        | 1   | 5/13/2008 3:31:00 PM |
| 1,2,4-Trimethylbenzene         | ND        | 5,0        | 0 μg/L        | 1   | 5/13/2008 3:31:00 PN |

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 14-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0804475

Project:

WM-046, 1.4 Exp

Lab ID:

0804475-003

Client Sample ID: B18

Collection Date: 4/30/2008 2:15:00 AM

Date Received: 4/30/2008

Matrix: GROUNDWATER

| Analyses                    | Result      | Det. Limit | Qual U    | nits        | DF | Date Analyzed                                |
|-----------------------------|-------------|------------|-----------|-------------|----|----------------------------------------------|
| OLATILE ORGANIC COMPOUND    | S - SW8260B |            |           |             |    | Analyst: MR                                  |
| 1,2-Dibromo-3-Chloropropane | ND          | 5.00       | μg        | J/L         | 1  | 5/13/2008 3:31:00 PM                         |
| 1,2-Dibromoethane           | ND          | 2.00       | μg        | J/L         | 1  | 5/13/2008 3:31:00 PM                         |
| 1,2-Dichlorobenzene         | ND          | 5.00       | μς        | <b>I</b> /L | 1  | 5/13/2008 3:31:00 PM                         |
| 1,2-Dichloroethane          | ND          | 2.00       | μg        | J/L         | 1  | 5/13/2008 3:31:00 PM                         |
| 1,2-Dichloropropane         | ND          | 2.00       | μg        | ı/L         | 1  | 5/13/2008 3:31:00 PM                         |
| 1,3,5-Trimethylbenzene      | ND          | 5.00       | μg        | ı/L         | 1  | 5/13/2008 3:31:00 PM                         |
| 1,3-Dichlorobenzene         | ND          | 5,00       | μg        | ı/L         | 1  | 5/13/2008 3:31:00 PM                         |
| 1,3-Dichloropropane         | ND          | 5.00       | μg        | ı/L         | 1  | 5/13/2008 3:31:00 PM                         |
| 1,4-Dichiorobenzene         | ND          | 5.00       | рg        |             | 1  | 5/13/2008 3:31:00 PM                         |
| 2,2-Dichloropropane         | ND          | 5.00       | μg        |             | 1  | 5/13/2008 3:31:00 PM                         |
| 2-Butanone                  | ND          | 10.0       | μg        |             | 1  | 5/13/2008 3:31:00 PM                         |
| 2-Chloroethyl Vinyl Ether   | ND          | 5.00       | μg        |             | 1  | 5/13/2008 3:31:00 PM                         |
| 2-Chlorotoluene             | ND          | 5.00       | μд        |             | 1  | 5/13/2008 3:31:00 PM                         |
| 2-Hexanone                  | ND          | 10.0       | μg        |             | 1  | 5/13/2008 3:31:00 PM                         |
| 4-Chlorotoluene             | ND          | 5.00       | μg        |             | 1  | 5/13/2008 3:31:00 PM                         |
| 4-isopropyltoluene          | ND          | 5.00       | μg        |             | 1  | 5/13/2008 3:31:00 PM                         |
| 4-Methyl-2-Pentanone        | ND          | 5.00       | μg        |             | 1  | 5/13/2008 3:31:00 PM                         |
| Acetone                     | ND          | 50.0       | μд        |             | 1  | 5/13/2008 3;31:00 PM                         |
| Acrolein                    | ND          | 50.0       | μg        |             | 1  | 5/13/2008 3:31:00 PM                         |
| Acrylonitrile               | ND          | 50.0       | μg        |             | 1  | 5/13/2008 3:31:00 PM                         |
| 3enzene .                   | ND          | 5.00       | µg        |             | 1  | 5/13/2008 3:31:00 PM                         |
| Bromobenzene                | ND          | 5.00       | μg        |             | 1  | 5/13/2008 3:31:00 PM                         |
| Bromochloromethane          | ND          | 2.00       | μg.       |             | 1  | 5/13/2008 3:31:00 PM                         |
| 3romodichloromethane        | ND          | 2.00       | μg.       |             | 1  | 5/13/2008 3:31:00 PM                         |
| Bromoform                   | ND          | 2.00       | μg.       |             | 1  | 5/13/2008 3:31:00 PM                         |
| 3romomethane                | ND          | 2.00       | μg.       |             | 1  | 5/13/2008 3:31:00 PM                         |
| Carbon Disulfide            | ND          | 5.00       | μg.       |             | 1  | 5/13/2008 3:31:00 PM                         |
| Carbon Tetrachloride        | ND          | 2.00       | μg.       |             | 1  | 5/13/2008 3:31:00 PM                         |
| Chlorobenzene               | ND          | 5.00       | μg,       |             | 1  | 5/13/2008 3:31:00 PM                         |
| Chloroethane                | ND          | 5.00       | μg,       |             | 1  | 5/13/2008 3:31:00 PM                         |
| Chlorofor <del>m</del>      | ND          | 5.00       | ha.       |             | 1  | 5/13/2008 3:31:00 PM                         |
| Chloromethane               | ND          | 5.00       | μg,       |             | 1  | 5/13/2008 3:31:00 PM                         |
| cis-1,2-Dichloroethene      | ND          | 5.00       | ha,       |             | 1  | 5/13/2008 3:31:00 PM                         |
| cis-1,3-Dichloropropene     | ND          | 0.500      | ha,       |             | 1  | 5/13/2008 3:31:00 PM                         |
| Dibromochloromethane        | ND          | 2.00       | ha,       |             | 1  | 5/13/2008 3:31:00 PM                         |
| Dibromomethane              | ND          | 5.00       | րց։<br>Աց |             | 1  | 5/13/2008 3:31:00 PM<br>5/13/2008 3:31:00 PM |
| Dichlorodifluoromethane     | ND          | 5.00       | ha,       |             | 1  |                                              |
| Ethylbenzene                | ND.         | 5.00       | μg,       |             | 1  | 5/13/2008 3:31:00 PM                         |
| Hexachlorobutadiene         | ND          | 0.500      | μg/       |             | 1  | 5/13/2008 3:31:00 PM                         |
| Isopropylbenzene            | ND          | 5.00       |           |             |    | 5/13/2008 3:31:00 PM                         |
| ,, <b>,</b>                 | ٠.          | 5,00       | μg/       | L           | 1  | 5/13/2008 3:31:00 PM                         |

- Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside recovery limits
- BRL Below Reporting Limit
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 14-May-08

CLIENT: Lab Order: Fav, Spofford & Thorndike

0804475

Project:

WM-046, 1.4 Exp

Lab ID:

0804475-003

Client Sample ID: B18

Collection Date: 4/30/2008 2:15:00 AM

Date Received: 4/30/2008

Matrix: GROUNDWATER

| Analyses                                                | Result    | Det. Limit | Qual U   | Inits | DF | Date Analyzed        |
|---------------------------------------------------------|-----------|------------|----------|-------|----|----------------------|
| OLATILE ORGANIC COMPOUNDS                               | - SW8260B |            | _        |       |    | Analyst: MR          |
| Methyl Tert-Butyl Ether                                 | ND        | 5.00       | μ        | ıg/L  | 1  | 5/13/2008 3:31:00 PM |
| Methylene Chloride                                      | ND        | 5.00       | μ        | ıg/L  | 1  | 5/13/2008 3:31:00 PM |
| Naphthalene                                             | ND        | 20.0       | μ        | ıg/L  | 1  | 5/13/2008 3:31:00 PM |
| n-Butylbenzene                                          | ND        | 5.00       | μ        | ıg/L  | 1  | 5/13/2008 3:31:00 PM |
| n-Propylbenzene                                         | ND        | 5.00       | ۲        | ıg/L  | 1  | 5/13/2008 3:31:00 PM |
| sec-Butylbenzene                                        | . ND      | 5.00       | ٢        | ıg/L  | 1  | 5/13/2008 3:31:00 PM |
| Styrene                                                 | ND        | 5.00       | ļ.       | ıg/L  | 1  | 5/13/2008 3:31:00 PM |
| tert-Butylbenzene                                       | ND        | 5.00       | <b>.</b> | ıg/L  | 1  | 5/13/2008 3:31:00 PM |
| Tetrachioroethene                                       | ND        | 5.00       | Ì        | ıg/L  | 1  | 5/13/2008 3:31:00 PM |
| Toluene                                                 | ND        | 5.00       | +        | ıg/L  | 1  | 5/13/2008 3:31:00 PM |
| trans-1,2-Dichloroethene                                | ND        | 5.00       | ŀ        | ug/L  | 1  | 5/13/2008 3:31:00 PM |
| trans-1,3-Dichloropropene                               | ND        | 0.500      | i        | ug/L  | 1  | 5/13/2008 3:31:00 PM |
| Trichloroethene                                         | ND        | 5,00       | ŀ        | µg/L  | 1  | 5/13/2008 3:31:00 PM |
| Trichlorofluoromethane                                  | ND        | 5.00       |          | ug/L  | 1  | 5/13/2008 3:31:00 PM |
| Vinyl Chloride                                          | ND        | 2.00       | ļ        | ug/L  | 1  | 5/13/2008 3:31:00 PM |
| Xylenes, Total                                          | ND        | 5.00       | ļ        | μg/L  | 1  | 5/13/2008 3:31:00 PN |
| Surr: 1.2-Dichloroethane-d4                             | 92.2      | 70-130     | ı        | %REC  | 1  | 5/13/2008 3:31:00 PN |
| Surr: 4-Bromofluorobenzene                              | 80.1      | 70-130     | ,        | %REC  | 1  | 5/13/2008 3:31:00 PN |
| Surr: Dibromofluoromethane                              | 112       | 70-130     | ,        | %REC  | 1  | 5/13/2008 3:31:00 PN |
| Surr; Toluene-d8                                        | 102       | 70-130     |          | %REC  | 1  | 5/13/2008 3:31:00 PN |
| unu saanen voi                                          |           |            |          |       |    | Analyst: <b>M</b> F  |
| VPH - MADEP VPH                                         | ND        | 75.0       | ı        | μg/L  | 1  | 5/6/2008             |
| C9-C10 Aromatic Hydrocarbons Unadjusted C5-C8 Aliphatic | ND        | 75.0       |          | μg/L  | 1  | 5/6/2008             |
| Hydrocarbons Unadjusted C9-C12 Aliphatic Hydrocarbons   | ND        | 75.0       | )        | μg/L  | 1  | 5/6/2008             |
| Methyl Tert-Butyl Ether                                 | ND        | 5.00       | )        | µg/L  | 1  | 5/6/2008             |
| Benzene                                                 | ND        | 5.00       | )        | μg/L  | 4  | 5/6/2008             |
| Toluene                                                 | ND        | 5.00       |          | μg/L  | 1  | 5/6/2008             |
| Ethylbenzene                                            | ND        | 5.00       |          | μg/L  | 1  | 5/6/2008             |
| m,p-Xylene                                              | ND        | 5.00       |          | μg/L  | 1  | 5/6/2008             |
| o-Xylene                                                | ND        |            |          | μg/L  | 1  | 5/6/2008             |
| Naphthalene                                             | ND        |            | )        | μg/L  | 1  | 5/6/2008             |
| Adjusted C5-C8 Aliphatic Hydrocarbons                   | ND        |            |          | μg/L  | 1  | 5/6/2008             |
| Adjusted C9-C12 Aliphatic Hydrocarbons                  | ND        | 75.0       | ס        | μg/L  | 1  | 5/6/2008             |
| Surr: 2,5-Dibromotoluene FID                            | 104       | 70-130     | 0        | %REC  | 1  | 5/6/2008             |
| Surr: 2,5-Dibromotoluene PID                            | 87.5      | 70-13      | Λ        | %REC  | 1  | 5/6/2008             |

- Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- Analyte detected below quantitation limits J
- Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit

Reported Date: 14-May-08

CLIENT: Lab Order: Fay, Spofford & Thorndike

0804475

Project:

WM-046, 1.4 Exp

Lab ID:

0804475-003

Client Sample ID: B18

Collection Date: 4/30/2008 2:15:00 AM

Date Received: 4/30/2008

Matrix: GROUNDWATER

| Analyses                                                      | Result           | Det. Limit | Qual Units | DF | Date Analyzed                    |
|---------------------------------------------------------------|------------------|------------|------------|----|----------------------------------|
| CYANIDE, TOTAL - SM4500-CN-C,E<br>Cyanide, Total              | ND               | 0.0197     | mg/L       | 1  | Analyst: <b>WFR</b><br>5/12/2008 |
| HEXAVALENT CHROMIUM - SM3500-CR-I<br>Chromium, Hexavalent     | <b>)</b><br>ND   | 0.0500     | mg/L       | 1  | Analyst: <b>RP</b><br>5/1/2008   |
| TOTAL RESIDUAL CHLORINE - HACH 816<br>Total Residual Chlorine | 5 <b>7</b><br>ND | 0.162      | mg/L       | 1  | Analyst: <b>RP</b><br>4/30/2008  |

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Fay, Spofford & Thorndike CLIENT:

0804475 Work Order: WM-046, 1.4 Exp

Project:

TestCode: 6010B\_W

ANALYTICAL QC SUMMARY REPORT

Date: 14-May-08

%RPD RPDLimit SeqNo: 232685 RunNo: 23417 %REC LowLimit HighLimit RPD Ref Val Analysis Date: 5/1/2008 Prep Date: 5/1/2008 Units: mg/L (SW3010A) SPK value SPK Ref Val TestNo: SW6010B TestCode: 6010B\_W 0.00400 0.100 0.0400 0.100 PQL 0.0600 0.0100 0.0100 2.00 Result 222222222 SampType: MBLK Batch ID: 10030 Sample iD: MB-10030 22722 Chromium Client ID: Cadmium Selenium Analyte Barium Copper Arsenic Nickel Lead Iron

| Sample ID: LCS-10030 | SampType: LCS   | TestCoc | TestCode: 6010B W     | Units: mg/L |      | Prep Da                 | Prep Date: 5/1/2008 | బ్ల                                 | RunNo: 23417  | 17                 |      |
|----------------------|-----------------|---------|-----------------------|-------------|------|-------------------------|---------------------|-------------------------------------|---------------|--------------------|------|
| Cirent ID: ZZZZZ     | Batch ID: 10030 | Test    | estNo: SW6010B        | (SW3010A)   | 7    | Analysis Date: 5/1/2008 | te: 5/1/200         | <b>ω</b>                            | SeqNo: 232686 | 986                |      |
| Analyte              | Result          | PQL     | SPK value SPK Ref Val | SPK Ref Val | %REC | LowLimit                | HighLimit           | "REC LowLimit HighLimit RPD Ref Val | %RPD          | %RPD RPDLimit Qual | Qual |
| Arsenic              | 1.620           | 0.0100  | . 2                   | 0           | 81.0 | 80                      | 120                 |                                     |               |                    |      |
| Barium               | CN              | 2.00    | _                     | 0           | 93.4 | 80                      | 120                 |                                     |               |                    |      |
| Cadmium              | 1.650           | 0.00400 | 2                     | 0           | 82.5 | 80                      | 120                 |                                     |               |                    |      |
| Chromium             | 1.654           | 0.100   | 2                     | 0           | 82.7 | 80                      | 120                 |                                     |               |                    |      |
| Copper               | 1,650           | 0.0400  | 2                     | 0           | 82.5 | 80                      | 120                 |                                     |               |                    |      |
| Iron                 | 1.647           | 0.0600  | 2                     | 0           | 82,4 | 80                      | 120                 |                                     |               |                    |      |
| Lead                 | 1.602           | 0.0100  | 2                     | 0           | 80.1 | 80                      | 120                 |                                     |               |                    |      |
| Nickel               | 1.641           | 0.100   | 2                     | 0           | 82.0 | 80                      | 120                 |                                     |               |                    |      |
| Selenium             | 1.614           | 0.0500  | 2                     | 0           | 80.7 | 80                      | 120                 |                                     |               |                    |      |

Analyte detected below quantitation limits Spike Recovery outside recovery limits BRL Below Reporting Limit Qualifiers:

Not Detected at the Reporting Limit Value above quantitation range ΩŽ Ш

Holding times for preparation or analysis exceeded RPD outside recovery limits H &

| WALLA TO THE TOTAL THE TOTAL TO AL TO THE TO |                          | CERTAIN A MANAGEMENT OF THE CHAPTER AND A MANAGEMENT OF THE CANADA TO THE CONTRACT OF THE CANADA TO | MARIA ILCAL QUI SUIMINAKI KEPUKI |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | =                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fay Snofford & Thorndibe | a altoportor or amountable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0804475                          |

0804475 Work Order:

CLIENT:

WM-046, 1.4 Exp Project:

TestCode: 8082\_w

| Sample ID: MB-10025                                             | SampType: MBLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TestCoc | TestCode: 8082 w  | Units: ua/L                        |              | Pren Date:     | e: 5/1/2008                   | RugNo: 23424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|------------------------------------|--------------|----------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Client ID: 2222                                                 | Ratch ID: 40026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T       | Toothio: Claranes | (CINIZE TOD)                       |              | 100            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -            |
|                                                                 | Batch ID. 10023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 189     | 10: SAVBU62       | (SW3510B)                          |              | Analysis Date; | e: 5/1/2008                   | SeqNo: <b>229922</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
| Analyte                                                         | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PQL     | SPK value         | SPK Ref Val                        | %REC         | LowLimit       | HighLimit RPD Ref Val         | %RPD RPDLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Qual         |
| Aroclor 1221                                                    | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.300   |                   |                                    |              |                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Aroclor 1232                                                    | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.300   |                   |                                    |              |                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Aroclor 1248                                                    | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.300   |                   |                                    |              |                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Aroclor 1254                                                    | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.300   |                   |                                    |              |                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Aroctor 1260                                                    | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.300   | ٠                 |                                    |              |                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Aroclor 1262                                                    | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.300   |                   |                                    |              |                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Aroclor 1268                                                    | ON.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00.300  |                   |                                    |              |                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Surr: Decachlorobiphenyl Sig 1                                  | 88.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0       | 100               | 0                                  | 88.0         | 30             | 150                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Surr: Decachlorobiphenyl Sig 2                                  | 92.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0       | 100               | 0                                  | 92.0         | 30             | 150                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Surr: Tetrachloro-m-Xylene Sig 1                                | 11 60.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 100               | 0                                  | 0.09         | 30             | 150                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Surr: Tetrachloro-m-Xylene Sig 2                                | 12 66.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 100               | 0                                  | 0.99         | 30             | 150                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Sample ID: LCS-10025                                            | SampType: LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TestCod | TestCode: 8082_w  | Units: µg/L                        |              | Prep Date:     | s: 5/1/2008                   | RunNo: 23424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
| Client ID: ZZZZZ                                                | Batch ID: 10025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Testi   | TestNo: SW8082    | (SW3510B)                          |              | Analysis Date: | e: 5/1/2008                   | SeqNo: 229923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| Analyte                                                         | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pal     | SPK value         | SPK Ref Val                        | %REC         | LowLimit       | HighLimit RPD Ref Val         | %RPD RPDLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Qual         |
| Aroclor 1016/1242                                               | 101.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.300   | 100               | 0                                  | 101          | 40             | 14.0                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Aroclor 1260                                                    | 104.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.300   | 100               | 0                                  | 104          | 40             | 140                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Surr: Decachlorobiphenyl Sig 1                                  | 110.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0       | 100               | 0                                  | 110          | 30             | 150                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Surr: Decachlorobiphenyl Sig 2                                  | 106.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0       | 100               | 0                                  | 106          | 30             | 150                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Surr: Tetrachloro-m-Xylene Sig 1                                | 1 84.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0       | 100               | 0                                  | 84.0         | 30             | 150                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Surr: Tetrachloro-m-Xylene Sig 2                                | 2 92.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0       | 100               | 0                                  | 92.0         | 30             | 150                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Sample ID: LCS2-10025                                           | SampType; LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TestCod | TestCode: 8082_w  | Units: µg/L                        |              | Prep Date:     | s: 5/1/2008                   | RunNo: 23424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
| Client ID: ZZZZZ                                                | Batch ID: 10025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TestN   | TestNo: SW8082    | (SW3510B)                          |              | Analysis Date: | e: 5/1/2008                   | SeqNo: 229929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| Analyte                                                         | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pal     | SPK value         | SPK Ref Val                        | %REC         | LowLimit       | HighLimit RPD Ref Val         | %RPD RPDLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Qual         |
| Aroclor 1016/1242                                               | 108.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.300   | 100               | 0                                  | 108          | 40             | 140                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Aroclor 1221                                                    | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.300   |                   |                                    |              |                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Aroclor 1232                                                    | CIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.300   |                   |                                    |              |                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
|                                                                 | THE REPORT OF THE PARTY OF THE |         |                   |                                    |              |                | 1                             | TO THE RESIDENCE AND A SECOND | -            |
| Qualitiers: BRL Below Reporting Limit  I Analyte detected below | Below Reporting Limit<br>Analyte detected below aucortiteties limite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·       | E Value           | Value above quantitation range     | ege<br>Timit |                |                               | Holding times for preparation or analysis exceeded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | q            |
|                                                                 | ten testem quantification minus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                   | not betwied at the neporting Limit | rumır<br>S   |                | K KFD outside recovery limits | very limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
|                                                                 | Spike Recovery outside recovery limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                   |                                    |              |                |                               | Pag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Page 2 of 26 |

0804475 Work Order: WM-046, 1.4 Exp

Project:

TestCode: 8082\_w

ANALYTICAL QC SUMMARY REPORT

| Sample ID: LCS2-10025            | SampType: LCS   | TestCod | TestCode; 8082_w | Units: µg/L           |      | Prep Dat                | Prep Date: 5/1/2008 | <b>~</b>                            | RunNo: 23424  | *             |      |
|----------------------------------|-----------------|---------|------------------|-----------------------|------|-------------------------|---------------------|-------------------------------------|---------------|---------------|------|
| Client ID: ZZZZZ                 | Batch ID: 10025 | TestN   | TestNo: SW8082   | (SW3510B)             | •    | Analysis Date: 5/1/2008 | e: <b>5/1/2</b> 00  | 80                                  | SeqNo: 229929 | 53            | ٠    |
| Analyte                          | Result          | POL     | SPK value        | SPK value SPK Ref Val | %REC | LowLimit                | HighLimit           | %REC LowLimit HighLimit RPD Ref Val | %RPD          | %RPD RPDLimit | Qual |
| Aroclor 1248                     | ON              | 0.300   |                  |                       |      |                         |                     |                                     |               |               |      |
| Aroclor 1254                     | QN .            | 0.300   |                  |                       | ٠.   |                         |                     |                                     |               |               |      |
| Aroctor 1260                     | 118.0           | 0.300   | 100              | 0                     | 118  | 40                      | 140                 |                                     |               |               |      |
| Aroclor 1262                     | QN              | 0.300   |                  |                       |      |                         |                     |                                     |               |               |      |
| Aroclor 1268                     | QN              | 0.300   |                  |                       |      |                         |                     |                                     |               |               |      |
| Surr: Decachlorobiphenyl Sig 1   | 124.0           | 0       | 100              | 0                     | 124  | 30                      | 150                 |                                     |               |               |      |
| Sur: Decachiorobiphenyl Sig 2    | 2 126.0         | 0       | 100              | 0                     | 126  | 30                      | 150                 |                                     |               |               |      |
| Surr Tetrachloro-m-Xylene Sig 1  | 3.1 84.00       | 0       | 100              | 0                     | 84.0 | 30                      | 150                 |                                     |               |               |      |
| Surr: Tetrachloro-m-Xylene Sig 2 | 92 92.00        | 0       | 100              | 0                     | 92.0 | 30                      | 150                 |                                     |               |               |      |

ND Not Detected at the Reporting Limit E Value above quantitation range

Holding times for preparation or analysis exceeded RPD outside recovery limits

Analyte detected below quantitation limits Spike Recovery outside recovery limits

BRL Below Reporting Limit

H Holding times for preparation or analysis exceeded R RPD outside recovery limits

E Value above quantitation range
ND Not Detected at the Reporting Limit

Analyte detected below quantitation limits Spike Recovery outside recovery limits

BRL Below Reporting Limit

Qualiffers:

RPD outside recovery limits

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260B\_W

| Work Order: | 0804475           |
|-------------|-------------------|
| Project:    | WM-046, 1.4 $Exp$ |

Fay, Spofford & Thorndike

CLIENT:

| The state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |              |             |               |          |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------|--------------|-------------|---------------|----------|-----------|
| Sample ID: MB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SampType: MBLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TestCo | TestCode: 8260B_W | Units: µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | Prep Date:              | ài           |             | RunNo: 23654  | 654      |           |
| Client ID: ZZZZZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Batch ID: R23654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Test   | TestNo: SW8260B   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | Analysis Date:          | e: 5/12/2008 | 90          | SeqNo: 232500 | 2500     | ********* |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | POL    | SPK value         | SPK Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %REC | ř<br>LowLímit HighLimit | HighLimit    | RPD Ref Val | %RPD          | RPDLimit | Qual      |
| 1,1,1,2-Tetrachioroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.00   |                   | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                         |              |             |               |          |           |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ₽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |              |             |               |          |           |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |              |             |               |          |           |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |              |             |               |          |           |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |              |             |               |          |           |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |              |             |               |          |           |
| 1,1-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |              |             |               |          |           |
| 1,2,3-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5,00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |              |             |               |          |           |
| 1,2,3-Trichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | -                       |              |             |               |          |           |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |              |             |               |          |           |
| 1,2,4-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |              |             |               |          |           |
| 1,2-Dibromo~3-Chloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |              |             |               |          |           |
| 1,2-Dibromoethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |              |             |               |          |           |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |              |             |               |          |           |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |              |             |               |          |           |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ð                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         | ٠            |             |               |          |           |
| 1,3,5-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QN<br>·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |              |             |               |          |           |
| 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |              |             |               |          |           |
| 1,3-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |              |             |               |          |           |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | QN<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |              |             |               |          |           |
| 2,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.00   | ٠                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |              |             |               | •        |           |
| 2-Butanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 10.0 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |              |             |               |          |           |
| 2-Chloroethyl Vinyl Ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |              |             |               |          |           |
| 2-Chlorotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |              |             |               |          |           |
| 2-Hexanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.0   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |              |             |               | •        |           |
| 4-Chlorotofuene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |              |             |               |          |           |
| 4-Isopropyltoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |              |             |               |          |           |
| 4-Methyi-2-Pentanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ð                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.00   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |              |             |               |          |           |
| Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50.0   | d                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |              |             |               |          |           |
| Acrolein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50.0   | (2 M              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |              |             |               |          |           |
| Acrylonitrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.0   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |              |             |               |          |           |
| The state of the s | NAME OF THE PARTY |        |                   | War and the state of the state |      |                         |              |             |               |          |           |

0804475 Work Order:

WM-046, 1.4 Exp

**Project**:

TestCode: 8260B\_W

| Sample ID: MB            | SampType: MBLK                             |        | TestCode: 8260B_W | Units: µg/L                         | Prep Date:              |                             | RunNo: 23654      |                |                                         |
|--------------------------|--------------------------------------------|--------|-------------------|-------------------------------------|-------------------------|-----------------------------|-------------------|----------------|-----------------------------------------|
| Client ID: ZZZZZ         | Batch ID: <b>R23654</b>                    | 4      | TestNo: SW8260B   |                                     | Analysis Date: 5/13     | 5/12/2008                   | SeqNo: 232500     | 00             | *************************************** |
| Analyte                  | Result                                     | t Pal  | SPK value         | SPK Ref Val                         | %REC LowLimit HighLimit | mit RPD Ref Val             | %RPD R            | RPDLimit Q     | Qual                                    |
| Benzene                  | QN .                                       | 5.00   |                   |                                     |                         |                             |                   |                |                                         |
| Bromobenzene             | <u>ON</u>                                  | 5.00   | ٠                 |                                     |                         |                             |                   |                |                                         |
| Bromochloromethane       | ne ND                                      | 2.00   |                   |                                     |                         |                             |                   |                |                                         |
| Bromodichloromethane     | ane                                        | 2.00   |                   |                                     |                         |                             |                   |                |                                         |
| Bromoform                | ΩN                                         | 2.00   |                   |                                     |                         |                             |                   |                |                                         |
| Bromomethane             | ΩN                                         | 2.00   |                   |                                     |                         |                             |                   |                |                                         |
| Carbon Disulfide         | ON                                         | 5.00   |                   |                                     | ٠                       |                             |                   |                |                                         |
| Carbon Tetrachloride     |                                            | 2.00   |                   |                                     |                         |                             |                   |                |                                         |
| Chlorobenzene            | QN                                         | 5.00   |                   |                                     | •                       |                             |                   |                |                                         |
| Chloroethane             | QN                                         | 5.00   |                   |                                     |                         |                             |                   |                |                                         |
| Chloroform               | ΩN                                         | 5.00   |                   |                                     |                         |                             |                   |                |                                         |
| Chloromethane            | ΩN                                         | 5.00   |                   |                                     |                         |                             |                   |                |                                         |
| cis-1,2-Dichloroethene   | ene ND                                     | 5.00   |                   |                                     |                         |                             |                   |                |                                         |
| cis-1,3-Dichloropropene  | oene ND                                    | 0.500  |                   |                                     |                         |                             |                   |                |                                         |
| Dibromochloromethane     | nane ND                                    | 2.00   |                   |                                     |                         |                             |                   |                |                                         |
| Dibromomethane           | ON                                         | 5,00   |                   |                                     |                         |                             |                   |                |                                         |
| Dichlorodifluoromethane  |                                            | 5.00   |                   |                                     |                         |                             |                   |                |                                         |
| Ethyibenzene             | QN                                         | 4,     |                   |                                     |                         |                             |                   |                |                                         |
| Hexachlorobutadiene      |                                            | _      |                   |                                     |                         |                             |                   |                |                                         |
| Isopropylbenzene         | ΩN                                         | 5.00   |                   |                                     |                         |                             |                   |                |                                         |
| Methyl Tert-Butyl Ether  | ther                                       | 5.00   |                   |                                     |                         |                             |                   |                |                                         |
| Methylene Chloride       | ΩN .                                       | 5.00   |                   |                                     |                         |                             |                   |                |                                         |
| Naphthalene              | QN                                         | 20.0   |                   |                                     |                         | •                           |                   |                |                                         |
| n-Butylbenzene           | ON                                         |        |                   |                                     |                         |                             |                   |                |                                         |
| n-Propyłbenzene          | QV                                         |        |                   |                                     |                         |                             |                   |                |                                         |
| sec-Butytbenzene         | QN                                         |        |                   |                                     |                         |                             |                   |                |                                         |
| Styrene                  | QV                                         | 5.00   | . '               |                                     |                         |                             |                   |                |                                         |
| tert-Butylbenzene        | QN .                                       | 5.00   |                   |                                     |                         |                             |                   |                |                                         |
| Tetrachloroethene        | QZ                                         |        |                   |                                     |                         |                             |                   |                |                                         |
| Toluene                  | QN                                         |        | •                 |                                     |                         |                             |                   |                |                                         |
| trans-1,2-Dichloroethene | thene                                      | 5.00   |                   |                                     |                         | - Constitution of the       | and the second    |                |                                         |
| Qualifiers: BRL          | . Below Reporting Limit                    | 2.00   | E Value           | Value above quantitation range      |                         |                             | reparation or ana | lysis exceeded |                                         |
| ·                        | Analyte detected below quantitation limits | limits | ND Not I          | Not Detected at the Reporting Limit | g Limit R               | RPD outside recovery limits | ary limits        |                |                                         |
| ß                        | Spike Recovery outside recovery limits     | its    |                   |                                     |                         |                             |                   | Page           | Page 5 of 26                            |
|                          |                                            |        |                   |                                     |                         |                             |                   | )              | ,                                       |

RPD outside recovery limits

E Value above quantitation range

ND Not Detected at the Reporting Limit

Analyte detected below quantitation limits Spike Recovery outside recovery limits

BRL Below Reporting Limit

Qualifiers:

| Fay, Spofford & Thorndike |
|---------------------------|
| LIENT:                    |

0804475 Work Order:

WM-046, 1.4 Exp

**Project**:

TestCode: 8260B\_W

| Sample ID: MB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SampType: MBLK   | TestCo  | TestCode: 8260B W | Units: ua/L |      | Prep Date:     | te:           |             | RunNo: 23654  | 24       |                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|-------------------|-------------|------|----------------|---------------|-------------|---------------|----------|----------------------------------------|
| Client ID: ZZZZZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Batch ID: R23654 | Test    | TestNo: SW8260B   |             |      | Analysis Date: | te: 5/12/2008 | 08          | SeqNo: 232500 | 200      | ······································ |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result           | PQL     | SPK value         | SPK Ref Val | %REC | LowLimit       | HighLimit     | RPD Ref Val | %RPD          | RPDLimit | Qual                                   |
| And the second s |                  |         |                   |             |      |                |               |             |               |          |                                        |
| rans-1,5-Dictioroproperie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | 0,500   |                   |             |      |                |               |             |               |          |                                        |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | QV.              | 5.00    |                   |             |      |                |               |             |               |          |                                        |
| Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                | 5.00    |                   |             |      | _              |               |             |               |          |                                        |
| Vinyl Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | QN               | 2.00    |                   |             |      |                |               |             |               |          |                                        |
| Xylenes, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | QV               | 5.00    |                   | 4           |      |                |               |             |               |          | •                                      |
| Surr: 1,2-Dichloroethane-d4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28.29            | 0       | 30                | 0           | 94.3 | 70             | 130           |             |               |          |                                        |
| Surr: 4-Bromofluorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30.97            | 0       | 30                | 0           | 103  | 70             | 130           |             |               |          |                                        |
| Surr: Dibromofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25.08            | 0       | 30                | 0           | 83.6 | 20             | 130           |             |               |          |                                        |
| Surr: Toluene-d8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30.13            | 0       | 30                | 0           | 100  | 70             | 130           |             |               |          |                                        |
| Sample ID: 50ppb Ics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SampType: LCS    | TestCoo | TestCode; 8260B_W | Units: µg/L |      | Prep Date:     | .e.           |             | RunNo: 23654  | 54       |                                        |
| Client ID: ZZZZZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Batch ID: R23654 | Test    | estNo: SW8260B    |             |      | Analysis Date: | te: 5/12/2008 | 80          | SeqNa: 232499 | 499      |                                        |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result           | Pal     | SPK value         | SPK Ref Val | %REC | LowLimit       | HighLimit     | RPD Ref Vai | %RPD          | RPDLimit | Qual                                   |
| 1,1,1,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50.63            | 5.00    | 90                | 0           | 101  | 70             | 130           |             |               |          |                                        |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 62.92            | 5.00    | 50                | 0           | 126  | 70             | 130           |             |               |          |                                        |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56.52            | 2.00    | 50                | 0           | 113  | 0.2            | 130           |             |               |          |                                        |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 59.33            | 5.00    | 50                | 0           | 119  | 70             | 130           |             |               |          |                                        |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53.77            | 5.00    | 90                | 0           | 108  | 70             | 130           |             |               |          |                                        |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55.46            | 2.00    | 50                | 0           | 111  | 70             | 130           |             |               |          |                                        |
| 1,1-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 49.80            | 5.00    | 50                | 0           | 9.66 | . 70           | 130           |             |               |          |                                        |
| 1,2,3-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41.18            | 5.00    | 50                | 0           | 82.4 | 70             | 130           |             |               |          |                                        |
| 1,2,3-Trichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50,48            | 5.00    | 50                | 0.79        | 99.4 | 70             | 130           |             |               |          |                                        |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.20            | 5.00    | 50                | 0           | 80.4 | 70             | 130           |             |               |          |                                        |
| 1,2,4-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.11            | 5.00    | 20                | 0           | 80.2 | 70             | 130           |             |               |          |                                        |
| 1,2-Dibromo-3-Chloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35.13            | 5.00    | 50                | 0           | 70.3 | 70             | 130           |             |               |          |                                        |
| 1,2-Dibromoethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 53.72            | 2.00    | 50                | 0           | 107  | 70             | 130           |             |               |          |                                        |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47.97            | 5.00    | 50                | 0           | 95.9 | 70             | 130           |             |               |          |                                        |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.97            | 2.00    | 20                | 0           | 91.9 | 22             | 130           |             |               |          |                                        |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54.13            | 2.00    | 20                | 0           | 108  | 70             | 130           |             |               |          | •                                      |

|                   | 4  |
|-------------------|----|
|                   | 7  |
| $\sim$            | ٠, |
| -                 | 4  |
| _                 | 5  |
| _                 | ,  |
| _                 |    |
| _                 | =  |
| r_                | ٦  |
| -                 |    |
| ~                 | ø  |
|                   |    |
|                   |    |
| `                 |    |
| _                 | 1  |
| -                 | d  |
| _                 | -  |
| ٠                 | i  |
| <                 | Ū  |
|                   | 1  |
| -5                |    |
| _                 | Ξ. |
| _                 |    |
| _                 | _  |
|                   | _  |
| -                 | כ  |
| _                 | ø  |
| 7.4               | n  |
| •                 | -  |
| -                 |    |
| (                 | ٦  |
|                   |    |
| -                 | •  |
| 7                 |    |
| OC SHAMARY REPORT |    |
| •                 |    |
| •                 |    |
| •                 |    |
|                   |    |
|                   |    |
|                   |    |
|                   |    |
|                   |    |
|                   |    |
|                   |    |
|                   |    |
|                   |    |
|                   |    |
|                   |    |
|                   |    |
|                   |    |
|                   |    |
|                   |    |
|                   |    |
|                   |    |
|                   |    |
|                   |    |
|                   |    |
|                   |    |
|                   |    |
|                   |    |
|                   |    |

TestCode: 8260B\_W

WM-046, 1.4 Exp 0804475

Fay, Spofford & Thorndike

Work Order: CLIENT:

Project:

| AND AND THE REAL PROPERTY OF THE PROPERTY OF T |                                            |                    |                | 11-24-25                            |         | Prop Date      |                               | RunNo: 23654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------|----------------|-------------------------------------|---------|----------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Sample ID: 50ppb Ics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Samplype: LCS                              | lestCooe: 8zoub_vv | 8,2000,44      | Olice: Pyr                          |         | 1              |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Client ID: ZZZZZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Batch ID: R23654                           | TestNo:            | estNo: SW8260B |                                     | a.      | Analysis Date: | : 5/12/2008                   | Seqivo: 232499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result                                     | POLS               | SPK value      | SPK Ref Val                         | %REC    | LowLimit       | HighLimit RPD Ref Val         | %RPD RPDLimit Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| 4.3 E Trimothylbanzana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35.54                                      | 5.00               | 50             | 0                                   | 71.1    | 70             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 1,3,0-Transcriptorizone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42,56                                      | 5.00               | 20             | 0                                   | 85,1    | 70             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 1.3-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 49.82                                      | 5,00               | 20             | 0                                   | 9'66    | 70             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 4 A Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43,61                                      | 5,00               | 20             | 0                                   | 87.2    | 70             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 1,4-Dichlompropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46,40                                      | 5.00               | 20             | 0                                   | 92.8    | 70             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Z,z-Dichiolopropario                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50.57                                      | 10.0               | 20             | 0                                   | 101     | 20             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 2-Dutatione<br>2-Chloroethyl Vinyl Ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>Q</u>                                   | 2.00               | 20             | 0                                   | 0       | 20             | 130                           | <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |
| 2-Chlorotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36,33                                      | 5.00               | 20             | 0                                   | 72.7    | 70             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 2_Hevanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36.99                                      | 10.0               | 20             | 0                                   | 74.0    | 70             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 4-Chlorotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36.51                                      | 5.00               | 50             | 0                                   | 73.0    | 70             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 4 feographical A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.48                                      | 5.00               | 20             | 0                                   | 81.0    | 02             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 4-tsoptobytoments A-Methyl-2-Pentanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 47.77                                      | 2.00               | 20             | 0                                   | 95.5    | 20             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Anatona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62.72                                      | 50.0               | 20             | 0                                   | 125     | 70             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Acrolain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 124.5                                      | 20.0               | 100            | 0                                   | 124     | 70             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Acadonifile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 91.62                                      | 50.0               | 100            | 0                                   | 91.6    | 70             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 53.58                                      | 5.00               | 20             | 0                                   | 107     | 70             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46.04                                      | 5.00               | 20             | 0                                   | 92.1    | 70             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Browortloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48.45                                      | 2.00               | 20             | 0                                   | 96.9    | 70             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50,46                                      | 2.00.              | 20             | 0                                   | 101     | 70             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47.45                                      | 2.00               | 20             | 0                                   | 94.9    | 70             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50.92                                      | 2.00               | 20             | 0                                   | 102     | 70             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Carbon Disnifide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45,47                                      | 2.00               | 20             | 0                                   | 6.06    | 70             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Carbon Tefrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 47.48                                      | 2.00               | 20             | 0                                   | 95.0    | 70             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52.34                                      | 5.00               | 50             | 0                                   | 105     | 70             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60.70                                      | 2.00               | 20             | 0                                   | 121     | 20             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 51,90                                      | 5.00               | 90             | 0                                   | 104     | 70             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Chlommethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 44.44                                      | 5.00               | 50             | 0                                   | 88.9    | 70             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| cis1 2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45.82                                      | 5.00               | 20             | 0                                   | 91.6    | 20             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| cis1 3. Dichloropopphe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51.73                                      | 0.500              | 50             | 0                                   | 103     | 70             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Disconochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 51.40                                      | 2.00               | 20             |                                     | 103     | 70             | 130                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Dibromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 54.49                                      | 5.00               | 20             | 0                                   | 109     | 70             | 130                           | and Address and Address and Address Address Address And Address An | The second second |
| Onalifiers: BRL Below Rep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Below Reporting Limit                      |                    | E Value        | Value above quantitation range      | ge      |                |                               | Holding times for preparation or analysis exceeded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyte detected below quantitation limits |                    | ND Not De      | Not Detected at the Reporting Limit | g Limit |                | R RPD outside recovery limits | wery limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Spike Recovery outside recovery limits     |                    |                |                                     |         |                |                               | Page 7 of 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | of 26             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                    |                |                                     |         |                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |

H Holding times for preparation or analysis exceeded R RPD outside recovery limits

E Value above quantitation range ND Not Detected at the Reporting Limit

BRL Below Reporting Limit

J Analyte detected below quantitation limits Spike Recovery outside recovery limits

Qualifiers:

RPD outside recovery limits

| THE RESERVE OF THE PROPERTY OF |                           | ANALY LICAL QU'SUMMARY REPORT |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fay, Spofford & Thorndike | 0804475                       |

WM-046, 1.4 Exp

0804475

Work Order: CLIENT:

Project:

TestCode: 8260B\_W

| Sample ID: 50ppb Ics        | SampType: LCS    | TestCoc | TestCode: 8260B_W | Units: µg/L |      | Prep Date:   | i                        |             | RunNo: 23654  | 554      |      |
|-----------------------------|------------------|---------|-------------------|-------------|------|--------------|--------------------------|-------------|---------------|----------|------|
| Client ID: ZZZZZ            | Batch ID: R23654 | Test    | TestNo: SW8260B   |             |      | Analysis Dat | Analysis Date: 5/12/2008 | 80          | SeqNo: 232499 | 499      |      |
| Analyte                     | Result           | POL     | SPK value         | SPK Ref Val | %REC | LowLimit     | HighLimit                | RPD Ref Val | %RPD          | RPDLimit | Quai |
| Dichlorodifluoromethane     | 41.65            | 5.00    | 50                | 0           | 83.3 | 70           | 130                      |             |               |          |      |
| Ethylbenzene                | 43.72            | 5.00    | 50                | 0           | 87.4 | 70           | 130                      |             |               |          |      |
| Hexachlorobutadiene         | 42.09            | 0.500   | 20                | 0           | 84.2 | 20           | 130                      | •           |               |          |      |
| isopropyibenzene            | 38.70            | 5.00    | 50                | 0           | 77.4 | 70           | 130                      |             |               |          |      |
| Methyl Tert-Butyl Ether     | 96.09            | 5.00    | 20                | 0           | 102  | 70           | 130                      |             |               |          |      |
| Methylene Chloride          | 47.21            | 5.00    | 50                | 0           | 94.4 | 70           | 130                      |             |               |          |      |
| Naphthalene                 | 35.86            | 20.0    | 50                | 0           | 7.17 | 70           | 130                      |             |               |          |      |
| n-Butylbenzene              | 42.92            | 5.00    | 50                | 0           | 82.8 | 20           | 130                      |             |               |          |      |
| n-Propylbenzene             | 62.80            | 5.00    | 20                | 0           | 126  | 70           | 130                      |             |               |          |      |
| sec-Butylbenzene            | 36.30            | 5.00    | 20                | 0           | 72.6 | 20           | 130                      |             |               |          |      |
| Styrene                     | 37.38            | 5.00    | 50                | 0           | 74.8 | 70           | 130                      |             |               |          |      |
| tert-Butylbenzene           | 45.04            | 5.00    | 20                | 0           | 90.1 | 70           | 130                      |             |               | -        |      |
| Tetrachloroethene           | 47.90            | 2.00    | 20                | 0           | 92.8 | 70           | 130                      |             |               |          |      |
| Toluene                     | 49.61            | 5.00    | 50                | 0           | 99.2 | 20           | 130                      |             |               |          |      |
| trans-1,2-Dichloroethene    | 48,42            | 5,00    | 50                | . 0         | 96.8 | 70           | 130                      |             |               |          |      |
| trans-1,3-Dichloropropene   | 41.15            | 0.500   | 50                | 0           | 82.3 | 70           | 130                      | . •         |               |          |      |
| Trichloroethene             | 52.55            | 5.00    | 20                | 0           | 105  | 20           | 130                      |             |               |          |      |
| Trichlorofluoromethane      | 58.59            | 5.00    | 20                | 0           | 117  | 70           | 130                      |             |               |          |      |
| Vinyl Chloride              | 52,14            | 2.00    | 50                | 0           | 104  | 70           | 130                      |             |               |          |      |
| Xylenes, Total              | 118.9            | 5.00    | 150               | 0           | 79.3 | 70           | 130                      |             |               |          |      |
| Surr: 1,2-Dichloroethane-d4 | 30.46            | 0       | 30                | 0           | 102  | 70           | 130                      |             |               |          |      |
| Surr: 4-Bromofluorobenzene  | 26.75            | 0       | 30                | 0           | 89.2 | 70           | 130                      |             |               |          |      |
| Surr: Dibromofluoromethane  | 33,10            | 0       | 30                | 0           | 110  | 70           | 130                      |             |               |          |      |
| Surr: Toluene-d8            | 29.80            | 0       | 30                | 0           | 99.3 | 70           | 130                      | ,           |               |          |      |
|                             |                  |         |                   |             |      |              |                          |             |               |          |      |

0804475 Work Order: WM-046, 1.4 Exp

Project:

TestCode: 8270\_w

| Sample ID: <b>MB-10022</b>    | SampType: MBLK                                                      | TestCode: 8270_W | / Units: µg/L                                                         | Prep Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e: 5/1/2008 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RunNo: 23488                   | 88                              |              |
|-------------------------------|---------------------------------------------------------------------|------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------|--------------|
| Client ID: ZZZZZ              | Batch ID: 10022                                                     | TestNo: SW8270C  | 0C (SW3510)                                                           | Analysis Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e: 5/2/2008 | <b>80</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SeqNo: 230785                  | 785                             |              |
| Analyte                       | Result                                                              | PQL SPK value    | le SPK Ref Val                                                        | %REC LowLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HighLimit   | RPD Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %RPD                           | RPDLimit                        | Qual         |
| 1.2.4-Trichlorobenzene        | QN                                                                  | 1.00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |              |
| 1,2-Dichlorobenzene           | Q                                                                   | 1.00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |              |
| 1,2-Dinitrobenzene            | QN                                                                  | 1.00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |              |
| 1,3-Dichlorobenzene           | Q                                                                   | 1,00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |              |
| 1,3-Dinitrobenzene            | QN                                                                  | 1.00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |              |
| 1,4-Dichlorobenzene           | QN                                                                  | 1.00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |              |
| 1,4-Dinitrobenzene            | QN.                                                                 | 1.00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 | -            |
| 2,3,4,6-Tefrachlorophenoi     | QN                                                                  | 1.00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |              |
| 2.4.5-Trichlorophenol         | QN                                                                  | 1.00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |              |
| 2.4.6-Trichlorophenol         | QN                                                                  | 1.00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |              |
| 2,4-Dichlorophenol            | Q                                                                   | 1.00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |              |
| 2,4-Dimethylphenol            | QN .                                                                | 1.00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |              |
| 2,4-Dinitrophenol             | ΩN                                                                  | 5.00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |              |
| 2,4-Dinitrotoluene            | QN                                                                  | 1.00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |              |
| 2,6-Dinitrotoluene            | QZ                                                                  | 1.00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                              |                                 |              |
| 2-Chloronaphthalene           | QN                                                                  | 1.00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |              |
| 2-Chlorophenol                | ΩZ                                                                  | 1,00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |              |
| 2-Methyinaphthalene           | ΩZ                                                                  | 1.00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |              |
| 2-Methylphenol                | ΩN                                                                  | 1.00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |              |
| 2-Nitroaniline                | QN                                                                  | 1.00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |              |
| 2-Nitrophenol                 | OZ.                                                                 | 1.00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |              |
| 3,3'-Dichlorobenzidine        | QN                                                                  | 1.00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |              |
| 3-Methylphenol/4-Methylphenol |                                                                     | 1.00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | -                               |              |
| 3-Nitroaniline                |                                                                     | 1.00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |              |
| 4,6-Dinitro-2-Methylphenol    | Q.                                                                  | 5.00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |              |
| 4-Bromophenyl Phenyl Ether    | ND                                                                  | 1.00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |              |
| 4-Chloro-3-Methylphenol       | QN                                                                  | 1.00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |              |
| 4-Chloroaniline               | QV.                                                                 | 1.00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |              |
| 4-Chlorophenyl Phenyl Ether   | QN                                                                  | 1.00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |              |
| 4-Nitroaniline                | Q<br>N                                                              | 1.00             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |              |
| 4-Nitrophenol                 | QN                                                                  | 1.00             |                                                                       | A A CARACTER MANAGEMENT AND A CARE CONTRACTOR OF THE STATE OF THE STAT |             | The state of the s |                                | THE RESERVE THE PERSON NAMED IN |              |
| Qualifiers; BRL Below Rep     | Below Reporting Limit<br>Analyte detected below anantitation limits | E Va             | Value above quantitation range<br>Not Detected at the Reporting Limit | nge<br>1g Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | π ω         | Holding times for preparation or analysis exceeded RPD outside recovery limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | preparation or a<br>cry limits | nalysis excee                   | led          |
|                               | Spike Recovery outside recovery limits                              |                  |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | $P_{c}$                         | Page 9 of 26 |
| ı                             |                                                                     |                  |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 | ,            |

RPD outside recovery limits

H R

E Value above quantitation range ND Not Detected at the Reporting Limit

> Analyte detected below quantitation limits Spike Recovery outside recovery limits

BRL Below Reporting Limit

Qualifiers:

| - 2                                           | ١. |
|-----------------------------------------------|----|
| <u> </u>                                      | 2  |
| -                                             | -  |
| - 4                                           | _  |
| _ 6                                           | Š  |
|                                               |    |
| H                                             | Ι  |
| -                                             | Y  |
| on Maria                                      |    |
| , <u>, , , , , , , , , , , , , , , , , , </u> | >  |
| - 5                                           | Y  |
|                                               | Y  |
| 4                                             | ď  |
| -                                             | ✓  |
| _ >                                           | >  |
| - 6                                           |    |
| - 5                                           | >  |
|                                               | _  |
| Ξ                                             | _  |
| - 5-                                          | _  |
| 4                                             | ۲. |
| r                                             | ,  |
| `                                             |    |
| _                                             | •  |
| •                                             |    |
|                                               | ٠, |
| -                                             | _  |
| Ϋ́                                            | 1  |
| -                                             | ٠. |
| <u> </u>                                      |    |
|                                               |    |
| -                                             |    |
| E                                             |    |
| $\rightarrow$                                 | •  |
| VILLA                                         | 7  |
| -                                             | -  |
| -                                             | 1  |
| Ε,                                            | -  |
| AMA                                           |    |
| -                                             | ۲  |
| _                                             | 4  |
|                                               |    |
|                                               |    |
|                                               |    |
|                                               |    |
|                                               |    |
|                                               |    |

Fay, Spofford & Thorndike

WM-046, 1.4 Exp

0804475

CLIENT: Work Order:

**Project**:

TestCode: 8270\_w

| Sample ID: MB-10022 | SampType: MBLK  | TestCode: 8270_W | W_07    | Units: µg/L           |      | Prep Date:              | Prep Date: 5/1/2008                 |         | RunNo: 23488       |          |
|---------------------|-----------------|------------------|---------|-----------------------|------|-------------------------|-------------------------------------|---------|--------------------|----------|
| Client ID: ZZZZZ    | Batch ID: 10022 | TestNo: SW8270C  | N8270C  | (SW3510)              |      | Analysis Date: 5/2/2008 | 5/2/2008                            |         | SeqNo: 230785      |          |
| Analyte             | Result          | POL SPI          | < value | SPK value SPK Ref Val | %REC | LowLimit H              | %REC LowLimit HighLimit RPD Ref Val | Ref Val | %RPD RPDLimit Qual | nit Qual |
| Acenaphthene        | QN              | 1.00             |         |                       |      |                         |                                     |         |                    |          |
| Acenaphthylene      | Q               | 1.00             |         |                       |      |                         |                                     |         |                    |          |

| Analyte                     | Result   | POL   | SPK value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SPK Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LowLimit Hig | HighLimit | RPD Ref Val | %RPD | RPDLimit | Qual |
|-----------------------------|----------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|-------------|------|----------|------|
| Acenaphthene                | 9        | 1.00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |             |      |          |      |
| Acenaphthylene              | 2        | 1.00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |             |      |          |      |
| Acetophenone                | 9        | 1.00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |             |      |          |      |
| Aniline                     | QN       | 5.00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |             |      |          |      |
| Anthracene                  | 9        | 1.00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |             |      |          |      |
| Azobenzene                  | <b>Q</b> | 5.00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |             |      |          |      |
| Benz(a)Anthracene           | Q.       | 0.100 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |             |      |          |      |
| Benzidine                   | Q.       | 5.00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |             |      |          |      |
| Benzo(a)Pyrene              | Q        | 0.100 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |             |      |          |      |
| Benzo(b)Ftuoranthene        | Q        | 0.500 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |             |      |          |      |
| Benzo(g,h,i)Perylene        | QN       | 1.00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |             |      |          |      |
| Benzo(k)Fluoranthene        | Q        | 0.500 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |             |      |          |      |
| Benzyl Alcohol              | Q        | 1.00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |             |      |          |      |
| Bis(2-Chloroethoxy)Methane  | Q        | 1.00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |             |      |          |      |
| Bis(2-Chloroethyi)Ether     | QN       | 1.00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |             |      |          |      |
| Bis(2-Chloroisopropyl)Ether | Q        | 1.00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |           |             |      |          |      |
| Bis(2-Ethylhexyl)Phthalate  | QN       | 1.00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           | 4           |      |          |      |
| Butyl Benzyl Phthalate      | QN       | 1.00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |             |      |          |      |
| Carbazole                   | Q        | 1.00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |             |      |          |      |
| Chrysene                    | QN       | 1.00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |             |      |          |      |
| Dibenz(a,h)Anthracene       | QN<br>N  | 0.100 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |             |      |          |      |
| Diberizofuran               | Q        | 1.00  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | ٠         |             |      |          |      |
| Diethyl Phthalate           | N        | 1.00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |             |      |          |      |
| Dimethyl Phthalate          | Q.       | 1.00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |             |      |          |      |
| Di-n-Butyl Phthalate        | Q.       | 1.00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |             |      |          |      |
| Di-n-Octyl Phthalate        | 2        | 1.00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |             |      |          |      |
| Fluoranthene                | N<br>Q   | 1.00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |             |      |          |      |
| Fluorene                    | QN       | 1.00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |             |      |          |      |
| Hexachlorobenzene           | QN       | 0.100 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |             |      |          |      |
| Hexachlorobutadiene         | QN       | 0.100 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |             |      |          |      |
| Hexachlorocyclopentadiene   | 9        | 5.00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |             |      |          |      |
|                             |          |       | The state of the s | THE REAL PROPERTY AND THE PERTY AND THE PERT | The state of the s |              |           |             |      |          |      |

140 140

40

62.3 55.1

0 0

25

1.00

15.58 13.78 RPD outside recovery limits

H &

E Value above quantitation range
ND Not Detected at the Reporting Limit Value above quantitation range

> Analyte detected below quantitation limits Spike Recovery outside recovery limits

> > S

BRL Below Reporting Limit

Qualifiers:

1,4-Dichlorobenzene 1,3-Dinifrobenzene

ANALYTICAL QC SUMMARY REPORT

TestCode: 8270\_w

WM-046, 1.4 Exp Project:

0804475

Work Order:

CLIENT:

Fay, Spofford & Thorndike

| Sample ID; MB-10022        | SampType: MBLK  | TestCoo | TestCode: 8270_W | Units: µg/L |      | Prep Date:     | 5/1/2008              | Ru  | RunNo: 23488  | 88       |      |
|----------------------------|-----------------|---------|------------------|-------------|------|----------------|-----------------------|-----|---------------|----------|------|
| Client ID: ZZZZZ           | Batch ID: 10022 | Test    | TestNo: SW8270C  | (SW3510)    | .·   | Analysis Date: | 5/2/2008              | Sec | SeqNo: 230785 | 785      |      |
| Analyte                    | Result          | Pal     | SPK value        | SPK Ref Val | %REC | LowLimit H     | HighLimit RPD Ref Val | /al | %RPD          | RPDLimit | Qual |
| Hexachloroethane           | QN              | 1.00    |                  |             |      |                |                       |     |               |          |      |
| Indeno(1,2,3-cd)Pyrene     | QN.             | 0.100   |                  |             |      |                |                       |     |               |          |      |
| Isophorone                 | QN              | 1.00    |                  |             |      |                |                       |     |               |          |      |
| Naphthalene                | QN              | 1.00    |                  |             |      |                |                       |     |               |          |      |
| Nitrobenzene               | QN              | 1.00    | -                |             |      |                |                       |     |               |          |      |
| N-Nitrosodimethylamine     | ND              | 5.00    |                  |             |      |                |                       | *   |               |          |      |
| N-Nitrosodi-n-Propylamine  | QN              | 1.00    |                  |             |      |                |                       |     |               |          |      |
| N-Nitrosodiphenylamine     | QN              | 5.00    |                  |             |      |                |                       |     |               |          |      |
| Pentachlorophenoi          | QN              | 1.00    |                  |             |      |                |                       |     |               | -        |      |
| Phenanthrene               | ON              | 1.00    |                  | *           |      |                |                       |     |               | -        |      |
| Phenoi                     | QN              | 1.00    |                  |             |      |                |                       |     |               |          |      |
| Pyrene                     | QN              | 1.00    |                  |             |      |                |                       |     |               |          |      |
| Pyridine                   | QN              | 5.00    |                  |             |      |                |                       |     |               |          |      |
| Surr: 2,4,6-Tribromophenol | QN              | 0       | 75               | .00         | 0    | 15             | 150                   |     |               |          | တ    |
| Surr: 2-Finorobiphenyl     | 35.64           | 0       | 50               | 0           | 71.3 | 30             | 130                   |     |               |          |      |
| Surr 2-Fluorophenol        | 35,40           | 0       | 75               | 0           | 47,2 | 15             | 110                   |     |               |          |      |
| Sur: Nitrobenzene-d5       | 34.07           | 0       | 50               | 0           | 68.1 | 30             | 130                   |     |               |          |      |
| Surr: Phenol-d6            | 25.30           | 0       | 75               | 0           | 33.7 | 15             | 110                   |     |               |          |      |
| Sun: Terphenyl-d14         | 35.34           | 0       | 20               | 0           | 70.7 | 30             | 130                   |     |               |          |      |
| Sample ID: LCS-10022       | SampType: LCS   | TestCo  | TestCode: 8270_w | Units: µg/L |      | Prep Date:     | 5/1/2008              | R   | RunNo: 23488  | 188      |      |
| Client ID: ZZZZZ           | Batch ID: 10022 | Test    | TestNo: SW8270C  | (SW3510)    |      | Analysis Date: | 5/2/2008              | Se  | SeqNo: 230786 | 1786     |      |
| Analyte                    | Result          | POL     | SPK value        | SPK Ref Val | %REC | LowLimit       | HighLimit RPD Ref Val | Val | %RPD          | RPDLimit | Qual |
| 1.2.4-Trichlorobenzene     | 15,42           | 1.00    | 25               | 0           | 61.7 | 40             | 140                   |     |               |          |      |
| 1,2-Dichlorobenzene        | 14.42           | 1.00    | 25               | 0           | 57.7 | 40             | 140                   |     |               |          |      |
| 1,2. Dinitrobenzene        | 18.36           | 1.00    | 25               | 0           | 73.4 | 40             | 140                   |     |               |          | -    |
| 1,3-Dichlorobenzene        | 13.19           | 1.00    | 25               | 0           | 52.8 | 40             | 140                   |     |               |          |      |

|                | ۰ |
|----------------|---|
|                | 1 |
| <u>ند</u><br>م |   |
| _              | , |
| <u> </u>       |   |
| Ē              |   |
| ≂              | į |
| -              |   |
| _              |   |
|                | _ |
| _ ₽            |   |
| -              | ۲ |
|                |   |
| 2              | - |
| -              | ì |
| -              | • |
|                | ٥ |
| 7              | ٦ |
|                | - |
| $\subset$      | ١ |
| 4              | ĺ |
| AI OC          | / |
|                | ז |
|                | 1 |
| $\overline{}$  | 7 |
| <u>_</u>       | ) |
|                |   |
|                | í |
| ` <u>`</u> _   | ٠ |
| 120            | ١ |
| -              | l |
|                | ( |
| <u> →</u>      | 4 |
| Sec.           | 1 |
| <              |   |
|                | • |
|                |   |

TestCode: 8270\_w

| Work Order: | 0804475         |
|-------------|-----------------|
| Project:    | WM-046, 1.4 Exp |

Project:

Fay, Spofford & Thorndike

CLIENT:

| Const. 10: 100 40022    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                 |         |                       |      |                         |                                     |                      |         |
|-------------------------|---------------------------------------|-----------------|---------|-----------------------|------|-------------------------|-------------------------------------|----------------------|---------|
| Sample to: Los-touzz    | Sampiybe: Lus                         | estcode: 8270_w | ₩       | Units: pg/L           |      | Prep Date: 5/1/2008     | 5/1/2008                            | RunNo: 23488         |         |
| Client ID: ZZZZZ        | Batch ID: 10022                       | TestNo: SW8270C | V8270C  | (SW3510)              | 1    | Analysis Date: 5/2/2008 | 5/2/2008                            | SeqNo: <b>230786</b> |         |
| Analyte                 | Result                                | POL SPF         | value , | SPK value SPK Ref Val | %REC | LowLimit Hi             | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   | it Qual |
| 1,4-Dinitrobenzene      | 13.56                                 | 1.00            | 25      | 0                     | 54.2 | 40                      | 140                                 |                      |         |
| O 2 4 & Totrachloropool |                                       | 90              | Ĺ       | (                     | ;    | 1                       |                                     |                      |         |

|                                       |                                            |        | ł               |                                     |          |                |              |                             |                                                    | 2              |               |
|---------------------------------------|--------------------------------------------|--------|-----------------|-------------------------------------|----------|----------------|--------------|-----------------------------|----------------------------------------------------|----------------|---------------|
| Citent ID: <b>22222</b>               | Batch ID: 100 <u>2</u> 2                   | TestNo | TestNo: SW8270C | (SW3510)                            |          | Analysis Date: | .e: 5/2/2008 |                             | SeqNo: 230786                                      | 786            |               |
| Analyte                               | Result                                     | Pal    | SPK value       | SPK Ref Val                         | %REC     | LowLimit       | HighLimit    | RPD Ref Val                 | %RPD                                               | RPDLimit       | Qual          |
| 1,4-Dinitrobenzene                    | 13.56                                      | 1.00   | 25              | 0                                   | 54.2     | 40             | 140          |                             |                                                    |                |               |
| 2,3,4,6-Tetrachlorophenol             | 14.64                                      | 1.00   | 25              | 0                                   | 58.5     | 30             | 8            |                             |                                                    |                |               |
| 2,4,5-Trichtorophenot                 | 16.01                                      | 1.00   | 25              | 0                                   | 64.0     | 30             | 130          |                             |                                                    |                |               |
| 2,4,6-Trichlorophenol                 | 15.14                                      | 1.00   | 25              | 0                                   | 60.5     | 30             | 130          |                             |                                                    |                |               |
| 2,4-Dichlorophenol                    | 15.58                                      | 1.00   | 25              | 0                                   | 62.3     | 30             | 130          |                             |                                                    |                |               |
| 2,4-Dimethylphenol                    | 15.21                                      | 1.00   | 25              | 0                                   | 8.09     | 30             | 130          |                             |                                                    |                |               |
| 2,4-Dinitrophenoi                     | 15.26                                      | 5.00   | 25              | 0                                   | 61.0     | 30             | 130          |                             |                                                    |                |               |
| 2,4-Dinitratoluene                    | 17.29                                      | 1.00   | 25              | 0                                   | 69.2     | 40             | 140          |                             | ٠                                                  |                |               |
| 2,6-Dinitrotoluene                    | 15.89                                      | 1.00   | 25              | 0                                   | 63.6     | 40             | 140          |                             |                                                    |                |               |
| 2-Chloronaphthalene                   | 15.36                                      | 1.00   | 25              | 0                                   | 61.4     | 40             | 140          |                             |                                                    |                |               |
| 2-Chlorophenol                        | 16.03                                      | 1.00   | 25              | 0                                   | 64.1     | 30             | 130          |                             |                                                    |                |               |
| 2-Methylnaphthalene                   | 15,24                                      | 1.00   | 25              | 0                                   | 61.0     | 40             | 140          |                             |                                                    |                |               |
| 2-Methylphenol                        | 14.11                                      | 1.00   | . 25            | 0                                   | 56.4     | 30             | 130          |                             |                                                    |                |               |
| 2-Nitroaniline                        | 16,56                                      | 1.00   | 25              | 0                                   | 66.2     | 40             | 140          |                             |                                                    |                |               |
| 2-Nitrophenol                         | 11.62                                      | 1.00   | 25              | 0                                   | 46.5     | 30             | 130          |                             |                                                    |                |               |
| 3,3'-Dichlorobenzidine                | 13.82                                      | 1.00   | 25              | 0                                   | 55.3     | 40             | 140          |                             |                                                    |                |               |
| 3-Methylphenol/4-Methylphenol         | 12.40                                      | 1.00   | 25              | 0                                   | 49.6     | . 30           | 130          |                             |                                                    |                |               |
| 3-Nitroaniline                        | 16.30                                      | 1.00   | 25              | 0                                   | 65.2     | 40             | 140          |                             |                                                    |                |               |
| 4,6-Dinítro-2-Methylphenol            | 23.36                                      | 5.00   | 25              | 0                                   | 93.5     | 30             | 130          |                             |                                                    |                |               |
| 4-Bromophenyl Phenyl Ether            | 16.40                                      | 1.00   | 25              | 0                                   | 65.6     | 40             | 140          |                             |                                                    |                |               |
| 4-Chforo-3-Methylphenol               | 15.97                                      | 1.00   | 25              | 0                                   | 63.9     | 30             | 130          |                             |                                                    |                |               |
| 4-Chloroanilline                      | 21.64                                      | 1.00   | 25              | 0                                   | 9.98     | 40             | 140          |                             |                                                    |                |               |
| 4-Chlorophenyl Phenyl Ether           | 14.22                                      | 1.00   | 25              | 0                                   | 56.9     | 40             | 140          |                             |                                                    |                |               |
| 4-Nitroaniline                        | 16.32                                      | 1,00   | 25              | 0                                   | 65.3     | 40             | 140          |                             |                                                    |                |               |
| 4-Nifrophenol                         | 9.595                                      | 1.00   | 22              | 0                                   | 38.4     | 30             | 130          |                             |                                                    |                |               |
| Acenaphthene                          | 15.48                                      | 1.00   | 25              | 0                                   | 61.9     | 40             | 140          |                             |                                                    |                |               |
| Acenaphthylene                        | 16.29                                      | 1.00   | 25              | 0                                   | 65.2     | 40             | 140          |                             |                                                    |                |               |
| Acetophenone                          | 15.04                                      | 1.00   | 25              | 0                                   | 60.2     | 40             | 140          |                             |                                                    |                |               |
| Aniline                               | 19.26                                      | 5.00   | 25              | 0                                   | 77.0     | 40             | 140          |                             |                                                    |                |               |
| Anthracene                            | 17.08                                      | 1.00   | 25              | 0                                   | 68.3     | 40             | 140          |                             |                                                    |                |               |
| Azobenzene                            | 16.54                                      | 5.00   | 25              | 0                                   | 66.2     | 40             | 140          |                             |                                                    |                |               |
| Qualifiers: BRL Below Reporting Limit | g Linit                                    |        | E Value a       | Value above quantitation range      | mgc      |                | H Ho         | Iding times for p           | Holding times for preparation or analysis exceeded | lysis exceeder |               |
|                                       | Analyte detected below quantitation limits |        | ND Not Det      | Not Detected at the Reporting Limit | ng Linit |                |              | RPD outside recovery limits | ry limits                                          |                | _             |
| S Spike Recovery                      | Spike Recovery outside recovery limits     |        |                 |                                     |          |                |              |                             |                                                    | Page           | Page 12 of 26 |

0804475 Work Order:

WM-046, 1.4 Exp

Project:

TestCode: 8270\_w

| Complete    | Sample ID: LCS-10022        | SampType: LCS                  | TestCo | TestCode: 8270_w | Units: µg/L            |         | Prep Date:     | 5/1/2008 |             | RunNo: 23488    | 88              |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------|--------|------------------|------------------------|---------|----------------|----------|-------------|-----------------|-----------------|----------|
| 14.86   0.100   25   0.643   0.460   0.643   0.643   0.643   0.440   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643   0.643     |                             | Batch ID: 10022                | Test   | Vo: SW8Z70C      | (SW3510)               | -       | Analysis Date: |          |             | SeqNo: 230      | 786             |          |
| 14.86   0.100   25   0   64.3   40   140   140   14.86   0.100   25   0   64.3   40   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   14   | Analyte                     | Result                         | PaL    | SPK value        | SPK Ref Val            | %REC    |                |          | ef Val      | %RPD            | RPDLimit        | Qual     |
| 17.56   0.500   25   0   64.3   40   140   140   141   14.56   0.500   25   0   77.2   40   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   14   | Benz(a)Anthracene           | 14,86                          | 0.100  | 25               | 0                      | 59.5    | 40             | 140      |             |                 |                 |          |
| 17.56   1.050   25   1.02   40   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   1   | Велzo(a)Ругепе              | 16,08                          | 0.100  | 25               | 0                      | 64.3    | 40             | 140      |             |                 |                 |          |
| 48.08         1.00         25         0         72.3         40         140           17.89         0.500         25         0         55.6         40         140           18.99         1.00         25         0         55.6         40         140           ther         17.13         1.00         25         0         68.5         40         140           ther         1.04         25         0         68.5         40         140           ther         1.00         25         0         68.5         40         140           ther         1.00         25         0         68.5         40         140           ther         1.00         25         0         61.7         40         140           18.40         1.00         25         0         67.8         40         140           18.50         1.00         25         0         67.8         40         140           18.57         1.00         25         0         67.8         40         140           18.57         1.00         25         0         62.8         40         140           18.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Benzo(b)Fluoranthene        | 17.56                          | 0.500  | 25               | 0                      | 70.2    | 40             | 140      |             |                 |                 |          |
| rane 17.60 0.500 2.5 0 70.4 40 140  Fig. 1.50 2.5 0 0 56.6 4.0 140  Fig. 1.00 2.5 0 0 64.6 4.0 140  Fig. 1.00 2.5 0 0 67.2 4.0 140  Fig. 1.00 2.5 0 0 77.8 4.0 140  Fig. 1.00 2.5 0 0 77.8 4.0 140  Fig. 1.00 2.5 0 0 77.8 4.0 140  Fig. 1.00 2.5 0 0 67.2 4.0 140  Fig. 1.00 2.5 0 0 67.5 4.0 140  Fig. 1.00 2.5 0 0 0 67.5 4.0 140  Fig. 1.00 2.5 0 0 0 67.5 4.0 140  Fig. 1.00 2.0 0 0 67.5 4.0 140  Fig. 1.00 2.0 0 0 67.5 4.0 140  Fig. 1.00 2.0 0 0 67.5 | Benzo(g,h,i)Perylene        | 18.08                          | 1.00   | 25               | 0                      | 72.3    | 40             | 140      |             |                 |                 |          |
| 13.89 1.00 25 0 65.6 40 140  her 14.05 1.00 25 0 68.5 40 140  her 14.05 1.00 25 0 68.5 40 140  her 14.05 1.00 25 0 68.5 40 140  112.94 1.00 25 0 64.2 40 140  118.46 1.00 25 0 67.5 40 140  118.40 1.00 25 0 67.5 40 140  118.40 1.00 25 0 67.5 40 140  118.50 1.00 25 0 67.5 40 140  118.50 1.00 25 0 67.5 40 140  118.50 1.00 25 0 67.5 40 140  118.50 1.00 25 0 67.5 40 140  118.50 1.00 25 0 67.5 40 140  118.50 1.00 25 0 67.5 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140  118.50 1.00 25 0 67.7 40 140 | Benzo(k)Fluoranthene        | 17.60                          | 0.500  | 25.              | 0                      | 70.4    | 40             | 140      |             |                 |                 |          |
| her 17.13 1.00 25 0 68.5 40 140  her 16.16 1.00 25 0 64.6 40 140  her 12.94 1.00 25 0 51.7 40 140  12.54 1.00 25 0 51.7 40 140  18.90 1.00 25 0 51.7 40 140  18.90 1.00 25 0 51.2 40 140  18.80 1.00 25 0 54.8 40 140  18.80 1.00 25 0 64.1 40 140  18.80 1.00 25 0 64.1 40 140  18.80 1.00 25 0 64.1 40 140  18.80 1.00 25 0 64.1 40 140  18.80 1.00 25 0 64.1 40 140  18.80 1.00 25 0 64.1 40 140  18.80 1.00 25 0 64.1 40 140  18.43 0.10 25 0 65.7 40 140  18.43 0.10 25 0 65.7 40 140  18.44 0.10 25 0 65.7 40 140  18.58 0.10 25 0 65.7 40 140  18.58 0.10 25 0 65.7 40 140  18.59 0.10 25 0 65.7 40 140  18.50 0.10 25 0 65.7 40 140  18.50 0.10 25 0 65.7 40 140  18.50 0.10 25 0 65.7 40 140  18.50 0.10 25 0 65.7 40 140  18.50 0.10 25 0 65.7 40 140  18.50 0.10 25 0 65.7 40 140  18.50 0.10 25 0 65.7 40 140  18.50 0.10 25 0 65.7 40 140  18.50 0.10 0.5 5.0 0 65.7 40 140  18.50 0.10 0.5 5.0 0 65.7 40 140  18.50 0.10 0.5 5.0 0 65.7 40 140  18.50 0.10 0.5 5.0 0 65.7 40 140  18.50 0.10 0.5 5.0 0 65.7 40 140  18.50 0.10 0.5 5.0 0 65.7 40 140  18.50 0.10 0.5 5.0 0 65.7 40 140  18.50 0.10 0.5 5.0 0 65.7 40 140  18.50 0.10 0.5 5.0 0 65.7 40 140  18.50 0.10 0.5 5.0 0 65.7 40 140  18.50 0.10 0.5 5.0 0 65.7 40 140  18.50 0.10 0.5 5.0 0 65.7 40 140  18.50 0.10 0.5 5.0 0 65.7 40 140  18.50 0.10 0.5 5.0 0 65.7 40 140  18.50 0.10 0.5 5.0 0 65.7 40 140  18.50 0.10 0.5 5.0 0 65.7 40 140  18.50 0.10 0.5 5.0 0 65.7 40 140  18.50 0.10 0.5 5.0 0 65.7 40 140  18.50 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Benzyl Alcohol              | 13.89                          | 1.00   | . 25             | 0                      | 55.6    | 40             | 140      |             |                 |                 |          |
| ther 16.16 1.00 25 0 64.6 40 140  te 12.94 1.00 25 0 56.2 40 140  18.46 1.00 25 0 51.7 40 140  18.5 1.00 25 0 51.7 40 140  18.5 1.00 25 0 51.8 40 140  18.5 1.00 25 0 67.8 40 140  16.02 1.00 25 0 67.8 40 140  16.02 1.00 25 0 67.8 40 140  16.02 1.00 25 0 64.1 40 140  17.2 4 1.00 25 0 64.1 40 140  18.6 1.00 25 0 64.1 40 140  18.6 1.00 25 0 64.1 40 140  18.6 1.00 25 0 64.1 40 140  18.6 1.00 25 0 64.1 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 25 0 67.8 40 140  18.6 1.00 140  18.6 1.00 140  18.6 1.00 140  18.6 1.00 140  18.6 1.00  | Bis(2-Chloroethoxy)Methane  | 17.13                          | 1.00   | 25               | . 0                    | 68.5    | 40             | 140      |             |                 |                 |          |
| te 14.05 1.00 25 0 56.2 40 140 12.54 1.00 25 0 51.7 40 140 12.54 1.00 25 0 51.7 40 140 16.90 1.00 25 0 73.8 40 140 16.80 1.00 25 0 67.6 40 140 16.80 1.00 25 0 67.6 40 140 172.24 1.00 25 0 64.1 40 140 173.24 1.00 25 0 64.1 40 140 173.24 1.00 25 0 64.1 40 140 173.24 1.00 25 0 64.1 40 140 173.24 1.00 25 0 64.1 40 140 173.24 1.00 25 0 64.1 40 140 173.24 1.00 25 0 64.1 40 140 173.24 1.00 25 0 64.1 40 140 173.24 1.00 25 0 64.1 40 140 173.24 1.00 25 0 64.1 40 140 173.24 1.00 25 0 64.1 40 140 173.24 1.00 25 0 64.1 40 140 173.24 1.00 25 0 64.1 40 140 173.24 1.00 25 0 64.1 40 140 173.25 1.00 25 0 64.1 40 140 173.26 1.00 25 0 64.1 40 140 173.27 1.00 25 0 64.1 40 140 173.28 6 1.00 25 0 64.1 40 140 173.29 1.00 25 0 64.1 40 140 173.20 1.00 25 0 64.1 40 140 173.20 1.00 25 0 64.1 40 140 173.20 1.00 25 0 64.1 40 140 173.20 1.00 25 0 64.1 40 140 173.20 1.00 25 0 64.1 40 140 173.20 1.00 25 0 64.1 40 140 173.20 1.00 25 0 64.1 40 140 173.20 1.00 25 0 64.1 40 140 173.20 1.00 25 0 64.1 40 140 173.20 1.00 25 0 64.1 40 140 173.20 1.00 25 0 64.1 40 140 173.20 1.00 25 0 64.1 40 140 173.20 1.00 25 0 64.1 40 140 173.20 1.00 25 0 64.1 40 140 173.20 1.00 25 0 64.1 40 140 173.20 1.00 25 0 64.1 40 140 173.20 1.00 25 0 64.1 40 140 173.20 1.00 25 0 64.1 40 140 173.20 1.00 25 0 64.1 40 140 174.20 1.00 25 0 64.1 40 140 175.20 1.00 25 0 64.1 40 140 175.20 1.00 25 0 64.1 40 140 175.20 1.00 25 0 64.1 40 140 175.20 1.00 25 0 64.1 40 140 175.20 1.00 25 0 64.1 40 140 175.20 1.00 25 0 64.1 40 140 175.20 1.00 25 0 64.1 40 140 175.20 1.00 25 0 64.1 40 140 175.20 1.00 25 0 64.1 40 140 175.20 1.00 25 0 64.1 40 140 175.20 1.00 25 0 64.1 40 140 175.20 1.00 25 0 64.1 40 140 175.20 1.00 25 0 64.1 40 140 175.20 1.00 25 0 64.1 40 140 175.20 1.00 25 0 64.1 40 140 175.20 1.00 25 0 64.1 40 140 175.20 1.00 25 0 64.1 40 140 175.20 1.00 25 0 64.1 40 140 175.20 1.00 25 0 64.1 40 140 175.20 1.00 25 0 64.1 40 140 175.20 1.00 25 0 64.1 40 140 175.20 1.00 25 0 64.1 40 140 175.20 1.00 25 0 64.1 40 140 175.20 1.00 25 0 64.1 40 140 175.20 1.00 25 0 64.1 40 140 175.20 1.00 25 0  | Bis(2-Chloroethyl)Ether     | 16.16                          | 1.00   | 25               | 0                      | 64.6    | 40             | 140      |             |                 |                 |          |
| (e)         12.94         1.00         25         0         51.7         40         140           12.54         1.00         25         0         50.2         40         140           18.66         1.00         25         0         50.2         40         140           18.67         1.00         25         0         67.2         40         140           16.80         1.00         25         0         67.2         40         140           16.80         1.00         25         0         67.2         40         140           12.24         1.00         25         0         67.2         40         140           12.24         1.00         25         0         63.4         40         140           13.20         1.00         25         0         63.4         40         140           14.3         1.00         25         0         65.8         40         140           14.4         1.00         25         0         65.7         40         140           12.74         1.00         25         0         61.5         40         140           12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bis(2-Chloroisopropyl)Ether | 14.05                          | 1.00   | 25               | 0                      | 56.2    | 40             | 140      |             |                 |                 |          |
| 12.54         1,00         25         0         50.2         40         140           18.46         1,00         25         0         67.6         40         140           18.90         1,00         25         0         67.6         40         140           16.80         1,00         25         0         67.2         40         140           16.80         1,00         25         0         67.2         40         140           15.24         1,00         25         0         67.2         40         140           15.86         1,00         25         0         64.1         40         140           13.20         1,00         25         0         62.8         40         140           14.19         1,00         25         0         65.7         40         140           16.43         1,10         25         0         65.7         40         140           16.44         1,00         25         0         65.7         40         140           16.53         0,100         25         0         62.2         40         140           16.56         1,00 <td>Bis(2-Ethylhexyl)Phthalate</td> <td>12.94</td> <td>1.00</td> <td>25</td> <td>0</td> <td>51.7</td> <td>40</td> <td>140</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bis(2-Ethylhexyl)Phthalate  | 12.94                          | 1.00   | 25               | 0                      | 51.7    | 40             | 140      |             |                 |                 |          |
| 18.46         1,00         25         0         73.8         40         140           16.90         1,00         25         0         67.6         40         140           16.02         1,00         25         0         67.2         40         140           16.02         1,00         25         0         64.1         40         140           16.02         1,00         25         0         64.1         40         140           12.24         1,00         25         0         64.1         40         140           14.28         1,00         25         0         64.1         40         140           18.67         1,00         25         0         65.8         40         140           14.19         1,00         25         0         65.7         40         140           16.43         0,100         25         0         65.7         40         140           16.43         0,100         25         0         65.7         40         140           16.43         0,100         25         0         65.7         40         140           16.56         1,00<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Butyl Benzyl Phthalate      | 12.54                          | 1.00   | 25               | 0                      | 50.2    | 40             | 140      |             |                 |                 |          |
| 16.90         1,00         25         0         67.6         40         140           13.71         0,100         25         0         64.8         40         140           16.80         1,00         25         0         64.1         40         140           15.24         1,00         25         0         63.4         40         140           15.86         1,00         25         0         63.4         40         140           13.20         1,00         25         0         63.4         40         140           18.67         1,00         25         0         63.4         40         140           14.19         1,00         25         0         65.8         40         140           14.19         0,100         25         0         65.7         40         140           15.38         0,100         25         0         61.5         40         140           15.58         0,100         25         0         61.5         40         140           15.58         0,100         25         0         61.5         40         140           14.46         1 </td <td>Carbazole</td> <td>18.46</td> <td>1.00</td> <td>25</td> <td>0</td> <td>73.8</td> <td>40</td> <td>140</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Carbazole                   | 18.46                          | 1.00   | 25               | 0                      | 73.8    | 40             | 140      |             |                 |                 |          |
| 13.71         0.100         25         0         64.1         40         140           16.80         1.00         25         0         64.1         40         140           16.02         1.00         25         0         64.1         40         140           12.24         1.00         25         0         63.4         40         140           13.20         1.00         25         0         63.4         40         140           14.19         1.00         25         0         74.7         40         140           14.19         1.00         25         0         74.7         40         140           14.19         0.100         25         0         74.7         40         140           14.24         0.100         25         0         65.7         40         140           15.38         0.100         25         0         61.5         40         140           15.46         1.00         25         0         61.5         40         140           14.46         1.00         25         0         62.2         40         140           16.36         50 </td <td>Chrysene</td> <td>16,90</td> <td>1.00</td> <td>25</td> <td>0</td> <td>9'29</td> <td>40</td> <td>140</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chrysene                    | 16,90                          | 1.00   | 25               | 0                      | 9'29    | 40             | 140      |             |                 |                 |          |
| 16.80 1.00 25 0 67.2 40 140 16.02 1.00 25 0 64.1 40 140 17.24 1.00 25 0 64.1 40 140 18.67 1.00 25 0 68.4 40 140 18.67 1.00 25 0 747 40 140 14.19 1.00 25 0 56.8 40 140 13.68 0.100 25 0 56.8 40 140 12.74 1.00 25 0 56.8 40 140 12.75 1.00 25 0 56.8 40 140 12.86 0.100 25 0 51.0 40 140 12.65 0.100 25 0 51.0 40 140 14.46 1.00 25 0 61.5 40 140 14.46 1.00 25 0 61.5 40 140 15.61 1.00 25 0 61.5 40 140 16.36 2.00 25 0 62.4 40 140 16.36 2.00 25 0 62.4 40 140 16.36 2.00 25 0 62.4 40 140 16.36 2.00 25 0 62.4 40 140 16.36 2.00 25 0 62.4 40 140 16.36 2.00 25 0 62.4 40 140 16.36 2.00 25 0 62.4 40 140 16.36 2.00 25 0 62.4 40 140 16.36 2.00 25 0 62.4 40 140 16.36 2.00 25 0 62.4 40 140 16.36 2.00 25 0 62.4 40 140 16.36 2.00 25 0 62.4 40 140 16.36 2.00 25 0 62.4 40 140 16.36 2.00 25 0 62.4 40 140 16.36 2.00 25 0 62.4 40 140 16.36 2.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 25 0 62.4 40 140 17.00 2  | Dibenz(a,h)Anthracene       | 13.71                          | 0.100  | 25               | 0                      | 54.8    | 40             | . 140    |             |                 |                 |          |
| 16.02 1.00 25 0 64.1 40 140 140 140 140 140 140 140 140 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dibenzofuran                | 16.80                          | 1.00   | 25               | 0                      | 67.2    | 40             | 140      |             |                 |                 |          |
| 12.24         1.00         25         0         49.0         40         140           15.86         1.00         25         0         63.4         40         140           13.20         1.00         25         0         52.8         40         140           14.19         1.00         25         0         74.7         40         140           14.19         1.00         25         0         56.8         40         140           14.39         0.100         25         0         54.7         40         140           15.38         0.100         25         0         54.7         40         140           15.38         0.100         25         0         65.7         40         140           15.38         0.100         25         0         61.2         40         140           16.58         1.00         25         0         62.2         40         140           14.46         1.00         25         0         62.2         40         140           16.59         5.00         25         0         65.4         40         140           16.36         5.0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Diethyl Phthalate           | 16,02                          | 1.00   | 25               | 0                      | 64.1    | 40             | 140      |             |                 | ٠               |          |
| 15.86         1.00         25         0         63.4         40         140           13.20         1.00         25         0         74.7         40         140           18.67         1.00         25         0         74.7         40         140           14.19         1.00         25         0         65.7         40         140           14.19         1.00         25         0         65.7         40         140           13.68         0.100         25         0         51.0         40         140           15.38         0.100         25         0         62.2         40         140           16.56         1.00         25         0         62.2         40         140           14.46         1.00         25         0         62.2         40         140           16.56         1.00         25         0         62.2         40         140           16.36         5.00         25         0         62.4         40         140           16.36         5.00         25         0         62.4         40         140           16.36         5.00 </td <td>Dimethyl Phthalate</td> <td>12.24</td> <td>1.00</td> <td>25</td> <td>0</td> <td>49.0</td> <td>40</td> <td>140</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dimethyl Phthalate          | 12.24                          | 1.00   | 25               | 0                      | 49.0    | 40             | 140      |             |                 |                 |          |
| 13.20         1.00         25         0         52.8         40         140           18.67         1.00         25         0         74.7         40         140           14.19         1.00         25         0         56.8         40         140           16.43         0.100         25         0         65.7         40         140           13.68         0.100         25         0         54.7         40         140           12.74         1.00         25         0         61.5         40         140           15.38         0.100         25         0         61.5         40         140           28.66         1.00         25         0         61.5         40         140           14.46         1.00         25         0         62.2         40         140           14.46         1.00         25         0         62.4         40         140           16.36         5.00         25         0         62.4         40         140           16.36         5.00         25         0         62.4         40         140           16.36         5.00<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Di-n-Butyl Phthalate        | 15.86                          | 1.00   | 25               | 0                      | 63.4    | 40             | 140      |             |                 |                 |          |
| 18.67         1,00         25         0         74.7         40         140           14.19         1,00         25         0         56.8         40         140           16.43         0,100         25         0         65.7         40         140           13.68         0,100         25         0         54.7         40         140           15.38         0,100         25         0         61.5         40         140           28.66         1,00         25         0         62.2         40         140           16.58         1,00         25         0         62.2         40         140           14.46         1,00         25         0         62.2         40         140           12.05         5.00         25         0         62.4         40         140           aw Reporting Limit         16.36         5.00         25         0         65.4         40         140           aw Reporting Limit         16.36         5.00         25         0         65.4         40         140           aw Reporting Limit         16.36         140         140         140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Di-n-Octyl Phthalate        | 13.20                          | 1.00   | 25               | 0                      | 52.8    | 40             | 140      |             |                 |                 |          |
| 14.19       1.00       25       0       56.8       40       140         16.43       0.100       25       0       65.7       40       140         13.68       0.100       25       0       54.7       40       140         12.74       1.00       25       0       61.5       40       140         28.66       1.00       25       0       62.2       40       140         15.66       1.00       25       0       62.2       40       140         14.46       1.00       25       0       62.2       40       140         14.46       1.00       25       0       62.4       40       140         15.01       25       0       62.4       40       140         16.36       5.00       25       0       62.4       40       140         w Reporting Limit       16.36       1.00       55       0       65.4       40       140         w Reporting Limit       5.00       25       0       65.4       40       140         w Reporting Limit       1.00       1.00       1.00       1.00       1.00       1.00       1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fluoranthene                | 18.67                          | 1.00   | 25               | 0                      | 74.7    | 40             | 140      |             |                 |                 |          |
| 16.43         0.100         25         0         65.7         40         140           13.68         0.100         25         0         54.7         40         140           12.74         1.00         25         0         61.5         40         140           15.38         0.100         25         0         61.5         40         140           15.66         1.00         25         0         62.2         40         140           14.46         1.00         25         0         62.2         40         140           16.05         5.00         25         0         62.4         40         140           16.36         5.00         25         0         62.4         40         140           16.36         5.00         25         0         62.4         40         140           16.36         5.00         25         0         65.4         40         140           16.36         5.00         25         0         65.4         40         140           16.36         5.00         25         0         65.4         40         140           16.60         16.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fluorene                    | 14,19                          | 1.00   | 25               | .0                     | 56.8    | 40             | 140      |             |                 |                 |          |
| 13.68         0.100         25         0         54.7         40         140           12.74         1.00         25         0         61.5         40         140           15.38         0.100         25         0         61.5         40         140           28.66         1.00         25         0         62.2         40         140           15.56         1.00         25         0         62.2         40         140           12.05         5.00         25         0         48.2         40         140           16         15.61         1.00         25         0         62.4         40         140           16.36         5.00         25         0         62.4         40         140           16.36         5.00         25         0         65.4         40         140           16.36         5.00         25         0         65.4         40         140           16.36         5.00         25         0         65.4         40         140           16.36         5.00         25         0         65.4         40         140           16.36 <td>Hexachlorobenzene</td> <td>16.43</td> <td>0.100</td> <td>25</td> <td>0</td> <td>65.7</td> <td>40</td> <td>140</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hexachlorobenzene           | 16.43                          | 0.100  | 25               | 0                      | 65.7    | 40             | 140      |             |                 |                 |          |
| 12.74         1.00         25         0         51.0         40         140           15.38         0.100         25         0         61.5         40         140           28.66         1.00         25         0         145         40         140           15.56         1.00         25         0         62.2         40         140           14.46         1.00         25         0         48.2         40         140           16.36         5.00         25         0         62.4         40         140           16.36         5.00         25         0         62.4         40         140           16.36         5.00         25         0         65.4         40         140           16.36         5.00         25         0         65.4         40         140           16.36         5.00         25         0         65.4         40         140           16.36         5.00         25         0         65.4         40         140           16.36         5.00         25         0         65.4         40         140           16.40         1.00 <td>Hexachlorobutadiene</td> <td>13.68</td> <td>0.100</td> <td>25</td> <td>0</td> <td>54.7</td> <td>40</td> <td>140</td> <td></td> <td></td> <td>-</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hexachlorobutadiene         | 13.68                          | 0.100  | 25               | 0                      | 54.7    | 40             | 140      |             |                 | -               |          |
| 15.38         0.100         25         0         61.5         40         140           28.66         1.00         25         0         145         40         140           15.56         1.00         25         0         62.2         40         140           14.46         1.00         25         0         67.8         40         140           16.05         5.00         25         0         62.4         40         140           16.36         5.00         25         0         65.4         40         140           16.36         5.00         25         0         65.4         40         140           16.36         5.00         25         0         65.4         40         140           16.36         5.00         25         0         65.4         40         140           16.36         5.00         25         0         65.4         40         140           16.36         5.00         25         0         65.4         40         140           16.40         140         140         140         140         140           16.36         16.56         16.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hexachloroethane            | 12.74                          | 1.00   | 25               | 0                      | 51.0    | 40             | 140      |             |                 |                 |          |
| 28.66         1.00         25         0         140         140           15.56         1.00         25         0         62.2         40         140           14.46         1.00         25         0         57.8         40         140           1e         12.05         5.00         25         0         62.4         40         140           over Reporting Limit         16.36         5.00         25         0         65.4         40         140           over Reporting Limit         E         Value above quantitation range         H         Holding times for preparation or analysis calculate recovery limits           xe Recovery outside recovery limits         RD outside recovery limits         RD outside recovery limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Indeno(1,2,3-cd)Pyrene      | 15,38                          | 0.100  | 25               | 0                      | 61.5    | 40             | 140      |             |                 |                 |          |
| 15.56         1.00         25         0         62.2         40         140           14.46         1.00         25         0         57.8         40         140           12.05         5.00         25         0         48.2         40         140           16.36         5.00         25         0         62.4         40         140           16.36         5.00         25         0         65.4         40         140           16.36         5.00         25         0         65.4         40         140           16.36         5.00         25         0         65.4         40         140           16.36         5.00         25         0         65.4         40         140           16.36         5.00         25         0         65.4         40         140           16.36         5.00         25         0         65.4         40         140           16.36         4         40         140         140         140         140           16.36         5.00         5         4         40         140         140         140           16.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | isophorone                  | 28.66                          | 1.00   | 25               | 0                      | 115     | 40             | 140      |             |                 |                 |          |
| 14.46         1.00         25         0         57.8         40         140           12.05         5.00         25         0         48.2         40         140           16.36         1.00         25         0         62.4         40         140           ow Reporting Limit         E         Value above quantitation range         H         Holding times for preparation or analysis calculation that it is Reporting Limit         R         RPD outside recovery limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Naphthalene                 | 15.56                          | 1.00   | 25               | 0                      | 62.2    | 40             | 140      |             |                 |                 |          |
| 12.05         5.00         25         0         48.2         40         140           16.36         1.00         25         0         62.4         40         140           16.36         5.00         25         0         65.4         40         140           1 We porting Limit         E         Value above quantitation range         E         Value above quantitation range         H         Holding times for preparation or analysis can be recovery limits           1 Se Recovery outside recovery limits         RD outside recovery limits         R         RPD outside recovery limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Nitrobenzene                | 14.46                          | 1.00   | 25               | 0                      | 57.8    | 40             | 140      |             |                 |                 |          |
| 16.36 1.00 25 0 62.4 40 140  16.36 5.00 25 0 65.4 40 140  19. Reporting Limit E Value above quantitation range H Holding times for preparation or analysis calculated below quantitation limits ND Not Detected at the Reporting Limit R RPD outside recovery limits is Recovery purities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N-Nitrosodimethylamine      | 12.05                          | 5.00   | 25               | 0                      | 48.2    | 40             | 140      |             |                 |                 |          |
| 16.36 5.00 25 0 65.4 40 140  The separation limits    ND Not Detected at the Reporting Limit    RESERVENCY purisible recovery limits    REPD outside REPORT    REPORT  | N-Nitrosodi-л-Propylamine   | 15.61                          | 1.00   | . 25             | 0                      | 62.4    | 40             | 140      |             |                 |                 |          |
| BRL Below Reporting Limit  J Analyte detected below quantitation limits  Spike Recovery outside recovery limits  E Value above quantitation range  H Holding times for preparation or analysis ex  R RPD outside recovery limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N-Nitrosodiphenylamine      | 16.36                          | 5.00   | 25               | 0                      | 65.4    | 40             | 140      |             |                 |                 |          |
| Analyte detected below quantitation limits ND Not Detected at the Reporting Limit  Spike Recovery outside recovery limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BRL                         | ting Limit                     |        | Ċ                | above quantitation ran | ge      |                |          | imes for pr | eparation or an | alysis exceeded | 1        |
| Spike Recovery outside recovery limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             | cted below quantitation limits |        |                  | tected at the Reportin | s Limit |                |          | ide recover | y limits        |                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | ery outside recovery limits    |        |                  |                        |         |                |          |             |                 | Dane            | 13.05.76 |

0804475 Work Order: WM-046, 1.4 Exp

**Project:** 

TestCode: 8270\_w

ANALYTICAL QC SUMMARY REPORT

| Sample ID: LCS-10022       | SampType: LCS   | TestCode: 8270_w | Units: pg/L           |      | Prep Dat     | Prep Date; 5/1/2008            |           | RunNo: 23488  | 80                 |      |
|----------------------------|-----------------|------------------|-----------------------|------|--------------|--------------------------------|-----------|---------------|--------------------|------|
| Client ID: ZZZZ            | Batch (D: 10022 | TestNo: SW8270C  | C (SW3510)            | -    | Analysis Dat | Analysis Date: 5/2/2008        |           | SeqNo: 230786 | 86                 |      |
| Analyte                    | Result          | PQL SPK value    | SPK value SPK Ref Val | %REC | LowLimit     | LowLimit HighLimit RPD Ref Val | D Ref Val | %RPD          | %RPD RPDLimit Qual | Qual |
| Pentachlorophenol          | 21.62           | 1.00 25          | 5 0                   | 86.5 | 30           | 130                            |           |               |                    |      |
| Phenanthrene               | 17.12           | 1.00 25          | . 0                   | 68.5 | 40           | 140                            | -         |               |                    |      |
| Phenol                     | 8.705           | 1.00             | 0 2                   | 34.8 | 30           | 130                            |           |               |                    |      |
| Pyrene                     | 14.20           | 1.00 25          | 0                     | 56.8 | 40           | 140                            |           |               |                    |      |
| Pyridine                   | 10.14           | 5.00             | 0                     | 40.6 | 40           | 140                            |           |               |                    |      |
| Surr: 2,4,6-Tribromophenol | 1.610           | 0 75             | 0 2                   | 2.15 | 15           | 110                            |           |               |                    | S    |
| Surr: 2-Fluorobiphenyi     | 30.29           | 0 50             | 0 0                   | 9.09 | 30           | 130                            |           | ٠             |                    |      |
| Surr: 2-Fluorophenol       | 31.20           | 0 75             | 0 2                   | 41.6 | 15           | 110                            |           |               |                    |      |
| Surr: Nitrobenzene-d5      | 28.62           | 0 50             | 0 (                   | 57.2 | 30           | 130                            |           |               |                    |      |
| Surr: Phenol-d6            | 22.49           | 0 75             | 0                     | 30.0 | 15           | 110                            |           |               |                    |      |
| Surr: Terphenyl-d14        | 29.31           | 0 50             | 0 (                   | 58.6 | 30           | 130                            |           |               |                    |      |
|                            |                 |                  |                       |      |              |                                |           |               |                    |      |

E Value above quantitation range ND Not Detected at the Reporting Limit Analyte detected below quantitation limits Spike Recovery outside recovery limits

BRL Below Reporting Limit

Qualifiers:

- s

Holding times for preparation or analysis exceeded RPD outside recovery limits H K

RPD outside recovery limits

E Value above quantitation range ND Not Detected at the Reporting Limit

J Analyte detected below quantitation limits Spike Recovery outside recovery limits

BRL Below Reporting Limit

Qualifiers:

CLIENT: Fay, Spofford & Thomdike

Work Order: 0804475

WM-046, 1.4 Exp

Project:

TestCode: AG\_W

| Sample ID: WB-10030  | SampType: MBLK  | TestCoα | TestCode: AG_W | Units: mg/L           |      | Prep Date     | Prep Date: 5/1/2008                 | RunNo: 23444       |      |
|----------------------|-----------------|---------|----------------|-----------------------|------|---------------|-------------------------------------|--------------------|------|
| Client ID: ZZZZZ     | Batch ID: 10030 | Test    | estNo: 200.7   | (SW3010A)             |      | Analysis Dat  | Analysis Date: 5/1/2008             | SeqNo: 230172      |      |
| Analyte              | Result          | PQL     | SPK value      | SPK value SPK Ref Val | %REC | LowLinnit     | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual | Qual |
| Silver               | ON              | 0.00700 |                |                       |      |               |                                     |                    |      |
| Sample ID: LCS-10030 | SampType: LCS   | TestCoo | TestCode: AG_W | Units: mg/L           |      | Prep Date     | Prep Date: 5/1/2008                 | RunNo: 23444       |      |
| Client ID: ZZZZZ     | Batch ID; 10030 | Test    | TestNo: 200.7  | (SW3010A)             |      | Analysis Datı | Analysis Date: 5/1/2008             | SeqNo: 230173      |      |
| Analyte              | Result          | PQL     | SPK value      | SPK value SPK Ref Val | %REC | LowLimit      | "REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual | Qual |
| Silver               | 0.4440          | 0.00700 | 0.5            | 0,004                 | 88.0 | 80            | 120                                 |                    |      |

0804475 Work Order: WM-046, 1.4 Exp

Project:

TestCode: CN\_W\_SM

ANALYTICAL QC SUMMARY REPORT

| Sample ID: MB-R23624                      | SampType: MBLK                    | TestCo | TestCode: CN_W_SM                        | Units: mg/L  |      | Prep Date;                   | ;e                                     | RunNo: 23624                           |      |
|-------------------------------------------|-----------------------------------|--------|------------------------------------------|--------------|------|------------------------------|----------------------------------------|----------------------------------------|------|
| Client ID: ZZZZZ                          | Batch ID: R23624                  | Test   | TestNo: SM 4500-CN-                      | <del>,</del> | •    | Analysis Date                | Analysis Date: 5/12/2008               | SeqNo: 232074                          |      |
| Analyte                                   | Result                            | POL    | SPK value SPK Ref Val                    | SPK Ref Val  | %REC | LowLimiŧ                     | %REC LowLimit HighLimit RPD Ref Val    | %RPD RPDLimit                          | Qual |
| Cyanide, Total                            | ΩN                                | 0.0197 |                                          |              |      |                              |                                        | ************************************** |      |
| Sample ID: LCS-R23624<br>Client ID: ZZZZZ | SampType: LCS<br>Batch ID: R23624 | TestCo | FestCode: CN_W_SM<br>TestNo: SM 4500-CN- | Units: mg/L  | ,    | Prep Date:<br>Analysis Date: | Prep Date:<br>Analysis Date: 5/12/2008 | RunNo: 23624<br>SeqNo: 232075          |      |
| Analyte                                   | Result                            | POL    | SPK value SPK Ref Val                    | SPK Ref Val  | %REC | LowLimit                     | "REC LowLimit HighLimit RPD Ref Val    | %RPD RPDLimit                          | Quai |
| Cyanide, Total                            | 0,1726                            | 0.0197 | 0.183                                    | 0            | 94.3 | 85                           | 115                                    |                                        |      |

BRL Below Reporting Limit

Qualifiers:

Analyte detected below quantitation limits Spike Recovery outside recovery limits

ND Not Detected at the Reporting Limit

E Value above quantitation range

Holding times for preparation or analysis exceeded

RPD outside recovery limits

RPD outside recovery limits

**# %** 

E Value above quantitation range ND Not Detected at the Reporting Limit

> Analyte detected below quantitation limits Spike Recovery outside recovery limits

- s

BRL Below Reporting Limit

Qualifiers:

CLIENT: Fay, Spofford & Thorndike

Work Order: 0804475

WM-046, 1.4 Exp

Project:

TestCode: Cr6\_WW

| Sample ID: MB-R23406  | SampType: MBLK   | TestCo  | TestCode: Cr6_WW      | Units: mg/L |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prep Date:                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RunNo: 23406         |                                         |
|-----------------------|------------------|---------|-----------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------|
| Client ID: ZZZZZ      | Batch ID: R23406 | Test    | estNo: M3500-Cr D     | 0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analysis Date: 5/1/2008             | 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SeqNo: <b>229635</b> |                                         |
| Analyte               | Result           | POL     | SPK value SPK Ref Val | SPK Ref Val | %REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | %REC LowLimit HighLimit RPD Ref Val | nit RPD Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %RPD RPDLimit Qual   | Qual                                    |
| Chromium, Hexavalent  | , ON             | 0.0500  |                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                         |
| Sample ID: LCS-R23406 | SampType: LCS    | TestCoc | TestCode: Cr6_WW      | Units: mg/L | Mary and the state of the state | Prep Date:                          | The second secon | RunNo: 23406         | *************************************** |
| Client ID: ZZZZZ      | Batch ID: R23406 | Testh   | estNo: M3500-Cr D     |             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Analysis Date: 5/1/2008             | 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SeqNo: <b>229636</b> |                                         |
| Analyte               | Result           | PQL     | SPK value SPK Ref Val | SPK Ref Val | %REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | %REC LowLimit HighLimit RPD Ref Val | nit RPD Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %RPD RPDLimit Qual   | Quai                                    |
| Chromium, Hexavalent  | 0.4430           | 0.0500  | 0.5                   | 0           | 88.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 85 115                              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                         |

Analyte detected below quantitation limits Spike Recovery outside recovery limits

- S

| REPORT       |  |
|--------------|--|
| OC SUMMARY   |  |
| ANALYTICAL C |  |

TestCode: EPHP W

| WM-046, 1.4 Exp |
|-----------------|
| Project:        |

0804475

Work Order: CLIENT:

Fay, Spofford & Thorndike

| Sample ID: MB-10035            | SampType: MBLK  | TestCo | TestCode: EPHP W             | Units: µg/L |      | Prep Date:                     | 5/2/2008                       | RunNo: 23517    |               |  |
|--------------------------------|-----------------|--------|------------------------------|-------------|------|--------------------------------|--------------------------------|-----------------|---------------|--|
| Client ID: ZZZZ                | Batch ID: 10035 | Test   | TestNo: MADEP EPH_ (eph_Wpr) | - (eph_Wpr) | Ā    | Analysis Date: <b>5/6/2008</b> | 5/6/2008                       | SeqNo: 231064   |               |  |
| Analyte                        | Result          | PQL    | SPK value                    | SPK Ref Val | %REC | LowLimit H                     | LowLimit HighLimit RPD Ref Val | %RPD RPD        | RPDLimit Qual |  |
| Naphthalene                    | S               | 1.00   |                              |             |      |                                |                                |                 |               |  |
| 2-Methylnaphthalene            | QV              | 1.00   |                              |             |      |                                |                                |                 |               |  |
| Acenaphthene                   | S               | 1.00   |                              |             |      |                                |                                |                 |               |  |
| Phenanthrene                   | QN              | 1.00   |                              |             |      |                                |                                |                 |               |  |
| Acenaphthylene                 | R               | 1.00   |                              |             |      |                                |                                |                 |               |  |
| Fluorene                       | Q               | 1.00   |                              |             |      |                                |                                |                 |               |  |
| Anthracene                     | QN              | 1.00   |                              |             |      |                                |                                |                 |               |  |
| Fluoranthene                   | QN              | 1.00   |                              |             |      |                                |                                |                 |               |  |
| Pyrene                         | S               | 1,00   |                              |             |      |                                |                                |                 |               |  |
| Benzo(a)Anthracene             | N               | 0.400  |                              |             |      |                                |                                |                 |               |  |
| Сһгуѕепе                       | Q               | 1.00   |                              |             |      |                                |                                |                 |               |  |
| Benzo(b)Fluoranthene           | QN              | 1.00   |                              |             |      |                                |                                |                 |               |  |
| Benzo(k)Fluoranthene           | QN              | 1.00   |                              | •           |      |                                |                                |                 |               |  |
| Benzo(a)Pyrene                 | 2               | 0.200  |                              |             |      |                                |                                |                 |               |  |
| Indeno(1,2,3-cd)Pyrene         | QN              | 0.400  |                              |             |      |                                |                                |                 |               |  |
| Dibenz(a,h)Anthracene          | QN              | 0.400  |                              |             |      |                                |                                |                 | -             |  |
| Benzo(g,h,i)Perylene           | QN              | 1.00   |                              |             |      |                                |                                |                 |               |  |
| Total PAH Target Concentration | QN.             | 0      |                              |             |      |                                |                                |                 |               |  |
| Surr; 2,2'-Diffuorobiphenyl    | 25.46           | 0      | 25                           | 0           | 102  | 40                             | 140                            |                 |               |  |
| Surr: 2-Fluorobiphenyl         | 21.05           | 0      | . 25                         | 0           | 84.2 | 40                             | 140                            |                 |               |  |
| Sample ID: LCS-10035           | SampType: I CS  | TestCo | PestCode: FDHD W             | Inite: ma/l |      | Prop Date:                     | E/9/2008                       | D. 1986. 2004.1 |               |  |

| Sample ID: LCS-1035         SampType: LCS         TestCode: EPHP_W         Units: µg/L         Prep Date: 5/2/2008         5/2/2008         RunNo: 23517           Client ID: LCS-1035         Batch ID: 10035         TestNo: MADEP EPH_ (eph_Wpr)         Analysis Date: 5/6/2008         5/6/2008         SeqNo: 231065           Analyte         Analyte         Sexult         PQL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val         %RPD         RPDLimit         Qualities           2-Methylnaphthalene         35.15         1.00         50         0         50         0         40         140         Analysis Date: 5/6/2008         Analysis core of a nulysis exceeded           Acenaphthalene         35.15         1.00         50         0         87.4         40         140         Analysis core of a nulysis exceeded           Acenaphthalene         43.68         1.00         50         0         87.4         40         140         Analysis exceeded           Acenaphthylinene         39.11         1.00         50         0         78.2         40         140         Analysis exceeded           Analyse detected below quantifaction limits         Brown Datested at the Reporting Limit         Brown Datested at the Reporting Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Surr: 2-Fivorobipnenyl               | nenyi                     | 21.05                | 0        | 25        | 0                            | 84.2    | 40                       | 140                        |                                    |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------|----------------------|----------|-----------|------------------------------|---------|--------------------------|----------------------------|------------------------------------|---|
| Result   PQL   SPK   Ref Val   %REC   LowLimit   HighLimit   RPD   Ref Val   RPD   Ref RPD   Ref RPD   | Sample ID: LCS-10<br>Client ID: ZZZZ | S                         | pe: LCS<br>ID: 10035 | TestCode | E EPHP_W  | Units: µg/L<br>PH_ (eph_Wpr) |         | Prep Dat<br>Analysis Dat | e; 5/2/2008<br>e: 5/6/2008 | RunNo: 23517<br>SeqNo: 231065      |   |
| Second Parameter   Second Period   Second Period  | Analyŧe                              |                           | Result               | Pal      | SPK value | SPK Ref Vai                  | %REC    | LowLimit                 | HighLimit RPD Ref Val      |                                    | = |
| Sample   S | Naphthalene                          |                           | 29.84                | 1.00     | 50        | 0                            | 59.7    | 40                       | 140                        |                                    |   |
| ## 40.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2-Methylnaphthalent                  | a)                        | 35.15                | 1.00     | 20        | 0                            | 70.3    | 40                       | 140                        |                                    |   |
| 43.68         1.00         50         0         87.4         40           39.11         1.00         50         0         78.2         40           RL         Below Reporting Limit         E         Value above quantitation range         F         Value above quantitation limits         ND         Not Detected at the Reporting Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Acenaphthene                         |                           | 40.49                | 1.00     | 50        | 0                            | 81.0    | 40                       | 140                        |                                    |   |
| 39.11 1.00 50 0 78.2 40  RL Below Reporting Limit  B Value above quantitation limits  ND Not Detected at the Reporting Limit  ND Not Detected at the Reporting Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Phenanthrene                         |                           | 43.68                | 1.00     | 50        | 0                            | 87.4    | 40                       | 140                        |                                    |   |
| BRL Below Reporting Limit  E Value above quantitation range J Analyte detected below quantitation limits ND Not Detected at the Reporting Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Acenaphthylene                       |                           | 39.11                | 1.00     | 20        | 0                            | 78.2    | 40                       | 140                        |                                    |   |
| ND Not Detected at the Reporting Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - Andrews                            | Below Reporting Limit     |                      |          | 1         | above quantitation ran       | ge      |                          | H Holding times fo         | r preparation or analysis exceeded |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | J                                    | Analyte detected below qu | uantitation limits   |          | ND Not Do | tected at the Reportin       | g Limit |                          | R RPD outside reco         | wery limits                        |   |

0804475 Work Order: WM-046, 1.4 Exp

Project:

TestCode: EPHP W

ANALYTICAL QC SUMMARY REPORT

| Sample ID: LCS-10035           | SampType: LCS   | TestCo | TestCode: EPHP_W             | Units: µg/L |        | Prep Date:         | Prep Date: 5/2/2008   | RunNo: 23517  |      |
|--------------------------------|-----------------|--------|------------------------------|-------------|--------|--------------------|-----------------------|---------------|------|
| Client ID: ZZZZZ               | Batch ID: 10035 | Test   | TestNo: MADEP EPH_ (eph_Wpr) | (eph_Wpr)   | ,      | Analysis Date:     | 5/6/2008              | SeqNo: 231065 |      |
| Analyte                        | Result          | . POL  | SPK value S                  | SPK Ref Val | %REC   | LowLimit HighLimit | lighLimit RPD Ref Val | %RPD RPDLimit | Qual |
| Fluorene                       | 47.68           | 1.00   | 50                           | 0           | 95.4   | 40                 | 140                   |               |      |
| Anthracene                     | 46.42           | 1.00   | 90                           | 0           | 92.8   | 40                 | 140                   |               |      |
| Fluoranthene                   | 47.87           | 1.00   | 20                           | 0           | 95.7   | 40                 | 140                   |               |      |
| Pyrene                         | 50.81           | 1,00   | 50                           | 0           | 102    | 40                 | 140                   |               |      |
| Benzo(a)Anthracene             | 49.14           | 0.400  | 20                           | 0           | . 6.86 | 40                 | 140                   |               |      |
| Chrysene                       | 49.65           | 1.00   | 90                           | 0           | 99.3   | 40                 | 140                   |               |      |
| Benzo(b)Fluoranthene           | 47.36           | 1.00   | 50                           | 0           | 94.7   | 40                 | 140                   |               |      |
| Benzo(k)Fluoranthene           | 90'09           | 1.00   | 90                           | 0           | 122    | 40                 | 140                   |               |      |
| Benzo(a)Pyrene                 | 55.99           | 0.200  | 20                           | 0           | 112    | 40                 | 140                   |               |      |
| Indeno(1,2,3-cd)Pyrene         | 51.72           | 0.400  | 20                           | 0           | 103    | 40                 | 140                   |               |      |
| Dibenz(a,h)Anthracene          | 51.69           | 0.400  | 50                           | 0           | 103    | 40                 | 140                   |               |      |
| Benzo(g,h,i)Perylene           | 49.96           | 1.00   | 90                           | 0           | 6.66   | 40                 | 140                   |               |      |
| Total PAH Target Concentration | 797.5           | 0      |                              |             |        |                    |                       |               |      |
| Surr: 2,2'-Difluorobiphenyl    | 22.61           | 0      | 25                           | 0           | 90.4   | 40                 | 140                   |               |      |
| Surr. 2-Fluorobiphenyl         | 19.88           | 0      | 25                           | 0           | 79.5   | 40                 | 140                   |               |      |

E Value above quantitation range
ND Not Detected at the Reporting Limit Analyte detected below quantitation limits Spike Recovery outside recovery limits

BRL Below Reporting Limit

Qualifiers:

Holding times for preparation or analysis exceeded RPD outside recovery limits н ч

RPD outside recovery limits

H R

E Value above quantitation range
ND Not Detected at the Reporting Limit

Analyte detected below quantitation limits Spike Recovery outside recovery limits

- s

BRL Below Reporting Limit

Qualifiers:

CLIENT: Fay, Spofford & Thorndike

Work Order: 0804475

Project: WM-046, 1.4 Exp

TestCode: hg-245.1\_w

| Client ID:         ZZZZZ         Batch ID:         10071         Test           Analyte         Result         PQL           Mercury         ND         0.000500           Sample ID:         LCS-10071         SampType:         LCS           Client ID:         ZZZZZ         Batch ID:         Test           Analyte         Result         PQL | TestCode: hg-245.1_w      | Units: mg/L | Prep Date:              | Prep Date: 5/5/2008                 | RunNo: 23475         |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------|-------------------------|-------------------------------------|----------------------|------|
| ND 0.00   D: LCS-10071   SampType: LCS   Batch  D: 10071   Result                                                                                                                                                                                                                                                                                    | TestNo; <b>E245.</b> 1    | (SW7470A/E2 | Analysis Date: 5/5/2008 | 5/5/2008                            | SeqNo: <b>230595</b> |      |
| ND 0.00 D: LCS-10071 SampType: LCS : ZZZZZ Batch ID: 10071 Result                                                                                                                                                                                                                                                                                    | . SPK value               | SPK Ref Val | C LowLimit H            | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   | Qual |
| SampType: LCS Batch ID: 10071 Result                                                                                                                                                                                                                                                                                                                 | 0.000500                  |             |                         |                                     |                      |      |
| ): <b>ZZZZ</b> Batch ID: 10071 Te                                                                                                                                                                                                                                                                                                                    | TestCode: hg-245.1_w      | Units: mg/L | Prep Date:              | Prep Date: 5/5/2008                 | RunNo: 23475         |      |
| Result                                                                                                                                                                                                                                                                                                                                               | TestNo: E245.1            | (SW7470A/E2 | Analysis Date: 5/5/2008 | 5/5/2008                            | SeqNo: <b>230596</b> |      |
| ***************************************                                                                                                                                                                                                                                                                                                              | POL SPK value SPK Ref Val |             | C LowLimit F            | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   | Quai |
| Mercury 0.005060 0.000500                                                                                                                                                                                                                                                                                                                            | 0,000500 0.005            | 0 101       | 1 80                    | 120                                 |                      |      |

RPD outside recovery limits

**#** ~

ND Not Detected at the Reporting Limit Value above quantitation range

> Analyte detected below quantitation limits Spike Recovery outside recovery limits

BRL Below Reporting Limit

Qualifiers:

ш

Fay, Spofford & Thorndike CLIENT:

0804475 Work Order: WM-046, 1.4 Exp

Project:

TestCode: TPH\_W

| TestCode: TPH W         | Unite: ma/l    |               |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                       |
|-------------------------|----------------|---------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | - Carrier 1981 | ï             | Prep Date: 5/2/2008                 | RunNo: 23455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                       |
| TestNo: 8100M           | (8100M)        | Analy         | Analysis Date: 5/2/2008             | SeqNo: 230328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                       |
| Result PQL SPK value    | SPK Ref Val    | "REC LOW      | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Qual                                                                                                                                                                                                                                                  |
| ND 0.200<br>84.00 0 100 | 0              | 84.0          | 40 140                              | The state of the s |                                                                                                                                                                                                                                                       |
| TestCode: TPH_W         | Units: mg/L    | Pr            | Prep Date: 5/2/2008                 | RunNo: 23455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                       |
| TestNo: <b>8100M</b>    | (8100M)        | Analy         | Analysis Date: 5/2/2008             | SeqNo: <b>230329</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                       |
| PQL SPK value           | SPK Ref Val    | %REC Low      | LowLimit HighLimit RPD Ref Val      | %RPD RPDLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Qual                                                                                                                                                                                                                                                  |
| 0.200                   | 0              | 76.8          |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                       |
| 82.00 0 100             | 0              | 82.0          | 40 140                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                       |
| TestCode: TPH_W         | Units: mg/L    | Pr            | Prep Date: 5/2/2008                 | RunNo: 23455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                       |
| TestNo: 8100M           | (8100M)        | Analy         | Analysis Date: 5/2/2008             | SeqNo: 230336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                       |
| PQL SPK value           | SPK Ref Val    | %REC Low      | Limit HighLimit RPD Ref             | %RPD RPDLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Qual                                                                                                                                                                                                                                                  |
| 0.200                   | 0              | 6.09          | 40 140                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                       |
| 63.00 0 100             | 0              | 63.0          | 40 140                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                       |
| . P                     |                | SPK value SPP | SPK value SPK Ref Val<br>2 0        | SPK value SPK Ref Val<br>2 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val         %RPD         RPDLimit           2         0         60.9         40         140           100         0         63.0         40         140 |

0804475 Work Order:

WM-046, 1.4 Exp

Project:

TestCode: TRC\_W

ANALYTICAL QC SUMMARY REPORT

| Cliont ID: 72777                          | SampType: MBLK                    | TestCo  | TestCode: TRC_W                   | Units: mg/L           |      | Prep Date:                   | te:                                    | RunNo: 23379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
|-------------------------------------------|-----------------------------------|---------|-----------------------------------|-----------------------|------|------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Cilein ib.                                | Batch ID: R23379                  | Test    | estNo: Hach 8167                  | •                     | 7    | Analysis Da                  | Analysis Date: 4/30/2008               | SeqNo: <b>229309</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| Analyte                                   | Result                            | Pal     | SPK value                         | SPK value SPK Ref Val | %REC | LowLimit                     | %REC LowLimit HighLimit RPD Ref Val    | %RPD RPDLimit Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Qual |
| Total Residual Chlorine                   | QN                                | 0.162   |                                   |                       |      |                              |                                        | there is a second and the second and |      |
| Sample ID: LCS-R23379<br>Client ID: ZZZZZ | SampType: LCS<br>Batch ID: R23379 | TestCod | FestCode: TRC_W TestNo: Hach 8167 | Units: mg/L           |      | Prep Date:<br>Analysis Date: | Prep Date:<br>Analysis Date: 4/30/2008 | RunNo: 23379<br>SeqNo: 229310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| Analyte                                   | Result                            | PQL     | SPK value                         | SPK value SPK Ref Val | %REC | LowLimit                     | %REC LowLimit HighLimit RPD Ref Val    | %RPD RPDLimit Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Qual |
| Total Residual Chlorine                   | 1.060                             | 0.162   | +                                 | 0                     | 106  | 85                           | 115                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |

E Value above quantitation range
ND Not Detected at the Reporting Limit

Analyte detected below quantitation limits Spike Recovery outside recovery limits

- ×

BRL Below Reporting Limit

Qualifiers:

I z

Holding times for preparation or analysis exceeded RPD outside recovery limits

RPD outside recovery limits

E Value above quantitation range ND Not Detected at the Reporting Linnit

Analyte detected below quantitation limits Spike Recovery outside recovery limits

- ×

BRL Below Reporting Limit

Qualifiers:

Fay, Spofford & Thorndike CLIENT:

0804475 Work Order: WM-046, 1.4 Exp

**Project:** 

TestCode: TSS

|                        |                  |               |                      |                       | *************************************** |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          |
|------------------------|------------------|---------------|----------------------|-----------------------|-----------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|
| Sample ID: MB-R23456   | SampType: MBLK   | TestCode: TSS | TSS                  | Units: mg/L           |                                         | Prep Date:              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RunNo: 23456       |          |
| Client ID: ZZZZZ       | Batch ID: R23456 | TestNo:       | estNo: <b>E160.2</b> |                       | *                                       | Analysis Date: 5/1/2008 | 1/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SeqNo: 230315      |          |
| Analyte                | Result           | POL           | 3PK value            | SPK value SPK Ref Val | %REC                                    | LowLimit HighLi         | %REC LowLimit HighLimit RPD Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %RPD RPDLimit Qual | iit Qual |
| Total Suspended Solids | ON               | 4.00          |                      |                       |                                         |                         | Transfer the second sec |                    |          |
| Sample ID: LCS-R23456  | SampType: LCS    | TestCode: TSS | TSS                  | Units: mg/L           |                                         | Prep Date:              | The state of the s | RunNo: 23456       |          |
| Client ID: ZZZZZ       | Batch ID: R23456 | TestNo:       | estNo: <b>E160.2</b> |                       | •                                       | Analysis Date: 5/1/2008 | 1/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SeqNo: 230316      |          |
| Analyte                | Result           | Pat s         | SPK value            | SPK Ref Val           | %REC                                    | LowLimit HighLi         | %REC LowLimit HighLimit RPD Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %RPD RPDLimit      | iit Qual |
| Total Suspended Solids | 74.00            | 4.00          | 66.5                 | 0                     | 111                                     | 80                      | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |          |
|                        |                  |               |                      |                       |                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          |

Analyte detected below quantitation limits Spike Recovery outside recovery limits

Fay, Spofford & Thomdike 0804475 Work Order: CLIENT: Project:

WM-046, 1.4 Exp

TestCode: VPH\_W2

| Sample IU: MBLK Samp                         | SampType: MBLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TestCor | TestCode: VPH_W2 | Units: µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | Prep Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | iri          |                             | RunNo: 23429                                       | 129            |               |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------|----------------------------------------------------|----------------|---------------|
| Client ID: ZZZZZ Batcl                       | Batch ID: R23429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Test    | TestNo; VPH      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | `       | Analysis Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5/1/2008     |                             | SeqNo: <b>229999</b>                               | 666            |               |
| Analyte                                      | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PQL     | SPK value        | SPK Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %REC    | LowLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HighLimit R  | RPD Ref Val                 | %RPD                                               | RPDLimit       | Qual          |
| C9-C10 Aromatic Hydrocarbons                 | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75.0    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Maria (1997) |                             |                                                    |                |               |
| Unadjusted C5-C8 Aliphatic Hydrocarbo        | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75.0    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                             |                                                    |                |               |
| Unadjusted C9-C12 Aliphatic Hydrocarb        | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75.0    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                             |                                                    |                |               |
| Methyl Tert-Butyl Ether                      | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.00    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                             |                                                    |                |               |
| Benzene                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.00    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | ,                           |                                                    |                | -             |
| Toluene                                      | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.00    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -            |                             |                                                    |                |               |
| Ethylbenzene                                 | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.00    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                             |                                                    |                |               |
| m.p-Xylene                                   | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.00    |                  | e sign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                             |                                                    |                |               |
| o-Xylene                                     | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.00    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                             |                                                    |                |               |
| Naphthalene                                  | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.0    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                             |                                                    |                |               |
| Adjusted C5-C8 Aliphatic Hydrocarbons        | QV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75.0    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                             |                                                    |                |               |
| Adjusted C9-C12 Aliphatic Hydrocarbon        | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75.0    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                             |                                                    |                |               |
| Surr: 2,5-Dibromotoluene FID                 | 72.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0       | 100              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72.4    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 130          |                             |                                                    |                |               |
| Surr: 2,5-Dibromotoluene PID                 | 73.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0       | 100              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 73.2    | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 130          |                             |                                                    |                |               |
| Sample ID: MBLK SampT                        | SampType: MBLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TestCod | TestCode: VPH_W2 | Units: µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | Prep Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                             | RunNo: 23551                                       | 51             |               |
| Client ID: 22222 Batch                       | Batch ID: R23551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TestN   | TestNo: VPH      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4       | Anatysis Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : 5/6/2008   |                             | SeqNo: 231337                                      | 337            |               |
| Analyte                                      | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | POL     | SPK value        | SPK Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %REC    | LowLimit HighLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | RPD Ref Val                 | %RPD                                               | RPDLimit       | Oual          |
| C9-C10 Aromatic Hydrocarbons                 | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75.0    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                             |                                                    |                |               |
| Unadjusted C5-C8 Aliphatic Hydrocarbo        | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75.0    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                             |                                                    |                |               |
| Unadjusted C9-C12 Aliphatic Hydrocarb        | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75.0    | - : "            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                             |                                                    |                |               |
| Methyl Tert-Butyl Ether                      | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.00    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                             |                                                    |                |               |
| Benzene                                      | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.00    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                             |                                                    |                |               |
| Toluene -                                    | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.00    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                             |                                                    |                |               |
| Ethylbenzene                                 | QV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.00    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                             |                                                    |                |               |
| m,p-Xylene                                   | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5,00    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                             |                                                    |                |               |
| o~Xylene                                     | Q.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.00    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                             |                                                    |                |               |
| Naphthalene                                  | QV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20.0    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                             |                                                    |                |               |
| Adjusted C5-C8 Aliphatic Hydrocarbons        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75.0    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                             |                                                    |                |               |
| One Wiere RRI Relow Reporting I imit         | The second secon |         | T Volta          | NAMES OF THE PROPERTY OF THE P |         | A VALORED A STATE OF THE STATE | 1            |                             |                                                    |                |               |
| -                                            | and antique franches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                  | value above qualitization range<br>Mot Detected of the Paris of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | aing umes for p             | Holding times for preparation or analysis exceeded | alysis exceede | <del>ত্</del> |
| J Analyte detected perow quantitation timits | duammenton muss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | ND Not De        | Not Detected at the Reporting Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S Limit |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R RPL        | RPD outside recovery limits | ay limits                                          |                |               |
| Special programmy                            | TO SO COLOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                             |                                                    |                |               |

Page 25 of 26

ANALYTICAL QC SUMMARY REPORT

TestCode: VPH\_W2

Fay, Spofford & Thorndike 0804475 Work Order:

CLIENT:

WM-046, 1.4 Exp

**Project:** 

| Sample ID: MBLK                       | SampType: MBLK            | TestCo | TestCode: VPH_W2                      | Units: µg/L |      | Prep Date:  | 6.                                  |        | RunNo: 23551                            |                                |      |
|---------------------------------------|---------------------------|--------|---------------------------------------|-------------|------|-------------|-------------------------------------|--------|-----------------------------------------|--------------------------------|------|
| Client ID: ZZZZZ                      | . Batch ID: <b>R23551</b> |        | TestNo: VPH                           |             | 1    | nalysis Dat | Analysis Date: 5/6/2008             |        | SeqNo: 231337                           | 4                              |      |
| Analyte                               | Result                    | PQL    | PQL SPK value SPK Ref Val             | SPK Ref Val | %REC | LowLimit    | %REC LowLimit HighLimit RPD Ref Val | ef Vai | %RPD RPDLimit Qual                      | PDLimit                        | Quai |
| Adjusted C9-C12 Aliphatic Hydrocarbon | drocarbon ND              | 75.0   | · · · · · · · · · · · · · · · · · · · |             |      |             |                                     |        |                                         |                                |      |
| Surr: 2,5-Dibromotoluene FID          | ID 71.91                  | 0      | 100                                   | 0           | 71.9 | 70          | 130                                 |        |                                         |                                |      |
| Surr: 2,5-Dibromotoluene PID          | ID 73.18                  | 0      | 100                                   | 0           | 73.2 | 70          | 130                                 |        |                                         |                                |      |
|                                       |                           |        |                                       |             |      |             |                                     |        | *************************************** | THE PERSON NAMED IN COLUMN TWO |      |

| Sample ID: LCS                        | SampType: LCS    | TestCo | estCode: VPH W2  | Units: µg/L         |        | Prep Date:     | (e;                     | , , , , , , , , , , , , , , , , , , ,  | RunNo: 23429  | The second secon |
|---------------------------------------|------------------|--------|------------------|---------------------|--------|----------------|-------------------------|----------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Citent ID: ZZZZZ                      | Batch ID: R23429 | Test   | TestNo: VPH      | )                   |        | Analysis Da    | Analysis Date: 5/1/2008 | <b></b>                                | SeqNo: 229997 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Analyte                               | Result           | PQL    | SPK value        | SPK Ref Val         | %REC   | LowLimit       | HighLimit               | HighLimit RPD Ref Val                  | %RPD RPDLimit | -imit Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C9-C10 Aromatic Hydrocarbons          | 82.90            | 75.0   | 100              | 3.664               | 79.2   | 70             | 130                     |                                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Unadjusted C5-C8 Aliphatic Hydrocarbo | rocarbo 614.9    | 75.0   | 009              | 54.1                | 93.5   | 70             | 130                     |                                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Unadjusted C9-C12 Aliphatic Hydrocarb | drocarb 483.2    | 75.0   | 009              | 11.39               | 78.6   | 70             | 130                     |                                        |               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Methyl Tert-Butyl Ether               | 126.0            | 5.00   | 100              | 0                   | 126    | 70             | 130                     |                                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Benzene                               | 81.28            | 5.00   | 100              | 0                   | 81.3   | 70             | 130                     |                                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Toluene                               | 87.85            | 5.00   | 100              | 0                   | 87.8   | 70             | 130                     |                                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ethylbenzene                          | 91.06            | 5.00   | 100              | 0                   | 91,1   | 20             | 130                     |                                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| m,p-Xyłene                            | 198.4            | 5.00   | 200              | 0                   | 99.2   | 20             | 130                     |                                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| o.Xylene                              | 88.76            | 5.00   | 100              | 0                   | 88.8   | 70             | 130                     |                                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Naphthalene                           | 81.86            | 20.0   | 100              | 0                   | 81.9   | 20             | 130                     |                                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Surr; 2,5-Dibromotoluene FID          | 86.10            | 0      | 100              | 0                   | 86.1   | 70             | 130                     |                                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Surr: 2,5-Dibromotoluene PID          | 71.16            | 0      | 100              | 0                   | 71.2   | 70             | 130                     |                                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample ID: LCS                        | SampType: LCS    | TestCo | TestCode: VPH_W2 | Units: µg/L         |        | Prep Date:     | B;                      |                                        | RunNo: 23551  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Client ID: ZZZZZ                      | Batch ID: R23551 | Test   | TestNo: VPH      |                     | *      | Analysis Date: | e: 5/6/2008             |                                        | SeqNo: 231335 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Apolyte                               | Breedl           | Ö      | order yes        | In you was with yas | J 10 % | tion; Prio     | Linkling                | 17/470 000 size(147)D size(1770 D 000) |               | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Sample ID: LCS                                                  | SampType: LCS                                                       | TestCod | TestCode: VPH_W2 | Units: µg/L                                                             |                 | Prep Date:     | , to                                |                                                              | RunNo: 23551                                                                   | 51                 |               |
|-----------------------------------------------------------------|---------------------------------------------------------------------|---------|------------------|-------------------------------------------------------------------------|-----------------|----------------|-------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------|---------------|
| Cilent ID: ZZZZZ                                                | Batch ID: R23551                                                    | TestN   | TestNo: VPH      |                                                                         |                 | Analysis Date: | e: 5/6/2008                         |                                                              | SeqNo: 231335                                                                  | 335                |               |
| Analyte                                                         | Result                                                              | Pal     | SPK value        | SPK value SPK Ref Val                                                   | %REC            | LowLimit       | %REC LowLimit HighLimit RPD Ref Val | Ref Val                                                      | %RPD                                                                           | %RPD RPDLimit Qual | Qual          |
| C9-C10 Aromatic Hydrocarbons                                    | 82.21                                                               | 75.0    | 100              | 3.687                                                                   | 78.5            | 70             | 130                                 |                                                              |                                                                                |                    |               |
| Unadjusted C5-C8 Aliphatic Hydrocarbo                           | arbo 634.4                                                          | 75.0    | 900              | 24.07                                                                   | 102             | 20             | 130                                 |                                                              |                                                                                |                    |               |
| Unadjusted C9-C12 Aliphatic Hydrocarb                           | scarb 528.0                                                         | 75.0    | 9009             | 11.85                                                                   | 86.0            | 70             | 130                                 |                                                              |                                                                                |                    |               |
| Methyl Tert-Butyl Ether                                         | 126.9                                                               | 5.00    | 100              | 0                                                                       | 127             | 20             | 130                                 |                                                              |                                                                                |                    |               |
| Benzene                                                         | 78.69                                                               | 5.00    | 100              | 0                                                                       | 78.7            | 70             | 130                                 |                                                              |                                                                                |                    |               |
| Ounlifters: BRL Below Reporting Limit  J Analyte detected below | Below Reporting Limit<br>Analyte detected below quantitation limits |         | E Value a        | E Value above quantitation range ND Not Detected at the Reporting Limit | nge<br>ig Limit |                | H Holdin<br>R RPD on                | Holding times for preparation<br>RPD outside recovery limits | Holding times for preparation or analysis exceeded RPD outside recovery limits | nalysis exceed     | þ             |
| S Spike Recovery                                                | Spike Recovery outside recovery limits                              |         | ÷                |                                                                         |                 |                |                                     |                                                              |                                                                                | Day                | Dave 25 of 36 |

RPD outside recovery limits

E Value above quantitation range
ND Not Detected at the Reporting Limit

J Analyte detected below quantitation limits
S Spike Recovery outside recovery limits

BRL Below Reporting Limit

Qualifiers:

CLIENT: Fay, Spofford & Thorndike

Work Order: 0804475

WM-046, 1.4 Exp

Project:

TestCode: VPH\_W2

| Sample ID: LCS               | SampType: LCS           | TestCoc | TestCode: VPH_W2 | Units: µg/L           |      | Prep Date:   | e;                                  | RunNo: 23551       |         |      |
|------------------------------|-------------------------|---------|------------------|-----------------------|------|--------------|-------------------------------------|--------------------|---------|------|
| Client ID: ZZZZZ             | Batch ID: <b>R23551</b> | Test    | estNo: VPH       |                       |      | Analysis Dat | Analysis Date: 5/6/2008             | SeqNo: 231335      |         |      |
| Analyte                      | Result                  | Pal     | SPK value        | SPK value SPK Ref Val | %REC | LowLimit     | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual | 'DLimit | Qual |
| Toluene                      | 83.78                   | 5,00    | 100              | 0                     | 83.8 | 70           | 130                                 |                    |         |      |
| Ethylbenzene                 | 87,86                   | 5.00    | 100              | 0                     | 87.9 | 20           | 130                                 |                    |         |      |
| m,p-Xyfene                   | 186.8                   | 5.00    | 200              | 0                     | 93.4 | 20           | 130                                 |                    |         |      |
| o-Xylene                     | 83.91                   | 5.00    | 100              | 0                     | 83.9 | 70           | 130                                 |                    |         |      |
| Naphthalene                  | 70.62                   | 20.0    | 100              | 0                     | 70.6 | 70           | 130                                 |                    |         |      |
| Surr: 2,5-Dibromotoluene FID | 94.42                   | 0       | 100              | 0                     | 94.4 | 70           | 130                                 |                    |         |      |
| Surr: 2,5-Dibromotoluene PID | 77.13                   | 0       | 100              | 0                     | 77.1 | 22           | 130                                 |                    |         |      |

というというというと \_ **4** 10 N 0 = 0ther ŏ LEMPERATURE Ð NH (2508) NJ (MA-009) RI (LA000252) しらならいべ 1 55 X × B = Bag P = Plastic V = Voa B ハナガガナ Page vioro H O 4 Analysis Requested X 2 HEXKNOREU 6000 4 PLOA 9 CT RCP (Reasonable Confidence Protocols) 4 からびと Date / Time 4130108 Containers: A = Amber G = Glass S = Summa SAPLIED BOTILES  $\checkmark$ Special Instructions 301040 Invoice to \*: LARRY ATTACHED KULLYSIS 4 o with pla からく × # dI MYD MA (MA - 015) PA (68-03417) State / Fed Program - Criteria Requirements: circle choice (s) HOL 1 1 2044080 7 = 0ther ۲-& od Έ, Project PO: 5 4437 Project: (004) OCT (PH-0148) NY(11796) 1 0229 5 = Na0H6 ≈ MEOH 85PC 10CK 1 乂 HAR 1202A Preserative GeoLabs SAMPLE NUMBER 4 = Na2S20314 MCP Methods 3 = H2S04-003 4475 - 602 メネンのグ 4475-001 Kinnel Terms, Psyment due within 30 days untiese other arrangements are mode. Past due bittaness stitled to interest and collect.
 Note. Homeowners and Law Firms must pay when drupping off samples. We accept cash, check and credit cards. Other Preservatives 4475 Received by 2 = HNO31 = HG g: circle choice (Done によるよう Not Needed おきしてモンLab to do Preservation Lab to do Y/N -\* §\* 5548 <u>^-</u> ξ 00 Received on ice Ø. Sample Handling: Filtration PT ( 5 >~ 5 <u>ر</u> 3 5 Preservation CONTAINER Data Delivery: circle choice (s) ema PDF Phone: email: Fax: S. ટુ \_ > 4 4 ļ Date / Time CHAIN OF CUSTODY RECORD OT = Other A = AirLOCATION / ID GeoLabs, Inc. Environmental Laboratories 45 Johnson Lane, Braintree, MA 02184 Format: p 781.848.7844 • 1781.848.7811 S = Soil(Jeok) 10 = 0 ž 177 ひいなんいい O C4 DW = Orinking Water Ď のいなりいるする ŝ ß www.geolabs.com (5/7-days) SL = Studge Turnaround; circle one Ĉ LAD 2 1 an -au - az po 700 280265.J&P.C of CR.03/07/08 COLLECTION S. 120ch 7 15 که د 'n, GW = Ground Water WW = Waste Water h- --- 5 L Relinquished by: Matrix Codes: GeoLabs, Inc. Address: . 2-day 4 3 Contact: 4130 43 Client: 口点下出

 $\tilde{\mathcal{E}}$ 

|  |  | <b>†</b> |
|--|--|----------|
|  |  |          |
|  |  |          |
|  |  |          |
|  |  |          |
|  |  |          |
|  |  |          |
|  |  |          |

# GU B17, B13, B11, B9, B5

Thursday, May 15, 2008

Larry Durkin Fay,Spofford & Thorndike 5 Burlington Woods Burlington, MA 01803 GeoLabs, Inc. 45 Johnson Lane Braintree MA 02184 Tele: 781 848 7844 Fax: 781 848 7811

TEL: 781-221-1066 FAX: 781-221-1086

Project:

WM-046, 1.4 Exp

Location:

Order No.: 0805025

Dear Larry Durkin:

GeoLabs, Inc. received 6 sample(s) on 5/2/2008 for the analyses presented in the following report.

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative.

Analytical methods and results meet requirements of 310CMR 40.1056(J) as per MADEP Compendium of Analytical Methods (CAM).

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Jim Chen

Laboratory Director

Certifications:

CT (PH-0148) - MA (M-MA015) - NH (2508) - NJ (MA009) - NY (11796) - RI (LA000252)

Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Project:

WM-046, 1.4 Exp

Lab Order:

0805025

CASE NARRATIVE

MADEP MCP Response Action Analytical Report Certification Form

Laboratory Name: GeoLabs, Inc.

Project # WM-046, 1.4 EXP

Project Location: MWRA 6905

MADEP RTN #:

This form provides certification for the following data set: 0805025 (001-006)

Sample Matrix: Groundwater

MCP SW-846 Methods Used: 8260B, VPH, 8270C, EPH, 8082, 8100M, 6010B, 245.1

An affirmative answer to questions A, B and C are required for "Presumptive Certainty" status

- A. Were all samples received by the laboratory in a condition consistent with that described on the Chain of custody documentation for the data set? YES
- B. Were all QA/QC procedures required for the specified method(s) included in this report followed. including the requirement to note and discuss in a narrative OC data that did not meet appropriate standards or guidelines? YES
- C. Does the analytical data included in this report meet all the requirements for "Presumptive Certainty" as described in Section 2.0 of the MADEP documents CAM VII A "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"? YES
- D. VPH and EPH Methods only: Was the VPH or EPH Method conducted without significant modifications (see Section 11.3 of respective Methods)

A response to questions E and F are required for "Presumptive Certainty" status

- E. Were all QC performance standards and recommendations for the specified methods achieved? NO
- F. Were results for all analyte-list compounds/elements for the specified method(s) reported?

NO

All NO answers need to be addressed in an attached Environmental Laboratory case narrative.

CLIENT:

Fay.Spofford & Thorndike

Project:

WM-046, I.4 Exp

Lab Order:

0805025

CASE NARRATIVE

### CASE NARRATIVE

Physical Condition of Samples

The project was received by the laboratory in satisfactory condition. The sample(s) were received undamaged, in appropriate containers with the correct preservation.

Project Documentation

The project was accompanied by satisfactory Chain of Custody documentation.

Analysis of Sample(s)

Selected metals on 6010B analyzed per client request.

The following analytical anomalies or non-conformances were noted by the laboratory during the processing of these samples:

Hexavalent Chromium and Total Residual Chlorine were analyzed out of holding time.

8260 Run 23612 LCS percent recovery for 1,2,4-Trichlorobenzene is outside the recovery limits.

8260 Run 23706 LCS percent recovery for 2-Chloroethyl Vinyl Ether is outside the recovery limits.

8270 LCS percent recoveries for 2,4-Dinitrophenol and Benzidine are outside the recovery limits.

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.

Signature:

Position: Lab Director

Printed Name: Jim Ch

Date: May 15, 2008

CLIENT:

Fay, Spofford & Thorndike

Project:

WM-046, 1.4 Exp

Lab Order:

0805025

CASE NARRATIVE

### **EPH Methods**

Method for Ranges: MADEP EPH 04-1.1 Method for Target Analytes: 8270 GC/MS

Carbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range

C11-C22 Aromatic Hydrocarbons exclude concentrations of Target PAH Analytes

### **CERTIFICATION:**

Were all QA/QC procedures REQUIRED by the EPH Method followed? YES

Were all performance/acceptance standards achieved? YES

Were any significant modifications made to the EPH method? NO

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

SIGNATURE:

LAB DIRECTOR

PRINTED NAME: Jim/Chen

DATE: May 15, 2008

CLIENT:

Fay, Spofford & Thorndike

Project:

WM-046, 1.4 Exp

Lab Order:

0805025

CASE NARRATIVE

#### VPH Methods

Method for Ranges: MADEP VPH 04-1.1

Method for Target Analytes: MADEP VPH 04-1.1

Carbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.

C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range. (MTBE, Benzene, Toluene)

C9-C12 Aliphatic Hydrocarbons exclude concentration of Target Analytes eluting in that range (Ethylbenzene, m&p-Xylenes, o-Xylene) AND concentration of C9-C10 Aromatic Hydrocarbons.

#### **CERTIFICATION**

Were all QA/QC procedures REQUIRED by the VPH Method followed? YES Were all QA/QC performance/acceptance standards achieved? YES Were any significant modifications made to the VPH method, as specified in Sec. 11.3? NO

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge accurate and complete.

SIGNATURE:

POSITION: LAB DIRECTOR

PRINTED NAME:

DATE: May 15, 2008

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0805025

Project:

WM-046, 1.4 Exp

Lab ID:

0805025-001

Client Sample ID: B17

Collection Date: 4/30/2008 9:10:00 PM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| 0803023-001                      |            |            |            | Matrix: GROU | UNDWATER                        |  |
|----------------------------------|------------|------------|------------|--------------|---------------------------------|--|
| Analyses                         | Result     | Det. Limit | Qual Units | DF           | Date Analyzed                   |  |
| TOTAL SUSPENDED SOLIDS - SM25    | 40-D       |            |            |              | Analyst: AMS                    |  |
| Total Suspended Solids           | ND         | 4.00       | mg/L       | 1            | 5/5/2008                        |  |
| EPH RANGES - MADEP EPH           |            |            |            |              | Analyst: RJ                     |  |
| Adjusted C11-C22 Aromatics       | ND         | 103        | μg/L       | . 1          | 5/9/2008                        |  |
| C09-C18 Aliphatics               | ND         | 103        | μg/L       | 1            | 5/9/2008                        |  |
| C19-C36 Aliphatics               | ND         | 103        | μg/L       | 1            | 5/9/2008                        |  |
| Unadjusted C11-C22 Aromatics     | ND         | 103        | μg/L       | 1            | 5/9/2008                        |  |
| Surr: 1-Chlorooctadecane         | 65.0       | 40-140     | %REC       | 1            | 5/9/2008                        |  |
| Surr: o-Terphenyl                | 78.0       | 40-140     | %REC       | 1            | 5/9/2008                        |  |
| TOTAL PETROLEUM HYDROCARBO       | NS - 8100M |            |            |              | Analyst: BuB                    |  |
| Total Petroleum Hydrocarbons     | ND         | 0.206      | mg/L       | 1            | Analyst: <b>RuP</b><br>5/5/2008 |  |
| Surr: o-Terphenyl                | 65.0       | 40-140     | %REC       | 1            | 5/5/2008                        |  |
| POLYCHLORINATED BIPHENYLS - S    | W8082      | •          |            |              | Analyst: GP                     |  |
| Arocior 1016/1242                | ND         | 0.313      | μg/L       | 1            | 5/6/2008                        |  |
| Aroclor 1221                     | ND         | 0.313      | μg/L       | 1            | 5/6/2008                        |  |
| Aroclor 1232                     | ND         | 0.313      | μg/L       | 1            | 5/6/2008                        |  |
| Aroclor 1248                     | ND         | 0.313      | μg/L       | 1            | 5/6/2008                        |  |
| Arocior 1254                     | ND         | 0.313      | μg/L       | 1            | 5/6/2008                        |  |
| Aroclor 1260                     | ND         | . 0.313    | μg/L       | 1            | 5/6/2008                        |  |
| Aroclor 1262                     | ND         | 0,313      | μg/L       | 1            | 5/6/2008                        |  |
| Aroclor 1268                     | ND         | 0.313      | μg/L       | 1            | 5/6/2008                        |  |
| Surr: Decachlorobiphenyl Sig 1   | 90.0       | 30-150     | %REC       | 1            | 5/6/2008                        |  |
| Surr: Decachlorobiphenyl Sig 2   | 92.0       | 30-150     | %REC       | 1            | 5/6/2008                        |  |
| Surr: Tetrachloro-m-Xylene Sig 1 | 70.0       | 30-150     | %REC       | 4            | 5/6/2008                        |  |
| Surr: Tetrachloro-m-Xylene Sig 2 | 78.0       | 30-150     | %REC       | 1            | 5/6/2008                        |  |
| OTAL METALS BY GFAA - E200.9     |            |            |            |              | Analyst: QS                     |  |
| Antimony                         | ND         | 0.00100    | mg/L       | 1            | 5/6/2008                        |  |
| Arsenic                          | ND         | 0.00100    | -          | 1            | 5/6/2008                        |  |
| OTAL METALS BY ICP - SW6010B     |            |            |            |              | Analyst; QS                     |  |
| Barium                           | ND         | 2.00       | mg/L       | 1            | 5/3/2008                        |  |
| Cadmium                          | ND         | 0.00400    | mg/L       | 1            | 5/3/2008                        |  |
| Chromium                         | ND         | 0.100      | mg/L       | 1            | 5/3/2008                        |  |
| Copper                           | ND         | 0.0400     | mg/L       | 1            | 5/3/2008                        |  |
| Iron                             | ND         | 0.0600     | mg/L       | 1            | 5/3/2008                        |  |

- 3 Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0805025

00000020

Project: Lab ID: WM-046, 1.4 Exp

0805025-001

Client Sample ID: B17

Collection Date: 4/30/2008 9:10:00 PM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| Analyses                        | Result | Det. Limit | Qual U | nits | DF  | Date Analyzed       |
|---------------------------------|--------|------------|--------|------|-----|---------------------|
| TOTAL METALS BY ICP - SW6010B   |        |            |        |      |     | Analyst: QS         |
| Lead                            | 0.0370 | 0.0100     | mg     | g/L  | 1   | 5/3/2008            |
| Nickel                          | ND     | 0.100      | mg     | g/L  | 1   | 5/3/2008            |
| Selenium                        | ND     | 0.0500     | mg     | g/L  | 1   | 5/3/2008            |
| TOTAL SILVER - E200.7           |        | •          |        |      |     | Апаlyst: <b>QS</b>  |
| Silver                          | ND     | 0.00700    | mg     | g/L  | 1   | 5/5/2008            |
| TOTAL MERCURY - E245.1          |        |            |        |      |     | Analyst: <b>EC</b>  |
| Mercury                         | ND     | 0.0005     | mg     | g/L  | 1   | 5/5/2008            |
| SEMIVOLATILE ORGANICS - SW8270C |        |            |        |      |     | Analyst: <b>ZYZ</b> |
| 1,2,4-Trichlorobenzene          | ND     | 1.00       | μд     | /L   | 1   | 5/7/2008 2:50:00 PM |
| 1,2-Dichlorobenzene             | ND     | 1.00       | µg     |      | 1   | 5/7/2008 2:50:00 PM |
| 1,2-Dinitrobenzene              | ND     | 1.00       | μg     | /L   | 1   | 5/7/2008 2:50:00 PM |
| 1,3-Dichlorobenzene             | ND     | 1.00       | μg     | ı/L  | 1   | 5/7/2008 2:50:00 PM |
| 1,3-Dinitrobenzene              | ND     | 1.00       | μ9     | ı/L  | 1   | 5/7/2008 2:50:00 PM |
| 1,4-Dichlorobenzene             | ND     | 1.00       | μд     | /L   | 1   | 5/7/2008 2:50:00 PM |
| 1,4-Dinitrobenzene              | ND     | 1.00       | μg     | ı/L  | 1   | 5/7/2008 2:50:00 PM |
| 2,3,4,6-Tetrachlorophenol       | ND     | 1.00       | μg     | /L   | 1   | 5/7/2008 2:50:00 PM |
| 2,4,5-Trichlorophenol           | ND     | 1.00       | μд     | /L   | 1   | 5/7/2008 2:50:00 PM |
| 2,4,6-Trichlorophenol           | ND     | 1.00       | μд     |      | 1   | 5/7/2008 2:50:00 PM |
| 2,4-Dichlorophenol              | ND     | 1.00       | μд     | ı/L  | · 1 | 5/7/2008 2:50:00 PM |
| 2,4-Dimethylphenoi              | ND     | 1.00       | μд     | ı/L  | . 1 | 5/7/2008 2:50:00 PM |
| 2,4-Dinitrophenol               | ND     | 5.00       | μg     | /L   | 1   | 5/7/2008 2:50:00 PM |
| 2,4-Dinitrotoluene              | ND     | 1.00       | μд     | /L   | 1   | 5/7/2008 2:50:00 PM |
| 2,6-Dinitrotoluene              | ND     | 1.00       | μд     | /L   | 1   | 5/7/2008 2:50:00 PM |
| 2-Chloronaphthalene             | ND     | 1.00       | μд     | ı/L  | 1   | 5/7/2008 2:50:00 PM |
| 2-Chlorophenol                  | ND     | 1.00       | μд     | /L . | 1   | 5/7/2008 2:50:00 PM |
| 2-Methylnaphthalene             | ND     | 1.00       | µд     | /L   | 1   | 5/7/2008 2:50:00 PM |
| 2-Methylphenol                  | ND     | 1.00       | μg     | /L   | 1   | 5/7/2008 2:50:00 PM |
| 2-Nitroaniline                  | ND     | 1.00       | μд     | /L   | 1   | 5/7/2008 2:50:00 PM |
| 2-Nitrophenol                   | ND     | 1.00       | μg     | /L   | 1   | 5/7/2008 2:50:00 PM |
| 3,3'-Dichlorobenzidine          | ND     | 1.00       | μg     |      | 1   | 5/7/2008 2:50:00 PM |
| 3-Methylphenol/4-Methylphenol   | ND     | 1.00       | μд     | /L   | 1   | 5/7/2008 2:50:00 PM |
| 3-Nitroaniline                  | ND     | 1.00       | μд     | /L   | 1   | 5/7/2008 2:50:00 PM |
| 4,6-Dinitro-2-Methylphenol      | ND     | 5.00       | рд     | /L   | 1   | 5/7/2008 2:50:00 PM |
| 4-Bromophenyl Phenyl Ether      | ND     | 1.00       | μд     | /L   | 1   | 5/7/2008 2:50:00 PM |
| 4-Chloro-3-Methylphenol         | ND     | 1.00       | hã     | /L   | 1   | 5/7/2008 2:50:00 PM |
| 4-Chloroaniline                 | ND     | 1.00       | μβ     |      | 1   | 5/7/2008 2:50:00 PM |

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside recovery limits

BRL Below Reporting Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0805025

Project:

WM-046, 1.4 Exp

Lab ID:

0805025-001

Client Sample ID: B17

Collection Date: 4/30/2008 9:10:00 PM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| Analyses                        | Result | Det. Limit  | Qual U | nits            | DF  | Date Analyzed                |
|---------------------------------|--------|-------------|--------|-----------------|-----|------------------------------|
| SEMIVOLATILE ORGANICS - SW8270C |        | <del></del> |        |                 |     | Analyst: <b>ZY</b>           |
| 4-Chlorophenyl Phenyl Ether     | ND     | 1.00        | μ      | g/L             | 1   | 5/7/2008 2:50:00 PM          |
| 4-Nitroaniline                  | ND     | 1.00        |        | g/L             | 1   | 5/7/2008 2:50:00 PM          |
| 4-Nitrophenol                   | ND     | 1.00        | μ      | g/L             | 1   | 5/7/2008 2:50:00 PM          |
| Acenaphthene                    | ŇD     | 1.00        | μς     | g/L             | 1   | 5/7/2008 2:50:00 PM          |
| Acenaphthylene                  | ND     | 1.00        | μί     | g/L             | 1   | 5/7/2008 2:50:00 PM          |
| Acetophenone                    | ND     | 1.00        | μς     | g/L             | 1   | 5/7/2008 2:50:00 PM          |
| Aniline                         | ND     | 5.00        | μg     | g/L             | 1   | 5/7/2008 2:50:00 PM          |
| Anthracene                      | ND     | 1.00        | μς     | g/L             | 1   | 5/7/2008 2:50:00 PM          |
| Azobenzene                      | ND     | 5.00        | μς     | 9/L             | 1   | 5/7/2008 2:50:00 PM          |
| Benz(a)Anthracene               | ND     | 0.100       | μς     | g/L             | 1   | 5/7/2008 2:50:00 PM          |
| Benzidine                       | ND     | 5.00        | μο     | g/L .           | 1   | 5/7/2008 2:50:00 PM          |
| Benzo(a)Pyrene                  | ND     | 0.100       |        | J/L             | 1   | 5/7/2008 2:50:00 PM          |
| Benzo(b)Fluoranthene            | ND     | 0.500       | μς     | <sub>J</sub> /L | 1   | 5/7/2008 2:50:00 PM          |
| Benzo(g,h,i)Perylene            | ND     | 1.00        | μο     | g/L             | 1   | 5/7/2008 2:50:00 PM          |
| Benzo(k)Fluoranthene            | ND     | 0.500       | μς     | g/L             | 1   | 5/7/2008 2:50:00 PM          |
| Benzyl Alcohol                  | ND     | 1.00        | μς     | g/L             | 1   | 5/7/2008 2:50:00 PM          |
| Bis(2-Chloroethoxy)Methane      | ND     | 1.00        | μς     | g/L             | 1   | 5/7/2008 2:50:00 PM          |
| Bis(2-Chloroethyl)Ether         | ND     | 1.00        |        | 3/L             | 1   | 5/7/2008 2:50:00 PM          |
| Bis(2-Chloroisopropyl)Ether     | ND     | 1.00        | μ      | g/L             | 1   | 5/7/2008 2:50:00 PM          |
| Bis(2-Ethylhexyl)Phthalate      | ND     | 1.00        | μς     | 3/L             | 1   | 5/7/2008 2:50:00 PM          |
| Butyl Benzyl Phthalate          | ND     | 1.00        | μο     | g/L             | 1   | 5/7/2008 2:50:00 PM          |
| Carbazole                       | ND     | 1.00        | · μο   | g/L             | 1 . | 5/7/2008 2:50:00 PM          |
| Chrysene                        | ND     | 1.00        | μς     | ı/L             | 1   | 5/7/2008 2:50:00 PM          |
| Dibenz(a,h)Anthracene           | ND     | 0.100       | μς     |                 | 1   | 5/7/2008 2:50:00 PM          |
| Dibenzofuran                    | ND     | 1.00        | μg     | j/L             | 1   | 5/7/2008 2:50:00 PM          |
| Diethyl Phthalate               | ND     | 1.00        | HS.    | ı/L             | 1   | 5/7/2008 2:50:00 PM          |
| Dimethyl Phthalate              | ND     | 1.00        | μς     | ı/L             | 1   | 5/7/2008 2:50:00 PM          |
| Di-n-Butyl Phthalate            | ND     | 1.00        | μο     | ı/L             | 1   | 5/7/2008 2:50:00 PM          |
| Di-n-Octyl Phthalate            | ND     | 1.00        | μο     | <sub>I</sub> /L | 1   | 5/7/2008 2:50:00 PM          |
| Fluoranthene                    | ND     | 1.00        | μς     | ı/L             | 1   | 5/7/2008 2:50:00 PM          |
| Fluorene                        | ND     | 1.00        | μg     | ı/L             | 1   | 5/7/2008 2:50:00 PM          |
| Hexachlorobenzene               | ND     | 0.100       | ħĈ     |                 | 1   | 5/7/2008 2:50:00 PM          |
| Hexachlorobutadiene             | ND     | 0.100       | μς     |                 | 1   | 5/7/2008 2:50:00 PM          |
| Hexachlorocyclopentadiene       | · ND   | 5.00        | μg     | /L              | 1   | 5/7/2008 2:50:00 PM          |
| Hexachloroethane                | ND     | 1.00        | μς     |                 | . 1 | 5/7/2008 2:50:00 PM          |
| Indeno(1,2,3-cd)Pyrene          | ND     | 0.100       | μg     |                 | 1   | 5/7/2008 2:50:00 PM          |
| sophorone                       | ND     | 1.00        | μ9     |                 | 1   | 5/7/2008 2:50:00 PM          |
| Naphthalene                     | ND     | 1.00        | μд     |                 | 1   | 5/ <b>7</b> /2008 2:50:00 PM |
| Nitrobenzene                    | ND     | 1.00        | μд     |                 | 1   | 5/7/2008 2:50:00 PM          |
| N-Nitrosodimethylamine          | ND     | 5.00        | μg     |                 | 1   | 5/7/2008 2:50:00 PM          |

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside recovery limits

BRL Below Reporting Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

0805025

Client Sample ID: B17

Lab Order:

Collection Date: 4/30/2008 9:10:00 PM

Project:

WM-046, 1.4 Exp

Date Received: 5/2/2008

Lab ID:

0805025-001

Matrix: GROUNDWATER

| <u> </u>                                     | Result | Det. Limit | Qual | Units             | DF | Date Analyzed                       |
|----------------------------------------------|--------|------------|------|-------------------|----|-------------------------------------|
| ATILE ORGANICS - SW8270C                     |        |            |      |                   |    | Analyst: ZYZ                        |
| odi-n-Propylamine                            | NĎ     | 1.00       |      | μg/L              | 1  | 5/7/2008 2:50:00 PM                 |
| odiphenylamine                               | NĎ     | 5.00       |      | μg/L              | 1  | 5/7/2008 2:50:00 PM                 |
| orophenol                                    | ND     | 1.00       |      | μg/L              | 1  | 5/7/2008 2:50:00 PM                 |
| hrene                                        | ИD     | 1.00       |      | μg/L              | 1  | 5/7/2008 2:50:00 PM                 |
|                                              | ND     | 1.00       |      | μg/L              | 1  | 5/7/2008 2:50:00 PM                 |
|                                              | ND     | 1.00       |      | μg/L              | 1  | 5/7/2008 2:50:00 PM                 |
|                                              | ND     | 5.00       |      | μg/L              | 1  | 5/7/2008 2:50:00 PM                 |
| 2,4,6-Tribromophenol                         | 52.8   | 15-110     |      | %REC              | 1  | 5/7/2008 2:50:00 PM                 |
| 2-Fluorobiphenyl                             | 75.4   | 30-130     |      | %REC              | 1  | 5/7/2008 2:50:00 PM                 |
| 2-Fluorophenol                               | 40.2   | 15-110     |      | %REC              | 1  | 5/7/2008 2:50:00 PM                 |
| Nitrobenzene-d5                              | 62.8   | 30-130     |      | %REC              | 1  | 5/7/2008 2:50:00 PM                 |
| Phenol-d6                                    | 28.5   | 15-110     |      | %REC              | 1  | 5/7/2008 2:50:00 PM                 |
| Ferphenyl-d14                                | 92.2   | 30-130     |      | %REC              | 1  | 5/7/2008 2:50:00 PM                 |
| GET ANALYTES - MADEP EPH                     |        |            |      | •                 |    | Analyst: <b>ZY</b> Z                |
| iene                                         | ND     | 1.03       |      | µg/L              | 1  | 5/6/2008 2:25:00 PM                 |
| naphthalene                                  | ND     | 1.03       |      | μg/L              | 1  | 5/6/2008 2:25:00 PM                 |
| thene                                        | NĎ     | 1.03       |      | μg/L              | 1  | 5/6/2008 2:25:00 PM                 |
| hrene                                        | ND     | 1.03       |      | μg/L              | 1  | 5/6/2008 2:25:00 PM                 |
| thylene                                      | ND     | 1.03       |      | μg/L              | 1  | 5/6/2008 2:25:00 PM                 |
|                                              | ND     | 1.03       |      | μg/L              | 1  | 5/6/2008 2:25:00 PM                 |
| ene                                          | ND     | 1.03       |      | μg/L              | 1  | 5/6/2008 2:25:00 PM                 |
| nene                                         | ND     | 1.03       |      | μg/L              | 1  | 5/6/2008 2:25:00 PM                 |
| :                                            | NĎ     | 1.03       |      | μg/L              | 1  | 5/6/2008 2:25:00 PM                 |
| Anthracene                                   | ND     | 0,412      |      | μg/L              | 1  | 5/6/2008 2:25:00 PM                 |
| B                                            | ND     | 1.03       |      | μg/L              | 1  | 5/6/2008 2:25:00 PM                 |
| Fluoranthene                                 | ND     | 1.03       |      | μg/L              | 1  | 5/6/2008 2:25:00 PM                 |
| Fluoranthene                                 | ND     | 1.03       |      | μg/L              | 1. | 5/6/2008 2:25:00 PM                 |
| Pyrene                                       | ND     | 0,206      | •    | μg/L              | 1  | 5/6/2008 2:25:00 PM                 |
| ,2,3-cd)Pyrene                               | ND     | 0.412      |      | μg/L              | 1  | 5/6/2008 2:25:00 PM                 |
| ,h)Anthracene                                | ND     | 0.412      |      | μg/L              | 1  | 5/6/2008 2:25:00 PM                 |
| h,i)Perylene                                 | ND     | 1.03       |      | μg/L              | 1  | 5/6/2008 2:25:00 PM                 |
| H Target Concentration                       | ND     | 0          |      | μg/L              | 1  | 5/6/2008 2:25:00 PM                 |
| 2,2'-Difluorobiphenyl                        | 83.7   | 40-140     |      | %REC              | 1  | 5/6/2008 2:25:00 PM                 |
| 2-Fluorobíphenyl                             | 69.6   | 40~140     |      | %REC              | 1  | 5/6/2008 2:25:00 PM                 |
| E ORGANIC COMPOUNDS - SW82                   | สกล    | -          |      |                   |    | Analyst: <b>MR</b>                  |
| e Organic Compodinds - 34462<br>chloroethane | ND.    | 5.00       |      | μg/L              | 1  | Analyst, MR<br>5/14/2008 8;47:00 PM |
|                                              |        |            |      |                   |    | 5/14/2008 8:47:00 PM                |
| etrachloroethane                             | ND     | 2.00       |      | μ <del>g</del> /L | 1  | 5/14/2008 8:4                       |

Analyte detected in the associated Method Blank

Ε Value above quantitation range

J Analyte detected below quantitation limits

Spike Recovery outside recovery limits

BRL Below Reporting Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0805025

Project:

WM-046, 1.4 Exp

Lab ID:

0805025-001

Client Sample ID: B17

Collection Date: 4/30/2008 9:10:00 PM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| Analyses                    | Result      | Det. Limit | Qual Units                              | DF  | Date Analyzed        |
|-----------------------------|-------------|------------|-----------------------------------------|-----|----------------------|
| VOLATILE ORGANIC COMPOUNDS  | 6 - SW8260B |            | *************************************** |     | Analyst: MR          |
| 1,1,2-Trichloroethane       | ND          | 5.00       | µg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| 1,1-Dichloroethane          | ND          | 5.00       | μg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| 1,1-Dichloroethene          | ND          | 5.00       | μg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| 1,1-Dichloropropene         | ND          | 5.00       | μg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| 1,2,3-Trichlorobenzene      | ND          | 5.00       | μg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| 1,2,3-Trichloropropane      | ND          | 5.00       | μg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| 1,2,4-Trichlorobenzene      | ND          | 5.00       | μg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| 1.2,4-Trimethylbenzene      | ND          | 5.00       | μg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| 1,2-Dibromo-3-Chloropropane | ND          | 5.00       | μg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| 1,2-Dibromoethane           | ND          | 2.00       | μg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| 1,2-Dichlorobenzene         | ND          | 5.00       | μg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| 1,2-Dichloroethane          | ND          | 2.00       | μg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| 1,2-Dichloropropane         | ND          | 2.00       | μg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| 1,3,5-Trimethylbenzene      | ND          | 5.00       | μg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| 1,3-Dichlorobenzene         | ND          | 5.00       | μg/ <b>L</b>                            | 1   | 5/14/2008 8:47:00 PM |
| 1,3-Dichloropropane         | ND          | 5.00       | μg/L                                    | - 1 | 5/14/2008 8:47:00 PM |
| 1,4-Dichlorobenzene         | ND          | 5.00       | μg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| 2,2-Dichloropropane         | ND          | 5.00       | μg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| 2-Butanone                  | ND          | 10.0       | μg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| 2-Chloroethyl Vinyl Ether   | ND          | 5.00       | µg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| 2-Chiorotoluene             | ND          | 5.00       | μg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| 2-Hexanone                  | ND          | 10.0       | μg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| 4-Chlorotoluene             | ND          | 5.00       | µg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| 4-isopropyltaluene          | ND          | 5.00       | μg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| 4-Methyl-2-Pentanone        | ND          | 5.00       | μg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| Acetone                     | ИD          | 50.0       | μg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| Acrolein                    | ИD          | 50.0       | μg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| Acrylonitrile               | ND          | 50.0       | μg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| Benzene                     | ND          | 5,00       | µg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| Bromobenzene                | ND          | 5.00       | µg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| Bromochloromethane          | ND          | 2.00       | μg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| Bromodichloromethane        | ND          | 2.00       | μg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| Bromoform                   | ND          | 2.00       | µg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| Bromomethane                | ИD          | 2.00       | ⊬g/L                                    | 1   | 5/14/2008 8:47:00 PM |
| Carbon Disulfide            | ND          | 5.00       | μg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| Carbon Tetrachloride        | ND          | 2.00       | րց/L                                    | 1   | 5/14/2008 8:47:00 PM |
| Chlorobenzene               | ND          | 5.00       | μg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| Chloroethane                | ND          | 5.00       | μg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| Chloroform                  | ND          | 5.00       | рg/L                                    | 1   | 5/14/2008 8:47:00 PM |
| Chłoromethane               | ND          | 5.00       | нд/L                                    | 1   | 5/14/2008 8:47:00 PM |

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0805025

Project:

WM-046, 1.4 Exp

Lab ID:

0805025-001

Client Sample ID: B17

Collection Date: 4/30/2008 9:10:00 PM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| Analyses                                    | Result      | Det. Limit | Qual Units   | DF | Date Analyzed        |
|---------------------------------------------|-------------|------------|--------------|----|----------------------|
| VOLATILE ORGANIC COMPOUNDS                  | 5 - SW8260B |            |              |    | Analyst: MR          |
| cis-1,2-Dichloroethene                      | ND          | 5.00       | μg/L         | 1  | 5/14/2008 8:47:00 PM |
| cis-1,3-Dichloropropene                     | ND          | 0.500      | μg/L         | 1  | 5/14/2008 8:47:00 PM |
| Dibromochloromethane                        | ND          | 2.00       | μg/L         | 1  | 5/14/2008 8:47:00 PM |
| Dibromomethane                              | ND          | 5.00       | μg/L         | 1  | 5/14/2008 8:47:00 PM |
| Dichlorodifluoromethane                     | ND          | 5.00       | μg/L         | 1  | 5/14/2008 8:47:00 PM |
| Ethylbenzene                                | ND          | 5.00       | μg/L         | 1  | 5/14/2008 8:47:00 PM |
| Hexachlorobutadiene                         | ND          | 0.500      | μg/L         | 1  | 5/14/2008 8:47:00 PM |
| Isopropylbenzene                            | ND          | 5.00       | μg/L         | 1  | 5/14/2008 8:47:00 PM |
| Methyl Tert-Butyl Ether                     | ND          | 5.00       | μg/L         | 1. | 5/14/2008 8:47:00 PM |
| Methylene Chloride                          | ND          | 5.00       | μg/L         | 1  | 5/14/2008 8:47:00 PM |
| Naphthalene                                 | ND          | 20.0       | μg/L         | 1  | 5/14/2008 8:47:00 PM |
| n-Butylbenzene                              | ND          | 5.00       | μg/L         | 1  | 5/14/2008 8:47:00 PM |
| n-Propylbenzene                             | ND          | 5.00       | μg/L         | 1  | 5/14/2008 8:47:00 PM |
| sec-Butylbenzene                            | ND          | 5.00       | μg/L         | 1  | 5/14/2008 8:47:00 PM |
| Styrene                                     | ND          | 5.00       | μg/L         | 1  | 5/14/2008 8:47:00 PM |
| tert-Butylbenzene                           | ND          | 5.00       | μg/L         | 1  | 5/14/2008 8:47:00 PM |
| Tetrachloroethene                           | ND          | 5.00       | μg/L         | 1  | 5/14/2008 8:47:00 PM |
| Toluene                                     | ND          | 5.00       | μg/L         | 1  | 5/14/2008 8:47:00 PM |
| trans-1,2-Dichloroethene                    | ND          | 5.00       | μg/L         | 1  | 5/14/2008 8:47:00 PM |
| trans-1,3-Dichloropropene                   | ND          | 0.500      | μg/L         | 1  | 5/14/2008 8:47:00 PM |
| Trichloroethene                             | ND          | 5.00       | μg/L         | 1  | 5/14/2008 8:47:00 PM |
| Trichlorofluoromethane                      | ND          | 5.00       | μg/ <b>L</b> | 1  | 5/14/2008 8:47:00 PM |
| Vinyl Chloride                              | ND          | 2.00       | μg/L         | 1  | 5/14/2008 8:47:00 PM |
| Xylenes, Total                              | ND          | 5.00       | μg/L         | 1  | 5/14/2008 8:47:00 PM |
| Surr: 1,2-Dichloroethane-d4                 | 95.0        | 70-130     | %REC         | 1  | 5/14/2008 8:47:00 PM |
| Surr: 4-Bromofluorobenzene                  | 81.4        | 70-130     | %REC         | 1  | 5/14/2008 8:47:00 PM |
| Surr: Dibromofluorometnane                  | 113         | 70-130     | %REC         | 1  | 5/14/2008 8:47:00 PM |
| Surr: Toluene-d8                            | 102         | 70-130     | %REC         | 1  | 5/14/2008 8:47:00 PM |
|                                             |             |            | •            |    |                      |
| PH - MADEP VPH                              |             |            |              |    | Analyst: kd          |
| C9-C10 Aromatic Hydrocarbons                | ND          | 75.0       | μg/L         | 1  | 5/9/2008             |
| Unadjusted C5-C8 Aliphatic<br>Hydrocarbons  | ND          | 75.0       | μġ/L         | 1  | 5/9/2008             |
| Unadjusted C9-C12 Aliphatic<br>Hydrocarbons | ND          | 75.0       | μg/L         | 1  | 5/9/2008             |
| Methyl Tert-Butyl Ether                     | 7,99        | 5.00       | μg/L         | 1  | 5/9/2008             |
| Benzene                                     | ND          | 5.00       | μg/L         | 1  | 5/9/2008             |
| Toluene                                     | ND          | 5.00       | μg/L         | 1  | 5/9/2008             |
| Ethylbenzene                                | ND          | 5.00       | μg/L         | 1  | 5/9/2008             |
| m,p-Xylene                                  | 10.7        | 5.00       | μg/L         | 1  | 5/9/2008             |

- B Analyte detected in the associated Method Blank
- 8 Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0805025

Project:

WM-046, 1.4 Exp

Lab ID:

0805025-001

Client Sample ID: B17

Collection Date: 4/30/2008 9:10:00 PM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| Analyses                                  | Result | Det. Limit | Qual | Units | DF | Date Analyzed       |
|-------------------------------------------|--------|------------|------|-------|----|---------------------|
| VPH - MADEP VPH                           |        |            |      |       |    | Analyst: <b>kd</b>  |
| o-Xylene                                  | ND     | 5.00       |      | μg/L  | 1  | 5/9/2008            |
| Naphthalene                               | ND     | 20.0       |      | μg/L  | 1  | 5/9/2008            |
| Adjusted C5-C8 Aliphatic<br>Hydrocarbons  | ND     | 75.0       |      | μg/L  | 1  | 5/9/2008            |
| Adjusted C9-C12 Aliphatic<br>Hydrocarbons | ND     | 75.0       |      | μg/L  | 1  | 5/9/2008            |
| Surr: 2,5-Dibromotoluene FID              | 102    | 70-130     |      | %REC  | 1  | 5/9/2008            |
| Surr: 2,5-Dibromotoluene PID              | 75.8   | 70-130     |      | %REC  | 1  | 5/9/2008            |
| CYANIDE, TOTAL - SM4500-CN-C,E            |        |            |      |       |    | Analyst: <b>WFR</b> |
| Cyanide, Total                            | ND     | 0.0197     |      | mg/L  | 1  | 5/12/2008           |
| ·<br>HEXAVALENT CHROMIUM - SM3500-CR-I    | `      |            |      |       |    | Analyst: <b>WFR</b> |
| Chromium, Hexavalent                      | ИD     | 0.0500     | Н    | mg/L  | 1  | 5/6/2008            |
| TOTAL RESIDUAL CHLORINE - HACH 816        | i7     |            |      |       |    | Analyst: <b>RP</b>  |
| Total Residual Chlorine                   | ND     | 0.162      | Н    | mg/L  | 1  | 5/5/2008            |

В Analyte detected in the associated Method Blank

Έ Value above quantitation range

J Analyte detected below quantitation limits

Spike Recovery outside recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0805025

WM-046, 1.4 Exp

Project: Lab ID:

0805025-002

Client Sample ID: B13

Collection Date: 4/30/2008 10:05:00 PM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| Analyses                         | Result     | Det. Limit | Qual Units    | DF | Date Analyzed                    |
|----------------------------------|------------|------------|---------------|----|----------------------------------|
| TOTAL SUSPENDED SOLIDS - SM25    | 40-D       |            |               |    | Analyst: <b>AM</b> !             |
| Total Suspended Solids           | 12.0       | 4,00       | mg/L          | 1  | 5/5/2008                         |
|                                  |            |            | Ū             |    |                                  |
| EPH RANGES - MADEP EPH           |            |            |               |    | Analyst: RJ                      |
| Adjusted C11-C22 Aromatics       | ND         | 102        | μg/L          | 1  | 5/9/2008                         |
| C09-C18 Aliphatics               | ND         | 102        | μg/L          | 1  | 5/9/2008                         |
| C19-C36 Aliphatics               | ND         | 102        | μg/L          | 1  | 5/9/2008                         |
| Unadjusted C11-C22 Aromatics     | ND         | 102        | μg/L          | 1  | 5/9/2008                         |
| Surr: 1-Chlorooctadecane         | 72.0       | 40-140     | %REC          | 1  | 5/9/2008                         |
| Surr: o-Terphenyl                | 76.0       | 40-140     | %REC          | 1  | 5/9/2008                         |
| TOTAL PETROLEUM HYDROCARBO       | NC . 0400B |            |               |    | Analysis Dur                     |
| Total Petroleum Hydrocarbons     | ND ND      | 0.205      | mg/L          | 1  | Analyst: <b>Ru</b> F<br>5/5/2008 |
| Surr: o-Terphenyl                | 70.0       | 40-140     | %REC          | 1  | 5/5/2008                         |
| 22 3 Torphony                    |            | 75-140     | MICO          | '  | 0/0/2000                         |
| POLYCHLORINATED BIPHENYLS - S    | W8082      |            |               |    | Analyst: GP                      |
| Arocior 1016/1242                | ND         | 0.309      | μ <b>9/</b> L | 1  | 5/6/2008                         |
| Aroclor 1221                     | ND         | 0.309      | μg/L          | 1  | 5/6/2008                         |
| Aroclor 1232                     | ND         | 0.309      | μg/L          | 1  | 5/6/2008                         |
| Arodor 1248                      | ND         | 0.309      | μg/L          | 1  | 5/6/2008                         |
| Aroclor 1254                     | ND         | 0.309      | μg/L          | 1  | 5/6/2008                         |
| Arocior 1260                     | ND         | 0.309      | μg/L          | 1  | 5/6/2008                         |
| Aroclor 1262                     | ND         | 0.309      | μg/L          | 1  | 5/6/2008                         |
| Aroclor 1268                     | ND         | 0.309      | μg/L          | 1  | 5/6/2008                         |
| Surr: Decachlorobiphenyl Sig 1   | 94.0       | 30-150     | %REC          | 1  | 5/6/2008                         |
| Surr: Decachlorobiphenyl Sig 2   | 90.0       | 30-150     | %REC          | 1  | 5/6/2008                         |
| Surr: Tetrachloro-m-Xylene Sig 1 | 79.0       | 30-150     | %REC          | 1  | 5/6/2008                         |
| Surr: Tetrachloro-m-Xylene Sig 2 | 83.0       | 30-150     | %REC          | 1  | 5/6/2008                         |
| FOTAL METALS BY GFAA - E200.9    |            |            |               |    | Analyst: <b>QS</b>               |
| Antimony                         | ND         | 0,00100    | mg/L          | 1  | 5/6/2008                         |
| Arsenic                          | ND         | 0.00100    | mg/L          | 1  | 5/6/2008                         |
| TOTAL METALS BY ICP - SW6010B    |            |            |               |    | Analyst SS                       |
| Barium                           | ND         | 2.00       | mg/L          | 1  | Analyst: <b>QS</b> 5/3/2008      |
| Cadmium                          | ND         | 0.00400    | mg/L          | 1  | 5/3/2008                         |
| Chromium                         | ND         | 0.100      | mg/L          | 1  | 5/3/2008                         |
| Copper                           | ND         | 0.0400     | mg/L          | 1  | 5/3/2008                         |
| Iron                             | ND         | 0.0600     | mg/L          | 1  | 5/3/2008                         |

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0805025

Project:

WM-046, 1.4 Exp

Lab ID:

0805025-002

Client Sample ID: B13

Collection Date: 4/30/2008 10:05:00 PM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| Analyses                        | Result | Det. Limit                              | Qual U | nits | DF  | Date Analyzed       |
|---------------------------------|--------|-----------------------------------------|--------|------|-----|---------------------|
| TOTAL METALS BY ICP - SW6010B   |        | *************************************** |        |      |     | Analyst: <b>QS</b>  |
| Lead                            | 0.0330 | 0.0100                                  | mg     | g/L  | 1   | 5/3/2008            |
| Nickel                          | ND     | 0.100                                   | m      | g/L  | . 1 | 5/3/2008            |
| Selenium                        | ND     | 0.0500                                  | វាថ្ង  | g/L  | · 1 | 5/3/2008            |
| TOTAL SILVER - E200.7           |        |                                         |        |      |     | Analyst: <b>QS</b>  |
| Silver                          | ND     | 0.00700                                 | m      | g/L  | 1   | 5/5/2008            |
| TOTAL MERCURY - E245.1          |        |                                         |        |      |     | Analyst: EC         |
| Mercury                         | ND     | 0.0005                                  | mç     | g/L  | 1   | 5/5/2008            |
| SEMIVOLATILE ORGANICS - SW8270C |        |                                         |        |      |     | Analyst: <b>ZYZ</b> |
| 1,2,4-Trichiorobenzene          | ND     | 1.02                                    | рд     | /L   | 1   | 5/7/2008 3:27:00 PM |
| 1,2-Dichlorobenzene             | ND     | 1.02                                    | μд     | /L   | 1   | 5/7/2008 3:27:00 PM |
| 1,2-Dinitrobenzene              | ND     | 1.02                                    | μg     | /L   | 1   | 5/7/2008 3:27:00 PM |
| 1,3-Dichlorobenzene             | ND     | 1.02                                    | μg     | /L   | 1   | 5/7/2008 3:27:00 PM |
| 1,3-Dinitrobenzene              | ND     | 1.02                                    | μд     | /L   | 1   | 5/7/2008 3:27:00 PM |
| 1,4-Dichlorobenzene             | ND     | 1.02                                    | μд     | /L   | 1   | 5/7/2008 3:27:00 PM |
| 1,4-Dinitrobenzene              | ND     | 1.02                                    | μg     | /L   | *1  | 5/7/2008 3:27:00 PM |
| 2,3,4,6-Tetrachlorophenol       | ND     | 1.02                                    | þд     | /L   | 1   | 5/7/2008 3:27:00 PM |
| 2,4,5-Trichlorophenol           | ND     | 1.02                                    | μg     | /L   | 1   | 5/7/2008 3:27:00 PM |
| 2,4,6-Trichlorophenol           | ND     | 1.02                                    | μд     | /L   | 1   | 5/7/2008 3:27:00 PM |
| 2,4-Dichlorophenol              | ИD     | 1.02                                    | μg     | /L   | 1   | 5/7/2008 3:27:00 PM |
| 2,4-Dimethylphenol              | ND     | 1.02                                    | μд     | /L   | . 1 | 5/7/2008 3:27:00 PM |
| 2,4-Dinitrophenol               | ND     | 5.10                                    | μg     | /L   | 1   | 5/7/2008 3:27:00 PM |
| 2,4-Dinitrotoluene              | ND     | 1.02                                    | μg     | /L   | 1   | 5/7/2008 3:27:00 PM |
| 2,6-Dinitrotoluene              | ND     | 1.02                                    | µg     | /L   | 1   | 5/7/2008 3:27:00 PM |
| 2-Chioronaphthalene             | ND     | 1.02                                    | рд     | /L   | 1   | 5/7/2008 3:27:00 PM |
| 2-Chlorophenol                  | ND     | 1.02                                    | μg     | /L   | 1   | 5/7/2008 3:27:00 PM |
| 2-Methylnaphthalene             | ND     | 1.02                                    | þд     | /L   | 1   | 5/7/2008 3:27:00 PM |
| 2-Methylphenol                  | ND     | 1.02                                    | μд     | /L   | ∴ 1 | 5/7/2008 3:27:00 PM |
| 2-Nitroaniline                  | ND     | 1.02                                    | μg     | /L   | 1   | 5/7/2008 3:27:00 PM |
| 2-Nitrophenol                   | ND     | 1.02                                    | μд     | /L   | 1   | 5/7/2008 3:27:00 PM |
| 3,3'-Dichlorobenzidine          | ND     | 1.02                                    | μg     | /L   | 1   | 5/7/2008 3:27:00 PM |
| 3-Methylphenol/4-Methylphenol   | ND     | 1.02                                    | μд     | /L   | 1   | 5/7/2008 3:27:00 PM |
| 3-Nitroaniline                  | ND     | 1.02                                    | μд     | /L   | 1   | 5/7/2008 3:27:00 PM |
| 4,6-Dirittro-2-Methylphenol     | ND     | 5.10                                    | μд     | /L   | 1   | 5/7/2008 3:27:00 PM |
| 4-Bromophenyl Phenyl Ether      | ND     | 1.02                                    | μд     | /L   | 1   | 5/7/2008 3:27:00 PM |
| 4-Chloro-3-Methylphenol         | ND     | 1.02                                    | μд     |      | 1   | 5/7/2008 3:27:00 PM |
| 4-Chloroaniline                 | ND     | 1.02                                    | μg     | /L   | 1   | 5/7/2008 3:27:00 PM |

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0805025

WM-046, 1.4 Exp

Project: Lab ID:

0805025-002

Client Sample ID: B13

Collection Date: 4/30/2008 10:05:00 PM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| Analyses                        | Result | Det. Limit | Qual | Units        | DF          | Date Analyzed                |
|---------------------------------|--------|------------|------|--------------|-------------|------------------------------|
| SEMIVOLATILE ORGANICS - SW8270C |        |            |      |              | <del></del> | Analyst: <b>ZY</b>           |
| 4-Chlorophenyl Phenyl Ether     | ND     | 1.02       |      | μg/L         | 1           | 5/7/2008 3:27:00 PM          |
| 4-Nitroaniline                  | ND     | 1.02       |      | μg/L         | 1           | 5/7/2008 3:27:00 PM          |
| 4-Nitrophenol                   | ND     | 1.02       |      | μg/L         | 1           | 5/7/2008 3:27:00 PM          |
| Acenaphthene                    | ND     | 1.02       |      | μg/L         | 1           | 5/7/2008 3:27:00 PM          |
| Acenaphthylene                  | ND     | 1.02       |      | μg/L         | 1           | 5/7/2008 3:27:00 PM          |
| Acetophenone                    | ND     | 1.02       |      | µg/L         | 1           | 5/7/2008 3:27:00 PM          |
| Aniline                         | DM     | 5.10       |      | µg/L         | 1           | 5/7/2008 3:27:00 PM          |
| Anthracene                      | ND     | 1.02       |      | μg/L         | 1           | 5/7/2008 3:27:00 PM          |
| Azobenzene                      | ND     | 5.10       |      | µg/L         | 1           | 5/7/2008 3:27:00 PM          |
| Benz(a)Anthracene               | ND     | 0.102      |      | μg/L         | 1           | 5/7/2008 3:27:00 PM          |
| Benzidine                       | ND     | 5.10       |      | µg/∟         | 1           | 5/7/2008 3;27:00 PM          |
| Benzo(a)Pyrene                  | ND     | 0.102      |      | µg/L         | 1           | 5/7/2008 3:27:00 PM          |
| Benzo(b)Fluoranthene            | ND     | 0.510      |      | μg/L         | 1           | 5/7/2008 3:27:00 PM          |
| Benzo(g,h,i)Perylene            | ND     | 1.02       |      | µg/L         | 1 .         | 5/7/2008 3:27:00 PM          |
| Benzo(k)Fluoranthene            | ND     | 0.510      |      | μg/L         | 1           | 5/7/2008 3:27:00 PM          |
| Benzyl Alcohol                  | ND     | . 1.02     |      | µg/L         | 1           | 5/7/2008 3:27:00 PM          |
| Bis(2-Chloroethoxy)Methane      | ND     | 1.02       |      | μg/L         | 1           | 5/7/2008 3:27:00 PM          |
| Bis(2-Chloroethyl)Ether         | ND     | 1.02       |      | µg/L         | 1           | 5/7/2008 3:27:00 PM          |
| Bis(2-Chloroisopropyl)Ether     | ND     | 1.02       |      | µg/L         | 1           | 5/7/2008 3:27:00 PM          |
| Bis(2-Ethylhexyl)Phthalate      | ND     | 1.02       |      | μg/L         | 1           | 5/7/2008 3:27:00 PM          |
| Butyl Benzyl Phthalate          | ND     | 1.02       |      | μg/L         | 1           | 5/7/2008 3:27:00 PM          |
| Carbazole                       | ND     | 1.02       |      | μg/L         | 1           | 5/7/2008 3:27:00 PM          |
| Chrysene                        | ND     | 1.02       |      | μg/Ļ         | 1           | 5/7/2008 3:27:00 PM          |
| Dibenz(a,h)Anthracene           | ND     | 0.102      |      | μg/L         | 1           | 5/7/2008 3;2 <b>7</b> :00 PM |
| Dibenzofuran                    | ND     | 1.02       |      | μg/L         | 1           | 5/7/2008 3:27:00 PM          |
| Diethyl Phthalate               | ND     | 1.02       |      | μg/L         | 1           | 5/7/2008 3:27:00 PM          |
| Dimethyl Phthaiate              | ND     | 1.02       |      | μg/L         | 1           | 5/7/2008 3:27:00 PM          |
| Di-n-Butyl Phthalate            | ND     | 1.02       |      | μg/L         | 1           | 5/7/2008 3:27:00 PM          |
| Di-n-Octyl Phthalate            | ND     | 1.02       |      | µg/ <b>L</b> | 1           | 5/7/2008 3:27:00 PM          |
| Fluoranthene                    | ND     | 1.02       |      | μg/L         | 1           | 5/7/2008 3:27:00 PM          |
| Fluorene                        | ND     | 1.02       |      | µg/L         | 1           | 5/7/2008 3:27:00 PM          |
| Hexachlorobenzene               | ND     | 0.102      |      | μg/L         | 1           | 5/7/2008 3:27:00 PM          |
| -lexachlorobutadiene            | ND     | 0,102      |      | μg/L         | 1           | 5/7/2008 3:27:00 PM          |
| Hexachlorocyclopentadiene       | ND     | 5.10       |      | μg/L         | 1           | 5/7/2008 3:27:00 PM          |
| -lexachloroethane               | ND     | 1.02       |      | μg/L         | 1           | 5/7/2008 3:27:00 PM          |
| ndeno(1,2,3-cd)Pyrene           | ND     | 0.102      |      | μg/L         | 1 .         | 5/7/2008 3:27:00 PM          |
| Isophorone                      | ND     | 1.02       |      | μg/L         | 1           | 5/7/2008 3:27:00 PM          |
| Naphthalene                     | ND     | 1.02       |      | μg/L         | 1           | 5/7/2008 3:27:00 PM          |
| Nitrobenzene                    | ND     | 1.02       |      | μg/L         | 1           | 5/7/2008 3:2 <b>7</b> :00 PM |
| N-Nitrosodimethylamine          | ND     | 5.10       |      | μg/L         | 1           | 5/7/2008 3:27:00 PM          |

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

BRL Below Reporting Limit

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0805025

WM-046, 1.4 Exp

Project: Lab ID:

0805025-002

Client Sample ID: B13

Collection Date: 4/30/2008 10:05:00 PM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| Analyses                        | Result | Det. Limit | Qual Units   | DF | Date Analyzed        |
|---------------------------------|--------|------------|--------------|----|----------------------|
| SEMIVOLATILE ORGANICS - SW8270C |        |            |              |    | Analyst: <b>ZY</b> Z |
| N-Nitrosodi-n-Propytamine       | ND     | 1.02       | μg/L         | 1  | 5/7/2008 3:27:00 PM  |
| N-Nitrosodiphenylamine          | ND     | 5.10       | µg/L         | 1  | 5/7/2008 3:27:00 PM  |
| Pentachlorophenol               | ND     | 1.02       | μg/L         | 1  | 5/7/2008 3:27:00 PM  |
| Phenanthrene                    | ND     | 1.02       | μg/L         | 1  | 5/7/2008 3:27:00 PM  |
| Phenol                          | ND     | 1.02       | µg/L         | 1  | 5/7/2008 3:27:00 PM  |
| Pyrene                          | ND     | 1.02       | µg/∟         | 1  | 5/7/2008 3:27:00 PM  |
| Pyridine                        | ND     | 5.10       | μg/L         | 1  | 5/7/2008 3:27:00 PM  |
| Surr: 2,4,6-Tribromophenol      | 45.6   | 15-110     | %REC         | 1  | 5/7/2008 3:27:00 PM  |
| Surr: 2-Fluorobiphenyl          | 83.1   | 30-130     | %REC         | 1  | 5/7/2008 3:27:00 PM  |
| Surr: 2-Fluorophenol            | 45.8   | 15-110     | %REC         | া  | 5/7/2008 3:27:00 PM  |
| Surr: Nitrobenzene-d5           | 66,5   | 30-130     | %REC         | 1  | 5/7/2008 3:27:00 PM  |
| Surr: Phenol-d6                 | 31.5   | 15-110     | %REC         | 1  | 5/7/2008 3:27:00 PM  |
| Surr: Terphenyl-d14             | 113    | 30-130     | %REC         | 1  | 5/7/2008 3:27:00 PM  |
| EPH TARGET ANALYTES - MADEP EPH |        |            |              |    | Analyst: <b>ZY</b> Z |
| Naphthalene                     | ND     | 1.02       | μg/L         | 1  | 5/6/2008 2:59:00 PM  |
| 2-Methylnaphthalene             | ND     | 1.02       | μg/L         | 1  | 5/6/2008 2:59:00 PM  |
| Acenaphthene                    | ND     | 1.02       | μ <b>g/L</b> | 1  | 5/6/2008 2:59:00 PM  |
| Phenanthrene                    | ND     | 1.02       | μg/L         | 1  | 5/6/2008 2:59:00 PM  |
| Acenaphthylene                  | ND     | 1.02       | μg/L         | 1  | 5/6/2008 2:59:00 PM  |
| Fluorene                        | ND     | 1.02       | μg/L         | 1  | 5/6/2008 2:59:00 PM  |
| Anthracene                      | ND     | 1.02       | μg/L         | 1  | 5/6/2008 2:59:00 PM  |
| Fluoranthene                    | ND     | 1.02       | μg/L         | 1  | 5/6/2008 2:59:00 PM  |
| Pyrene                          | ND     | 1.02       | μg/L         | 1  | 5/6/2008 2:59:00 PM  |
| Benzo(a)Anthracene              | ИD     | 0.408      | µg/L         | 1  | 5/6/2008 2:59:00 PM  |
| Chrysene                        | ND     | 1.02       | μg/L         | 1  | 5/6/2008 2:59:00 PM  |
| Benzo(b)Fluoranthene            | ND     | 1.02       | μg/L         | 1  | 5/6/2008 2:59:00 PM  |
| Benzo(k)Fluoranthene            | ND     | 1.02       | μg/ <b>L</b> | 1  | 5/6/2008 2:59:00 PM  |
| Benzo(a)Pyrene                  | ND     | 0.204      | μg/L         | 1  | 5/6/2008 2:59:00 PM  |
| Indeno(1,2,3-cd)Pyrene          | ND     | 0.408      | μg/L         | 1  | 5/6/2008 2:59:00 PM  |
| Dibenz(a,h)Anthracene           | ND     | 0.408      | μg/L         | 1  | 5/6/2008 2:59:00 PM  |
| Benzo(g,h,i)Perylene            | ND     | 1.02       | μg/Ĺ         | 1  | 5/6/2008 2:59:00 PM  |
| Total PAH Target Concentration  | ND     | 0          | μg/L         | 1  | 5/6/2008 2:59:00 PM  |
| Surr: 2,2'-Difluorobiphenyl     | 89.6   | 40-140     | %REC         | 1  | 5/6/2008 2:59:00 PM  |
| Surr: 2-Fluorobiphenyl          | 99.4   | 40-140     | %REC         | 1  | 5/6/2008 2:59:00 PM  |
| VOLATILE ORGANIC COMPOUNDS - SW | /8260B |            |              |    | Analyst: MR          |
| 1,1,1,2-Tetrachloroethane       | ND     | 5.00       | μg/L         | 1  | 5/8/2008 5:26:00 PM  |
| 1,1,1-Trichloroethane           | ND     | 5.00       | μg/L         | 1  | 5/8/2008 5:26:00 PM  |

- В Analyte detected in the associated Method Blank
- Ε
- J Analyte detected below quantitation limits
- Value above quantitation range
- Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Client Sample ID: B13

Lab Order:

0805025

Collection Date: 4/30/2008 10:05:00 PM

Project:

WM-046, 1.4 Exp

Date Received: 5/2/2008

Lab ID:

0805025-002

Matrix: GROUNDWATER

| Analyses                    | Result      | Det. Limit | Qual Units | DF | Date Analyzed       |
|-----------------------------|-------------|------------|------------|----|---------------------|
| OLATILE ORGANIC COMPOUND    | S - SW8260B |            |            |    | Analyst: <b>MF</b>  |
| 1,1,2,2-Tetrachloroethane   | ND          | 2.00       | μg/L       | 1  | 5/8/2008 5:26:00 PM |
| 1,1,2-Trichloroethane       | DN          | 5.00       | μg/L       | 1  | 5/8/2008 5:26:00 PM |
| 1,1-Dichloroethane          | ND          | 5.00       | µg/L       | 1  | 5/8/2008 5:26:00 PM |
| 1,1-Dichloroethene          | ND          | 5.00       | μg/L       | 1  | 5/8/2008 5:26:00 PM |
| 1,1-Dichloropropene         | ND          | 5.00       | μg/L       | 1  | 5/8/2008 5:26:00 PM |
| 1,2,3-Trichlorobenzene      | ND          | 5.00       | րց/Լ       | 1  | 5/8/2008 5:26:00 PM |
| 1,2,3-Trichloropropane      | ND          | 5.00       | μg/L       | 1  | 5/8/2008 5:26:00 PM |
| 1,2,4-Trichlorobenzene      | ND          | 5.00       | μg/L       | 1  | 5/8/2008 5:26:00 PM |
| 1,2,4-Trimethylbenzene      | 128         | 5.00       | μg/L       | 1  | 5/8/2008 5:26:00 PM |
| 1,2-Dibromo-3-Chloropropane | ND          | 5.00       | μg/L       | 1  | 5/8/2008 5:26:00 PM |
| 1.2-Dibromoethane           | ND          | 2.00       | μg/L       | 1  | 5/8/2008 5:26:00 PM |
| 1,2-Dichlorobenzene         | ND          | 5.00       | μg/L       | 1  | 5/8/2008 5:26:00 PM |
| 1,2-Dichloroethane          | ND          | 2.00       | μg/L       | 1  | 5/8/2008 5:26:00 PM |
| 1,2-Dichloropropane         | ND          | 2.00       | μg/L       | 1  | 5/8/2008 5:26:00 PM |
| 1,3,5-Trimethylbenzene      | 28.4        | 5.00       | μg/L       | 1  | 5/8/2008 5:26:00 PM |
| 1,3-Dichlorobenzene         | ND          | 5.00       | μg/L       | 1  | 5/8/2008 5:26:00 PM |
| 1,3-Dichloropropane         | ND          | 5.00       | μg/L       | 1  | 5/8/2008 5:26:00 PM |
| 1,4-Dichlorobenzene         | ND          | 5.00       | μg/L       | 1  | 5/8/2008 5:26:00 PM |
| 2,2-Dichloropropane         | ND          | 5.00       | μg/L       | 1  | 5/8/2008 5:26:00 PM |
| 2-Butanone                  | ND          | 10.0       | μg/L       | 1  | 5/8/2008 5:26:00 PM |
| 2-Chloroethyl Vinyl Ether   | ND          | 5.00       | μg/L       | 1  | 5/8/2008 5:26:00 PM |
| 2-Chlorotoluene             | ND          | 5.00       | μg/L       | 1  | 5/8/2008 5:26:00 PM |
| 2-Hexanone                  | ND          | 10.0       | μg/L       | 1  | 5/8/2008 5:26:00 PM |
| 4-Chlorotoluene             | ND          | 5.00       | μg/L       | 1  | 5/8/2008 5:26:00 PM |
| 4-isopropyltoluene          | ND          | . 5.00     | μg/L       | 1  | 5/8/2008 5:26:00 PM |
| 4-Methyl-2-Pentanone        | ND          | 5.00       | μg/L       | 1  | 5/8/2008 5:26:00 PM |
| Acetone                     | ND          | 50.0       |            | 1  | 5/8/2008 5:26:00 PM |
| Acrolein                    | ND          | 50.0       |            | 1  | 5/8/2008 5:26:00 PM |
| Acrylonitrile               | ND          | 50.0       | μg/L       | 1  | 5/8/2008 5:26:00 PM |
| Benzene                     | ND          | 5.00       | · -        | 1  | 5/8/2008 5:26:00 PM |
| Bromobenzene                | ND          | 5.00       | μg/L       | 4  | 5/8/2008 5:26:00 PM |
| Bromochloromethane          | ND          | 2.00       |            | 1  | 5/8/2008 5:26:00 PM |
| Bromodichloromethane        | ND          | 2.00       | , •        | 1  | 5/8/2008 5:26:00 PM |
| Bromoform                   | ND          | 2.00       | , 0        | 1  | 5/8/2008 5:26:00 PM |
| Bromomethane                | ND          | 2.00       |            | 1  | 5/8/2008 5:26:00 PM |
| Carbon Disulfide            | ND          | 5.00       |            | 1  | 5/8/2008 5:26:00 PN |
| Carbon Tetrachloride        | ND          | 2.00       |            | 1  | 5/8/2008 5:26:00 PN |
| Chlorobenzene               | ND          | 5.00       | . •        | 1  | 5/8/2008 5:26:00 PN |
| Chloroethane                | ND          | 5.00       |            | 1  | 5/8/2008 5:26:00 PN |
| Chloroform                  | ND          | 5.00       |            | 1  | 5/8/2008 5;26:00 PM |

- Analyte detected in the associated Method Blank
- Value above quantitation range Ε
- Analyte detected below quantitation limits
- Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

Project:

Lab ID:

0805025

0805025-002

Client Sample ID: B13

WM-046, 1.4 Exp

Collection Date: 4/30/2008 10:05:00 PM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| Analyses                                    | Result       | Det. Limit | Qual [ | Juits | DF | Date Analyzed       |
|---------------------------------------------|--------------|------------|--------|-------|----|---------------------|
| OLATILE ORGANIC COMPOUNDS                   | - SW8260B    |            |        |       |    | Analyst: MF         |
| Chloromethane                               | ND           | 5.00       | μ      | g/L   | 1  | 5/8/2008 5:26:00 PM |
| cis-1,2-Dichloroethene                      | ND           | 5.00       | р      | g/L   | 1  | 5/8/2008 5:26:00 PM |
| cis-1,3-Dichloropropene                     | ND           | 0.500      |        | g/L   | 1  | 5/8/2008 5:26:00 PM |
| Dibromochloromethane                        | ND           | 2.00       | ц      | g/L   | 1  | 5/8/2008 5:26:00 PM |
| Dibromomethane                              | ND           | 5.00       | μ      | g/L   | 1  | 5/8/2008 5:26:00 PM |
| Dichlorodifluoromethane                     | ND           | 5.00       | μ      | g/L   | 1  | 5/8/2008 5:26:00 PM |
| Ethylbenzene                                | 40.0         | 5.00       | μ      | g/L   | 1  | 5/8/2008 5:26:00 PM |
| Hexachlorobutadiene                         | ND           | 0.500      | μ      | g/L   | 1  | 5/8/2008 5:26:00 PM |
| sopropylbenzene                             | 7.0 <b>9</b> | 5.00       | μ      | g/L   | 1  | 5/8/2008 5:26:00 PM |
| Methyl Tert-Butyl Ether                     | ND           | 5.00       | μ      | g/L   | 1  | 5/8/2008 5:26:00 PM |
| Methylene Chloride                          | ND           | 5.00       |        | g/L   | 1  | 5/8/2008 5:26:00 PM |
| Naphthalene                                 | . ND         | 20.0       | P      | g/L   | 1  | 5/8/2008 5:26:00 PM |
| n-Butylbenzene                              | ND           | 5.00       | ·<br>P | g/L   | 1  | 5/8/2008 5:26:00 PM |
| n-Propylbenzene                             | 20.5         | 5.00       |        | g/L   | 1  | 5/8/2008 5:26:00 PM |
| sec-Butylbenzene                            | 70.6         | 5.00       | μ      | g/L   | 1  | 5/8/2008 5:26:00 PM |
| Styrene                                     | ND           | 5.00       | μ      | g/L   | 1  | 5/8/2008 5:26:00 PM |
| tert-Butylbenzene                           | ND           | 5.00       | ħ      | g/L   | 1  | 5/8/2008 5:26:00 PM |
| Tetrachloroethene                           | ND           | 5.00       | μ      | g/L   | 1  | 5/8/2008 5:26:00 PM |
| Toluene                                     | ND           | 5.00       | μ      | g/L   | 1  | 5/8/2008 5:26:00 PM |
| trans-1,2-Dichloroethene                    | ND           | 5.00       | μ      | g/L   | 1  | 5/8/2008 5:26:00 PM |
| trans-1,3-Dichloropropene                   | ND           | 0.500      | μ      | g/L   | 1  | 5/8/2008 5:26:00 PM |
| Trichloroethene                             | ND           | 5:00       | μ      | g/L   | 1  | 5/8/2008 5:26:00 PM |
| Trichiorofluoromethane                      | ND           | 5.00       | μ      | g/L   | 1  | 5/8/2008 5:26:00 PM |
| Vinyl Chloride                              | ND           | 2.00       | μ      | g/L   | 1  | 5/8/2008 5:26:00 PM |
| Xylenes, Total                              | 126          | 5.00       | μ      | g/L   | 1  | 5/8/2008 5:26:00 PM |
| Surr: 1,2-Dichloroethane-d4                 | 114          | 70-130     | %      | REC   | 1  | 5/8/2008 5:26:00 PM |
| Surr: 4-Bromofluorobenzene                  | 115          | 70-130     | 9/     | REC   | 1  | 5/8/2008 5:26:00 PM |
| Surr: Dibromofluoromethane                  | 118          | 70-130     | %      | REC   | 1  | 5/8/2008 5:26:00 PM |
| Surr: Toluene-d8                            | 105          | 70-130     | %      | REC   | 1  | 5/8/2008 5:26:00 PM |
| PH - MADEP VPH                              |              |            |        |       |    | Analyst: kd         |
| C9-C10 Aromatic Hydrocarbons                | ND           | 75.0       | Ц      | g/L   | 1  | 5/9/2008            |
| Unadjusted C5-C8 Aliphatic<br>Hydrocarbons  | ND           | 75.0       |        | g/L   | 1  | 5/9/2008            |
| Unadjusted C9-C12 Aliphatic<br>Hydrocarbons | ND           | 75.0       | μ      | g/L   | 1  | 5/9/2008            |
| Methyl Tert-Butyl Ether                     | ND           | 5.00       | μ      | g/L   | 1  | 5/9/2008            |
| Benzene                                     | ND           | 5.00       | μ      | g/L   | 1  | 5/9/2008            |
| Toluene                                     | ND           | 5.00       | h      | g/L   | 1  | 5/9/2008            |
| Ethylbenzene                                | ND           | 5.00       | μ      | g/L   | 1  | 5/9/2008            |

- В Analyte detected in the associated Method Blank
- $\mathbf{E}$ Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT: Lab Order:

Fay, Spofford & Thorndike

Project:

0805025

WM-046, 1.4 Exp

Lab ID:

0805025-002

Client Sample ID: B13

Collection Date: 4/30/2008 10:05:00 PM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| Analyses                               | Result   | Det. Limit | Qual | Units | DF | Date Analyzed       |
|----------------------------------------|----------|------------|------|-------|----|---------------------|
| VPH - MADEP VPH                        |          |            |      |       |    | Analyst: <b>kd</b>  |
| m,p-Xylene                             | ND       | 5.00       |      | μg/Ŀ  | 1  | 5/9/2008            |
| o-Xylene                               | ND       | 5.00       |      | µg/L  | 1  | 5/9/2008            |
| Naphthalene                            | ND:      | 20.0       |      | μg/L  | 1  | 5/9/2008            |
| Adjusted C5-C8 Aliphatic Hydrocarbons  | ND       | 75.0       |      | μg/L  | 1  | 5/9/2008            |
| Adjusted C9-C12 Aliphatic Hydrocarbons | ND       | 75.0       |      | µg/L  | 1  | 5/9/2008            |
| Surr: 2,5-Dibromotoluene FID           | 83.6     | 70-130     |      | %REC  | 1  | 5/9/2008            |
| Surr: 2,5-Dibromotoluene PID           | 72.1     | 70-130     |      | %REC  | 1  | 5/9/2008            |
| CYANIDE, TOTAL - SM4500-CN-C.E         |          |            |      |       |    | Analyst: <b>WFR</b> |
| Cyanide, Total                         | ND       | 0.0197     |      | mg/L  | 1  | 5/12/2008           |
| HEXAVALENT CHROMIUM - SM3500-CR-I      | <b>1</b> |            |      |       |    | Analyst: <b>WFR</b> |
| Chromium, Hexavalent                   | ND       | 0.0500     | Н    | mg/L  | 1  | 5/6/2008            |
| TOTAL RESIDUAL CHLORINE - HACH 816     | 57       |            |      |       |    | Analyst: <b>RP</b>  |
| Total Residual Chlorine                | ND       | 0.162      | Н    | mg/L  | 1  | 5/5/2008            |

- В Analyte detected in the associated Method Blank
- E Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- Holding times for preparation or analysis exceeded Н
- Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT: Lab Order: Fay, Spofford & Thorndike

000000

0805025

WM-046, 1.4 Exp

Project: Lab ID:

0805025-003

Client Sample ID: B11

Collection Date: 4/30/2008 11:40:00 PM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| Lab 1b. 0003023-003              |             |                                         | .VI        | Matrix: GROUNDWATER |                                |  |  |  |
|----------------------------------|-------------|-----------------------------------------|------------|---------------------|--------------------------------|--|--|--|
| Analyses                         | Result      | Det. Limit                              | Qual Units | DF                  | Date Analyzed                  |  |  |  |
| TOTAL SUSPENDED SOLIDS - SM2     | 540-D       |                                         |            |                     | Analyst: AM:                   |  |  |  |
| Total Suspended Solids           | 424         | 4.00                                    | mg/L       | 1                   | 5/5/2008                       |  |  |  |
| EPH RANGES - MADEP EPH           |             |                                         |            |                     | Analyst: <b>RJ</b>             |  |  |  |
| Adjusted C11-C22 Aromatics       | ND          | 108                                     | μg/L       | 1                   | 5/9/2008                       |  |  |  |
| C09-C18 Aliphatics               | ND          | 108                                     | μg/L       | 1                   | 5/9/2008                       |  |  |  |
| C19-C36 Aliphatics               | ND          | 108                                     | μg/L       | 1                   | 5/9/2008                       |  |  |  |
| Unadjusted C11-C22 Aromatics     | ND          | 108                                     | μg/L       | 1                   | 5/9/2008                       |  |  |  |
| Surr: 1-Chlorooctadecane         | 72.0        | 40-140                                  | %REC       | 1                   | 5/9/2008                       |  |  |  |
| Surr: o-Terphenyl                | 76.0        | 40-140                                  | %REC       | 1                   | 5/9/2008                       |  |  |  |
| TOTAL PETROLEUM HYDROCARBO       | ONS - 8100M | .*                                      |            |                     | Analyst: RuP                   |  |  |  |
| Total Petroleum Hydrocarbons     | ND ND       | 0.227                                   | mg/L       | 1                   | 5/7/2008                       |  |  |  |
| Surr: o-Terphenyl                | 99.0        | 40-140                                  | %REC       | 1                   | 5/7/2008                       |  |  |  |
| , ,                              |             | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 70.120     | ,                   | 3/1/2000                       |  |  |  |
| POLYCHLORINATED BIPHENYLS -      | –           |                                         |            |                     | Analyst: GP                    |  |  |  |
| Aroclor 1016/1242                | ND          | 0.319                                   | μg/L       | 1                   | 5/6/2008                       |  |  |  |
| Aroclor 1221                     | ND          | 0.319                                   | µg/L       | 1                   | 5/6/2008                       |  |  |  |
| Aroclor 1232                     | ND          | 0.319                                   | μg/L       | 1                   | 5/6/2008                       |  |  |  |
| Aroclor 1248                     | ИD          | 0.319                                   | μg/L       | 1                   | 5/6/2008                       |  |  |  |
| Aroclor 1254                     | ND          | 0.319                                   | μg/L       | 1                   | 5/6/2008                       |  |  |  |
| Aroclor 1260                     | ND          | 0.319                                   | μg/L       | 1                   | 5/6/2008                       |  |  |  |
| Aroclor 1262                     | ND          | 0.319                                   | μg/L       | 1                   | 5/6/2008                       |  |  |  |
| Aroclar 1268                     | ND          | 0.319                                   | μg/L       | 1                   | 5/6/2008                       |  |  |  |
| Surr: Decachlorobiphenyl Sig 1   | 106         | 30-150                                  | %REC       | 1                   | 5/6/2008                       |  |  |  |
| Surr: Decachlorobiphenyl Sig 2   | 103         | 30-150                                  | %REC       | 1                   | 5/6/2008                       |  |  |  |
| Surr: Tetrachloro-m-Xylene Sig 1 | 85.0        | 30-150                                  | %REC       | 1                   | 5/6/2008                       |  |  |  |
| Surr: Tetrachloro-m-Xylene Sig 2 | 0.98        | 30-150                                  | %REC       | 1                   | 5/6/2008                       |  |  |  |
| DISSOLVED METALS BY GFAA - E2    | 00.9        |                                         |            |                     | Analyst: QS                    |  |  |  |
| Antimony                         | МÐ          | 0.00100                                 | mg/L       | 1                   | 5/6/2008                       |  |  |  |
| Arsenic                          | 0.0101      | 0.00100                                 | mg/L       | 1                   | 5/6/2008                       |  |  |  |
| DISSOLVED METALS BY ICP - SW6    | 010E        |                                         |            |                     | Analysis CS                    |  |  |  |
| Barium                           | ND          | 2.00                                    | mg/L       | 1                   | Analyst: <b>QS</b><br>5/3/2008 |  |  |  |
| Cadmium                          | ND          | 0.00400                                 | mg/L       | 1                   | 5/3/2008                       |  |  |  |
| Chromium                         | ND          | 0.100                                   | mg/L       | 1                   | 5/3/2008                       |  |  |  |
| Copper                           | 0.0350      | 0.00800                                 | mg/L       | 1                   | 5/3/2008                       |  |  |  |
| Iron                             | 21.9        | 0.600                                   | mg/L       | 10                  | 5/3/2008                       |  |  |  |

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

0805025

Lab Order: 080

WM-046, 1.4 Exp

Project: Lab ID:

0805025-003

Client Sample ID: B11

Collection Date: 4/30/2008 11:40:00 PM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| Analyses                          | Result | Det. Limit Q | ual Units    | DF  | Date Analyzed       |
|-----------------------------------|--------|--------------|--------------|-----|---------------------|
| DISSOLVED METALS BY ICP - SW6010E | 3      |              |              |     | Analyst: <b>QS</b>  |
| Lead                              | 0.0430 | 0.0100       | mg/L         | 1   | 5/3/2008            |
| Nickel                            | ND     | 0.100        | mg/L         | 1   | 5/3/2008            |
| Selenium                          | ND     | 0.0500       | mg/L         | 1   | 5/3/2008            |
| DISSOLVED SILVER - E200.7         |        |              |              |     | Analyst: <b>QS</b>  |
| Silver-Dissofved                  | ND     | 0.00700      | mg/L         | 1   | 5/5/2008            |
| DISSOLVED MERCURY - E245.1        |        |              |              |     | Analyst: EC         |
| Mercury-Dissolved                 | ND     | 0.000500     | mg/L         | 1   | 5/5/2008            |
| SEMIVOLATILE ORGANICS - SW8270C   |        |              |              |     | Analyst: <b>ZYZ</b> |
| 1,2,4-Trichlorobenzene            | ND     | 1.04         | µg/∟         | 1   | 5/7/2008 4:05:00 PM |
| 1,2-Dichlorobenzene               | ND     | 1.04         | µg/∟         | 1   | 5/7/2008 4:05:00 PM |
| 1,2-Dinitrobenzene                | ND     | 1.04         | μg/L         | 1   | 5/7/2008 4:05:00 PM |
| 1,3-Dichlorobenzene               | ND     | 1.04         | µg/L         | 1   | 5/7/2008 4:05:00 PM |
| 1,3-Dinitrobenzene                | ND     | 1.04         | μg/L         | 4   | 5/7/2008 4:05:00 PM |
| 1,4-Dichlorobenzene               | ND     | 1.04         | µg/L         | 1   | 5/7/2008 4:05:00 PM |
| 1,4-Dinitrobenzene                | ND     | 1.04         | μg/L         | 1   | 5/7/2008 4:05:00 PM |
| 2,3,4,6-Tetrachlorophenol         | ND     | 1,04         | μg/L         | 1   | 5/7/2008 4:05:00 PM |
| 2,4,5-Trichlorophenol             | ND     | 1.04         | μg/L         | . 1 | 5/7/2008 4:05:00 PM |
| 2,4,6-Trichlorophenol             | ND     | 1.04         | μg/L         | 1   | 5/7/2008 4:05:00 PM |
| 2,4-Dichlorophenol                | ND     | 1.04         | μg/L         | 1   | 5/7/2008 4:05:00 PM |
| 2,4-Dimethylphenol                | ND     | 1.04         | µg/L         | 1   | 5/7/2008 4:05:00 PM |
| 2,4-Dinitrophenol                 | ND     | 5.21         | μg/L         | 1   | 5/7/2008 4:05:00 PM |
| 2,4-Dinitrotoluene                | ND     | 1.04         | μg/L         | 1   | 5/7/2008 4:05:00 PM |
| 2,6-Dinitrotoluene                | DN     | 1.04         | µg/L         | 1 . | 5/7/2008 4:05:00 PM |
| 2-Chloronaphthalene               | ND     | 1.04         | μg/L         | . 1 | 5/7/2008 4:05:00 PM |
| 2-Chlorophenol                    | ND     | 1.04         | μg/L         | 1   | 5/7/2008 4:05:00 PM |
| 2-Methylnaphthalene               | ND     | 1.04         | μg/L         | 1   | 5/7/2008 4:05:00 PM |
| 2-Methylphenol                    | ND     | 1.04         | μg/L         | 1   | 5/7/2008 4:05:00 PM |
| 2-Nitroaniline                    | ND     | 1.04         | μg/L         | 1   | 5/7/2008 4:05:00 PM |
| .2-Nitrophenol                    | ND     | 1.04         | μg/L         | 1   | 5/7/2008 4:05:00 PM |
| 3,3'-Dichlorobenzidine            | ND     | 1.04         | μg/ <b>L</b> | 1   | 5/7/2008 4:05:00 PM |
| 3-Methylphenol/4-Methylphenol     | ND     | 1.04         | μg/L         | 1   | 5/7/2008 4:05:00 PM |
| 3-Nitroaniline                    | ND     | 1.04         | μg/L         | 1   | 5/7/2008 4:05:00 PM |
| 4,6-Dinitro-2-Methylphenol        | ND     | 5.21         | μg/L         | 1   | 5/7/2008 4:05:00 PM |
| 4-Bromophenyl Phenyl Ether        | ND     | 1.04         | μg/L         | 1   | 5/7/2008 4:05:00 PM |
| 4-Chioro-3-Methylphenol           | NE     | 1.04         | μg/L         | 1   | 5/7/2008 4:05:00 PM |
| 4-Chloroaniline                   | NE     | 1,04         | μg/L         | 1   | 5/7/2006 4:05:00 PM |

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

**CLIENT:** 

Fay, Spofford & Thorndike

Lab Order:

0805025

Project:

WM-046, 1.4 Exp

Lab ID:

0805025-003

Client Sample ID: B11

Collection Date: 4/30/2008 11:40:00 PM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| Analyses                        | Result | Det. Limit | Qual Units    | DF | Date Analyzed        |
|---------------------------------|--------|------------|---------------|----|----------------------|
| SEMIVOLATILE ORGANICS - SW8270C |        |            |               |    | Analyst: <b>ZY</b> Z |
| 4-Chlorophenyl Phenyl Ether     | ND     | 1.04       | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| 4-Nitroaniline                  | ND     | 1.04       | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| 4-Nitrophenol                   | ND     | 1.04       | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Acenaphthene                    | ND     | 1.04       | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Acenaphthylene                  | ND     | 1.04       | µg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Acetophenone                    | ND     | 1.04       | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Aniline                         | ND     | 5.21       | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Anthracene                      | ND     | 1.04       | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Azobenzene                      | ND     | 5.21       | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Benz(a)Anthracene               | ND     | 0.104      | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Benzidine                       | ND     | 5.21       | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Benzo(a)Pyrene                  | ND     | 0.104      | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Benzo(b)Fluoranthene            | ND     | 0.521      | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Benzo(g,h,i)Perylene            | ND     | 1.04       | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Benzo(k)Fluoranthene            | ND     | 0.521      | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Benzyl Alcohol                  | ND     | 1.04       | µg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Bis(2-Chloroethoxy)Methane      | ND     | 1.04       | μ <b>g</b> /L | 1  | 5/7/2008 4:05:00 PM  |
| Bis(2-Chloroethyl)Ether         | ND     | 1.04       | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Bis(2-Chloroisopropyl)Ether     | ND     | 1.04       | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Bis(2-Ethylhexyl)Phthalate      | ND     | 1.04       | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Butyl Benzyl Phthalate          | ND     | 1.04       | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Carbazole                       | ND     | 1.04       | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Chrysene                        | ND     | 1.04       | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Dibenz(a,h)Anthracene           | ND     | 0.104      | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Dibenzofuran                    | ND     | 1.04       | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Diethyl Phthalate               | ND     | 1.04       | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Dimethyl Phthalate              | ND     | 1.04       | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Di-n-Butyl Phthalate            | 3.89   | 1.04       | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Di-n-Octyl Phthalate            | ND     | 1.04       | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Fluoranthene                    | ND     | 1.04       | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Fluorene                        | ND     | 1.04       | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Hexachlorobenzene               | ND     | 0.104      | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Hexachlorobutadiene             | ND     | 0.104      | μg/L          | 4  | 5/7/2008 4:05:00 PM  |
| Hexachlorocyclopentadiene       | ND     | 5.21       | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Hexachloroethane                | ND     | 1.04       | µg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Indeno(1,2,3-cd)Pyrene          | ND     | 0.104      | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Isophorone                      | ND     | 1.04       | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Naphthalene                     | ND     | 1.04       | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| Nitrobenzene                    | ND     | 1.04       | μg/L          | 1  | 5/7/2008 4:05:00 PM  |
| N-Nitrosodimethylamine          | ND     | 5.21       | μg/L          | 1  | 5/7/2008 4:05:00 PM  |

- В Analyte detected in the associated Method Blank
- E Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

**CLIENT:** 

Fay, Spofford & Thorndike

Lab Order:

0805025

Client Sample ID: B11

Collection Date: 4/30/2008 11:40:00 PM

Project:

WM-046, 1.4 Exp

Date Received: 5/2/2008

Lab ID:

0805025-003

Matrix: GROUNDWATER

| Analyses                        | Result | Det. Limit | Qual U | Inits | DF | Date Analyzed       |
|---------------------------------|--------|------------|--------|-------|----|---------------------|
| SEMIVOLATILE ORGANICS - SW8270C |        |            |        |       |    | Analyst: <b>ZYZ</b> |
| N-Nitrosodi-n-Propylamine       | ND     | 1.04       | p:     | g/L   | 1  | 5/7/2008 4:05:00 PM |
| N-Nitrosodiphenylamine          | ND     | 5.21       | þ      | g/L   | 1  | 5/7/2008 4:05:00 PM |
| Pentachioropheno!               | ND     | 1.04       | μ      | g/L   | 1  | 5/7/2008 4:05:00 PM |
| Phenanthrene                    | ND     | 1.04       | μ      | g/L   | 1  | 5/7/2008 4:05:00 PM |
| Phenol                          | ND     | 1.04       | μ      | g/L   | 1  | 5/7/2008 4:05:00 PM |
| Pyrene                          | ND     | 1.04       | μ      | g/L   | 1  | 5/7/2008 4:05:00 PM |
| Pyridine                        | ND     | 5.21       | μ      | g/L   | 1  | 5/7/2008 4:05:00 PM |
| Surr: 2,4,6-Tribromophenol      | 44.6   | 15-110     | %      | 6REC  | 1  | 5/7/2008 4:05:00 PM |
| Surr: 2-Fluorobiphenyl          | 72.5   | 30-130     | 0/6    | 6REC  | 1  | 5/7/2008 4:05:00 PM |
| Surr: 2-Fluorophenol            | 40.9   | 15-110     | %      | 6REC  | 1  | 5/7/2008 4:05:00 PM |
| Surr: Nitrobenzene-d5           | 61.7   | 30-130     | %      | 6REC  | 1  | 5/7/2008 4:05:00 PM |
| Surr: Phenoi-d6                 | 27.7   | 15-110     | %      | 6REC  | 1  | 5/7/2008 4:05:00 PM |
| Surr: Terphenyl-d14             | 78.6   | 30-130     | 9/     | 6REC  | 1  | 5/7/2008 4:05:00 PM |
| EPH TARGET ANALYTES - MADEP EPI | 4      |            |        |       |    | Analyst: <b>ZYZ</b> |
| Nachthalene                     | ND     | 1.08       | п      | ıg/L  | 1  | 5/6/2008 3:34:00 PM |
| 2-Methylnaphthalene             | ND     | 1.08       |        | ig/L  | 1  | 5/6/2008 3:34:00 PM |
| Acenaphthene                    | ND     | 1.08       |        | ıg/L  | 1  | 5/6/2008 3:34:00 PM |
| Phenanthrene                    | ND     | 1.08       |        | ıg/L  | 1  | 5/6/2008 3:34:00 PM |
| Acenaphthylene                  | ND     | 1.08       | •      | ig/L  | 1  | 5/6/2008 3:34:00 PM |
| Fluorene                        | ND     | 1.08       |        | ıg/L  | 1  | 5/6/2008 3:34:00 PM |
| Anthracene                      | ND     | 1.08       |        | ıg/L  | 1  | 5/6/2008 3:34:00 PM |
| Fivoranthene                    | ND     | 1.08       |        | ig/L  | 1  | 5/6/2008 3:34:00 PM |
| Pyrene                          | ND     | 1.08       | -      | ıg/L  | 1  | 5/6/2008 3:34:00 PM |
| Benzo(a)Anthracene              | ND     | 0.430      |        | ıg/L  | 1  | 5/6/2008 3:34:00 PM |
| Chrysene                        | ND     | 1.08       |        | ig/L  | 1  | 5/6/2008 3:34:00 PM |
| Benzo(b)Fluoranthene            | ND     | 1.08       |        | ig/L  | 1  | 5/6/2008 3:34:00 PM |
| Benzo(k)Fluoranthene            | ND     | 1.08       |        | ig/L  | 1  | 5/6/2008 3:34:00 PM |
| Benzo(a)Pyrene                  | ND     | 0.215      |        | ig/L  | 1  | 5/6/2008 3:34:00 PM |
| Indeno(1,2,3-cd)Pyrene          | ND     | 0.430      | =      | ıg/L  | 1  | 5/6/2008 3:34:00 PM |
| Dibenz(a,h)Anthracene           | ND     | 0.430      |        | ıg/L  | 1  | 5/6/2008 3:34:00 PM |
| Benzo(g,h,i)Perylene            | ND     | 1.08       | ,      | ıg/L  | 1  | 5/6/2008 3:34:00 PM |
| Total PAH Target Concentration  | ND     | 0          |        | ıg/L  | 1  | 5/6/2008 3:34:00 PM |
| Surr: 2,2'-Difluorobiphenyl     | 89.4   | 40-140     |        | %REC  | 1  | 5/6/2008 3:34:00 PM |
| Surr: 2-Fluorobiphenyl          | 94.2   | 40-140     |        | %REC  | 1  | 5/6/2008 3:34:00 PM |
| VOLATILE ORGANIC COMPOUNDS - S  | Meacab |            |        |       |    | Analyst: <b>MR</b>  |
| 1.1.1.2-Tetrachioroethane       | ND ND  | 5.00       |        | ug/L  | 1  | 5/8/2008 6:00:00 PM |
| r, r, z-retrachioroethane       | NU     | 5.00       | ·      | agr L | 1  | 5/8/2008 6:00:00 PM |

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits J

Spike Recovery outside recovery limits

BRL Below Reporting Limit

Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0805025

0803023

Project: Lab ID: WM-046, 1.4 Exp 0805025-003 Client Sample ID: B11

Collection Date: 4/30/2008 11:40:00 PM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| Analyses                    | Result      | Det. Limit | Qual Ui     | nits | DF     | Date Analyzed       |
|-----------------------------|-------------|------------|-------------|------|--------|---------------------|
| VOLATILE ORGANIC COMPOUNDS  | S - SW8260B |            | <del></del> |      |        | Analyst: <b>M</b> R |
| 1,1,2,2-Tetrachioroethane   | ND          | 2.00       | μg.         | /L   | 1      | 5/8/2008 6:00:00 PM |
| 1,1,2-Trichloroethane       | ND          | 5.00       | μg          | /L   | 1      | 5/8/2008 6:00:00 PM |
| 1,1-Dichloroethane          | ND          | 5.00       | μg          | /L   | 1      | 5/8/2008 6:00:00 PM |
| 1,1-Dichloroethene          | ND          | 5.00       | μg,         | /L   | 1      | 5/8/2008 6:00:00 PM |
| 1,1-Dichloropropene         | ND          | 5.00       | μg          | /L   | 1      | 5/8/2008 6:00:00 PM |
| 1,2,3-Trichlorobenzene      | ND          | 5.00       | μg          | /L   | 1      | 5/8/2008 6:00:00 PM |
| 1,2,3-Trichloropropane      | ND          | 5.00       | рgи         | /L   | 1      | 5/8/2008 6:00:00 PM |
| 1,2,4-Trichlorobenzene      | ND          | 5,00       | μg          | /L   | 1      | 5/8/2008 6:00:00 PM |
| 1,2,4-Trimethylbenzene      | 11.9        | 5.00       | μg/         | /L   | 1      | 5/8/2008 6:00:00 PM |
| 1,2-Dibromo-3-Chloropropane | ND          | 5.00       | μg/         | /L   | 1      | 5/8/2008 6:00:00 PM |
| 1,2-Dibromoethane           | ND          | 2.00       | нди         | /L   | 1      | 5/8/2008 6:00:00 PM |
| 1,2-Dichlorabenzene         | ND          | 5.00       | µg/         |      | 1      | 5/8/2008 6:00:00 PM |
| 1,2-Dichloroethane          | ND          | 2.00       | μg/         |      | 1      | 5/8/2008 6:00:00 PM |
| 1,2-Dichloropropane         | ND          | 2.00       | μg/         |      | 1      | 5/8/2008 6:00:00 PM |
| 1,3,5-Trimethylbenzene      | 7.06        | 5.00       | μg/         | /L   | 1      | 5/8/2008 6:00:00 PM |
| 1,3-Dichlorobenzene         | ND          | 5.00       | μg/         |      | 1      | 5/8/2008 6:00:00 PM |
| 1,3-Dichloropropane         | ND          | 5.00       | µg/         | /L   | 1      | 5/8/2008 6:00:00 PM |
| 1,4-Dichlorobenzene         | ND          | 5.00       | ha/         | /L   | 1      | 5/8/2008 6:00:00 PM |
| 2,2-Dichloropropane         | ND          | 5.00       | µg/         |      | 1      | 5/8/2008 6:00:00 PM |
| 2-Butanone                  | ND          | 10.0       | μg/         | /L   | 1      | 5/8/2008 6:00:00 PM |
| 2-Chloroethyl Vinyl Ether   | ND          | 5.00       | µg/         |      | 1      | 5/8/2008 6:00:00 PM |
| 2-Chlorotoluene             | ND          | 5.00       | μg/         |      | 1      | 5/8/2008 6:00:00 PM |
| 2-Hexanone                  | ND          | 10.0       | μg/         |      | 1      | 5/8/2008 6:00:00 PM |
| 4-Chlorotoluene             | ND          | 5.00       | μg/         |      | 1      | 5/8/2008 6:00:00 PM |
| 4-Isopropyitaluene          | ND          | 5.00       | μg/         |      | 1      | 5/8/2008 6:00:00 PM |
| 4-Methyl-2-Pentanone        | ND          | 5.00       | . о<br>µg/  |      | 1      | 5/8/2008 6:00:00 PM |
| Acetone                     | . ND        | 50.0       | ug/         |      | 1      | 5/8/2008 6:00:00 PM |
| Acrolein                    | ND          | 50.0       | μg/         |      | 1      | 5/8/2008 6:00:00 PM |
| Acrylonitrile               | ND          | 50.0       | µg/         |      | 1      | 5/8/2008 6:00:00 PM |
| Benzene                     | ND          | 5.00       | μg/         |      | 1      | 5/8/2008 6:00:00 PM |
| Bromobenzene                | ND          | 5.00       | . շ<br>/քպ  |      | 1      | 5/8/2008 6:00:00 PM |
| Bromochioromethane          | ND          | 2.00       | ug/         |      | 1      | 5/8/2008 6:00:00 PM |
| Bromodichloromethane        | ND          | 2.00       | µg/         |      | 1      | 5/8/2008 6:00:00 PM |
| Bromoform                   | ND          | 2.00       | ⊬ə⁄<br>µg/  |      | 1      | 5/8/2008 6:00:00 PM |
| Bromomethane                | ND          | 2.00       | ha\         |      | 1      | 5/8/2008 6:00:00 PM |
| Carbon Disulfide            | ND          | 5.00       | hā,         |      | ,<br>1 | 5/8/2008 6:00:00 PM |
| Carbon Tetrachloride        | ND          | 2.00       | μg/         |      | 1      | 5/8/2008 6:00:00 PM |
| Chlorobenzene               | ND          | 5.00       | , pg/       |      | 1      | 5/8/2008 6:00:00 PM |
| Chioroethane                | ND          | 5.00       | , pg/<br>   |      | 1      | 5/8/2008 6:00:00 PM |
| Chloroform                  | ND          | 5.00       | ha,         |      | 1      | 5/8/2008 6:00:00 PM |

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0805025

0003023

Project: Lab ID: WM-046, 1.4 Exp 0805025-003 Client Sample ID: B11

Collection Date: 4/30/2008 11:40:00 PM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| Analyses                                    | Result    | Det. Limit | Qual | Units        | DF  | Date Analyzed       |
|---------------------------------------------|-----------|------------|------|--------------|-----|---------------------|
| OLATILE ORGANIC COMPOUNDS                   | - SW8260B |            |      |              |     | Analyst: MR         |
| Chloromethane                               | ND        | 5.00       | ı    | μg/L         | 1   | 5/8/2008 6:00:00 PM |
| cis-1,2-Dichloroethene                      | ND        | 5.00       | 1    | μg/L         | 1   | 5/8/2008 6:00:00 PM |
| cis-1,3-Dichloropropene                     | ND        | 0.500      |      | μg/L         | 1   | 5/8/2008 6:00:00 PM |
| Dibromochloromethane                        | ND        | 2.00       | i    | μg/L         | 1   | 5/8/2008 6:00:00 PM |
| Dibromomethane                              | ND        | 5.00       |      | μg/L         | 1   | 5/8/2008 6:00:00 PM |
| Dichlorodifluoromethane                     | ND        | 5.00       | I    | μg/L         | 1   | 5/8/2008 6:00:00 PM |
| Ethylbenzene                                | 5.98      | 5.00       | !    | μg/L         | 1   | 5/8/2008 6:00:00 PM |
| Hexachlorobutadiene                         | ND        | 0.500      |      | μg/L         | 1   | 5/8/2008 6:00:00 PM |
| !sopropylbenzene                            | ND        | 5.00       |      | μg/L         | 1   | 5/8/2008 6:00:00 PM |
| Methyl Tert-Butyl Ether                     | ND        | 5.00       |      | μg/L         | 1   | 5/8/2008 6:00:00 PM |
| Methylene Chloride                          | ND        | 5.00       |      | μg/L         | 1   | 5/8/2008 6:00:00 PM |
| Naphthalene                                 | ND        | 20.0       |      | μg/L         | 1   | 5/8/2008 6:00:00 PM |
| n-Butylbenzene                              | ND        | 5.00       |      | μg/L         | . 1 | 5/8/2008 6:00:00 PM |
| n-Propylbenzene                             | ND        | 5.00       |      | μg/L         | . 1 | 5/8/2008 6:00:00 PM |
| sec-Butylbenzene                            | ND        | 5.00       |      | μg/Ľ         | 1   | 5/8/2008 6:00:00 PM |
| Styrene                                     | ND        | 5.00       |      | μg/L         | 1   | 5/8/2008 6:00:00 PM |
| tert-Butylbenzene                           | ND        | 5.00       |      | μg/L         | 1   | 5/8/2008 6:00:00 PM |
| Tetrachloroethene                           | ND        | 5.00       |      | μg/L         | 1   | 5/8/2008 6:00:00 PM |
| Toluene                                     | ND        | 5.00       |      | μg/L         | 1   | 5/8/2008 6:00:00 PM |
| trans-1,2-Dichloroethene                    | ND        | 5.00       |      | μg/L         | 1   | 5/8/2008 6:00:00 PM |
| trans-1,3-Dichloropropene                   | ND        | 0.500      |      | μg/L         | 1   | 5/8/2008 6:00:00 PM |
| Trichloroethene                             | ND        | 5.00       |      | μg/L         | 1   | 5/8/2008 6:00:00 PM |
| Trichlorofluoromethane                      | ND        | 5.00       |      | μg/L         | 1   | 5/8/2008 6:00:00 PM |
| Vinyl Chloride                              | ND        | 2.00       |      | μg/L         | 1   | 5/8/2008 6:00:00 PM |
| Xylenes, Total                              | ND        | 5.00       |      | μg/L         | 1   | 5/8/2008 6:00:00 PM |
| Surr: 1,2-Dichloroethane-d4                 | 110       | 70-130     |      | %REC         | 1   | 5/8/2008 6:00:00 PM |
| Surr: 4-Bromofluorobenzene                  | 111       | 70-130     |      | %REC         | 1   | 5/8/2008 6:00:00 PM |
| Surr: Dibromofluoromethane                  | 96.5      | 70-130     |      | %REC         | 1   | 5/8/2008 6:00:00 PM |
| Surr: Toluene-d8                            | 103       | 70-130     |      | %REC         | 1   | 5/8/2008 6:00:00 PM |
| /PH - MADEP VPH                             |           |            |      |              |     | Anaiyst: kd         |
| C9-C10 Aromatic Hydrocarbons                | ND        | 75,0       | )    | μg/Ľ         | 1   | 5/9/2008            |
| Unadjusted C5-C8 Aliphatic<br>Hydrocarbons  | ND        | 75.0       | )    | μg/L         | 1   | 5/9/2008            |
| Unadjusted C9-C12 Aliphatic<br>Hydrocarbons | ND        | 75.0       | )    | μg/L         | 1   | 5/9/2008            |
| Methyl Tert-Butyl Ether                     | ND        | 5.00       | )    | μg/ <b>L</b> | 1   | 5/9/2008            |
| Benzene                                     | ND        | 5.00       | )    | μg/L         | 1   | 5/9/2008            |
| Toluene                                     | ND        | 5.00       | )    | μg/L         | 1   | 5/9/2008            |
| Ethylbenzene                                | ND        | 5.00       | )    | µg/L         | 1   | 5/9/2008            |

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside recovery limits

BRL Below Reporting Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0805025

Project:

WM-046, 1.4 Exp

Lab ID:

0805025-003

Client Sample ID: B11

Collection Date: 4/30/2008 11:40:00 PM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| Analyses                                  | Result | Det. Limit | Qual | Units | DF | Date Analyzed       |
|-------------------------------------------|--------|------------|------|-------|----|---------------------|
| VPH - MADEP VPH                           |        |            |      |       |    | Analyst: kd         |
| m,p-Xylene                                | ND     | 5.00       |      | μg/L  | 1  | 5/9/2008            |
| o-Xylene                                  | ND     | 5.00       |      | μg/L  | 1  | 5/9/2008            |
| Naphthalene                               | ND     | 20.0       |      | μg/L  | 1  | 5/9/2008            |
| Adjusted C5-C8 Aliphatic<br>Hydrocarbons  | ND     | 75.0       |      | μg/L  | 1  | 5/9/2008            |
| Adjusted C9-C12 Aliphatic<br>Hydrocarbons | ND     | 75.0       |      | µg/L  | 1  | 5/9/2008            |
| Surr: 2,5-Dibromotoluene FID              | 72.8   | 70-130     |      | %REC  | 1  | 5/9/2008            |
| Surr: 2,5-Dibromotoluene PID              | 76.4   | 70-130     |      | %REC  | 1  | 5/9/2008            |
| CYANIDE, TOTAL - SM4500-CN-C,E            |        |            |      |       |    | Analyst: <b>WFR</b> |
| Cyanide, Total                            | ND     | 0.0197     |      | mg/L  | 1  | 5/12/2008           |
| HEXAVALENT CHROMIUM - SM3500-CR-I         | 3      |            |      |       |    | Analyst: <b>WFR</b> |
| Chromium, Hexavalent                      | ND     | 0.0500     | Н    | mg/L  | 1  | 5/6/2008            |
| TOTAL RESIDUAL CHLORINE - HACH 816        | 7      |            |      |       |    | Analyst: <b>RP</b>  |
| Total Residual Chlorine                   | ND     | 0.162      | Н    | mg/L  | 1  | 5/5/2008            |

- Analyte detected in the associated Method Blank В
- E Value above quantitation range
- Analyte detected below quantitation limits

Spike Recovery outside recovery limits

BRL Below Reporting Limit

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

Client Sample ID: B9

0805025

Collection Date: 5/1/2008 1:00:00 AM

Project:

WM-046, 1.4 Exp

Date Received: 5/2/2008

Lab ID:

0805025-004

Matrix: GROUNDWATER

| Lab ID: 0805025-004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Matrix: GROUNDWATER |            |              |        |                    |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------|--------------|--------|--------------------|--|--|--|
| Analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Result              | Det. Limit | Qual Units   | DF     | Date Analyzed      |  |  |  |
| TOTAL SUSPENDED SOLIDS - 5M2540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )-D                 |            |              |        | Analyst: AMS       |  |  |  |
| Total Suspended Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                  | 4.00       | mg/L         | 1      | 5/5/2008           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |            |              |        | Analyst: RJ        |  |  |  |
| EPH RANGES - MADEP EPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                  | 103        | μg/L         | 1      | 5/9/2008           |  |  |  |
| Adjusted C11-C22 Aromatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                  | 103        | μg/L         | 1      | 5/9/2008           |  |  |  |
| C09-C18 Aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                  | 103        | μg/L         | 1      | 5/9/2008           |  |  |  |
| C19-C36 Aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                  | 103        | μg/L         | 1      | 5/9/2008           |  |  |  |
| Unadjusted C11-C22 Aromatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60.0                | 40-140     | %REC         | 1      | 5/9/2008           |  |  |  |
| Surr: 1-Chloroctadecane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 72.0                | 40-140     | %REC         | 1      | 5/9/2008           |  |  |  |
| Surr: o-Terphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 72.0                | 40-140     | ANLO         | ,      | 0,072000           |  |  |  |
| TOTAL PETROLEUM HYDROCARBON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S - 8100M           |            |              |        | Analyst: RuP       |  |  |  |
| Total Petroleum Hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                  | 0.206      | mg/L         | 1      | 5/5/2008           |  |  |  |
| Surr: o-Terphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 97.0                | 40-140     | %REC         | 1      | 5/5/2008           |  |  |  |
| POLYCHLORINATED BIPHENYLS - SV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jones               |            |              |        | Analyst: <b>GP</b> |  |  |  |
| Aroclor 1016/1242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                  | 0.306      | μg/L         | 1      | 5/6/2008           |  |  |  |
| Aroclor 1221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                  | 0.306      | hā\r<br>ha\r | 1      | 5/6/2008           |  |  |  |
| Aroclor 1221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                  | 0.306      | μg/L         | 1      | 5/6/2008           |  |  |  |
| A contract of the contract of | ND                  | 0.306      | μg/L         | 1      | 5/6/2008           |  |  |  |
| Aroclor 1248<br>Aroclor 1254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                  | 0.306      | μg/L         | . 1    | 5/6/2008           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                  | 0.306      | µg/L         | 1      | 5/6/2008           |  |  |  |
| Aroclor 1260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                  | 0.306      | μg/L         | 1      | 5/6/2008           |  |  |  |
| Aroclor 1262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                  | 0.306      | μg/L         | 1      | 5/6/2008           |  |  |  |
| Aroclor 1268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78.0                | 30-150     | %REC         | 1      | 5/6/2008           |  |  |  |
| Surr: Decachiorobiphenyl Sig 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77.0                | 30-150     | %REC         | ,<br>1 | 5/6/2008           |  |  |  |
| Surr: Decachiorobiphenyl Sig 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50.0                | 30-150     | %REC         | 1      | 5/6/2008           |  |  |  |
| Surr: Tetrachloro-m-Xylene Sig 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | _          | %REC         | 1      | 5/6/2008           |  |  |  |
| Surr: Tetrachloro-m-Xylene Sig 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 57.0                | 30-150     | WREC         | 1      | 3/0/2000           |  |  |  |
| TOTAL METALS BY GFAA - E200.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |            |              |        | Analyst: <b>QS</b> |  |  |  |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND                  | 0.00100    | mg/L         | 1      | 5/6/2008           |  |  |  |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                  | 0.00100    | mg/L         | 1      | 5/6/2008           |  |  |  |
| TOTAL METALS BY ICP - SW6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |            |              | -      | Analyst: QS        |  |  |  |
| Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                  | 2.00       | mg/L         | 1      | 5/3/2008           |  |  |  |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                  | 0.00400    | mg/L         | 1      | 5/3/2008           |  |  |  |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND                  | 0.100      | mg/L         | 1      | 5/3/2008           |  |  |  |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , ND                | 0.0400     | mg/∟         | 1      | 5/3/2008           |  |  |  |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.109               |            | mg/L         | 1      | 5/3/2008           |  |  |  |

- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0805025

WM-046, 1.4 Exp

Project: Lab ID:

0805025-004

Client Sample ID: B9

Collection Date: 5/1/2008 1:00:00 AM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| Analyses                        | Result | Det. Limit | Qual Units    | DF  | Date Analyzed       |
|---------------------------------|--------|------------|---------------|-----|---------------------|
| TOTAL METALS BY ICP - SW6010B   |        |            |               |     | Analyst: <b>Q\$</b> |
| Lead                            | 0.0140 | 0.0100     | mg/L          | 1   | 5/3/2008            |
| Nickel                          | ND     | 0.100      | mg/L          | 1   | 5/3/2008            |
| Selenium                        | ND     | 0.0500     | mg/L          | 1   | 5/3/2008            |
| TOTAL SILVER - E200.7           |        |            |               |     | Analyst: <b>QS</b>  |
| Silver                          | ND     | 0.00700    | mg/L          | 1   | 5/5/2008            |
| TOTAL MERCURY - E245.1          |        |            |               |     | Analyst: EC         |
| Mercury                         | ŊD     | 0.0005     | mg/L          | 1   | 5/5/2008            |
| SEMIVOLATILE ORGANICS - SW8270C |        |            |               |     | Analyst: <b>ZYZ</b> |
| 1,2,4-Trichlorobenzene          | ND     | 1.03       | μg/L          | 1   | 5/7/2008 4:43:00 PM |
| 1,2-Dichlorobenzene             | ND     | 1.03       | μg/L          | 1   | 5/7/2008 4:43:00 PM |
| 1,2-Dinitrobenzene              | ND     | 1.03       | μg/L          | 1   | 5/7/2008 4:43:00 PM |
| 1,3-Dichlorobenzene             | ND     | 1.03       | μg/L          | 1   | 5/7/2008 4:43:00 PM |
| 1,3-Dinitrobenzene              | ŊD     | 1.03       | µg/L          | 1   | 5/7/2008 4:43:00 PM |
| 1.4-Dichlorobenzene             | ND     | 1.03       | μg/L          | 1   | 5/7/2008 4:43:00 PM |
| 1,4-Dinitrobenzene              | ND     | 1.03       | μg/L          | 1   | 5/7/2008 4:43:00 PM |
| 2,3,4,6-Tetrachiorophenol       | ND     | 1.03       | μg/L          | 1   | 5/7/2008 4:43:00 PM |
| 2,4,5-Trichlorophenol           | ND     | 1.03       | μg/L          | 1   | 5/7/2008 4:43:00 PM |
| 2,4,6-Trichlorophenol           | ND     | 1.03       | μg/L          | 1   | 5/7/2008 4:43:00 PM |
| 2,4-Dichlorophenol              | ND     | 1.03       | μg/L          | 1   | 5/7/2008 4:43:00 PM |
| 2,4-Dimethylphenol              | ND     | 1.03       | μg/L          | 1   | 5/7/2008 4:43:00 PM |
| 2,4-Dinitrophenol               | ND     | 5.15       | μg/L          | 1   | 5/7/2008 4:43:00 PM |
| 2,4-Dinitrotoluene              | ND     | 1.03       | μ <b>g</b> /L | 1   | 5/7/2008 4:43:00 PM |
| 2,6-Dinitrotoluene              | ND     | 1.03       | μg/L          | 1   | 5/7/2008 4:43:00 PM |
| 2-Chioronaphthaiene             | ND     | 1.03       | μg/L          | 1   | 5/7/2008 4:43:00 PM |
| 2-Chiorophenol                  | ND     | 1.03       | μg/L          | 1   | 5/7/2008 4:43:00 PM |
| 2-Methylnaphthalene             | ND     | 1.03       | μg/L          | 1   | 5/7/2008 4:43:00 PM |
| 2-Methylphenol                  | ND     | 1.03       | μg/L          | 1   | 5/7/2008 4:43:00 PM |
| 2-Nitroaniline                  | ND     | 1.03       | μg/L          | 1   | 5/7/2008 4:43:00 PM |
| 2-Nitrophenol                   | ND     | 1.03       | μg/L          | 1   | 5/7/2008 4:43:00 PM |
| 3,3'-Dichlorobenzidine          | ND     | 1.03       | μg/L          | 1   | 5/7/2008 4:43:00 PM |
| 3-Methylphenol/4-Methylphenol   | ND     | 1.03       | µg/L          | 1 . | 5/7/2008 4:43:00 PM |
| 3-Nitroaniline                  | ND     | 1.03       | µg/L          | 1   | 5/7/2008 4:43:00 PM |
| 4,6-Dinitro-2-Methylphenol      | ND     | 5.15       | μg/L          | 1   | 5/7/2008 4:43:00 PM |
| 4-Bromophenyl Phenyl Ether      | ND     | 1.03       | μg/L          | 1   | 5/7/2008 4:43:00 PM |
| 4-Chloro-3-Methylphenol         | ND     | 1.03       | μg/L          | 1   | 5/7/2008 4:43:00 PM |
| 4-Chloroaniline                 | ND     | 1.03       | μg/L          | 1   | 5/7/2008 4:43:00 PM |

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT: Lab Order: Fay, Spofford & Thorndike

0805025

WM-046, 1.4 Exp

Project: Lab ID:

0805025-004

Client Sample ID: B9

Collection Date: 5/1/2008 1:00:00 AM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| analyses                       | Result | Det. Limit | Qual U | nits | DF | Date Analyzed       |
|--------------------------------|--------|------------|--------|------|----|---------------------|
| EMIVOLATILE ORGANICS - SW8270C |        |            |        |      |    | Analyst: <b>ZY</b>  |
| 4-Chlorophenyl Phenyl Ether    | ND     | 1.03       | μ      | g/L  | 1  | 5/7/2008 4:43:00 PM |
| 4-Nitroaniline                 | ND     | 1.03       | μ      | g/L  | 1  | 5/7/2008 4:43:00 PM |
| 4-Nitrophenot                  | ND     | 1.03       | μ      | g/L  | 1  | 5/7/2008 4:43:00 PM |
| Acenaphthene                   | ND     | 1.03       | μ      | g/L  | 1  | 5/7/2008 4:43:00 PM |
| Acenaphthylene                 | ND     | 1.03       | μ      | g/L  | 1  | 5/7/2008 4:43:00 PM |
| Acetophenone                   | ND     | 1.03       | μ      | g/L  | 1  | 5/7/2008 4:43:00 PM |
| Aniline                        | ND     | 5.15       | μ      | g/L  | 1  | 5/7/2008 4:43:00 PM |
| Anthracene                     | ND     | 1.03       | μ      | g/L  | 1  | 5/7/2008 4:43:00 PM |
| Azobenzene                     | ND     | 5.15       | μ      | g/L  | 1  | 5/7/2008 4:43:00 PM |
| Benz(a)Anthracene              | ND     | 0.103      | μ      | g/L  | 1  | 5/7/2008 4:43:00 PM |
| Benzidine                      | ND     | 5.15       | μ      | g/L  | 1  | 5/7/2008 4:43:00 PM |
| Benzo(a)Pyrene                 | ND     | 0.103      | μ      | ıg/L | 1  | 5/7/2008 4:43:00 PM |
| Benzo(b)Fluoranthene           | ND     | 0.515      | μ      | ıg/L | 1  | 5/7/2008 4:43:00 PM |
| Benzo(g,h,i)Perylene           | ND     | 1.03       | μ      | ıg/L | 1  | 5/7/2008 4:43:00 PM |
| Benzo(k)Fluoranthene           | ND     | 0.515      | μ      | ıg/L | 1  | 5/7/2008 4:43:00 PM |
| Benzyl Alcohol                 | ND     | 1.03       | ц      | ıg/L | 1  | 5/7/2008 4:43:00 PM |
| Bis(2-Chloroethoxy)Methane     | ND     | 1.03       | μ      | ig/L | 1  | 5/7/2008 4:43:00 PM |
| Bis(2-Chloroethyl)Ether        | ND     | 1.03       | μ      | ıg/L | 1  | 5/7/2008 4:43:00 PM |
| Bis(2-Chloroisopropyl)Ether    | ND     | 1.03       | μ      | ıg/L | 1  | 5/7/2008 4:43:00 PM |
| Bis(2-Ethylhexyl)Phthalate     | ND     | 1.03       | μ      | ıg/L | 1  | 5/7/2008 4:43:00 PM |
| Butyl Benzyl Phthalate         | ND     | 1.03       | μ      | ıg/L | 1  | 5/7/2008 4:43:00 PM |
| Carbazole                      | ND     | 1.03       | Ļ      | ıg/L | 1  | 5/7/2008 4:43:00 PM |
| Chrysene                       | ND     | 1.03       | ۲      | ıg/L | 1  | 5/7/2008 4:43:00 PM |
| Dibenz(a,h)Anthracene          | ND     | 0.103      | Ļ      | ıg/L | 1  | 5/7/2008 4:43:00 PM |
| Dibenzofuran                   | ND     | 1.03       | · 4    | ıg/L | 1  | 5/7/2008 4:43:00 PM |
| Diethyl Phthalate              | ND     | 1.03       | Ļ      | ıg/L | 1  | 5/7/2008 4:43:00 PM |
| Dimethyl Phthalate             | ND     | 1.03       | 4      | ıg/L | 1  | 5/7/2008 4:43:00 PM |
| Di-л-Butyl Phthalate           | ND     | 1.03       | Ļ      | ıg/L | 1  | 5/7/2008 4:43:00 PM |
| Di-n-Octyl Phthalate           | ND     | 1.03       | ۲      | ıg/L | 1  | 5/7/2008 4:43:00 PM |
| Fluoranthene                   | ND     | 1.03       | Ļ      | ig/L | 1  | 5/7/2008 4:43:00 PM |
| Fluorene                       | ND     | 1.03       | ŀ      | ıg/L | 1  | 5/7/2008 4:43:00 PM |
| Hexachiorobenzene              | ИD     | 0.103      | ŀ      | ıg/L | 1  | 5/7/2008 4:43:00 PM |
| Hexachiorobutadiene            | ND     | 0.103      | Ļ      | ıg/L | 1  | 5/7/2008 4:43:00 PM |
| Hexachlorocyclopentadiene      | ND     | 5.15       | 1      | ıg/L | 1  | 5/7/2008 4:43:00 PM |
| Hexachloroethane               | ND     | 1,03       | ŀ      | ıg/L | 1  | 5/7/2008 4:43:00 PM |
| indeno(1,2,3-cd)Pyrene         | ND     | 0,103      |        | ıg/L | 1  | 5/7/2008 4:43:00 PM |
| Isophorone                     | ND     | 1.03       | }      | ıg/L | 1  | 5/7/2008 4:43:00 PM |
| Naphthalene                    | ND     | 1.03       |        | ıg/L | 1  | 5/7/2008 4:43:00 PM |
| Nitrobenzene                   | ND     | 1.03       |        | .g/L | 1  | 5/7/2008 4:43:00 PM |
| N-Nitrosodimethylamine         | ND     | 5.15       |        | .g/L | 1  | 5/7/2008 4:43:00 PM |

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0805025

Project:

WM-046, 1.4 Exp

Lab ID:

0805025-004

Client Sample ID: B9

Collection Date: 5/1/2008 1:00:00 AM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| Analyses                       | Result | Det. Limit   | Qual Units   | DF  | Date Analyzed                              |
|--------------------------------|--------|--------------|--------------|-----|--------------------------------------------|
| SEMIVOLATILE ORGANICS - SW8270 | C      |              |              |     | Analyst: <b>ZY</b> Z                       |
| N-Nitrosodi-n-Propylamine      | ND     | 1.03         | μg/L         | 1   | 5/7/2008 4:43:00 PM                        |
| N-Nitrosodiphenylamine         | ND     | 5.15         | μg/L         | 1   | 5/7/2008 4:43:00 PM                        |
| Pentachlorophenol              | ND     | 1.03         | μg/L         | 1   | 5/7/2008 4:43:00 PM                        |
| Phenanthrene                   | ND     | 1.03         | μg/L         | 1   | 5/7/2008 4:43:00 PM                        |
| Phenol                         | ND     | 1.03         | μg/L         | 1   | 5/7/2008 4:43:00 PM                        |
| Pyrene                         | ND     | 1.03         | μg/L         | 1   | 5/7/2008 4:43:00 PM                        |
| Pyridine                       | ND     | <b>5</b> .15 | μg/L         | 1   | 5/7/2008 4:43:00 PM                        |
| Surr: 2,4,6-Tribromophenol     | 38.3   | 15-110       | %REC         | 1   | 5/7/2008 4:43:00 PM                        |
| Surr: 2-Fluorobiphenyl         | 75,6   | 30-130       | %REC         | 1   | 5/7/2008 4:43:00 PM                        |
| Surr: 2-Fluorophenol           | 42.3   | 15-110       | %REC         | 1   | 5/7/2008 4:43:00 PM                        |
| Surr: Nitrobenzene-d5          | 59.5   | 30-130       | %REC         | 1   | 5/7/2008 4:43:00 PM                        |
| Surr: Phenol-d6                | 31.0   | 15-110       | %REC         | 1   | 5/7/2008 4:43:00 PM                        |
| Surr: Terphenyl-d14            | 102    | 30-130       | %REC         | 1   | 5/7/2008 4:43:00 PM                        |
| EPH TARGET ANALYTES - MADEP EF | 'H     |              |              |     | Analyst: <b>ZY</b> Z                       |
| Naphthalene                    | ND     | 1.03         | μg/L         | 1   | 5/6/2008 4:08:00 PM                        |
| 2-Methylnaphthalene            | ND     | 1.03         | μg/L         | 1   | 5/6/2008 4:08:00 PM                        |
| Acenaphthene                   | ND     | 1.03         | μg/L         | 1   | 5/6/2008 4:08:00 PM                        |
| Phenanthrene                   | ND     | 1.03         | μg/L         | 1   | 5/6/2008 4:08:00 PM                        |
| Acenaphthylene                 | ND     | 1.03         | µg/L         | 1   | 5/6/2008 4:08:00 PM                        |
| Fluorene                       | ND     | 1.03         | µg/L         | 1   | 5/6/2008 4:08:00 PM                        |
| Anthracene                     | ND     | 1.03         | μg/L         | 1   | 5/6/2008 4:08:00 PM                        |
| Fluoranthene                   | ND     | 1.03         | ug/L         | 1   | 5/6/2008 4:08:00 PM                        |
| Pyrene                         | ND     | 1.03         | ug/L         | 1   | 5/6/2008 4:08:00 PM                        |
| Benzo(a)Anthracene             | ND     | 0.412        | μg/L         | 1   | 5/6/2008 4:08:00 PM                        |
| Chrysene                       | ND     | 1.03         | µg/L         | . 1 | 5/6/2008 4:08:00 PM                        |
| Benzo(b)Fluoranthene           | ND     | 1.03         | µg/L         | 1   | 5/6/2008 4:08:00 PM                        |
| Benzo(k)Fluoranthene           | ND     | 1.03         | μg/L         | 1   | 5/6/2008 4:08:00 PM                        |
| Benzo(a)Pyrene                 | ND     | 0.206        | µg/L         | 1   | 5/6/2008 4:08:00 PM                        |
| Indeno(1,2,3-cd)Pyrene         | ND     | 0.412        | μg/L         | 1   | 5/6/2008 4:08:00 PM                        |
| Dibenz(a,h)Anthracene          | ND     | 0.412        | μg/L         | 1   | 5/6/2008 4:08:00 PM                        |
| Benzo(g,h,i)Perylene           | ND 1   | 1.03         | μg/L         | 1   | 5/6/2008 4:08:00 PM                        |
| Total PAH Target Concentration | ND     | 0            | рд/L<br>рд/L | 1   | 5/6/2008 4:08:00 PM                        |
| Surr: 2,2'-Diffuorobiphenyl    | 90.4   | 40-140       | %REC         | 1   | 5/6/2008 4:08:00 PM                        |
| Surr: 2-Fluorobiphenyl         | 85.6   | 40-140       | %REC         | 1   | 5/6/2008 4:08:00 PM<br>5/6/2008 4:08:00 PM |
| adiv 2 i idalosipiidilyi       | 05.0   | 40-140       | 76KEC        |     | 5/6/2008 4:08:00 PM                        |
| OLATILE ORGANIC COMPOUNDS - S  |        |              |              |     | Analyst: MR                                |
| 1,1,1,2-Tetrachloroethane      | ND     | 5.00         | μg/ <b>L</b> | 1   | 5/8/2008 6:33:00 PM                        |
| 1,1,1-Trichloroethane          | ИĎ     | 5.00         | µg/L         | 1   | 5/8/2008 6:33:00 PM                        |

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

**CLIENT:** 

Fay, Spofford & Thorndike

Lab Order: 0

0805025

WM-046, 1.4 Exp

Project: Lab ID:

0805025-004

Client Sample ID: B9

Collection Date: 5/1/2008 1:00:00 AM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| Analyses                    | Result      | Det. Limit | Qual Units | DF | Date Analyzed       |
|-----------------------------|-------------|------------|------------|----|---------------------|
| OLATILE ORGANIC COMPOUNDS   | 5 - SW8260B | _          |            |    | Analyst: MR         |
| 1,1,2,2-Tetrachioroethane   | ND          | 2.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| 1,1,2-Trichloroethane       | ND          | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| 1,1-Dichloroethane          | ND          | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| 1,1-Dichloroethene          | ND          | 5.00       | րց/∟       | 1  | 5/8/2008 6:33:00 PM |
| 1,1-Dichloropropene         | ND          | 5.00       | µg/L       | 1  | 5/8/2008 6:33:00 PM |
| 1,2,3-Trichlorobenzene      | ND          | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| 1,2,3-Trichloropropane      | ND          | 5.00       | μg/L       | 1. | 5/8/2008 6:33:00 PM |
| 1,2,4-Trichlorobenzene      | ND          | 5.00       | µg/L       | 1  | 5/8/2008 6:33:00 PM |
| 1,2,4-Trimethylbenzene      | 25.1        | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| 1,2-Dibromo-3-Chloropropane | ND          | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| 1,2-Dibromoethane           | ND          | 2.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| 1,2-Dichlorobenzene         | ND.         | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| 1,2-Dichloroethane          | ND          | 2.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| 1,2-Dichloropropane         | ND          | 2.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| 1,3,5-Trimethylbenzene      | 7.90        | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| 1,3-Dichlorobenzene         | . ND        | .5.00      | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| 1,3-Dichloropropane         | ND          | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| 1,4-Dichlorobenzene         | ND          | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| 2,2-Dichloropropane         | ND          | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| 2-Butanone                  | ND          | 10.0       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| 2-Chloroetny! Vinyl Ether   | ND          | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| 2-Chlorotoluene             | ND          | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| 2-Hexanone                  | ND          | 10.0       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| 4-Chlorotoluene             | ND          | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| 4-(sopropy)toluene          | ND          | 5.00       | µg/L       | 1  | 5/8/2008 6:33:00 PM |
| 4-Methyl-2-Pentanone        | ND          | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| Acetone                     | ND          | 50.0       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| Acrolein                    | ND          | 50.0       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| Acrylonitrile               | ND          | 50.0       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| Benzene                     | ND          | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| Bromobenzene                | , ND        | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| Bromochloromethane          | ND          | 2.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| Bromodichloromethane        | , ND        | 2.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| Bromoform                   | ND          | 2.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| Bromomethane                | DN          | 2.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| Carbon Disulfide            | ND          | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| Carbon Tetrachloride        | ND          | 2.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| Chlorobenzene               | ND          | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| Chloroethane                | ND          | 5.00       | μg/Ľ       | 1  | 5/8/2008 6:33:00 PM |
| Chloroform                  | ND          | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0805025

Project:

WM-046, 1.4 Exp

Lab ID:

0805025-004

Client Sample ID: B9

Collection Date: 5/1/2008 1:00:00 AM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| Analyses                                    | Result       | Det. Limit | Qual Units | DF | Date Analyzed       |
|---------------------------------------------|--------------|------------|------------|----|---------------------|
| VOLATILE ORGANIC COMPOUNDS                  | 6 - SW8260B  |            |            |    | Analyst: MR         |
| Chloromethane                               | ND           | 5.00       | µg/L       | 1  | 5/8/2008 6:33:00 PM |
| cis-1,2-Dichloroethene                      | ND           | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| cis-1,3-Dichloropropene                     | ND           | 0.500      | μg/L ·     | 1  | 5/8/2008 6:33:00 PM |
| Dibromochloromethane                        | ND           | 2.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| Dibromomethane                              | ND           | 5.00       | µg/L       | 1  | 5/8/2008 6:33:00 PM |
| Dichlorodifluoromethane                     | ND           | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| Ethylbenzene                                | 9.17         | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| Hexachlorobutadiene                         | ND           | 0.500      | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| Isopropylbenzene                            | ND           | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| Methyl Tert-Butyl Ether                     | ND           | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| Methylene Chloride                          | ND           | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| Naphthalene                                 | ND           | 20.0       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| n-Butylbenzene                              | ND           | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| n-Propylbenzene                             | ND           | 5.00       | μg/L       | 1  | 5/8/2008 6:33;00 PM |
| sec-Butylbenzene                            | ND           | 5.00       | · μg/L     | 1  | 5/8/2008 6:33:00 PM |
| Styrene                                     | ND           | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| tert-Butylbenzene                           | ND           | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| Tetrachloroethene                           | ND           | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| Toluene                                     | ND           | 5.00       | μg/L       | 1  | 5/8/2008 6:33;00 PM |
| trans-1,2-Dichloroethene                    | ND           | 5,00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| trans-1,3-Dichloropropene                   | ND           | 0.500      | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| Trichloroethene                             | ND           | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| Trichlorofluoromethane                      | ND           | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| Vinyl Chloride                              | ND           | 2.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| Xylenes, Total                              | 36.5         | 5.00       | μg/L       | 1  | 5/8/2008 6:33:00 PM |
| Surr: 1,2-Dichloroethane-d4                 | 114          | 70-130     | %REC       | 1  | 5/8/2008 6:33:00 PM |
| Surr: 4-Bromofluorobenzene                  | 103          | 70-130     | %REC       | 1  | 5/8/2008 6:33:00 PM |
| Surr: Dibromofluoromethane                  | 102          | 70-130     | %REC       | 1  | 5/8/2008 6:33:00 PM |
| Surr: Toluene-d8                            | 105          | 70-130     | %REC       | 1  | 5/8/2008 6:33:00 PM |
| /PH - MADEP VPH                             |              |            |            |    | Analyst: kd         |
| C9-C10 Aromatic Hydrocarbons                | ND           | 75.0       | μg/L       | 1  | 5/9/2008            |
| Unadjusted C5-C8 Aliphatic<br>Hydrocarbons  | 616          | 75.0       | μg/L       | 1  | 5/9/2008            |
| Unadjusted C9-C12 Aliphatic<br>Hydrocarbons | 356          | 75.0       | μg/L       | 1  | 5/9/2008            |
| Methyl Tert-Butyl Ether                     | 371          | 5.00       | μg/L       | 1  | 5/9/2008            |
| Benzene                                     | 69.2         | 5.00       | μg/L       | 1  | 5/9/2008            |
| Toluene                                     | 66. <i>5</i> | 5.00       | μg/L       | 1  | 5/9/2008            |
| Ethylbenzene                                | 65.0         | 5.00       | μg/L       | 1  | 5/9/2008            |

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside recovery limits

BRL Below Reporting Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0805025

Project:

WM-046, 1.4 Exp

Lab ID:

0805025-004

Client Sample ID: B9

Collection Date: 5/1/2008 1:00:00 AM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| Analyses                                  | Result    | Det. Limit | Qual | Units | DF | Date Analyzed      |
|-------------------------------------------|-----------|------------|------|-------|----|--------------------|
| VPH - MADEP VPH                           |           |            |      |       |    | Analyst: <b>kd</b> |
| m,p-Xylene                                | 138       | 5.00       |      | μg/L  | 1  | 5/9/2008           |
| o-Xylene                                  | 64.3      | 5.00       |      | μg/L  | 1  | 5/9/2008           |
| Naphthalene                               | 66.3      | 20.0       |      | μg/L  | 1  | 5/9/2008           |
| Adjusted C5-C8 Aliphatic Hydrocarbons     | 109       | 75.0       |      | μ́g/L | 1  | 5/9/2008           |
| Adjusted C9-C12 Aliphatic<br>Hydrocarbons | 88.7      | 75.0       |      | µg/L  | 1  | 5/9/2008           |
| Surr: 2,5-Dibromotoluene FiD              | 102       | 70-130     |      | %REC  | 1  | 5/9/2008           |
| Surr: 2,5-Dibromotoluene PID              | 74.1      | 70-130     |      | %REC  | 1  | 5/9/2008           |
| CYANIDE, TOTAL - SM4500-CN-C,E            | ٠         |            |      |       |    | Analyst: WFR       |
| Cyanide, Total                            | ND        | 0.0197     |      | mg/L  | 1  | 5/12/2008          |
| HEXAVALENT CHROMIUM - SM3500-CR-I         | )         |            |      |       |    | Analyst: WFR       |
| Chromium, Hexavalent                      | ND        | 0.0500     | Н    | mg/L  | 1  | 5/6/2008           |
| TOTAL RESIDUAL CHLORINE - HACH 816        | <b>67</b> |            |      |       |    | Analyst: <b>RP</b> |
| Total Residual Chlorine                   | ND        | 0,162      | Н    | mg/L  | 1  | 5/5/2008           |

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0805025

Project:

0803023

Lab ID:

WM-046, 1.4 Exp

0805025-005

Client Sample ID: B5

**Collection Date:** 5/1/2008 2:20:00 AM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| Analyses                         | Result     | Det. Limit | Qual Units | DF  | Date Analyzed      |
|----------------------------------|------------|------------|------------|-----|--------------------|
| TOTAL SUSPENDED SOLIDS - SM254   | 40-D       |            |            |     | Analyst: AM        |
| Total Suspended Solids           | ND         | 4.00       | mg/L       | 1   | 5/5/2008           |
| EPH RANGES - MADEP EPH           |            |            |            |     | Analyst: <b>RJ</b> |
| Adjusted C11-C22 Aromatics       | ND         | 102        | μg/L       | 1   | 5/9/2008           |
| C09-C18 Aliphatics               | ND         | 102        | μg/L       | 1   | 5/9/2008           |
| C19-C36 Aliphatics               | ND         | 102        | μg/L       | 1 . | 5/9/2008           |
| Unadjusted C11-C22 Aromatics     | ND         | 102        | μg/L       | 1   | 5/9/2008           |
| Surr: 1-Chlorooctadecane         | 53.0       | 40-140     | %REC       | 1   | 5/9/2008           |
| Surr: o-Terphenyl                | 85.0       | 40-140     | %REC       | 1   | 5/9/2008           |
| TOTAL PETROLEUM HYDROCARBOI      | VS - 8100M |            |            |     | Analyst: RuP       |
| Total Petroleum Hydrocarbons     | 0.420      | 0.206      | mg/L       | 1   | 5/7/2008           |
| Surr: o-Terphenyl                | 104        | 40-140     | %REC       | 1   | 5/7/2008           |
| POLYCHLORINATED BIPHENYLS - S    | W8082      |            |            |     | Analyst: <b>GP</b> |
| Aroclor 1016/1242                | ND         | 0.305      | μg/L       | 1   | 5/6/2008           |
| Aroclor 1221                     | ND         | 0,305      | μg/L       | 1   | 5/6/2008           |
| Aroclor 1232                     | ND         | 0.305      | μg/L       | 1   | 5/6/2008           |
| Aroclor 1248                     | ND         | 0.305      | μg/L       | 1 . | 5/6/2008           |
| Aroclar 1254                     | ND         | 0.305      | μg/L       | 1   | 5/6/2008           |
| Arocior 1260                     | ND         | 0.305      | μg/L       | 1   | 5/6/2008           |
| Aroclor 1262                     | ND         | 0.305      | μg/L       | 1   | 5/6/2008           |
| Aroclor 1268                     | ND         | 0.305      | μg/L       | 1   | 5/6/2008           |
| Surr: Decachlorobiphenyl Sig 1   | 99.0       | 30-150     | %REC       | 1   | 5/6/2008           |
| Surr: Decachlorobiphenyl Sig 2   | 91.0       | 30-150     | %REC       | 1   | 5/6/2008           |
| Surr: Tetrachloro-m-Xylene Sig 1 | 81.0       | 30-150     | %REC       | 1   | 5/6/2008           |
| Surr: Tetrachloro-m-Xylene Sig 2 | 81.0       | 30-150     | %REC       | 1   | 5/6/2008           |
| FOTAL METALS BY GFAA - E200.9    |            | ,          |            |     | Analyst: <b>QS</b> |
| Antimony                         | ND         | 0.00100    | mg/L       | 1   | 5/6/2008           |
| Arsenic                          | 0.00135    | 0.00100    | mg/L       | 1   | 5/6/2008           |
| FOTAL METALS BY ICP - SW6010B    |            |            |            |     | Analyst: <b>QS</b> |
| Barium                           | ND         | 2.00       | mg/L       | 1   | 5/3/2008           |
| Cadmium                          | ND         | 0.00400    | mg/L       | 1   | 5/3/2008           |
| Chromium 1                       | ND         | 0.100      | mg/L       | 1   | 5/3/2008           |
| Copper                           | ND         | 0.0400     | mg/L       | 1   | 5/3/2008           |
| Iron                             | 14.8       | 0.600      | mg/L       | 10  | 5/3/2008           |

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

0805025

Lab Order: Project:

WM-046, 1.4 Exp

Lab ID:

0805025-005

Client Sample ID: B5

Collection Date: 5/1/2008 2:20:00 AM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| Analyses                        | Result | Det. Limit | Qual Units | DF  | Date Analyzed       |
|---------------------------------|--------|------------|------------|-----|---------------------|
| TOTAL METALS BY ICP - SW6010B   |        |            |            |     | Analyst: <b>QS</b>  |
| Lead                            | 0.0300 | 0.0100     | mg/L       | 1   | 5/3/2008            |
| Nickel                          | ND     | 0.100      | mg/L       | 1   | 5/3/2008            |
| Selenium                        | ND     | 0.0500     | mg/L       | . 1 | 5/3/2008            |
| TOTAL SILVER - E200.7           |        |            |            |     | Analyst: <b>QS</b>  |
| Silver                          | ND     | 0.00700    | mg/L       | 1   | 5/5/2008            |
| TOTAL MERCURY - E245.1          |        |            |            |     | Analyst: <b>EC</b>  |
| Mercury                         | ND     | 0.0005     | mg/L       | 1   | 5/5/2008            |
| SEMIVOLATILE ORGANICS - SW8270C |        |            |            |     | Analyst: <b>ZY2</b> |
| 1,2,4-Trichlorobenzene          | ND     | 1.02       | μg/L       | 1   | 5/7/2008 5:23:00 PM |
| 1,2-Dichlorobenzene             | ND     | 1.02       | μg/L       | 1   | 5/7/2008 5:23:00 PM |
| 1,2-Dinitrobenzene              | ND     | 1.02       | μg/L       | 1   | 5/7/2008 5:23:00 PM |
| 1,3-Dichlorobenzene             | ND     | 1.02       | μg/L       | 1   | 5/7/2008 5:23:00 PM |
| 1,3-Dinitrobenzene              | ND     | 1.02       | μg/L       | 1   | 5/7/2008 5:23:00 PM |
| 1,4-Dichlorobenzene             | ND     | 1.02       | μg/L       | 1   | 5/7/2008 5:23:00 PM |
| 1,4-Dinitrobenzene              | ND     | 1.02       | μg/L       | 1   | 5/7/2008 5:23:00 PM |
| 2,3,4,6-Tetrachlorophenol       | ND     | 1.02       | μg/L       | 1   | 5/7/2008 5:23:00 PM |
| 2,4,5-Trichlorophenol           | ND     | 1.02       | μg/L       | 1   | 5/7/2008 5:23:00 PM |
| 2,4,6-Trichlorophenal           | ND     | 1.02       | μg/L       | 1   | 5/7/2008 5:23:00 PM |
| 2,4-Dichlorophenol              | ND     | 1.02       | μg/L       | 1   | 5/7/2008 5:23:00 PM |
| 2,4-Dimethylphenol              | ND     | 1.02       | μg/L       | 1   | 5/7/2008 5:23:00 PM |
| 2,4-Dinitrophenal               | ND     | 5.10       | μg/L       | 1   | 5/7/2008 5:23:00 PM |
| 2,4-Dinitrotoluene              | ND     | 1.02       | μg/L       | 1   | 5/7/2008 5:23:00 PM |
| 2,6-Dinitrotoluene              | ND     | 1.02       | μg/L       | 1   | 5/7/2008 5:23:00 PM |
| 2-Chloronaphthalene             | ND     | 1.02       | μg/L       | 1   | 5/7/2008 5:23:00 PM |
| 2-Chlorophenol                  | ND     | 1.02       | μg/L       | 1   | 5/7/2008 5:23:00 PM |
| 2-Methylnaphthalene             | ND     | 1.02       | μg/L       | 1   | 5/7/2008 5:23:00 PM |
| 2-Methylphenol                  | ND     | 1.02       | µg/L       | 1   | 5/7/2008 5:23:00 PM |
| 2-Nitroaniline                  | ND     | 1.02       | μg/L       | 1   | 5/7/2008 5:23:00 PM |
| 2-Nitrophenal                   | ND     | 1.02       | μg/L       | 1   | 5/7/2008 5:23:00 PM |
| 3,3'-Dichlorobenzidine          | ND     | 1.02       | μg/L       | 1   | 5/7/2008 5:23:00 PM |
| 3-Methylphenol/4-Methylphenol   | ND     | 1.02       | μg/L       | 1   | 5/7/2008 5:23:00 PM |
| 3-Nitroaniline                  | ND     | 1.02       | μg/L       | 1   | 5/7/2008 5:23:00 PM |
| 4,6-Dinitro-2-Methylphenol      | ND     | 5.10       | μg/L       | 1   | 5/7/2008 5:23:00 PM |
| 4-Bromophenyl Phenyl Ether      | ND     | 1.02       | μg/L       | 1   | 5/7/2008 5:23:00 PM |
| 4-Chloro-3-Methylphenol         | ND     | 1.02       | μg/L       | 1   | 5/7/2008 5;23:00 PM |
| 4-Chloroaniline                 | ND     | 1.02       | μg/L       | 1   | 5/7/2008 5:23:00 PM |

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0805025

Project:

WM-046, 1.4 Exp

Lab ID:

0805025-005

Client Sample ID: B5

Collection Date: 5/1/2008 2:20:00 AM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| Analyses                        | Result | Det. Limit | Qual    | Units        | DF  | Date Analyzed       |
|---------------------------------|--------|------------|---------|--------------|-----|---------------------|
| SEMIVOLATILE ORGANICS - SW8270C |        |            | <i></i> |              |     | Analyst: <b>ZY</b>  |
| 4-Chlorophenyl Phenyl Ether     | ND     | 1.02       |         | μg/L         | 1   | 5/7/2008 5:23:00 PM |
| 4-Nitroaniline                  | ND     | 1.02       |         | μg/L         | 1   | 5/7/2008 5:23:00 PM |
| 4-Nitrophenol                   | ND     | 1.02       |         | μg/L         | 1   | 5/7/2008 5:23:00 PM |
| Acenaphthene                    | ND     | 1.02       |         | μg/L         | 1   | 5/7/2008 5:23:00 PM |
| Acenaphthylene                  | ND     | 1.02       |         | µg/L         | 1   | 5/7/2008 5:23:00 PM |
| Acetophenone                    | ND     | 1.02       |         | μg/L         | 1   | 5/7/2008 5:23:00 PM |
| Aniline                         | ФИ     | 5.10       |         | μg/L         | 1   | 5/7/2008 5:23:00 PM |
| Anthracene                      | ND     | 1.02       |         | μg/L         | 1   | 5/7/2008 5:23:00 PM |
| Azobenzene                      | ND     | 5.10       |         | μg/L         | 1   | 5/7/2008 5:23:00 PM |
| Benz(a)Anthracene               | ND     | 0.102      |         | μg/L         | 1   | 5/7/2008 5:23:00 PM |
| Benzidine                       | ND     | 5.10       |         | μg/L         | . 1 | 5/7/2008 5:23:00 PM |
| Benzo(a)Pyrene                  | ND     | 0.102      |         | μg/L         | 1   | 5/7/2008 5:23:00 PM |
| Benzo(b)Fluoranthene            | ND     | 0.510      |         | μg/L         | 1   | 5/7/2008 5:23:00 PM |
| Benzo(g,h,i)Perylene            | ND     | 1.02       |         | µg/L         | 1   | 5/7/2008 5:23:00 PM |
| Benzo(k)Fluoranthene            | ND     | 0.510      |         | μg/L         | 1   | 5/7/2008 5:23:00 PM |
| Benzyl Alcohol                  | ND     | 1.02       |         | μg/L         | 1   | 5/7/2008 5:23:00 PM |
| Bis(2-Chloroethoxy)Methane      | ND     | 1.02       |         | μg/L         | 1   | 5/7/2008 5:23:00 PM |
| Bis(2-Chloroethyl)Ether         | ND     | 1.02       |         | μg/L         | 1   | 5/7/2008 5:23:00 PM |
| Bis(2-Chloroisopropyl)Ether     | ND     | 1.02       |         | μg/L         | 1   | 5/7/2008 5:23:00 PM |
| Bis(2-Ethylhexyl)Phthalate      | ND     | 1.02       |         | μg/L         | 1   | 5/7/2008 5:23:00 PM |
| Butyl Benzyl Phthalate          | ND     | 1.02       |         | μg/L         | 1   | 5/7/2008 5:23:00 PM |
| Carbazole                       | ND     | 1.02       |         | μg/L         | 1   | 5/7/2008 5:23:00 PM |
| Chrysene                        | ND     | 1.02       |         | μg/L         | 1   | 5/7/2008 5:23:00 PM |
| Dibenz(a,h)Anthracene           | ND     | 0.102      |         | μg/L         | 1   | 5/7/2008 5:23:00 PM |
| Dibenzofuran                    | 1.83   | 1.02       |         | μg/L         | 1   | 5/7/2008 5:23:00 PM |
| Diethyl Phthalate               | ND     | 1.02       |         | μg/L         | 1   | 5/7/2008 5:23:00 PM |
| Dimethyl Phthalate              | ND     | 1.02       |         | μg/L         | 1   | 5/7/2008 5:23:00 PM |
| Di-n-Butyl Phthalate            | ND     | 1.02       |         | μg/L         | 1   | 5/7/2008 5:23:00 PM |
| Di-π-Octyl Phthalate            | ND     | 1.02       |         | μg/L         | 1   | 5/7/2008 5:23:00 PM |
| =luoranthene                    | ND     | 1.02       |         | µg/L         | 1   | 5/7/2008 5:23:00 PM |
| Fluorene                        | 1.40   | 1.02       |         | μg/L         | 1   | 5/7/2008 5:23:00 PM |
| Hexachlorobenzene               | ND     | 0.102      |         | ug/L         | 1   | 5/7/2008 5:23:00 PM |
| Hexachlorobutadiene             | ND     | 0.102      |         | -g<br>μg/L   | 1   | 5/7/2008 5:23:00 PM |
| Hexachlorocyclopentadiene       | ND     | 5.10       |         | rg/L         | 1   | 5/7/2008 5:23:00 PM |
| Hexachloroethane                | ND     | 1.02       |         | ug/L         | 1   | 5/7/2008 5:23:00 PM |
| ndeno(1,2,3-cd)Pyrene           | ND     | 0.102      |         | ug/L         | 1   | 5/7/2008 5:23:00 PM |
| sophorone                       | ND     | 1.02       |         | ug/L         | 1   | 5/7/2008 5:23:00 PM |
| Naphthalene                     | ND     | 1.02       | 4       | ug/L         | 1   | 5/7/2008 5:23:00 PM |
| Nitrobenzene                    | ND     | 1.02       |         | ug/L         | 1   | 5/7/2008 5:23:00 PM |
| N-Nitrosodimethylamine          | ND     | 5.10       | · ·     | ug/L<br>⊔g/L | 1   | 5/7/2008 5:23:00 PM |

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0805025

Project:

WM-046, 1.4 Exp

Lab ID:

0805025-005

Client Sample ID: B5

Collection Date: 5/1/2008 2:20:00 AM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| Analyses                       | Result    | Det. Limit | Qual Units   | DF                                       | Date Analyzed        |
|--------------------------------|-----------|------------|--------------|------------------------------------------|----------------------|
| SEMIVOLATILE ORGANICS - SW827  | 70C       |            |              | ( 10 - 1 - 10 - 10 - 10 - 10 - 10 - 10 - | Analyst: <b>ZY</b> Z |
| N-Nitrosodi-n-Propylamine      | ND        | 1.02       | μg/L         | 1                                        | 5/7/2008 5:23:00 PM  |
| N-Nitrosodiphenylamine         | ND        | 5.10       | μg/L         | 1                                        | 5/7/2008 5:23:00 PM  |
| Pentachlorophenol              | ND        | 1.02       | µg/∟         | 1                                        | 5/7/2008 5:23:00 PM  |
| Phenanthrene                   | ND        | 1.02       | μg/L         | · 1                                      | 5/7/2008 5:23:00 PM  |
| Phenol                         | ND        | 1.02       | μg/L         | 1                                        | 5/7/2008 5:23:00 PM  |
| Pyrene                         | DN        | 1.02       | μg/L         | 1                                        | 5/7/2008 5:23:00 PM  |
| Pyridine                       | ND        | 5.10       | μg/L         | . 1                                      | 5/7/2008 5:23:00 PM  |
| Surr: 2,4,6-Tribromophenol     | 61.4      | 15-110     | %REC         | 1                                        | 5/7/2008 5:23:00 PM  |
| Surr: 2-Fluorobiphenyl         | 89.1      | 30-130     | %REC         | 1                                        | 5/7/2008 5:23:00 PM  |
| Surr: 2-Fluorophenol           | 44.4      | 15-110     | %REC         | . 1                                      | 5/7/2008 5:23:00 PM  |
| Surr: Nitrobenzene-d5          | 67.3      | 30-130     | %REC         | 1                                        | 5/7/2008 5:23:00 PM  |
| Surr; Phenol-d6                | 33.5      | 15-110     | %REC         | 1                                        | 5/7/2008 5:23:00 PM  |
| Surr: Terphenyl-d14            | 117       | 30-130     | %REC         | . 1                                      | 5/7/2008 5:23:00 PM  |
| EPH TARGET ANALYTES - MADEP    | EPH       |            |              |                                          | Analyst: <b>ZYZ</b>  |
| Naphthalene                    | ND        | 1.02       | μg/L         | 1                                        | 5/6/2008 4:42:00 PM  |
| 2-Methylnaphthalene            | ND        | 1,02       | μg/L         | 1                                        | 5/6/2008 4:42:00 PM  |
| Acenaphthene                   | ND        | 1.02       | μg/L         | 1                                        | 5/6/2008 4:42:00 PM  |
| Phenanthrene                   | ND        | 1.02       | µg/L         | 1                                        | 5/6/2008 4:42:00 PM  |
| Acenaphthylene                 | ND        | 1.02       | μg/L         | 1                                        | 5/6/2008 4:42:00 PM  |
| Fluorene                       | ND        | 1.02       | μg/L         | 1                                        | 5/6/2008 4:42:00 PM  |
| Anthracene                     | ND        | 1.02       | μg/ <b>L</b> | 1                                        | 5/6/2008 4:42:00 PM  |
| Fluoranthene                   | ND        | 1.02       | μg/L         | 1                                        | 5/6/2008 4:42:00 PM  |
| Pyrene                         | ND        | 1.02       | μg/L         | 1                                        | 5/6/2008 4:42:00 PM  |
| Benzo(a)Anthracene             | ND        | 0.406      | μg/L         | 1                                        | 5/6/2008 4:42:00 PM  |
| Chrysene                       | ND        | 1.02       | μg/L         | 1                                        | 5/6/2008 4:42:00 PM  |
| Benzo(b)Fluoranthene           | ND        | 1.02       | μg/L         | 1                                        | 5/6/2008 4:42:00 PM  |
| Benzo(k)Fluoranthene           | σи        | 1.02       | μg/L         | 1                                        | 5/6/2008 4:42:00 PM  |
| Benzo(a)Pyrene                 | ND        | 0.203      | μg/Ľ         | 1                                        | 5/6/2008 4:42:00 PM  |
| Indeno(1,2,3-cd)Pyrene         | ND        | 0.406      | μg/L         | 1                                        | 5/6/2008 4:42:00 PM  |
| Dibenz(a,h)Anthracene          | ND        | 0.406      | μg/L         | 1                                        | 5/6/2008 4:42:00 PM  |
| Beпzo(g,h,i)Perylene           | ND        | 1.02       | μg/L         | 1                                        | 5/6/2008 4:42:00 PM  |
| Total PAH Target Concentration | ND        | 0          | μg/L         | 1                                        | 5/6/2008 4:42:00 PM  |
| Surr: 2,2'-Difluorobiphenyl    | 97.7      | 40-140     | %REC         | 1                                        | 5/6/2008 4:42:00 PM  |
| Surr: 2-Fluorobiphenyl         | 95.3      | 40-140     | %REC         | 1                                        | 5/6/2008 4:42:00 PM  |
| OLATILE ORGANIC COMPOUNDS      | - SW8260R |            |              |                                          | Analyst: <b>MR</b>   |
| 1,1,1,2-Tetrachloroethane      | ND        | 5.00       | μg/L         | 1                                        | 5/8/2008 7:06:00 PM  |
| 1.1.1-Trichloroethane          | ND        | 5.00       | pg/L         | 1                                        | 5/8/2008 7:06:00 PM  |

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0805025

Project: Lab ID:

WM-046, 1.4 Exp

0805025-005

Client Sample ID: B5

Collection Date: 5/1/2008 2:20:00 AM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| Analyses                    | Result    | Det. Limit | Qual Un      | nits | DF       | Date Analyzed       |
|-----------------------------|-----------|------------|--------------|------|----------|---------------------|
| OLATILE ORGANIC COMPOUNDS   | - SW8260B |            |              |      |          | Analyst: MF         |
| 1,1,2,2-Tetrachloroethane   | ND        | 2.00       | ` µg/        | Ľ    | 1        | 5/8/2008 7:06:00 PM |
| 1,1,2-Trichloroethane       | ND        | 5.00       | μg/          | r_   | 1        | 5/8/2008 7:06:00 PM |
| 1,1-Dichloroethane          | ND        | 5.00       | μġ/          | Ľ    | 1        | 5/8/2008 7:06:00 PM |
| 1,1-Dichloroethene          | ND        | 5.00       | μġ/          | Ľ    | 1        | 5/8/2008 7:06:00 PM |
| 1,1-Dichloropropene         | ND        | 5.00       | μg/          | 'L   | 1        | 5/8/2008 7:06:00 PM |
| 1,2,3-Trichlorobenzene      | ND        | 5.00       | μg/          | L .  | 1        | 5/8/2008 7:06:00 PM |
| 1,2,3-Trichloropropane      | ND        | 5.00       | μg/          | L    | 1        | 5/8/2008 7:06:00 PM |
| 1,2,4-Trichlorobenzene      | ND        | 5.00       | µg/          | Ľ    | 1        | 5/8/2008 7:06:00 PM |
| 1,2,4-Trimethylbenzene      | ND        | 5.00       | µg/          | Ľ    | 1        | 5/8/2008 7:06:00 PM |
| 1,2-Dibromo-3-Chloropropane | ND        | 5.00       | µд/          | L    | 1        | 5/8/2008 7:06:00 PM |
| 1,2-Dibromoethane           | ND        | 2.00       | μg/          | L    | 1        | 5/8/2008 7:06:00 PM |
| 1,2-Dichlorobenzene         | ND        | 5.00       | μg/          | L    | 1        | 5/8/2008 7:06:00 PM |
| 1,2-Dichloroethane          | ND        | 2.00       | μg/          | L    | 1        | 5/8/2008 7:06:00 PM |
| 1,2-Dichloropropane         | ND        | 2.00       | μg/          |      | 1        | 5/8/2008 7:06:00 PM |
| 1,3,5-Trimethylbenzene      | ND        | 5.00       | μg/          |      | 1        | 5/8/2008 7:06:00 PM |
| 1,3-Dichlorobenzene         | ND        | 5.00       | μg/          |      | 1        | 5/8/2008 7:06:00 PM |
| 1,3-Dichloropropane         | ND        | 5.00       | μg/          |      | 1        | 5/8/2008 7:06:00 PM |
| 1,4-Dichlorobenzene         | ND        | 5.00       | μg/          |      | 1        | 5/8/2008 7:06:00 PM |
| 2,2-Dichloropropane         | ND        | 5.00       | μg/          |      | 1        | 5/8/2008 7:06:00 PM |
| 2-Butanone                  | ND        | 10.0       | μg/          |      | 1        | 5/8/2008 7:06:00 PM |
| 2-Chloroethyl Vinyl Ether   | ND        | 5.00       | μg/          |      | 1        | 5/8/2008 7:06:00 PM |
| 2-Chlorotoluene             | ND        | 5.00       | , с<br>µg/   |      | 1        | 5/8/2008 7:06:00 PM |
| 2-Hexanone                  | ND        | 10.0       | . о<br>µg/   |      | 1        | 5/8/2008 7:06:00 PM |
| 4-Chlorotoluene             | ND        | 5.00       | μg/          |      | 1        | 5/8/2008 7:06:00 PM |
| 4-Isopropyltoluene          | ND        | 5.00       | μg/          |      | 1        | 5/8/2008 7:06:00 PM |
| 4-Methyl-2-Pentanone        | ND        | 5.00       | , с<br>/дц   |      | 1        | 5/8/2008 7:06:00 PM |
| Acetone                     | · ND      | 50.0       | µg/          |      | 1        | 5/8/2008 7:06:00 PM |
| Acrolein                    | ND        | 50.0       | µg/          |      | 1        | 5/8/2008 7:06:00 PM |
| Acrylonitrile               | ND        | 50.0       | гэ/<br>µg/   |      | ·<br>1   | 5/8/2008 7:06:00 PM |
| Benzene                     | ND        | 5.00       | µg/          |      | 1        | 5/8/2008 7:06:00 PM |
| Bromobenzene                | ND        | 5.00       | µg/          |      | 1        | 5/8/2008 7:06:00 PM |
| Bromochloromethane          | ND        | 2.00       | ид/<br>Удц   |      | ,<br>1   | 5/8/2008 7:06:00 PM |
| Bromodichloromethane        | ND        | 2.00       | pg/          |      | 1        | 5/8/2008 7:06:00 PM |
| Bromoform                   | ND        | 2.00       | μg/          |      | 1        | 5/8/2008 7:06:00 PM |
| Bromomethane                | ND        | 2.00       | μg/          |      | 1        | 5/8/2008 7:06:00 PM |
| Carbon Disulfide            | ND        | 5.00       | μg/          |      | . 1      | 5/8/2008 7:06:00 PM |
| Carbon Tetrachloride        | ND        | 2.00       | ha.<br>hay   |      | 1        | 5/8/2008 7:06:00 PM |
| Chlorobenzene               | ND        | 5.00       | μg/          |      | 1.<br>1. | 5/8/2008 7:06:00 PM |
| Chloroethane                | ND        | 5.00       | , еч<br>/ ру |      | 1        | 5/8/2008 7:06:00 PM |
| Chioroform                  | ND        | 5.00       | ha\<br>ha\   |      | ,<br>1   | 5/8/2008 7:06:00 PM |

Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits

Spike Recovery outside recovery limits

BRL Below Reporting Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0805025

Project:

Lab ID:

WM-046, 1.4 Exp 0805025-005

Client Sample ID: B5

Collection Date: 5/1/2008 2:20:00 AM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| Analyses                                    | Result       | Det. Limit | Qual Units      | DF  | Date Analyzed       |
|---------------------------------------------|--------------|------------|-----------------|-----|---------------------|
| OLATILE ORGANIC COMPOUNDS                   | - SW8260B    |            |                 |     | Analyst: MR         |
| Chloromethane                               | ND           | 5.00       | μg/L            | 1   | 5/8/2008 7:06:00 PM |
| cis-1,2-Dichloroethene                      | ND           | 5.00       | μg/L            | 1   | 5/8/2008 7:06;00 PM |
| cis-1,3-Dichloropropene                     | ND           | 0.500      | µg/L            | 1   | 5/8/2008 7:06:00 PM |
| Dibromochloromethane                        | ND           | 2.00       | μg/L            | 1   | 5/8/2008 7:06:00 PM |
| Dibromomethane                              | ND           | 5.00       | μg/L            | 1   | 5/8/2008 7:06:00 PM |
| Dichlorodifluoromethane                     | ND           | 5.00       | μg/L            | 1   | 5/8/2008 7:06:00 PM |
| Ethylbenzene                                | ND           | 5.00       | μg/L            | 1   | 5/8/2008 7:06:00 PM |
| Hexachlorobutadiene                         | ND           | 0,500      | μg/L            | 4   | 5/8/2008 7:06:00 PM |
| Isopropylbenzene                            | ND           | 5.00       | μg/L            | 1   | 5/8/2008 7:06:00 PM |
| Methyl Tert-Butyl Ether                     | ND           | 5.00       | μg/L            | 1   | 5/8/2008 7:06:00 PM |
| Methylene Chloride                          | ND           | 5.00       | μg/L            | 1   | 5/8/2008 7:06:00 PM |
| Naphthalene                                 | ND           | 20.0       | μg/L            | 1   | 5/8/2008 7:06:00 PM |
| n-Butylbenzene                              | ND           | 5.00       | μg/L            | 1   | 5/8/2008 7:06:00 PM |
| n-Propylbenzene                             | ND           | 5.00       | μg/L            | 4   | 5/8/2008 7:06:00 PM |
| sec-Butylpenzene                            | ND           | 5.00       | μ <b>g/</b> L   | 1   | 5/8/2008 7:06:00 PM |
| Styrene                                     | ND           | 5.00       | μg/L            | 1   | 5/8/2008 7:06:00 PM |
| tert-Butylbenzene                           | ND           | 5.00       | μg/L            | 1   | 5/8/2008 7:06:00 PM |
| Tetrachloroethene                           | ND           | 5.00       | μg/L            | 1   | 5/8/2008 7:06:00 PM |
| Toluene                                     | ND           | 5.00       | μg/L            | 1   | 5/8/2008 7:06:00 PM |
| trans-1,2-Dichloroethene                    | ND           | 5.00       | µg/L            | - 1 | 5/8/2008 7:06:00 PM |
| trans-1,3-Dichloropropene                   | ND           | 0,500      | μg/L            | 1   | 5/8/2008 7:06:00 PM |
| Trichloroethene                             | ND           | 5.00       | μg/L            | 1   | 5/8/2008 7:06:00 PM |
| Trichlorofluoromethane                      | ND           | 5.00       | µg/L            | 1   | 5/8/2008 7:06:00 PM |
| Vinyl Chloride                              | ND           | 2.00       | µg/∟            | 1   | 5/8/2008 7:06:00 PM |
| Xylenes, Total                              | ND           | 5.00       | μg/L            | 4   | 5/8/2008 7:06:00 PM |
| Surr: 1,2-Dichloroethane-d4                 | 117          | 70-130     | %REC            | 1   | 5/8/2008 7:06:00 PM |
| Surr: 4-Bromofluorobenzene                  | 100          | 70-130     | %REC            | 1   | 5/8/2008 7:06:00 PM |
| Surr: Dibromofluoromethane                  | 116          | 70-130     | %REC            | .1  | 5/8/2008 7:06:00 PM |
| Surr: Toluene-d8                            | 109          | 70-130     | %REC            | 1   | 5/8/2008 7:06:00 PM |
| VPH - MADEP VPH                             |              |            |                 |     | Analyst: kd         |
| C9-C10 Aromatic Hydrocarbons                | ND           | 75.0       | μg/L            | 1   | 5/9/2008            |
| Unadjusted C5-C8 Aliphatic                  | 140          | 75.0       |                 | 1   | 5/9/2008            |
| Hydrocarbons                                |              |            | , 5, -          |     |                     |
| Unadjusted C9-C12 Aliphatic<br>Hydrocarbons | ND           | . 75.0     | ) µg/L          | 1   | 5/9/2008            |
| Methyl Tert-Butyl Ether                     | 96. <i>4</i> | 5.00       | , ,             | 1   | 5/9/2008            |
| Benzene                                     | 12.6         |            |                 | 1   | 5/9/2008            |
| Toluene                                     | 6.35         | 5.00       | ) μ <b>g</b> /L | 1   | 5/9/2008            |
| Ethylbenzene                                | ND           | 5.00       | ) µg/L          | 1   | 5/9/2008            |

Analyte detected in the associated Method Blank В

Е Value above quantitation range

j Analyte detected below quantitation limits

Spike Recovery outside recovery limits

BRL Below Reporting Limit

Holding times for preparation or analysis exceeded H

Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0805025

WM-046, 1.4 Exp

Project: Lab ID:

0805025-005

Client Sample ID: B5

Collection Date: 5/1/2008 2:20:00 AM

Date Received: 5/2/2008

Matrix: GROUNDWATER

| Analyses                                  | Result    | Det. Limit | Qual | Units | DF | Date Analyzed       |
|-------------------------------------------|-----------|------------|------|-------|----|---------------------|
| VPH - MADEP VPH                           |           |            |      |       |    | Analyst: kd         |
| m,p-Xylene                                | 8.76      | 5.00       |      | μg/L  | 1  | 5/9/2008            |
| o-Xylene                                  | 5.71      | 5.00       |      | μg/L  | 1  | 5/9/2008            |
| Naphthalene                               | 20.3      | 20.0       |      | μg/L  | 1  | 5/9/2008            |
| Adjusted C5-C8 Aliphatic<br>Hydrocarbons  | ND        | 75.0       |      | µg/L  | 1  | 5/9/2008            |
| Adjusted C9-C12 Aliphatic<br>Hydrocarbons | ND        | 75.0       |      | µg/L  | 1  | 5/9/2008            |
| Surr: 2,5-Dibromotoluene FID              | 84.1      | 70-130     |      | %REC  | 1  | 5/9/2008            |
| Surr: 2,5-Dibromotoluene PID              | 82.6      | 70-130     |      | %REC  | 1  | 5/9/2008            |
| CYANIDE, TOTAL - SM4500-CN-C.E            |           |            |      |       |    | Analyst: <b>WFR</b> |
| Cyanide, Total                            | ND        | 0.0197     |      | mg/L  | 4  | 5/12/2008           |
| HEXAVALENT CHROMIUM - SM3500-CR-I         | <b>)</b>  |            |      |       |    | Analyst: <b>WFR</b> |
| Chromium, Hexavalent                      | ND        | 0.0500     | H    | mg/L  | 1  | 5/6/2008            |
| TOTAL RESIDUAL CHLORINE - HACH 816        | <b>57</b> |            | -    |       |    | Analyst: <b>RP</b>  |
| Total Residual Chlorine                   | ND        | 0.162      | Н    | mg/L  | 1  | 5/5/2008            |

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0805025

Project:

WM-046, 1.4 Exp

Lab ID:

0805025-006

Client Sample ID: Trip Blank

Collection Date: 5/1/2008

Date Received: 5/2/2008

Matrix: OTHER

| Analyses                    | Result      | Det. Limit | Qual Units   | DF | Date Analyzed       |
|-----------------------------|-------------|------------|--------------|----|---------------------|
| VOLATILE ORGANIC COMPOUNDS  | S - SW8260B |            |              |    | Analyst: MR         |
| 1,1,1,2-Tetrachloroethane   | ND          | 5.00       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| 1,1,1-Trichloroethane       | ND          | 5.00       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| 1,1,2,2-Tetrachloroethane   | ND          | 2.00       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| 1,1,2-Trichloroethane       | ND          | 5.00       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| 1,1-Dichloroethane          | ND          | 5.00       | µg/L         | 1  | 5/8/2008 7:39:00 PM |
| 1,1-Dichloroethene          | ND          | 5.00       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| 1,1-Dichloropropene         | ND          | 5.00       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| 1,2,3-Trichlorobenzene      | ND          | 5.00       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| 1.2,3-Trichloropropane      | ND          | 5.00       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| 1,2,4-Trichlorobenzene      | ND          | 5.00       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| 1,2,4-Trimethylbenzene      | ND          | 5.00       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| 1,2-Dibromo-3-Chloropropane | ND          | 5.00       | µg/L         | 1  | 5/8/2008 7:39:00 PM |
| 1,2-Dibromoethane           | ND          | 2.00       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| 1,2-Dichlorobenzene         | ND          | 5.00       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| 1,2-Dichloroethane          | ND          | 2.00       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| 1,2-Dichloropropane         | ND          | 2.00       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| 1,3,5-Trimethylbenzene      | ND          | 5.00       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| 1,3-Dichloroberizene        | ND          | 5.00       | μg/L         | 4  | 5/8/2008 7:39:00 PM |
| 1,3-Dichloropropane         | ND          | 5.00       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| 1,4-Dichlorobenzene         | ND          | 5.00       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| 2,2-Dichloropropane         | ND          | 5.00       | µg/L         | 1  | 5/8/2008 7:39:00 PM |
| 2-Butanone                  | ND          | 10.0       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| 2-Chloroethyl Vinyl Ether   | ND          | 5.00       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| 2-Chlorotoluene             | ND          | 5.00       | µ9/L         | 1  | 5/8/2008 7:39:00 PM |
| 2-Hexanone                  | ND          | 10.0       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| 4-Chlorotoluene             | ND          | 5.00       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| 4-Isopropyltoluene          | ND          | 5.00       | μg/ <b>L</b> | 1  | 5/8/2008 7:39:00 PM |
| 4-Methyl-2-Pentanone        | ND          | 5.00       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| Acetone                     | ND          | 50.0       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| Acrolein                    | ND          | 50.0       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| Acrylonitrile               | ND          | 50.0       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| Benzene                     | ND          | 5,00       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| Bromobenzene                | ND          | . 5,00     | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| Bromochioromethane          | ND          | 2.00       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| Bromodichloromethane        | ND.         | 2.00       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| Bromoform                   | ND          | 2.00       | μ <b>g/L</b> | 1  | 5/8/2008 7:39:00 PM |
| Bromomethane                | ND          | 2.00       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| Carbon Disulfide            | ND          | 5.00       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| Carbon Tetrachloride        | ND          | 2.00       | μg/L         | 1  | 5/8/2008 7:39:00 PM |
| Chlorobenzene               | ND          | 5.00       | μg/L         | 1  | 5/8/2008 7:39:00 PM |

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0805025

Project:

WM-046, 1.4 Exp

Lab ID:

0805025-006

Client Sample ID: Trip Blank

Collection Date: 5/1/2008 Date Received: 5/2/2008

Matrix: OTHER

| Analyses                                    | Result    | Det. Limit | Qual Units   | DF DF    | Date Analyzed       |
|---------------------------------------------|-----------|------------|--------------|----------|---------------------|
| VOLATILE ORGANIC COMPOUNDS                  | - SW8260B |            |              |          | Analyst: MR         |
| Chloroethane                                | ND        | 5.00       | µg/L         | 1        | 5/8/2008 7:39:00 PM |
| Chloroform                                  | ND        | 5.00       | μg/L         | 1        | 5/8/2008 7:39:00 PM |
| Chloromethane                               | ND        | 5.00       | µg/L         | 1        | 5/8/2008 7:39:00 PM |
| cis-1,2-Dichloroethene                      | ND        | 5.00       | μ <b>g/L</b> | 1        | 5/8/2008 7:39:00 PM |
| cis-1,3-Dichloropropene                     | ND        | 0.500      | μg/L         | 1        | 5/8/2008 7:39:00 PM |
| Dibromochloromethane                        | ND        | 2.00       | µg/L         | 1        | 5/8/2008 7:39:00 PM |
| Dibromomethane                              | ND        | 5.00       | μg/L         | 1        | 5/8/2008 7:39:00 PM |
| Dichlorodifluoromethane                     | ND        | 5.00       | μg/L         | 1        | 5/8/2008 7:39:00 PM |
| Ethylbenzene                                | ND        | 5.00       | μg/L         | 1        | 5/8/2008 7:39:00 PM |
| Hexachiorobutadiene                         | ND        | 0.500      | μg/L         | 1        | 5/8/2008 7:39:00 PM |
| Isopropylbenzene                            | ND        | 5.00       | μg/L         | 1        | 5/8/2008 7:39;00 PM |
| Methyl Tert-Butyl Ether                     | ND        | 5.00       | μg/L         | 1        | 5/8/2008 7:39:00 PM |
| Methylene Chloride                          | ND        | 5.00       | μg/L         | 1        | 5/8/2008 7:39:00 PM |
| Naphthalene                                 | ND        | 20.0       | μg/L         | 1        | 5/8/2008 7:39:00 PM |
| n-Butylbenzene                              | ND        | 5.00       | μg/L         | 1 .      | 5/8/2008 7:39:00 PM |
| n-Propylbenzene                             | ND        | 5.00       | μ <b>g/L</b> | 1        | 5/8/2008 7:39:00 PM |
| sec-Butylbenzene                            | ND        | 5.00       | μg/L         | 1        | 5/8/2008 7:39:00 PM |
| Styrene                                     | ND        | 5.00       | μg/L         | 1        | 5/8/2008 7:39:00 PM |
| tert-Butylbenzene                           | ND        | 5.00       | μg/L         | 1        | 5/8/2008 7:39:00 PM |
| Tetrachioroethene                           | ND        | 5,00       | μg/L         | 1        | 5/8/2008 7:39:00 PM |
| Toluene                                     | .ND       | 5.00       | μg/L         | . 1      | 5/8/2008 7:39:00 PM |
| trans-1,2-Dichloroethene                    | ND.       | 5.00       | μg/L         | <u> </u> | 5/8/2008 7:39:00 PM |
| trans-1,3-Dichloropropene                   | ND        | 0.500      | μg/L         | 1        | 5/8/2008 7:39:00 PM |
| Trichloroethene                             | ND        | 5.00       | μg/L         | 1        | 5/8/2008 7:39:00 PM |
| Trichlorofluoromethane                      | ND        | 5.00       | μg/L         | 1        | 5/8/2008 7:39:00 PM |
| Vinyl Chloride                              | ND        | 2,00       | μg/L         | 1        | 5/8/2008 7:39:00 PM |
| Xylenes, Total                              | ND        | 5,00       | μg/L         | 1        | 5/8/2008 7:39:00 PM |
| Surr: 1,2-Dichloroethane-d4                 | 115       | 70-130     | %REC         | 1        | 5/8/2008 7:39:00 PM |
| Surr: 4-Bromofiuorobenzene                  | 103       | 70-130     | %REC         | 1        | 5/8/2008 7:39:00 PM |
| Surr: Dibromofluoromethane                  | 117       | 70-130     | %REC         | 1        | 5/8/2008 7:39:00 PM |
| Surr: Toluene-d8                            | 108       | 70-130     | %REC         |          | 5/8/2008 7:39:00 PM |
| /PH - MADEP VPH                             |           |            |              |          | Analyst: kd         |
| C9-C10 Aromatic Hydrocarbons                | ND        | 75.0       | μg/L         | 1        | 5/13/2008           |
| Unadjusted C5-C8 Aliphatic<br>Hydrocarbons  | ND        | 75.0       | μg/L         | 1        | 5/13/2008           |
| Unadjusted C9-C12 Aliphatic<br>Hydrocarbons | ND        | 75.0       | μg/L         | 1        | 5/13/2008           |
| Methyl Tert-Butyl Ether                     | ND        | 5.00       | μg/L         | 1        | 5/13/2008           |
| Benzene                                     | ND        | 5.00       | μg/L         | 1        | 5/13/2008           |

Qualifiers:

- Analyte detected in the associated Method Blank
- $\mathbf{E}$ Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 15-May-08

CLIENT:

Fay, Spofford & Thorndike

Lab Order:

0805025

Project:

WM-046, 1.4 Exp

Lab ID:

0805025-006

Client Sample ID: Trip Blank

Collection Date: 5/1/2008

Date Received: 5/2/2008

Matrix: OTHER

| Analyses                                  | Result | Det. Limit | Qual ( | Units        | DF | Date Analyzed |
|-------------------------------------------|--------|------------|--------|--------------|----|---------------|
| VPH - MADEP VPH                           |        |            |        |              |    | Analyst: kd   |
| Toluene                                   | ND     | 5.00       | ŀ      | ug/L         | 1  | 5/13/2008     |
| Ethylbenzene                              | ND     | 5.00       | ŀ      | ug/L         | 1  | 5/13/2008     |
| m,p-Xylene                                | ND     | 5.00       | ŀ      | ug/L         | 1  | 5/13/2008     |
| o-Xylene                                  | ND     | 5.00       | ŀ      | ig/L         | 1  | 5/13/2008     |
| Naphthalene                               | ND     | 20.0       | ŀ      | ug/ <b>L</b> | 1  | 5/13/2008     |
| Adjusted C5-C8 Aliphatic<br>Hydrocarbons  | ND     | 75.0       | . 1    | ug/L ∙       | 1  | 5/13/2008     |
| Adjusted C9-C12 Aliphatic<br>Hydrocarbons | ND     | 75.0       | ٢      | ıg/L         | 1  | 5/13/2008     |
| Surr: 2,5-Dibromotoluene FID              | 74.7   | 70-130     | 9      | %REC         | 1  | 5/13/2008     |
| Surr: 2,5-Dibromotoluene PID              | 76.8   | 70-130     | 9      | %REC         | 1  | 5/13/2008     |

Analyte detected in the associated Method Blank

Е Value above quantitation range

Analyte detected below quantitation limits

S Spike Recovery outside recovery limits

Holding times for preparation or analysis exceeded Н

Not Detected at the Reporting Limit

Fay, Spofford & Thorndike CLIENT:

0805025 Work Order: WM-046, 1.4 Exp Project:

ANALYTICAL QC SUMMARY REPORT

Date: 15-May-08

TestCode: 6010B\_W

| Sample ID: MB-10051 | SampType: MBLK  | TestCoc | TestCode: 6010B_W | Units: mg/L           |      | Prep Date    | Prep Date; 5/2/2008                 | RunNo: 23445  | 9                  |      |
|---------------------|-----------------|---------|-------------------|-----------------------|------|--------------|-------------------------------------|---------------|--------------------|------|
| Client ID: ZZZZ     | Batch ID: 10051 | Test    | TestNo: SW6010B   | (SW3010A)             |      | Analysis Dat | Analysis Date: 5/3/2008             | SeqNo: 233260 | 90                 |      |
| Analyte             | Result          | Pal     | SPK value         | SPK value SPK Ref Val | %REC | LowLimit     | %REC LowLimit HighLimit RPD Ref Val |               | %RPD RPDLimit Qual | Qual |
| Barium              | QN              | 2.00    |                   |                       |      |              |                                     |               |                    |      |
| Cadmium             | QN              | 0.00400 |                   |                       |      |              |                                     |               |                    |      |
| Chromium            | QN              | 0.100   |                   |                       |      |              |                                     |               |                    |      |
| Copper              | QN              | 0.0400  |                   | •                     |      |              |                                     |               |                    |      |
| Iron                | <u>N</u>        | 0.0600  |                   |                       |      |              |                                     |               |                    |      |
| Lead                | QN              | 0.0100  |                   |                       |      |              |                                     |               | ٠                  |      |
| Nickel              | QN              | 0.100   |                   |                       |      |              |                                     |               |                    |      |
| Selenium            | QN              | 0.0500  |                   |                       |      |              |                                     |               |                    |      |

|                      |                 | *************************************** | *************************************** |                       |      |              |                                     |                    |
|----------------------|-----------------|-----------------------------------------|-----------------------------------------|-----------------------|------|--------------|-------------------------------------|--------------------|
| Sample ID: LCS-10051 | SampType: LCS   | TestCo                                  | TestCode: 6010B_W                       | Units: mg/L           |      | Prep Dat     | Prep Date: 5/2/2008                 | RunNo; 23445       |
| Client ID: ZZZZZ     | Batch ID: 10051 | Test                                    | estNo: SW6010B                          | (SW3010A)             | ~    | Analysis Dat | Analysis Date: 5/3/2008             | SeqNo: 233261      |
| Analyte              | Result          | PQL                                     | SPK value                               | SPK value SPK Ref Val | %REC | LowLimit     | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual |
| Barium               | QN              | 2.00                                    | ****                                    | 0                     | 88.9 | 80           | 120                                 |                    |
| Cadmium              | 1.768           | 0.00400                                 | 2                                       | 0                     | 88.4 | 80           | 120                                 |                    |
| Chromium             | 1.783           | 0.100                                   | 2                                       | 0                     | 89.2 | 80           | 120                                 |                    |
| Copper               | 1.808           | 0.0400                                  | 2                                       | . 0                   | 90.4 | 80           | 120                                 |                    |
| Iron                 | 1.821           | 0.0600                                  | 8                                       | 0                     | 91.0 | 80           | 120                                 |                    |
| Lead                 | 1.821           | 0.0100                                  | 2                                       | 0                     | 91.0 | 80           | 120                                 |                    |
| Nickel               | 1.820           | 0.100                                   | 2                                       | 0                     | 91.0 | . 80         | 120                                 |                    |
| Selenium             | 1.865           | 0.0500                                  | 2                                       | 0                     | 93.2 | 80           | 120                                 |                    |

BRL Below Reporting Limit Qualifiers:

Analyte detected below quantitation limits Spike Recovery outside recovery limits

E Value above quantitation range

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded R RPD outside recovery limits

RPD outside recovery limits

Page 2 of 33

| PORT        |  |
|-------------|--|
| REP         |  |
| <b>IARY</b> |  |
| UMUM        |  |
| OC SUI      |  |
| CAL (       |  |
| _           |  |
| XIII        |  |
| ANALYTIC    |  |

Fay, Spofford & Thorndike

WM-046, 1.4 Exp

0805025

Work Order: CLIENT:

Project:

TestCode: 8082\_w

| Sample ID: MB-10073 | SampType: MBLK  | TestCode: 8082_w | Units: µg/L | Prep Date: 5/6/2008     | 8 RunNo: 23512  |
|---------------------|-----------------|------------------|-------------|-------------------------|-----------------|
| Client ID: ZZZZZ    | Batch ID: 10073 | TestNo: SW8082   | (SW3510B)   | Analysis Date: 5/6/2008 | 8 SeqNo: 231034 |
|                     |                 |                  |             |                         |                 |

|                     |                 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ı           |              |              |              |              |              |              |                              |                                |                                |                                  | 1                    |                 |               | ſ                 |              |                               |                                |                                  | 1                                | J                     |                 |                |
|---------------------|-----------------|-----------------------------------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|------------------------------|--------------------------------|--------------------------------|----------------------------------|----------------------|-----------------|---------------|-------------------|--------------|-------------------------------|--------------------------------|----------------------------------|----------------------------------|-----------------------|-----------------|----------------|
|                     |                 | Qual                                    |             |              |              |              |              |              |              |                              |                                |                                |                                  |                      |                 | Quai          |                   |              |                               |                                |                                  |                                  |                       |                 | Qual           |
| 2                   | 34              | RPDLimit                                |             |              |              |              |              |              |              |                              |                                |                                |                                  | 2                    | 35              | RPDLimit      |                   |              |                               |                                |                                  |                                  | 2                     | 142             | RPDLimit       |
| RunNo: 23512        | SeqNo: 231034   | %RPD                                    |             |              |              |              |              |              |              |                              |                                |                                |                                  | RunNo: 23512         | SeqNo: 231035   | %RPD          |                   |              |                               |                                |                                  |                                  | RunNo: 23512          | SeqNo: 231042   | %RPD           |
| 전                   | й               | ef Val                                  | -           |              |              |              |              |              |              |                              |                                |                                |                                  | <del> </del>         | Š               | ef Val        |                   |              |                               |                                |                                  |                                  | Ŋ                     | Ϋ́              | ef Val         |
| 800                 | 800             | t RPD Ref Val                           |             |              |              |              |              |              |              | _                            | ~                              | ~                              |                                  | 908                  | 800             | t RPD Ref Val | 0                 | -            |                               | 0                              | _                                | 0                                | 800                   | 800             | it RPD Ref Val |
| 5/6/2008            | : 5/6/2008      | HighLimit                               |             |              |              |              |              |              |              | 150                          | 150                            | 150                            | 150                              | 5/6/2008             | 3: 5/6/2008     | HighLimít     | 140               | 140          | 150                           | 150                            | 150                              | 150                              | 5/6/2008              | s: 5/6/2008     | HighLimit      |
| Prep Date:          | Analysis Date:  | LowLimit                                |             | •            |              |              |              |              |              | 30                           | 30                             | 30                             | 30                               | Prep Date:           | Analysis Date:  | LowLimit      | 40                | 40           | 30                            | 30                             | 30                               | 30                               | Prep Date:            | Analysis Date:  | LowLimit       |
|                     | ₹               | %REC                                    |             |              |              |              |              |              |              | 103                          | 108                            | 80.0                           | 86.0                             |                      | ∢               | %REC          | 75.0              | 83.0         | 107                           | 97.0                           | 86.0                             | 81.0                             |                       | <b>4</b>        | %REC           |
| Units: µg/L         | (SW3510B)       | SPK Ref Val                             |             |              |              |              |              |              |              | 0                            | 0                              | 0                              | 0                                | Units: µg/L          | (SW3510B)       | SPK Ref Val   | 0                 | 0            | 0                             | 0                              | 0                                | 0                                | Units: µg/L           | (SW3510B)       | SPK Ref Val    |
| 12_w                | 18082           | SPK value SF                            |             |              |              |              |              |              |              | 100                          | 100                            | 100                            | 100                              | 32_w                 | 18082           | SPK value SI  | 100               | 100          | 100                           | 100                            | 100                              | 100                              | 32_w                  | 18082           | SPK value Si   |
| estCode: 8082_w     | TestNo: SW8082  |                                         |             |              |              |              |              |              |              |                              |                                |                                |                                  | estCode: 8082_w      | TesiNo: SW8082  |               |                   |              |                               |                                |                                  |                                  | estCode: 8082_w       | TestNo: SW8082  |                |
| TestC               | je<br>L         | PQL                                     | 0.300       | 0.300        | 0.300        | 0.300        | 0.300        | 0.300        | 0.300        | 0                            | 0                              | 0                              | 0                                | Test                 | Te              | POL           | 0.300             | 0.300        | 0                             | 0                              | 0                                | 0                                | Test                  | Te              | POL            |
| MBLK                | 10073           | Result                                  | QN          | 9            | 9            | QN           | Q            | 9            | R            | 103.0                        | 108.0                          | 80.00                          | 86.00                            | SOT                  | 10073           | Result        | 75.00             | 83.00        | 107.0                         | 97.00                          | 86.00                            | 81.00                            | SOT                   | 10073           | Result         |
| SampType: MBLK      | Batch ID: 10073 |                                         |             |              |              |              |              |              |              |                              |                                |                                |                                  | SampType: LCS        | Batch ID: 10073 |               |                   |              |                               |                                |                                  |                                  | SampType: LCS         | Batch ID: 10073 |                |
| SS                  | _               |                                         |             |              |              |              |              |              |              | Sig 1                        | Sig 2                          | ne Sig 1                       | ne Sig 2                         | Se                   | _               |               |                   |              | Sig 1                         | Sig 2                          | ne Sig 1                         | ne Sig 2                         | Ss                    |                 |                |
| 10073               | 72              |                                         |             |              |              |              |              |              |              | Surr: Decachlorobiphenyl Sig | Surr: Decachlorobiphenyl Sig 2 | Surr: Tetrachloro-m-Xylene Sig | Surr: Tetrachloro-m-Xylene Sig 2 | -10073               | <b>ZZ</b>       |               | 12                |              | Surr; Decachlorobiphenyl Sig. | Surr; Decachlorobiphenyl Sig 2 | Surr: Tetrachloro-m-Xylene Sig 1 | Surr: Tetrachloro-m-Xylene Sig 2 | 2-10073               | <b>ZZ</b>       |                |
| Sample ID: MB-10073 | D: <b>ZZZZZ</b> |                                         | 1221        | 1232         | 1248         | 1254         | 1260         | 1262         | 1268         | : Decachik                   | Decachic                       | Tetrachk                       | : Tetrachk                       | Sample ID: LCS-10073 | D: <b>ZZZZZ</b> | **            | Aroctor 1016/1242 | 1260         | : Decachit                    | Decachit                       | Tetrachi                         | : Tetrachl                       | Sample ID: LCS2-10073 | D: <b>ZZZZZ</b> | д.             |
| Sample              | Client ID:      | Analyte                                 | Araclar 122 | Aroclor 1232 | Aroclor 1248 | Aroclor 1254 | Araclar 1260 | Aroclor 1262 | Aroclor 1268 | Surr                         | Surr                           | Surr                           | Sur                              | Sample               | Client ID:      | Analyte       | Aroctor           | Aroclor 1260 | Surr                          | Surr                           | Surr                             | Sur                              | Sample                | Client ID:      | Analyte        |

| Client ID: ZZZZZ                  |                                              | Batch ID: 10073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TestNo: | TestNo: SW8082 | (SW3510B)                           |          | Analysis Date: 5/6/2008 | e: <b>5/6/2</b> 00 | œ                                                  | SeqNo: 231042     | 042              |        |
|-----------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|-------------------------------------|----------|-------------------------|--------------------|----------------------------------------------------|-------------------|------------------|--------|
| Analyte                           |                                              | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pal     | SPK value      | SPK value SPK Ref Val               | %REC     | LowLimit                | HighLimit          | %REC LowLimit HighLimit RPD Ref Val                | %RPD              | %RPD RPDLImit Qu | 8      |
| Arocior 1016/1242<br>Arocior 1221 | 11242                                        | 75.00<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.300   | 100            | 0                                   | 75.0     | 40                      | 140                |                                                    |                   |                  |        |
| Aroclor 1232                      |                                              | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.300   |                |                                     |          |                         |                    |                                                    |                   |                  |        |
| Qualifiers:                       | BRL Below Reporting Limit                    | NAMES AND ADDRESS OF THE PROPERTY OF THE PROPE |         | E Value        | Value above quantitation range      | nge      | 200                     | H                  | Holding times for preparation or analysis exceeded | preparation or an | alysis exceede   | l g    |
| i                                 | J Analyte detected below quantitation limits | quantitation limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | ND Not De      | Not Detected at the Reporting Limit | ug Limit |                         | ~                  | RPD outside recovery limits                        | rery limits       |                  |        |
|                                   | S Spike Recovery outside recovery limits     | recovery finnits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                |                                     |          |                         |                    |                                                    |                   | Pa               | Page 2 |

ANALYTICAL QC SUMMARY REPORT

Fay, Spofford & Thorndike

WM-046, 1.4 Exp

0805025

Work Order: CLIENT:

Project:

TestCode: 8082\_w

| Sample ID: LCS2-10073            | SampType: LCS   | TestCoc | TestCode: 8082_w | Units: µg/L           |                                         | Prep Dat     | Prep Date: 5/6/2008                 | RunNo: 23512  | 3512               |      |
|----------------------------------|-----------------|---------|------------------|-----------------------|-----------------------------------------|--------------|-------------------------------------|---------------|--------------------|------|
| Client ID: ZZZZZ                 | Batch ID: 10073 | Testh   | estNo: SW8082    | (SW3510B)             |                                         | Analysis Dal | Analysis Date: 5/6/2008             | SeqNo: 231042 | 31042              |      |
| Analyte                          | Result          | PQL     | SPK value        | SPK value SPK Ref Val | %REC                                    | LowLimit     | %REC LowLimit HighLimit RPD Ref Val |               | %RPD RPDLimit Qual | Qual |
| Aroclor 1248                     | QN              | 00:300  |                  |                       | *************************************** |              |                                     |               |                    |      |
| Aroclor 1254                     | ON .            | 0.300   |                  |                       |                                         |              |                                     |               |                    |      |
| Aroclor 1260                     | 81.00           | 0.300   | 100              | 0                     | 81.0                                    | 40           | 140                                 |               |                    |      |
| Aroclor 1262                     | QN              | 0.300   |                  |                       |                                         |              |                                     |               |                    |      |
| Aroclor 1268                     | ON.             | 0.300   |                  |                       |                                         |              |                                     |               |                    |      |
| Surr: Decachlorobiphenyl Sig 1   | 1 102.0         | 0       | 100              | 0                     | 102                                     | 30           | 150                                 |               |                    |      |
| Surr: Decachlorobiphenyl Sig 2   | 2 88.00         | 0       | 100              | 0                     | 88.0                                    | 30           | 150                                 |               |                    |      |
| Surr: Tetrachloro-m-Xylene Sig 1 | g 1 82.00       | 0       | 100              | 0                     | 82.0                                    | 30           | 150                                 |               |                    |      |
| Surr: Tetrachloro-m-Xylene Sig 2 | g 2 77.00       | 0       | 100              | 0                     | 77.0                                    | 30           | 150                                 |               |                    |      |
|                                  |                 |         |                  |                       |                                         |              |                                     |               |                    |      |

BRL Below Reporting Limit Qualifiers:

Analyte detected below quantitation limits

Spike Recovery outside recovery limits

E Value above quantitation range ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside recovery limits

CLIENT: Fay, Spofford & Thorndike

Work Order: 0805025

**Project:** WM-046, 1.4 Exp

|   | ×            |  |
|---|--------------|--|
|   | Δ            |  |
| ١ | ᆽ            |  |
| į | <b>90978</b> |  |
| Ç | 20           |  |
|   | ė            |  |
| • | 돗            |  |
| C | ۲            |  |
|   | Lest Code:   |  |
| _ | 9            |  |
| • | _            |  |
|   |              |  |
|   |              |  |

| Sample ID: MB                         | SampType: MBLK                             | TestCode: 8 | TestCode: 8260B W | Units: µg/L                         |         | Prep Date:     |          |                             | RunNo: 23612    | 612                                                |              |
|---------------------------------------|--------------------------------------------|-------------|-------------------|-------------------------------------|---------|----------------|----------|-----------------------------|-----------------|----------------------------------------------------|--------------|
| Client ID: ZZZZZ                      | Batch ID: R23612                           | TestNo      | TestNo: SW8260B   |                                     | Αņ      | Analysis Date: | 5/8/2008 |                             | SedNo: 232929   | 2929                                               |              |
| Analyte                               | Resuit                                     | Pal         | SPK value         | SPK Ref Val                         | %REC L  | LowLimit F     | ghLimit  | RPD Ref Val                 | %RPD            | RPDLímit                                           | Quai         |
| 1.1.2-Tetrachloroethane               | QN                                         | 5.00        |                   |                                     |         |                |          |                             |                 |                                                    |              |
| 1,1,1-Trichloroethane                 | Ð                                          | 5.00        |                   |                                     |         |                |          |                             |                 |                                                    |              |
| 1,1,2,2-Tetrachloroethane             | QN                                         | 2,00        |                   | •                                   |         |                |          |                             |                 |                                                    |              |
| 1,1,2-Trichloroethane                 | ON                                         | 5.00        |                   |                                     |         |                | 4        |                             |                 |                                                    |              |
| 1,1-Dichloroethane                    | QN                                         | 5.00        | ••                |                                     |         |                |          |                             |                 |                                                    |              |
| 1,1-Dichloroethene                    | - Q                                        | 5.00        |                   |                                     |         |                |          |                             |                 |                                                    |              |
| 1,1-Dichloropropene                   | QN                                         | 5.00        |                   |                                     | ٠       |                |          |                             |                 |                                                    |              |
| 1,2,3-Trichlorobenzene                | QN                                         | 5.00        |                   |                                     |         |                |          |                             |                 |                                                    |              |
| 1,2,3-Trichloropropane                | ON.                                        | 5.00        |                   |                                     |         |                |          |                             |                 | -                                                  |              |
| 1,2,4-Trichlorobenzene                | ON.                                        | 5.00        |                   |                                     |         |                |          |                             |                 |                                                    |              |
| 1,2,4-Trimethylbenzene                | 2                                          | 5.00        |                   |                                     | -       |                |          |                             |                 |                                                    |              |
| 1,2-Dibromo-3-Chioropropane           | ON.                                        | 5.00        |                   |                                     |         |                |          |                             |                 |                                                    |              |
| 1,2-Dibromoethane                     | QN                                         | 2.00        |                   |                                     |         |                |          |                             |                 |                                                    |              |
| 1,2-Dichlorobenzena                   | Q                                          | 5.00        |                   |                                     |         |                |          |                             |                 |                                                    |              |
| 1,2-Dichloroethane                    | QN                                         | 2.00        |                   |                                     |         |                | ٠        |                             |                 |                                                    |              |
| 1,2-Dichloropropane                   | QN                                         | 2.00        |                   |                                     |         |                |          |                             |                 |                                                    |              |
| 1,3,5-Trimethylbenzene                | Q                                          | 5.00        |                   |                                     |         |                |          |                             |                 |                                                    |              |
| 1,3-Dichlorobenzene                   | Q                                          | 5.00        |                   |                                     |         |                |          |                             |                 |                                                    |              |
| 1,3-Dichloropropane                   | Ñ                                          | 9.00        |                   |                                     |         |                |          |                             |                 |                                                    |              |
| 1,4-Dichlorobenzene                   | QN                                         | 5,00        |                   |                                     |         |                |          |                             |                 |                                                    |              |
| 2,2-Dichloropropane                   | QN                                         | 5.00        |                   |                                     |         |                |          |                             |                 |                                                    |              |
| 2-Butanone                            | ON                                         | 10.0        |                   |                                     |         |                | -        |                             |                 |                                                    |              |
| 2-Chloroethyl Vinyl Ether             | QN                                         | 5.00        |                   |                                     |         |                |          |                             |                 |                                                    |              |
| 2-Chlorotoluene                       | QN                                         | 5.00        |                   |                                     |         |                |          |                             |                 |                                                    |              |
| 2-Hexanone                            | QN                                         | 10.0        |                   |                                     |         |                |          |                             |                 |                                                    |              |
| 4-Chiorotoluene                       | <b>Q</b>                                   | 2.00        |                   |                                     |         |                |          |                             |                 |                                                    |              |
| 4-Isopropyltoluene                    | ON.                                        | 5.00        |                   |                                     |         |                |          |                             |                 |                                                    |              |
| 4-Methyt-2-Pentanone                  | S                                          | 5.00        |                   |                                     |         |                | ٠        |                             |                 |                                                    |              |
| Acetone                               | S                                          | 50.0        |                   |                                     |         |                |          |                             |                 |                                                    |              |
| Acrolein                              | QN                                         | 50.0        |                   |                                     |         |                |          |                             |                 |                                                    |              |
| Acrytonitrile                         | QN                                         | 50.0        |                   |                                     |         |                |          |                             |                 |                                                    |              |
| Qualifiers: BRL Below Reporting Limit | rting Limit                                |             | E Value a         | Value above quantitation range      | ge      |                | H Holdin | g times for pr              | reparation or a | Holding times for preparation or analysis exceeded | eq           |
| J Analyte detec                       | Analyte detected below quantitation limits |             | ND Not Det        | Not Detected at the Reporting Limit | g Limit |                | R RPD or | RPD outside recovery limits | ry limits       |                                                    |              |
| S Spike Recove                        | Spike Recovery outside recovery limits     |             |                   |                                     |         |                |          |                             |                 | , O                                                | Page A of 33 |

Analyte detected below quantitation limits Spike Recovery outside recovery limits

Fay, Spofford & Thorndike CLIENT:

0805025 Work Order: WM-046, I.4 Exp Project:

TestCode: 8260B\_w

|                                       | 7 - C                                       | - C - H           | 111             |                                       |           |                |           |                                                    |                      |                 |      |
|---------------------------------------|---------------------------------------------|-------------------|-----------------|---------------------------------------|-----------|----------------|-----------|----------------------------------------------------|----------------------|-----------------|------|
| Sample in: MB                         | Sampiype: MBLA                              | lesicode: 8200B_W | W_BUGS          | OURS: hg/L                            |           | Prep Date:     |           |                                                    | KunNo: 23612         | 612             |      |
| Client ID: ZZZZZ                      | Batch ID: R23612                            | TestNo:           | TestNo: SW8260B |                                       | Апа       | Analysis Date: | 5/8/2008  | æ                                                  | SeqNo: <b>232929</b> | 2929            |      |
| Analyte                               | Result                                      | PQL S             | SPK value       | SPK Ref Val                           | %REC Lo   | LowLimit Hi    | HighLimit | RPD Ref Val                                        | %RPD                 | RPDLimit        | Qual |
| Benzane                               | QN                                          | 5.00              |                 |                                       |           |                |           |                                                    |                      |                 |      |
| Bromobenzene                          | ON.                                         | 2.00              |                 |                                       |           |                |           |                                                    |                      |                 | •    |
| Bromochloromethane                    | ND                                          | 2.00              |                 |                                       |           | -              |           |                                                    |                      |                 |      |
| Bromodichloromethane                  | ON.                                         | 2.00              | -               | -                                     |           |                |           |                                                    |                      |                 |      |
| Bromoform                             | 9                                           | 2.00              |                 |                                       |           |                |           |                                                    |                      |                 |      |
| Bromomethane                          | QV.                                         | 2.00              |                 |                                       |           |                |           |                                                    |                      |                 |      |
| Carbon Disulfide                      | QN                                          | 5.00              |                 |                                       |           |                |           |                                                    |                      |                 |      |
| Carbon Tetrachloride                  | Q.                                          | 2.00              |                 |                                       |           |                |           |                                                    |                      |                 |      |
| Chlorobenzene                         | QN                                          | 5.00              |                 |                                       | ٠         |                |           |                                                    |                      |                 |      |
| Chloroethane                          | QN                                          | 5.00              |                 |                                       |           | ÷              |           |                                                    |                      |                 |      |
| Chloroform                            | QN                                          | 5.00              |                 |                                       |           |                |           |                                                    |                      |                 |      |
| Chloromethane                         | QN                                          | 5.00              |                 |                                       |           |                |           |                                                    |                      |                 |      |
| cis-1,2-Dichloroethene                | QN                                          | 5.00              |                 |                                       |           |                |           |                                                    |                      |                 |      |
| cis-1,3-Dichloropropene               | QN                                          | 0.500             |                 |                                       |           |                |           |                                                    |                      |                 |      |
| Dibromochloromethane                  | QV.                                         | 2.00              |                 |                                       |           |                |           |                                                    |                      |                 |      |
| Dibromomethane                        | Ð                                           | 5.00              |                 |                                       |           |                |           |                                                    |                      |                 |      |
| Dichlorodifluoromethane               | QN                                          | 5.00              |                 |                                       |           |                |           |                                                    |                      |                 |      |
| Ethylbenzene                          | ND                                          | 5.00              |                 |                                       |           |                |           |                                                    |                      |                 |      |
| Hexachlorobutadiene                   | 0.6700                                      | 0.500             |                 |                                       |           |                |           |                                                    |                      |                 |      |
| {sopropy!benzene                      | QN                                          | 5.00              |                 |                                       |           |                |           |                                                    |                      |                 |      |
| Methyl Tert-Butyl Ether               | QN                                          | 5.00              |                 |                                       |           | ÷              |           |                                                    |                      |                 |      |
| Methylene Chloride                    | QN                                          | 5.00              |                 |                                       |           |                |           |                                                    |                      |                 |      |
| Naphthalene                           | QN                                          | 20.0              |                 |                                       |           |                |           |                                                    |                      |                 |      |
| n-Butylbenzene                        | QN                                          | 5.00              |                 |                                       |           |                |           |                                                    |                      |                 |      |
| n-Propylbenzene                       | QN                                          | 5.00              |                 |                                       |           |                |           |                                                    |                      |                 |      |
| sec-Butylbenzene                      | ON                                          | 5.00              |                 |                                       |           |                |           |                                                    |                      |                 |      |
| Styrene                               | OZ.                                         | 5.00              |                 |                                       |           |                |           |                                                    |                      |                 |      |
| tert-Butylbenzene                     | QN                                          | 5.00              |                 |                                       |           |                |           |                                                    |                      |                 |      |
| Tetrachloroethene                     | QN                                          | 5.00              |                 |                                       |           |                |           |                                                    |                      |                 |      |
| Toluene                               | QN                                          | 5,00              |                 |                                       |           |                |           |                                                    |                      |                 |      |
| trans-1,2-Dichloroethene              | ΩN                                          | 5.00              |                 |                                       |           |                |           |                                                    |                      |                 |      |
| Oualifiers: BRL Below Reporting Limit | ding Linit                                  |                   | '               | Value above quantitation range        |           |                | H         | Holding times for preparation or analysis exceeded | reparation or ar     | nalvsis exceede | . Pa |
| _                                     | Analyte detected below on antitation limits | 2                 | _               | Not Detected at the Reporting Uniting | T innit   |                |           | PPD outeide recovery limits                        | Transfer             |                 | ?    |
| and of the contract of                |                                             | ÷<br>•            |                 | Secretary on an appropri              | #.d81111. |                |           | J D Cumatur I tectric                              | ay tauns             |                 |      |

Fay, Spofford & Thorndike CLIENT:

0805025 Work Order:

WM-046, 1.4 Exp Project:

| 1R w      |  |
|-----------|--|
| - 8260R   |  |
| TestCode: |  |
| -         |  |
|           |  |

| Sample ID: MB                          | SampType: MBLK                             | TestCode: 8260B_W | 8260B_W                                 | Units: µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | Prep Date:     | ່ ບໍ່        |                             | RunNo: 23612                                       |              |
|----------------------------------------|--------------------------------------------|-------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|--------------|-----------------------------|----------------------------------------------------|--------------|
| Client ID: ZZZZZ                       | Batch ID; R23612                           | TestNo:           | TestNo: SW8260B                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.      | Analysis Date: | e: 5/8/2008  |                             | SeqNo: 232929                                      |              |
| Analyte                                | Result                                     | Pal               | SPK value                               | SPK Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %REC    | LowLimit       | HighLimit R  | RPD Ref Val                 | %RPD RPDLimit                                      | Qual         |
| trans-1,3-Dichioropropene              | QN                                         | 0.500             |                                         | diddid a control of the control of t |         |                |              |                             |                                                    |              |
| Trichloroethene                        | QN .                                       | 5.00              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |              |                             |                                                    |              |
| Trichlorofluoromethane                 | QV                                         | 5.00              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |              |                             |                                                    |              |
| Vinyl Chloride                         | ON                                         | 2.00              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |              | ·                           |                                                    |              |
| Xylenes, Total                         | QN                                         | 5.00              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |              |                             |                                                    |              |
| Surr: 1,2-Dichloroethane-d4            | 33.99                                      | 0                 | 30                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 113     | 70             | 130          |                             |                                                    |              |
| Surr: 4-Bromofluorobenzene             | . 29.90                                    | ٥                 | 30                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.66    | 70             | 130          |                             |                                                    |              |
| Surr: Dibromofluoromethane             | 24.98                                      | 0                 | 30                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 83.3    | 70             | 130          |                             |                                                    |              |
| Surr: Toluene-d8                       | 28.48                                      | 0.                | 30                                      | . 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 94.9    | 70             | 130          |                             |                                                    |              |
| Sample ID: MB                          | SampType: MBLK                             | TestCode: 8260B_W | 8260B W                                 | Units: µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | Prep Date:     | e:           |                             | RunNo: 23706                                       |              |
| Client ID: ZZZZZ                       | Batch ID: R23706                           | TestNo:           | TestNo: SW8260B                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Analysis Date: | e: 5/14/2008 |                             | SeqNo: 233193                                      |              |
| Analyte                                | Result                                     | POL               | SPK value                               | SPK Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %REC    | LowLimit       | HighLimit    | RPD Ref Vai                 | %RPD RPDLimit                                      | Qual         |
| 1,1,1,2-Tetrachloroethane              | QN                                         | 5.00              | *************************************** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |              |                             |                                                    |              |
| 1,1,1-Trichloroethane                  | QN                                         | 5.00              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |              |                             | •                                                  |              |
| 1,1,2,2-Tetrachloroethane              | 9                                          | 2.00              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                | -            |                             |                                                    |              |
| 1,1,2-Trichloroethane                  | QN                                         | 5.00              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |              |                             |                                                    |              |
| 1,1-Dichloroethane                     | QN                                         | 5.00              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |              |                             |                                                    |              |
| 1,1-Dichloraethene                     | QV.                                        | 5.00              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |              |                             |                                                    |              |
| 1,1-Dichloropropene                    | QV                                         | 5.00              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |              |                             |                                                    | -            |
| 1,2,3-Trichlorobenzene                 | QV                                         | 5.00              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |              |                             |                                                    |              |
| 1,2,3-Trichloropropane                 | Q                                          | 5.00              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |              |                             |                                                    |              |
| 1,2,4-Trichlorobenzene                 | Q                                          | 5.00              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |              |                             |                                                    |              |
| 1,2,4-Trimethylbenzene                 | ON                                         | 5.00              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |              |                             |                                                    |              |
| 1,2-Dibromo-3-Chloropropane            | QV                                         | 5.00              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |              |                             |                                                    |              |
| 1,2-Dibromoethane                      | QN                                         | 2.00              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |              |                             |                                                    |              |
| 1,2-Dichlorobenzene                    | Q.                                         | 5.00              |                                         | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                |              |                             |                                                    |              |
| 1,2-Dichloroethane                     | CN                                         | 2.00              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |              |                             |                                                    |              |
| 1,2-Dichloropropane                    | QN                                         | 2.00              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |              |                             |                                                    |              |
| Onalifiers: BRI, Below Reporting Limit | ting Limit                                 |                   | E Value                                 | Value above quantitation range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )ge     |                | н но         | Iding times for p           | Holding times for preparation or analysis exceeded | ded          |
|                                        | Analyte detected below quantitation limits |                   | _                                       | Not Detected at the Reporting Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g Limit |                | R R          | RPD outside recovery limits | ery limits                                         |              |
| S Spike Recove                         | Spike Recovery outside recovery limits     |                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |              |                             | Ĭ                                                  | Page 6 of 33 |

Page 7 of 33

| •                  |      |
|--------------------|------|
| VULLATION STIMMADO |      |
|                    | こうつく |
|                    |      |
| ANAIVTI            |      |
|                    |      |

TestCode: 8260B\_w

| 1.4 Exp  |
|----------|
| WM-046,  |
| Project: |

Fay, Spofford & Thorndike

0805025

Work Order:

CLIENT:

|                           | The second secon |        |                   |             |      |                    |               |             |               |          |      |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------|-------------|------|--------------------|---------------|-------------|---------------|----------|------|
| Sample ID: MB             | SampType: MBLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TestCo | TestCode; 8260B_W | Units: µg/L |      | Prep Date:         | je.           |             | RunNo: 23706  | 90       |      |
| Citent ID: ZZZZ           | Batch ID: R23706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Test   | TestNo: SW8260B   |             | ∢    | Analysis Date:     | ie: 5/14/2008 | 90          | SeqNo: 233193 | 193      |      |
| Analyte                   | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PQL    | SPK value         | SPK Ref Val | %REC | LowLimit HighLimit | HighLimit     | RPD Ref Val | %RPD          | RPDLimit | Qual |
| 1,3,5-Trimethylbenzene    | QN ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.00   |                   |             |      |                    |               |             |               |          |      |
| 1,3-Dichlorobenzene       | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.00   |                   |             |      |                    |               |             |               |          |      |
| 1,3-Dichloropropane       | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.00   |                   |             |      |                    |               |             |               |          |      |
| 1,4-Dichlorobenzene       | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5,00   |                   |             |      |                    |               |             |               |          |      |
| 2,2-Dichloropropane       | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5,00   |                   |             |      |                    |               |             |               |          |      |
| 2-Butanone                | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.0   |                   |             |      |                    |               |             |               |          |      |
| 2-Chloroethyl Vinyl Elher | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.00   |                   |             |      |                    |               |             |               |          |      |
| 2-Chlorotoluene           | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.00   |                   |             |      |                    |               |             |               |          |      |
| 2-Hexanone                | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.0   |                   |             |      |                    |               |             |               |          |      |
| 4-Chlorotoluene           | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.00   |                   |             |      |                    |               |             |               |          |      |
| 4-tsopropyltoluene        | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.00   |                   |             |      |                    |               |             |               |          |      |
| 4-Methyl-2-Pentanone      | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.00   |                   |             |      |                    | ,             |             |               |          |      |
| Acetone                   | QN .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50.0   |                   |             |      |                    |               |             |               |          |      |
| Acrolein                  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50.0   |                   |             |      |                    |               |             |               |          |      |
| Acrylonitrile             | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50.0   |                   |             |      |                    |               |             |               | -        |      |
| Benzene                   | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.00   |                   |             |      |                    |               |             |               |          |      |
| Bromobenzene              | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.00   | ,                 |             |      |                    |               |             |               |          |      |
| Bromochloromethane        | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.00   |                   |             |      |                    |               |             |               |          |      |
| Bromodichloromethane      | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.00   |                   |             |      |                    |               |             |               |          |      |
| Bromoform                 | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.00   |                   |             |      |                    |               |             |               |          |      |
| Вгототефале               | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.00   |                   |             |      |                    |               |             |               |          |      |
| Carbon Disulfide          | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.00   |                   |             |      |                    |               |             |               |          |      |
| Carbon Tetrachloride      | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.00   | •                 |             |      |                    |               |             |               |          |      |
| Chlorobenzene             | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.00   |                   |             |      |                    |               |             |               |          |      |
| Chloroethane              | QN .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.00   |                   |             |      |                    |               | •           |               | •        |      |
| Chloroform                | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.00   |                   |             |      |                    |               |             |               |          |      |
| Chloromethane             | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.00   |                   |             |      |                    |               |             |               |          |      |
| cis-1,2-Dichloroethene    | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.00   |                   |             |      |                    |               |             |               |          |      |
| cis-1,3-Dichloropropene   | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.500  |                   |             |      |                    |               |             |               |          |      |
| Dibromochloromethane      | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.00   |                   |             | ÷    |                    |               |             |               |          |      |

| T 2220                                               |                                        |       | covery fimits      | Spike Recovery outside recovery limits       |
|------------------------------------------------------|----------------------------------------|-------|--------------------|----------------------------------------------|
| R RPD outside recovery fimits                        | ND Not Detected at the Reporting Limit | ND    | iantitation limits | J Analyte detected below quantitation limits |
| H Holding times for preparation or analysis exceeded | B Value above quantitation range       | Œ     |                    |                                              |
|                                                      |                                        | 5.00  | QN                 | Dibromomethane                               |
|                                                      |                                        | 2.00  | S                  | Dibromochloromethane                         |
|                                                      |                                        | 0.500 | S                  | cis-1,3-Dichloropropene                      |
|                                                      |                                        | 5.00  | QN                 | cis-1,2-Dichloroethene                       |
|                                                      |                                        | 5.00  | QN                 | Chloromethane                                |
|                                                      |                                        | 5.00  | Q                  | Chloroform                                   |
|                                                      |                                        | 5.00  | QN .               | Chloroethane                                 |
|                                                      |                                        | 5.00  | QN                 | Chlorobenzene                                |
|                                                      |                                        | 2.00  | Q                  | Carbon Tefrachloride                         |
|                                                      |                                        | 5.00  | Q                  | Carbon Disulfide                             |
|                                                      |                                        | 2.00  | QN                 | Bromomethane                                 |
|                                                      |                                        |       | i                  |                                              |

Page 8 of 33

H Holding times for preparation or analysis exceeded R RPD outside recovery limits

Qual

%RPD RPDLimit

%REC LowLimit HighLimit RPD Ref Val

130

70

108

| !   |               |
|-----|---------------|
|     | ¥             |
|     | $\supset$     |
| 1   | Ξ,            |
| Ì   | Y             |
| ď   | Y             |
|     | $\overline{}$ |
| þ   | ~             |
| - 6 | ¥             |
| •   | ◂             |
| ì   | ↸             |
| -   | ≘             |
| ,   | <u> </u>      |
|     |               |
| ζ   |               |
| 7   |               |
|     | $\asymp$      |
|     |               |
| (   | _             |
| (   | _             |
| ,   | 7             |
|     |               |
| (   | ICAL (        |
|     |               |
|     | YIICAL (      |
|     | LYTICAL       |
|     | ALYTICAL (    |
|     | VALYTICAL (   |
|     | NALYTICAL     |
|     | LYTICAL       |
|     | ANALYTICAL    |
|     | ANALYTICAL    |
|     | ANALYTICAL    |
|     | ANALYTICAL    |

TestCode: 8260B\_w

WM-046, 1.4 Exp **Project**:

Fay, Spofford & Thorndike

0805025

Work Order: CLIENT:

| tple ID: MB  | SampType; MBLK   | TestCode: 8260B_W         | Units: µg/L |      | Prep Date:               |                                     | RunNo: 23706  |
|--------------|------------------|---------------------------|-------------|------|--------------------------|-------------------------------------|---------------|
| nt ID: ZZZZZ | Batch ID: R23706 | TestNo: <b>SW8260B</b>    |             | *    | Analysis Date: 5/14/2008 | 4/2008                              | SeqNo: 233193 |
| lyte         | Result           | PQL SPK value SPK Ref Val | SPK Ref Val | %REC | LowLimit HighLi          | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLim   |
|              |                  |                           |             |      |                          |                                     |               |

| Sample ID: MB               | SampType: MBLK   | TestCoc | TestCode: 8260B_W | Units: µg/L |      | Prep Date:              |              |             | RunNo: 23706                            | 90       |      |
|-----------------------------|------------------|---------|-------------------|-------------|------|-------------------------|--------------|-------------|-----------------------------------------|----------|------|
| Client ID: ZZZZ             | Batch ID: R23706 | Testh   | estNo: SW8260B    |             | •    | Analysis Date:          | 5/14/2008    |             | SeqNo: 233193                           | 193      |      |
| Analyte                     | Result           | PQL     | SPK value         | SPK Ref Vai | %REC | LowLimit                | HighLimit RF | RPD Ref Val | %RPD                                    | RPDLimit | Qual |
| Dichlorodifluoromethane     | QN               | 5.00    |                   |             |      |                         |              |             |                                         |          |      |
| Ethylbenzene                | ON N             | 5.00    |                   |             |      |                         |              |             |                                         |          |      |
| Hexachlorobutadiene         | QV               | 0.500   |                   |             |      |                         |              |             |                                         |          |      |
| Isopropylbenzene            | QN               | 5.00    |                   |             |      |                         |              |             |                                         |          |      |
| Methyl Tert-Butyl Ether     | QN               | 5.00    |                   |             |      |                         |              |             |                                         |          |      |
| Methylene Chloride          | QN               | 5.00    |                   |             |      |                         |              |             |                                         |          |      |
| Naphthalene                 | Q                | 20.0    |                   |             |      |                         |              |             |                                         |          |      |
| n-Butylbenzene              | QN               | 5.00    |                   |             | •    |                         |              |             |                                         |          |      |
| n-Propylbenzene             | QN               | 5.00    |                   |             |      |                         |              |             |                                         |          |      |
| sec-Butylbenzene            | QN               | 5.00    |                   |             |      |                         |              |             |                                         |          |      |
| Styrene                     | QN               | 5.00    |                   |             |      |                         |              |             |                                         |          |      |
| tert-Butylbenzene           | QN               | 5,00    |                   |             |      |                         |              |             |                                         |          |      |
| Tetrachloroethene           | QN               | 5.00    |                   |             |      |                         |              |             |                                         |          |      |
| Toluene                     | CIN              | 5.00    |                   |             |      |                         |              |             |                                         |          |      |
| trans-1,2-Dichloroethene    | Ð                | 5.00    |                   |             |      |                         |              |             | •                                       |          |      |
| trans-1,3-Dichloropropene   | QN               | 0.500   |                   |             |      |                         |              |             |                                         |          |      |
| Trichloroethene             | ON               | 5.00    |                   |             |      |                         |              |             |                                         |          |      |
| Trichlorofluoromethane      | ON               | 5.00    |                   |             |      |                         |              |             |                                         | -        |      |
| Vinyl Chloride              | QN               | 2.00    |                   |             |      |                         |              |             |                                         |          |      |
| Xylenes, Total              | QN ·             | 5.00    |                   |             |      |                         |              |             |                                         |          |      |
| Surr: 1,2-Dichloroethane-d4 | 26.45            | 0       | 30                | 0           | 88.2 | 70                      | 130          |             |                                         |          |      |
| Surr: 4-Bromofluorobenzene  | 24.75            | 0       | 30                | 0           | 82.5 | 20                      | 130          |             |                                         |          |      |
| Surr: Dibromofluoromethane  | 33.39            | 0       | 30                | 0           | ##   | 20                      | 130          |             |                                         |          |      |
| Surr: Toluene-d8            | 30.02            | 0       | 30                | 0           | 100  | 70                      | 130          |             | *************************************** |          |      |
| Sample ID: LCS              | SampType: LCS    | TestCor | TestCode: 8260B_w | Units: µg/L |      | Prep Date:              |              |             | RunNo: 23612                            | 112      |      |
| Client ID: ZZZZZ            | Batch ID: R23612 | Test    | TestNo: SW8260B   |             | `    | Analysis Date: 5/8/2008 | 5/8/2008     |             | SeqNo: 232927                           | 927      |      |
|                             |                  |         |                   |             |      |                         |              |             |                                         |          |      |

| Analyte                   |         |                                                                        | Result            | Pal                     | SPK value | PQL SPK value SPK Ref Val                            |
|---------------------------|---------|------------------------------------------------------------------------|-------------------|-------------------------|-----------|------------------------------------------------------|
| 1,1,1,2-Tetrachloroethane | chloroe | thane                                                                  | 53.76             | 5.00                    | 50        | 0                                                    |
| Qualifiers:               | BRL     | BRL Below Reporting Limit J Analyte detected below quantitation limits | natitation limits | - Parket and the second | E Value   | E Value above quantitatio ND Not Detected at the Rep |

S pike Recovery outside recovery limits

S Spike Recovery outside recovery limits

Fay,Spofford & Thorndike 0805025 CLIENT:

Work Order:

WM-046, 1.4 Exp

Project:

Took

| ż         |   |
|-----------|---|
| ST0078    | • |
| est Code: |   |
| Les       |   |

| Sample ID: LCS                        | SampType: LCS                             | TestCo | TestCode: 8260B_w | Units: µg/L                         |           | Prep Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ōi          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RunNo: 23612                                       |          |
|---------------------------------------|-------------------------------------------|--------|-------------------|-------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------|
| Client ID: ZZZZZ                      | Batch ID: R23612                          | Test   | TestNo: SW8260B   |                                     |           | Analysis Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e: 5/8/2008 | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SeqNo: 232927                                      |          |
| Analyte                               | Result                                    | Pal    | SPK value         | SPK Ref Val                         | %REC      | LowLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HighLimit   | RPD Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %RPD RPDLimit                                      | mit Qual |
| 1,1,1-Trichloroethane                 | 51.40                                     | 5.00   | 50                | 0                                   | 103       | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         | Address of the second s |                                                    |          |
| 1,1,2,2-Tetrachloroethane             | 49.87                                     | 2.00   | 50                | 0                                   | 99.7      | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |
| 1,1,2-Trichloroethane                 | 56.74                                     | 5.00   | 20                | 0                                   | 113       | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |
| 1,1-Dichloroethane                    | 99'29                                     | 5.00   | 90                | 0                                   | 115       | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |
| 1,1-Dichloroethene                    | 62.50                                     | 5.00   | 50                | 0                                   | 125       | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |
| 1,1-Dichloropropene                   | 51.00                                     | 5.00   | 50                | 0                                   | 102       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |
| 1,2,3-Trichlorobenzene                | 36.89                                     | 5.00   | 50                | 0                                   | 73.8      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |
| 1,2,3-Trichloropropane                | 54.62                                     | 5.00   | . 50              | 0                                   | 109       | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |
| 1,2,4-Trichlorobenzene                | 34.62                                     | 5.00   | 50                | 0                                   | 69.2      | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | S        |
| 1,2,4-Trimethylbenzene                | 49.52                                     | 5.00   | 20                | 0                                   | 0.66      | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |
| 1,2-Dibromo-3-Chloropropane           | 52.54                                     | 5.00   | 50                | 0                                   | 105       | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |
| 1,2-Dibromoethane                     | 55.11                                     | 2.00   | 50                | 0                                   | 110       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |
| 1,2-Dichlorobenzene                   | 43.06                                     | 5.00   | 50                | 0                                   | 86.1      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |
| 1,2-Dichloroethane                    | 61.91                                     | 2.00   | 50                | 0                                   | 124       | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |
| 1,2-Dichloropropane                   | 48.76                                     | 2,00   | 50                | 0                                   | 97.5      | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |
| 1,3,5-Trimethylbenzene                | 48.58                                     | 5.00   | 50                | 0                                   | 97.2      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |
| 1,3-Dichlorobenzene                   | 40.75                                     | 5.00   | 50                | 0                                   | 81.5      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |
| 1,3-Dichloropropane                   | 57.70                                     | 5.00   | 50                | 0                                   | 115       | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |
| 1,4-Dichlorobenzene                   | 43.15                                     | 5.00   | 20                | 0                                   | 86.3      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |
| 2,2-Dichloropropane                   | 54.28                                     | 2.00   | 20                | 0                                   | 109       | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |
| 2-Butanone                            | 54.42                                     | 10.0   | 50                | 0                                   | 109       | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |
| 2-Chloroethyl Vinyl Ether             | 52.09                                     | 5.00   | 50                | 0                                   | 104       | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |          |
| 2-Chlorotoluene                       | 43.30                                     | 5.00   | 50                | 0                                   | 9.98      | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |
| 2-Hexanone                            | 46.57                                     | 10.0   | 50                | 0                                   | 93.1      | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |
| 4-Chlorotoluene                       | 46.38                                     | 5.00   | 50                | 0                                   | 92.8      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |
| 4-isopropyitoluene                    | 48.22                                     | 5.00   | 20                | 0                                   | 96.4      | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |
| 4-Methyl-2-Pentanone                  | 54.80                                     | 5.00   | 50                | 0                                   | 110       | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |
| Acetone                               | 27.68                                     | 50.0   | 50                | 0                                   | 115       | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |
| Acrylonitrile                         | 111.5                                     | 50.0   | 100               | 0                                   | 112       | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |
| Вепzепе                               | 55.53                                     | 5.00   | 20                | 0                                   | <u>*-</u> | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |
| Bromabenzene                          | 42.04                                     | 5.00   | 20                | 0                                   | 84.1      | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |
| Ouglifiers: BRL Below Reporting Limit | ting Limit                                |        | E Value a         | Value above quantitation range      | 986       | The second secon | H H         | Colding times for r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Holding times for preparation or analysis excended | cended   |
| -                                     | Analyse detected halow manifestion limits |        | _                 | Not Detected at the Depocitive Unit | o I imit  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | OD outside second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Apparation of analysis to                          | ייייייי  |
| values or Cardell C                   | otes between quantum                      |        |                   | CORN at the responsi                | E Casana  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | N. D. Outstue tecovery timits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ay immis                                           |          |

Spike Recovery outside recovery limits

CLIENT: Fay, Spofford & Thorndike

Work Order: 0805025

Project: WM-046, 1.4 Exp

TestCode: 8260B\_w

ANALYTICAL QC SUMMARY REPORT

| Control Cont   | Sample ID: LCS            | SampType: LCS                 | TestCode    | TestCode: 8260B_w | Units; µg/L            |          | Prep Date:  | 33, | RunNo: 23612              |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------|-------------|-------------------|------------------------|----------|-------------|-----|---------------------------|----------|
| Result         POL         SPK value         SPK Ref Val         SMR PC         Low, finit         Hight limit         RPD Ref Val         SMR PD         Total Table         PM PD Ref Val         SMR PD Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | Batch ID: R23612              | Test        | 40: SW8260B       |                        |          | Analysis Da |     | SeqNo: 232927             |          |
| 63.65 2.00 50 68.0 77 130  44.02 2.00 50 0 88.7 70 130  45.74 2.00 50 0 177 70 130  41.43 2.00 50 0 142 70 130  52.70 2.00 50 0 102 70 130  47.52 5.00 50 0 147 70 130  56.31 5.00 50 0 147 70 130  56.31 5.00 50 0 141 70 130  56.31 5.00 50 0 141 70 130  56.31 5.00 50 0 141 70 130  56.31 5.00 50 0 141 70 130  56.31 5.00 50 0 141 70 130  56.41 5.00 50 0 141 70 130  56.42 50 0 50 0 142 70 130  64.39 5.00 50 0 140 70 130  41.62 5.00 50 0 140 70 130  41.62 5.00 50 0 140 70 130  41.62 5.00 50 0 141 70 130  65.83 5.00 50 0 141 70 130  41.62 5.00 50 0 141 70 130  65.83 5.00 50 0 140 70 130  41.62 5.00 50 0 141 70 130  66.33 5.00 50 0 141 70 130  41.62 5.00 50 0 141 70 70 130  68.39 5.00 50 0 141 70 70 130  68.39 5.00 50 0 141 70 70 130  68.39 5.00 50 0 141 70 70 130  68.30 5.00 50 0 141 70 70 130  68.31 5.00 50 0 141 70 70 130  68.32 70 130  68.33 5.00 50 0 141 70 70 130  68.33 5.00 50 0 141 70 70 130  68.33 5.00 50 0 141 70 70 130  68.33 5.00 50 0 141 70 70 130  68.33 5.00 50 0 141 70 70 130  68.33 5.00 50 0 141 70 70 130  68.32 70 130  68.33 5.00 50 0 141 70 70 130  68.32 70 130  68.33 5.00 50 0 141 70 70 130  68.33 5.00 50 0 141 70 70 130  68.34 5.00 50 0 141 70 70 130  68.35 5.00 50 0 141 70 70 130  68.37 5.00 50 0 141 70 70 130  68.38 5.00 50 0 141 70 70 130  68.39 5.00 50 0 141 70 70 130  68.30 5.00 6 50 0 141 70 70 130  68.31 5.00 50 0 141 70 70 130  68.32 70 130  68.33 5.00 50 0 141 70 70 130  68.34 5.00 50 0 141 70 70 130  68.35 5.00 50 0 141 70 70 130  68.35 5.00 50 0 141 70 70 130  68.35 5.00 50 0 141 70 70 130  68.35 5.00 50 0 141 70 70 130  68.35 5.00 50 0 141 70 70 130  68.35 5.00 50 0 141 70 70 130  69.31 5.00 50 0 141 70 70 130  69.31 5.00 50 0 141 70 70 130  69.31 5.00 50 0 141 70 70 130  69.31 5.00 50 0 141 70 70 130  69.31 70 70 70 70 70 70 70 70 70 70 70 70 70                                                                                                                                                                                                                                                       | Analyte                   | Result                        | POL         | SPK value         | SPK Ref Val            | %REC     | LowLimit    |     |                           |          |
| 63.65 2.00 6.0 127 70 130  45.74 2.00 50 60 147 70 140  444.33 2.00 50 0 1402 70 140  54.06 5.00 50 0 1402 70 140  47.52 5.00 50 0 1402 70 140  47.52 5.00 50 0 140 147 70 140  56.31 5.00 50 0 141 70 140  56.31 5.00 50 0 141 70 140  56.31 5.00 50 0 141 70 140  56.32 50 0 50 0 141 70 140  56.34 5.00 50 0 141 70 140  56.35 50 0 50 0 141 70 140  56.35 50 0 50 0 141 70 140  56.36 50 0 50 0 141 70 140  56.37 5.00 50 0 140 141 70 140  56.38 50 0 50 0 141 70 140  56.39 5.00 50 0 140 70 140  56.31 5.00 50 0 140 70 140  41.32 5.00 50 0 140 70 140  56.31 5.00 50 0 140 70 140  41.62 5.00 50 0 140 70 140  56.31 5.00 50 0 140 70 140  56.31 5.00 50 0 140 70 140  56.31 5.00 50 0 140 70 140  56.31 5.00 50 0 140 70 140  56.31 5.00 50 0 140 70 140  56.31 5.00 50 0 140 70 140  56.31 5.00 50 0 140 70 140  56.31 5.00 50 0 140 70 140  56.31 5.00 50 0 140 70 140  56.31 5.00 50 0 140 70 140  56.31 5.00 50 0 140 70 140  56.31 5.00 50 0 140 70 140  56.31 5.00 50 0 140 70 140  56.32 5.00 50 0 140 70 140  56.33 5.00 50 0 140 70 140  56.34 5.00 50 0 140 70 140  56.35 5.00 50 0 140 70 140  56.35 5.00 50 0 140 70 140  56.31 5.00 50 0 140 70 140  56.31 5.00 50 0 140 70 140  56.32 5.00 50 0 140 70 140  56.33 5.00 50 0 140 70 140  56.34 5.00 50 0 140 70 140  56.34 5.00 50 0 140 70 140  56.34 5.00 50 0 140 70 140  56.35 5.00 50 0 140 70 140  56.35 5.00 50 0 140 70 140  56.35 5.00 50 0 140 70 140  56.35 5.00 50 0 140 70 140  56.35 5.00 50 0 140 70 140  56.35 5.00 50 0 140 70 140  56.35 5.00 50 0 140 70 140  56.35 5.00 50 0 140 70 140  56.35 5.00 50 0 140 70 140  56.35 5.00 50 0 140 70 140  56.35 5.00 50 0 140 70 140  56.35 5.00 50 0 140 70 140  56.35 5.00 50 0 140 70 140  56.35 5.00 50 0 140 70 140  56.35 5.00 50 0 140 70 140  56.35 5.00 50 0 140 70 140  56.35 5.00 50 0 140 70 140  56.35 5.00 50 0 140 70 140  56.35 5.00 50 0 140 70 140  56.35 5.00 50 0 140 70 140  56.35 5.00 50 0 140 70 140  56.35 5.00 50 0 140 70 140  56.35 5.00 50 0 140 70 140  56.35 5.00 50 0 140 70 140  56.35 5.00 50 0 140 70 140  56.35 5.00 50 0 140 70 140  56.35 5.00 50 0 14 | Bromochloromethane        | 44.02                         | 2.00        | 50                | 0                      | 88.0     | 70          | 130 |                           |          |
| 44.33 2.00 5.0 6.0 91.5 70 130 44.33 2.00 5.0 0 88.7 70 130 52.70 5.00 5.0 0 105 70 130 47.52 5.00 5.0 0 0 95.3 70 130 47.52 5.00 5.0 0 0 95.3 70 130 58.67 5.00 5.0 0 0 95.3 70 130 58.67 5.00 5.00 0 0 117 70 130 55.82 5.00 5.00 5.0 0 113 70 130 55.82 5.00 5.00 5.0 0 113 70 130 56.57 5.00 5.00 5.0 0 113 70 130 56.43 5.00 5.00 5.0 0 114 70 130 56.43 5.00 5.00 5.0 0 1414 70 130 56.89 5.00 5.0 0 1414 70 130 56.89 5.00 5.0 0 1414 70 130 56.89 5.00 5.0 0 1414 70 130 56.31 5.00 5.0 5.0 0 1414 70 130 56.31 5.00 5.0 5.0 0 1414 70 130 56.32 5.00 5.0 5.0 0 1414 70 130 56.33 5.00 5.0 5.0 0 1414 70 130 56.34 5.00 5.0 5.0 0 1417 70 130 56.35 5.00 5.0 5.0 0 1417 70 130 56.31 5.00 5.0 5.0 0 1417 70 130 56.32 5.00 5.0 5.0 0 1417 70 130 56.33 5.00 5.0 5.0 0 1417 70 130 56.34 5.00 5.0 5.0 0 1417 70 130 56.35 5.00 5.0 5.0 0 1417 70 130 56.35 5.00 5.0 5.0 0 1417 70 130 56.35 5.00 5.00 5.0 0 1417 70 130 56.35 5.00 5.00 5.0 0 1417 70 130 56.35 5.00 5.00 5.0 0 1417 70 130 56.35 5.00 5.00 5.00 6.0 0 1417 70 130 56.35 5.00 5.00 5.00 6.0 0 1417 70 130 56.35 5.00 5.00 5.00 6.0 0 1417 70 130 56.35 5.00 5.00 6.0 0 1417 70 130 56.35 5.00 5.00 6.0 0 1417 70 130 56.35 5.00 5.00 6.0 0 1417 70 130 56.35 5.00 5.00 6.0 0 1417 70 130 56.35 5.00 5.00 6.0 0 1417 70 130 56.35 5.00 5.00 6.0 0 1417 70 130 56.35 5.00 5.00 6.0 0 1417 70 130 56.35 5.00 5.00 6.0 0 1417 70 130 56.35 5.00 5.00 6.0 0 1417 70 130 56.35 5.00 5.00 6.0 0 1417 70 130 56.35 5.00 5.00 6.0 0 1417 70 130 56.35 5.00 5.00 6.0 0 1417 70 130 56.35 5.00 6.0 0 1417 70 130 56.35 5.00 6.0 0 1417 70 130 56.35 5.00 6.0 0 1417 70 130 56.35 5.00 6.0 0 1417 70 130 56.35 5.00 6.0 0 1417 70 130 56.35 5.00 6.0 0 1417 70 130 56.35 5.00 6.0 0 1417 70 130 56.35 5.00 6.0 0 1417 70 130 56.35 5.00 6.0 0 1417 70 130 56.35 5.00 6.0 0 1417 70 130 56.35 5.00 6.0 0 1417 70 130 56.35 5.00 6.0 0 1417 70 130 56.35 5.00 6.0 0 1417 70 1418 56.35 5.00 6.0 0 1417 70 1418 56.35 5.00 6.0 0 1417 70 1418 56.35 5.00 6.0 0 1417 70 1418 56.35 5.00 6.0 0 1417 70 1418 56.35 5.00 6.0 0 1418 70 1418 56.35 5.00 6.0 0 1418 70 1418  | Bromodichloromethane      | 63.65                         | 2.00        | 50                | 0                      | 127      | 70          | 130 |                           |          |
| 44.33 2.00 50 88.7 70 130  51.06 5.00 50 0 102 70 130  47.52 5.00 50 0 0 95.0 70 130  47.53 5.00 50 0 0 95.0 70 130  58.57 5.00 50 50 0 95.0 70 130  58.51 5.00 50 50 0 111 70 130  58.52 5.00 50 50 0 111 70 130  58.54 5.00 50 50 0 111 70 70 130  58.54 5.00 50 50 0 111 70 70 130  58.54 5.00 50 50 0 112 70 130  58.53 50 50 50 50 0 112 70 130  47.73 5.00 50 50 0 112 70 130  58.53 50 50 50 50 0 112 70 130  58.54 50 50 50 0 114 70 70 130  58.55 50 50 50 50 0 112 70 130  47.74 5.00 50 50 0 114 70 70 130  58.53 5.00 50 50 0 114 70 70 130  47.75 5.00 50 50 0 114 70 70 130  47.77 5.00 50 50 0 114 70 70 130  58.53 50 50 50 50 0 114 70 70 130  48.54 50 50 50 50 0 114 70 70 130  48.55 50 50 50 50 0 114 70 70 130  58.39 5.00 50 50 0 114 70 70 130  58.39 5.00 50 50 0 117 70 70 130  58.39 5.00 50 50 0 117 70 70 130  58.39 5.00 50 50 0 117 70 70 130  58.39 5.00 50 50 0 117 70 70 130  58.39 5.00 50 50 0 117 70 70 130  58.39 5.00 50 50 0 117 70 70 130  58.39 5.00 50 50 0 117 70 70 130  58.39 5.00 50 50 0 117 70 70 130  58.39 5.00 50 50 0 117 70 70 130  58.39 5.00 50 50 0 117 70 70 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bromoform                 | 45.74                         | 2.00        | 50                | 0                      | 91.5     | 70          | 130 |                           |          |
| 51.06         5.00         5.0         102         7.0         130           52.70         2.00         5.0         0         105         7.0         130           47.63         5.00         5.0         0         96.3         7.0         130           58.71         5.00         5.0         0         96.3         7.0         130           56.31         5.00         5.0         0         117         7.0         130           56.31         5.00         5.0         0         113         7.0         130           56.27         0.500         5.0         0         113         7.0         130           56.27         0.500         5.0         0         113         7.0         130           56.27         0.500         5.0         0         112         7.0         130           56.27         0.500         5.0         0         101         7.0         130           56.27         0.500         5.0         0         102         7.0         130           56.27         0.500         5.0         0         102         7.0         130           56.29         0.500 </td <td>Bromomethane</td> <td>44,33</td> <td>2.00</td> <td>20</td> <td>0</td> <td>88.7</td> <td>70</td> <td>130</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bromomethane              | 44,33                         | 2.00        | 20                | 0                      | 88.7     | 70          | 130 |                           |          |
| 52.70         2.00         50         105         70         130           47.63         5.00         5.0         0         95.3         70         130           47.63         5.00         5.0         0         95.0         70         130           58.67         5.00         5.0         0         95.0         70         130           56.31         5.00         5.0         0         117         70         130           56.34         5.00         5.0         0         113         70         130           56.37         2.00         5.0         0         114         70         130           56.87         6.0         5.0         0         113         70         130           56.87         6.0         5.0         0         112         70         130           56.89         5.00         5.0         0         112         70         130           56.89         5.00         5.0         0         114         70         130           56.89         5.00         5.0         0         114         70         130           56.89         5.00         5.0 </td <td>Carbon Disulfide</td> <td>. 90.15</td> <td>5.00</td> <td>50</td> <td>0</td> <td>102</td> <td>70</td> <td>130</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Carbon Disulfide          | . 90.15                       | 5.00        | 50                | 0                      | 102      | 70          | 130 |                           |          |
| 47.63 5.00 5.0 0 95.3 70 130  47.52 5.00 5.0 0 95.0 70 130  58.67 5.00 5.0 0 96.0 70 141  47.04 5.00 5.00 0 0 1417 70 130  56.51 5.00 5.00 0 0 1414 70 130  56.52 5.00 5.0 0 0 1414 70 130  55.82 5.00 5.0 0 0 1414 70 130  47.64 5.00 5.00 5.0 0 1412 70 130  56.89 5.00 5.00 5.0 0 1414 70 130  47.64 5.00 5.00 5.0 0 1414 70 130  46.29 5.00 5.0 0 95.3 70 130  46.29 5.00 5.0 0 95.3 70 130  46.29 5.00 5.0 0 95.3 70 130  46.29 5.00 5.0 0 95.3 70 130  46.29 5.00 5.0 5.0 0 95.3 70 130  46.29 5.00 5.0 5.0 0 95.3 70 130  46.29 5.00 5.0 5.0 0 95.3 70 130  46.29 5.00 5.0 5.0 0 95.3 70 130  46.29 5.00 5.0 5.0 0 95.3 70 130  46.29 5.00 5.0 5.0 0 95.3 70 130  46.29 5.00 5.0 5.0 0 95.3 70 130  46.28 5.0 5.0 5.0 0 95.3 70 130  46.28 5.0 5.0 5.0 5.0 0 95.3 70 130  46.58 5.0 5.0 5.0 5.0 0 95.3 70 130  46.58 5.0 5.0 5.0 5.0 0 95.3 70 130  46.58 5.0 5.0 5.0 5.0 0 95.3 70 130  46.58 5.0 5.0 5.0 5.0 0 95.3 70 130  46.58 5.0 5.0 5.0 5.0 0 95.3 70 130  46.58 5.0 5.0 5.0 5.0 0 95.3 70 130  46.58 5.0 5.0 5.0 5.0 0 95.3 70 130  46.58 5.0 5.0 5.0 5.0 0 95.3 70 130  46.58 5.0 5.0 5.0 5.0 0 95.3 70 130  46.58 5.0 5.0 5.0 5.0 0 95.3 70 130  46.58 5.0 5.0 5.0 5.0 0 95.3 70 130  46.58 5.0 5.0 5.0 5.0 0 95.3 70 130  46.58 5.0 5.0 5.0 5.0 0 95.3 70 130  46.58 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Carbon Tetrachioride      | 52.70                         | 2.00        | 50                | 0                      | 105      | 70          | 130 |                           |          |
| 47.52         5.00         50         95.0         70         130           58.67         5.00         50         0         117         70         130           40.15         5.00         5.00         0         113         70         130           56.31         5.00         5.00         0         114         70         130           56.57         2.00         50         0         114         70         130           55.82         5.00         50         114         70         130           55.82         5.00         50         112         70         130           55.82         5.00         50         112         70         130           55.82         5.00         50         101         70         130           43.73         0.500         50         0         117         70         130           44.64         5.00         50         0         141         70         130           56.89         5.00         50         0         174         70         130           56.89         5.00         50         0         174         70         130 <td>Chlarobenzene</td> <td>47.63</td> <td>5.00</td> <td>50</td> <td>0</td> <td>95.3</td> <td>70</td> <td>130</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chlarobenzene             | 47.63                         | 5.00        | 50                | 0                      | 95.3     | 70          | 130 |                           |          |
| 58.67         5.00         50         117         70         130           40.15         5.00         50         0         113         70         130           56.31         5.00         50         0         113         70         130           57.06         0.500         50         0         114         70         130           56.57         2.00         50         0         113         70         130           56.41         5.00         50         0         142         70         130           50.41         5.00         50         0         102         70         130           43.73         0.500         50         0         141         70         130           44.34         5.00         50         0         141         70         130           56.89         5.00         50         0         144         70         130           56.89         5.00         50         0         144         70         130           46.89         5.00         50         0         144         70         130           46.29         5.00         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chloroethane              | 47.52                         | 2.00        | 50                | 0                      | 95.0     | 70          | 130 |                           |          |
| 40.15         5.00         50         60.3         70         130           56.31         5.00         50         0         113         70         130           57.06         0.500         50         0         114         70         130           56.57         2.00         50         0         113         70         130           56.41         5.00         50         0         102         70         130           50.41         5.00         50         0         102         70         130           47.64         5.00         50         0         87.5         70         130           64.39         5.00         50         0         141         70         130           56.89         5.00         50         0         141         70         130           56.89         5.00         50         0         77.1         70         130           56.89         5.00         50         0         77.1         70         130           46.49         5.00         50         0         77.1         70         130           46.29         5.00         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chloroform                | 28.67                         | 5.00        | . 20              | 0                      | 117      | 7.0         | 130 |                           |          |
| 56.31         5.00         50         113         70         130           57.06         0.500         50         0         114         70         130           56.57         2.00         50         0         113         70         130           55.82         5.00         50         0         112         70         130           51.11         5.00         50         0         112         70         130           50.41         5.00         50         0         101         70         130           47.64         5.00         50         0         87.5         70         130           64.39         5.00         50         0         114         70         130           56.89         5.00         50         0         144         70         130           56.89         5.00         50         0         144         70         130           46.59         5.00         50         0         144         70         130           46.59         5.00         50         0         9         70         130           50.11         5.00         50         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chloromethane             | 40.15                         | 5.00        | 50                | 0                      | 80.3     | . 70        | 130 |                           |          |
| 57.06         0.500         50         114         70         130           56.57         2.00         50         0         113         70         130           56.82         2.00         50         0         112         70         130           51.11         5.00         50         0         102         70         130           50.41         5.00         50         0         101         70         130           43.73         0.500         50         0         87.5         70         130           43.73         0.500         50         0         87.5         70         130           64.39         5.00         50         0         87.5         70         130           56.89         5.00         50         0         77.1         70         130           56.89         5.00         50         0         77.1         70         130           46.29         5.00         50         0         77.1         70         130           50.11         5.00         50         0         70         130           50.11         5.00         50         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cis-1,2-Dichloraethene    | 56.31                         | 5.00        | 50                | 0                      | 113      | 70          | 130 |                           |          |
| 56.57         2.00         50         0         113         70         130           55.82         5.00         50         0         112         70         130           51.11         5.00         50         0         102         70         130           50.41         5.00         50         0         101         70         130           47.64         5.00         50         0         87.5         70         130           64.39         5.00         50         0         129         70         130           56.89         5.00         50         0         129         70         130           56.89         5.00         50         0         144         70         130           56.89         5.00         50         0         171         70         130           56.89         5.00         50         0         171         70         130           44.39         5.00         50         0         92.6         70         130           46.29         5.00         50         0         93.2         70         130           50.11         5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cis-1,3-Dichloropropene   | 92.06                         | 0.500       | 50                | 0                      | 114      | 70          | 130 |                           |          |
| 55.82         5.00         50         0         112         70         130           51.11         5.00         50         0         102         70         130           50.41         5.00         50         0         101         70         130           43.73         0.500         50         0         101         70         130           47.64         5.00         50         0         129         70         130           56.89         5.00         50         0         129         70         130           56.89         5.00         50         0         114         70         130           56.89         5.00         50         0         114         70         130           56.89         5.00         50         0         104         70         130           45.49         5.00         50         0         104         70         130           46.29         5.00         50         0         92.6         70         130           46.29         5.00         50         0         93.2         70         130           50.11         50         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dibromochloromethane      | 56.57                         | 2.00        | 50                | 0                      | 113      | 70          | 130 |                           |          |
| 51.11         5.00         50         102         70         130           50.41         5.00         50         0         101         70         130           43.73         0.500         50         0         47.5         70         130           47.64         5.00         50         0         95.3         70         130           56.89         5.00         50         0         129         70         130           56.89         5.00         50         0         77.1         70         130           56.89         5.00         50         0         77.1         70         130           38.53         20.0         50         0         77.1         70         130           46.29         5.00         50         0         77.1         70         130           46.29         5.00         50         0         83.5         70         130           41.93         5.00         50         0         83.5         70         130           58.39         5.00         50         0         117         70         130           58.39         5.00         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dibromomethane            | 55.82                         | 5.00        | 20                | 0                      | 112      | 70          | 130 |                           |          |
| 50.41         5.00         50         101         70         130           43.73         0.500         50         0         87.5         70         130           47.64         5.00         50         0         95.3         70         130           56.89         5.00         50         0         114         70         130           56.89         5.00         50         0         77.1         70         130           38.53         20.0         50         0         77.1         70         130           45.49         5.00         50         0         104         70         130           46.29         5.00         50         0         91.0         70         130           46.29         5.00         50         0         92.6         70         130           46.29         5.00         50         0         83.5         70         130           50.11         5.00         50         0         107         70         130           58.39         5.00         50         0         125         70         130           62.27         0.500         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dichlorodifluoromethane   | 51.11                         | 5.00        | 50                | 0                      | 102      | 70          | 130 |                           |          |
| 43.73       0.500       50       0       87.5       70       130         47.64       5.00       50       0       95.3       70       130         64.39       5.00       50       0       129       70       130         56.89       5.00       50       0       114       70       130         38.53       20.0       50       0       77.1       70       130         45.49       5.00       50       0       91.0       70       130         46.29       5.00       50       0       92.6       70       130         46.29       5.00       50       0       92.6       70       130         46.29       5.00       50       0       92.6       70       130         46.29       5.00       50       0       92.6       70       130         56.11       5.00       50       0       100       70       130         58.39       5.00       50       0       125       70       130         62.27       0.500       50       0       93.2       70       130         Akborating Limit       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ethylbenzene              | 50.41                         | 5.00        | 50                | 0                      | 101      | 70          | 130 |                           |          |
| 47.64       5.00       50       0       95.3       70       130         64.39       5.00       50       0       129       70       130         56.89       5.00       50       0       114       70       130         38.53       20.0       50       0       77.1       70       130         45.49       5.00       50       0       91.0       70       130         46.29       5.00       50       0       83.5       70       130         41.62       5.00       50       0       83.5       70       130         50.11       5.00       50       0       83.5       70       130         58.39       5.00       50       0       83.5       70       130         58.39       5.00       50       0       83.2       70       130         58.39       5.00       50       0       100       70       130         62.27       0.500       50       0       93.2       70       130         accordance Limit       46.58       5.00       50       0       93.2       70       130         b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hexachlorobutadiene       | 43.73                         | 0.500       | 50                | 0                      | 87.5     | 70          | 130 |                           |          |
| 64.39         5.00         50         129         70         130           56.89         5.00         50         0         114         70         130           38.53         20.0         50         0         77.1         70         130           51.79         5.00         50         0         77.1         70         130           45.49         5.00         50         0         91.0         70         130           46.29         5.00         50         0         83.5         70         130           41.62         5.00         50         0         83.9         70         130           50.11         5.00         50         0         100         70         130           58.39         5.00         50         0         70         130           58.39         5.00         50         0         70         130           6         62.27         0.500         50         70         130           Akeporting Limit         1         1         1         1         1           Akeporting Limit         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Isopropylbenzene          | 47.64                         | 5.00        | 50                | 0                      | 95.3     | 70          | 130 |                           |          |
| 56.89       5.00       50       0       114       70       130         38.53       20.0       50       0       77.1       70       130         51.79       5.00       50       0       104       70       130         45.49       5.00       50       0       91.0       70       130         46.29       5.00       50       0       83.5       70       130         41.62       5.00       50       0       83.9       70       130         50.11       5.00       50       0       83.9       70       130         58.39       5.00       50       0       100       70       130         58.39       5.00       50       0       100       70       130         58.39       5.00       50       0       125       70       130         46.58       5.00       50       0       93.2       70       130         Akeporting Limit       E       Value above quantitation range       H       H       P       P       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Methyl Tert-Butyl Ether   | 64.39                         | 5.00        | 50                | 0                      | 129      | 70          | 130 | •                         |          |
| 38.53       20.0       50       0       77.1       70       130         51.79       5.00       50       0       104       70       130         45.49       5.00       50       0       91.0       70       130         41.77       5.00       50       0       92.6       70       130         41.33       5.00       50       0       83.9       70       130         41.62       5.00       50       0       83.9       70       130         50.11       5.00       50       0       117       70       130         58.39       5.00       50       0       117       70       130         58.39       5.00       50       0       125       70       130         Ak 58       5.00       50       0       93.2       70       130         Ak 6.58       5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Methylene Chloride        | 56.89                         | 5.00        | 50                | 0                      | 114      | 70          | 130 |                           |          |
| 51.79         5.00         50         104         70         130           45.49         5.00         50         0         91.0         70         130           41.77         5.00         50         0         91.0         70         130           46.29         5.00         50         0         92.6         70         130           41.93         5.00         50         0         83.9         70         130           41.62         5.00         50         0         83.9         70         130           50.11         5.00         50         0         100         70         130           58.39         5.00         50         0         117         70         130           6         62.27         0.500         50         0         93.2         70         130           AR Good limit         E         Value above quantitiation range         F         F         F         F         F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Naphthalene               | 38.53                         | 20.0        | 50                | 0                      | 77.1     | 70          | 130 |                           |          |
| 45.49         5.00         50         91.0         70         130           41.77         5.00         50         0         83.5         70         130           46.29         5.00         50         0         83.9         70         130           41.93         5.00         50         0         83.9         70         130           41.62         5.00         50         0         83.2         70         130           50.11         5.00         50         0         100         70         130           58.39         5.00         50         0         117         70         130           e         62.27         0.500         50         0         125         70         130           w Reporting Limit         E         Value above quantitation range         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n-Butylbenzene            | 51.79                         | 5.00        | 50                | 0                      | 104      | 70          | 130 |                           |          |
| 41.77         5.00         50         0         83.5         70         130           46.29         5.00         50         0         92.6         70         130           41.93         5.00         50         0         83.9         70         130           41.62         5.00         50         0         100         70         130           50.11         5.00         50         0         117         70         130           58.39         5.00         50         0         117         70         130           62.27         0.500         50         0         93.2         70         130           A6.58         5.00         50         0         93.2         70         130           Accordant Limit         E         Value above quantitation range         H         H         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n-Propylbenzene           | 45.49                         | 5.00        | . 50              | 0                      | 91.0     | 20          | 130 |                           |          |
| 46.29     5.00     50     0     92.6     70     130       41.93     5.00     50     0     83.9     70     130       41.62     5.00     50     0     83.2     70     130       50.11     5.00     50     0     100     70     130       58.39     5.00     50     0     117     70     130       e     62.27     0.500     50     0     125     70     130       w Reporting Limit     E     Value above quantitation range     H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sec-Butylbenzene          | 41.77                         | 5.00        | 50                | 0                      | 83.5     | 20          | 130 |                           |          |
| 41.93       5.00       50       63.9       70       130         41.62       5.00       50       0       83.2       70       130         50.11       5.00       50       0       100       70       130         58.39       5.00       50       0       117       70       130         e       62.27       0.500       50       0       125       70       130         w Reporting Limit       E       Value above quantitation range       F       F       H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Styrene                   | 46.29                         | 5.00        | 50                | 0                      | 92.6     | 20          | 130 | -                         |          |
| 41.62       5.00       50       0       83.2       70       130         50.11       5.00       50       0       100       70       130         58.39       5.00       50       0       117       70       130         e       62.27       0.500       50       0       125       70       130         w Reporting Limit       E       Value above quantitation range       H       H       P       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tert-Butylbenzene         | 41.93                         | 5.00        | 50                | 0                      | 83,9     | 70          | 130 |                           |          |
| 50.11 5.00 50 0 100 70 130 130 58.39 5.00 50 0 117 70 130 50.00 50 0 125 70 130 50.00 50 0 125 70 130 50.00 50 0 93.2 70 130 50.00 50 0 93.2 70 130 50.00 50.00 50 0 50.00 50 130 50.00 50 0 50 0 50 0 50 0 50 0 50 0 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tetrachloroethene         | 41.62                         | 2.00        | 50                | 0                      | 83.2     | 70          | 130 |                           |          |
| 58.39 5.00 50 0 117 70 130 62.27 0.500 50 0 125 70 130 46.58 5.00 50 0 93.2 70 130 w Reporting Limit E Value above quantitation range H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Toluene                   | 50.11                         | 5.00        | 20                | 0                      | 100      | 70          | 130 |                           |          |
| ichloropropene         62.27         0.500         50         0         125         70         130           nene         46.58         5.00         50         0         93.2         70         130           BRL         Bclow Reporting Limit         E         Value above quantitation range         H         H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | trans-1,2-Dichloroethene  | 58.39                         | 5.00        | 50                | 0                      | 117      | 70          | 130 |                           |          |
| 130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130    | trans-1,3-Dichloropropеле | 62.27                         | 0.500       | 90                | 0                      | 125      | 70          | 130 |                           |          |
| BRL Below Reporting Limit E Value above quantitation range H I Analyte detailed halous quantitation limit Described at the Described in the Described of the Described in the Described of the Described in the Described by Describing Describing Described by Describing Describing Described by Describing Describing Described By Described By Describing Described By D | Trichloroethene           | 46.58                         | 5.00        | 20                | 0                      | 93.2     | 70          | 130 |                           |          |
| 1 Anolyte detected below constitution limits NID Not Detected at the Beacedine Limit D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BRL                       | ting Limit                    | A /u d d /u |                   | above quantitation ran | 98       |             |     | r preparation or analysis | exceeded |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                         | ted below assentiation limits |             |                   | docted at the Denoctin | o I imit |             |     | armer fishing             |          |

1.142.45

Analyte detected below quantitation limits Spike Recovery outside recovery limits

Fay, Spofford & Thorndike CLIENT:

0805025 Work Order: WM-046, 1.4 Exp Project:

TestCode: 8260B\_w

| Sample ID: LCS                        | SampType: LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TestCoc | TestCode: 8260B_w | Units: µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | Prep Date:     | fe:                   | RunN                                               | RunNo: 23612     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------|-----------------------|----------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Client ID: ZZZZZ                      | Batch ID: R23612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Testh   | TestNo: SW8260B   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Analysis Date: | te: 5/8/2008          | SeqN                                               | SeqNo: 232927    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Analyte                               | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PQL     | SPK value         | SPK Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %REC                | LowLimit       | HighLimit RPD Ref Val |                                                    | %RPD RPDLimit    | Jmit Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u></u> |
| Trichlorofluoromethane                | 42.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00    | 50                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 86.0                | 70             | 130                   |                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Vinyl Chloride                        | 36.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.00    | 50                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72.9                | 70             | 130                   |                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Xylenes, Total                        | 156.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00    | 150               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 104                 | 70             | 130                   |                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Surr: 1,2-Dichloroethane-d4           | 31,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0       | 30                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 104                 | 70             | 130                   |                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Surr: 4-Bromofluorobenzene            | 35.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0       | 30                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 118                 | 70             | 130                   |                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Surr: Dibromofluoromethane            | 28.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0       | 30                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 94.8                | 70             | 130                   |                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Surr: Toluene-d8                      | 29.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0       | 30                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 98.0                | 70             | 130                   |                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Sample ID: LCS                        | SampType: LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TestCoc | TestCode: 8260B_W | Units: µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | Prep Date:     | te;                   | RunN                                               | RunNo: 23706     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Client ID: ZZZZ                       | Batch ID: R23706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Testh   | TestNo: SW8260B   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Analysis Date: | te: 5/14/2008         | SeqN                                               | SeqNo: 233187    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Analyte                               | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pal     | SPK value         | SPK Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %REC                | LowLimit       | HighLimit RPD Ref Val |                                                    | %RPD RPDLimit    | imit Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
| 1,1,1,2-Tetrachioroethane             | 49.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00    | 50                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99.1                | 70             | 130                   |                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       |
| 1,1,1-Trichloroethane                 | 54,94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00    | 20                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110                 | 70             | 130                   |                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 1,1,2,2-Tetrachloroethane             | 55.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.00    | 20                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>*-</u>           | 70             | 130                   |                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 1,1,2-Trichloroethane                 | 51.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00    | 50                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 102                 | 70             | 130                   |                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 1,1-Dichloroethane                    | 47.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00    | 50                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95.4                | 70             | 130                   |                                                    | -                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 1,1-Dichloraethene                    | 46.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00    | 50                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 93.9                | 70             | 130                   |                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 1,1-Dichloropropene                   | 43.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00    | 20                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.98                | 70             | 130                   | ,                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 1,2,3-Trichlorobenzene                | 52.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00    | 50                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 106                 | 70             | 130                   |                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 1,2,3-Trichloropropane                | 50.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00    | 20                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 101                 | 70             | 130                   |                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 1,2,4-Trichlorobenzene                | 51.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.00    | 20                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 104                 | 70             | 130                   |                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 1,2,4-Trimethylbenzene                | 54.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,00    | 20                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110                 | 70             | 130                   |                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 1,2-Dibromo-3-Chloropropane           | 37.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00    | 50                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75.9                | 70             | 130                   |                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 1,2-Dibromoethane                     | 51.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.00    | 20                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 102                 | 70             | 130                   |                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 1,2-Dichlorobenzene                   | 53,69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00    | 20                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 107                 | 70             | 130                   |                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 1,2-Dichloroethane                    | 39.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.00    | 90                | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 77.1                | 70             | 130                   |                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 1,2-Dichloropropane                   | 48.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.00    | 50                | 0 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97.1                | 70             | 130                   |                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 1,3,5-Trimethylbenzene                | 51.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00    | 50                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 103                 | 20             | 130                   |                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 1,3-Dichlorobenzene                   | 49.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00    | 20                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99.7                | 70             | 130                   |                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|                                       | COMMING THE PROPERTY OF THE PR |         | İ                 | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | - VAL 200 I N VIII. |                |                       |                                                    |                  | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |         |
| Qualifiers: BRL Below Reporting Limit | ing Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                   | Value above quantitation range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )ge                 |                |                       | Holding times for preparation or analysis exceeded | on or analysis e | popoox                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
| J Analyte detec                       | Analyte detected below quantitation limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | ND Not De         | Not Detected at the Reporting Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g Limit             |                | R RPD outsid          | RPD outside recovery limits                        | so.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |

Fay, Spofford & Thorndike CLIENT:

0805025 Work Order:

WM-046, 1.4 Exp Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260B\_w

| Sample ID: LCS                        | SampType: LCS                              | TestCor | TestCode: 8260B_W | Units: µg/L                         |         | Prep Date:     |                       | RunNo: 23706                                       |              |
|---------------------------------------|--------------------------------------------|---------|-------------------|-------------------------------------|---------|----------------|-----------------------|----------------------------------------------------|--------------|
| Client ID: ZZZZZ                      | Batch ID: <b>R23706</b>                    | Test    | TestNo: SW8260B   |                                     |         | Analysis Date: | 5/14/2008             | SeqNo; 233187                                      |              |
| Analyte                               | Result                                     | POL     | SPK value         | SPK Ref Vai                         | %REC    | LowLimit       | HighLimit RPD Ref Val | Val %RPD RPDLimit Qual                             | <del>-</del> |
| 1,3-Dichloropropane                   | 45.68                                      | 5.00    | . 50              | 0                                   | 91.4    | 70             | 130                   |                                                    |              |
| 1,4-Dichlorobenzene                   | 48.43                                      | 5.00    | 50                | 0                                   | 6.96    | 70             | 130                   |                                                    |              |
| 2,2-Dichloropropane                   | 45,14                                      | 5.00    | 90                | 0                                   | 90.3    | 70             | 130                   |                                                    |              |
| 2-Butanone                            | 46.27                                      | 10.0    | 50                | 0                                   | 92.5    | 70             | 130                   |                                                    |              |
| 2-Chloroethyl Vinyl Ether             | . 205.8                                    | 5.00    | 50                | 0                                   | 412     | 20             | 130                   | S                                                  |              |
| 2-Chlorotoluene                       | 47.63                                      | 5.00    | 20                | 0                                   | 95.3    | 70             | 130                   |                                                    |              |
| 2-Hexanone                            | 44.68                                      | 10.0    | 20                | 0                                   | 89.4    | 70             | 130                   |                                                    |              |
| 4-Chlorotoluene                       | 52.19                                      | 5,00    | 50                | 0                                   | 104     | 70             | 130                   |                                                    |              |
| 4-Isopropyftoluene                    | 49.92                                      | 5.00    | 50                | 0                                   | 8'66    | 70             | 130                   |                                                    |              |
| 4-Methyl-2-Pentanone                  | 48.13                                      | 5.00    | 50                | 0                                   | 96.3    | 70             | 130                   |                                                    |              |
| Acetone                               | 55,46                                      | 50.0    | . 50              | 0                                   | 111     | 70             | 130                   |                                                    |              |
| Acrolein                              | 130.0                                      | 50,0    | 100               | 0                                   | 130     | 70             | 130                   |                                                    |              |
| Acrylonitrile                         | 84.09                                      | 50.0    | 100               | 0                                   | 84.1    | 70             | 130                   |                                                    |              |
| Benzene                               | 41.48                                      | 5.00    | 50                | 0                                   | 83.0    | 70             | 130                   |                                                    |              |
| Bromobenzene                          | 47.50                                      | 5.00    | 50                | 0                                   | 95.0    | 70             | 130                   |                                                    |              |
| Bromochloromethane                    | 50.60                                      | 2.00    | 50                | 0                                   | 101     | 70             | 130                   |                                                    |              |
| Bromodichloromethane                  | 41.71                                      | 2.00    | 50                | 0                                   | 83.4    | 70             | 130                   |                                                    |              |
| Bromoform                             | 43,21                                      | 2.00    | 50                | 0                                   | 86.4    | 70             | 130                   |                                                    |              |
| Bromomethane                          | 63.68                                      | 2.00    | 20                | 0                                   | 127     | 70             | 130                   |                                                    |              |
| Carbon Disulfide                      | 40.66                                      | 5.00    | 50                | 0                                   | 81.3    | 20             | 130                   |                                                    |              |
| Carbon Tetrachloride                  | 41.00                                      | 2.00    | 50                | 0                                   | 82.0    | 70             | 130                   |                                                    |              |
| Chlorobenzene                         | 51.75                                      | 5.00    | 50                | 0                                   | 104     | 70             | 130                   |                                                    |              |
| Chloroethane                          | 53.68                                      | 5.00    | 50                | 0                                   | 107     | 70             | 130                   |                                                    |              |
| Chloroform                            | 52.34                                      | 5.00    | 50                | 0                                   | 105     | 70             | 130                   |                                                    |              |
| Chioromethane                         | 57.47                                      | 5.00    | 50                | 0                                   | 115     | 70             | 130                   |                                                    |              |
| cis-1,2-Dichloroethene                | 42.95                                      | 5.00    | 50                | 0                                   | 85.9    | 70             | 130                   |                                                    |              |
| cis-1,3-Dichloropropene               | 45.32                                      | 0.500   | 50                | 0                                   | 9.06    | 70             | 130                   |                                                    |              |
| Dibromochloromethane                  | 45.71                                      | 2.00    | 50                | 0                                   | 91.4    | 70             | 130                   |                                                    |              |
| Dibromomethane                        | 44.69                                      | 5.00    | 20                | 0                                   | 89.4    | 70             | 130                   |                                                    |              |
| Dichlorodifluoromethane               | 42.49                                      | 5.00    | 50                | 0                                   | 85.0    | 20             | 130                   |                                                    |              |
| Ethylbenzene                          | 44.82                                      | 5.00    | 20                | 0                                   | 9.68    | 70             | 130                   |                                                    |              |
| Qualifiers: BRL Below Reporting Limit | orting Limit                               |         | E Value a         | Value above quantitation range      | ១ភី     |                | H Holding tim         | Holding times for preparation or analysis exceeded | Ì            |
| J Analyte dete                        | Analyte detected below quantitation limits |         | ND Not De         | Not Detected at the Reporting Limit | g Límit |                | R RPD outsid          | RPD outside recovery limits                        |              |
| S Spike Reeov                         | Spike Recovery outside recovery limits     |         |                   |                                     |         |                |                       | Page 12 of 33                                      | of 33        |

RPD outside recovery limits

H

E Value above quantitation range
ND Not Detected at the Reporting Limit

Analyte detected below quantitation limits Spike Recovery outside recovery limits

BRL Below Reporting Limit

Qualifiers:

Fay, Spofford & Thorndike CLIENT:

0805025 Work Order: WM-046, 1.4 Exp

Project:

TestCode: 8260B\_w

| Sample ID: LCS              | SampType: LCS    | TestCo | TestCode: 8260B_W | Units: µg/L |      | Prep Date:     | ;e;          |             | RunNo: 23706  |            |      |
|-----------------------------|------------------|--------|-------------------|-------------|------|----------------|--------------|-------------|---------------|------------|------|
| Citent ID: ZZZZZ            | Batch ID: R23706 | Test   | TestNo: SW8260B   |             |      | Analysis Date: | e: 5/14/2008 |             | SeqNo: 233187 | _          |      |
| Analyte                     | Result           | Pal    | SPK value         | SPK Ref Val | %REC | LowLimit       | HighLimit R  | RPD Ref Val | %RPD R        | RPDLimit Q | Qual |
| Hexachlorobutadiene         | 56.03            | 0.500  | 50                | 0           | 112  | 70             | 130          |             |               |            |      |
| isopropyibenzene            | 47.23            | 5.00   | 50                | Ö           | 94.5 | 70             | 130          |             |               |            |      |
| Methyl Tert-Butyl Ether     | 43.02            | 5.00   | 50                | 0           | 86.0 | 20             | 130          |             |               |            |      |
| Methylene Chloride          | 40,34            | 5.00   | 50                | 0           | 80.7 | 20             | 130          |             |               |            |      |
| Naphthalene                 | 55.23            | 20.0   | 20                | 2.56        | 105  | 70             | 130          |             |               |            |      |
| n-Butyfbenzene              | 50.22            | 5.00   | 50                | 0           | 100  | 22             | 130          |             |               |            |      |
| n-Propylbenzene             | 43.12            | 5.00   | 90                | 0           | 86.2 | 70             | 130          |             |               |            |      |
| sec-Butylbenzene            | 48.61            | 2.00   | 50                | 0           | 97.2 | 70             | 130          |             |               |            |      |
| Styrene                     | 44.94            | 5.00   | 20                | 0           | 6.68 | 70             | 130          |             |               |            |      |
| tert-Butylbenzene           | 49.39            | 5.00   | 20                | 0           | 98.8 | 20             | 130          |             |               |            |      |
| Tetrachloroethene           | 47.10            | 5.00   | 20                | 0           | 94.2 | 70             | 130          |             |               |            |      |
| Toluene                     | 47.15            | 5.00   | 50                | 0           | 94.3 | 70             | 130          |             |               |            |      |
| trans-1,2-Dichloroethene    | 51.03            | 5.00   | 50                | 0           | 102  | 70             | 130          |             |               |            |      |
| trans-1,3-Dichloropropene   | 40.36            | 0.500  | 50                | 0           | 80.7 | 70             | 130          |             |               |            |      |
| Trichloroethene             | 43.11            | 2.00   | 50                | 0           | 86.2 | 70             | 130          |             |               |            |      |
| Trichlorofluoromethane      | 63.40            | 2.00   | 20                | 0           | 127  | 70             | 130          |             |               |            |      |
| Vinyl Chloride              | 45.23            | 2.00   | 50                | 0           | 90.5 | 20             | 130          |             |               |            |      |
| Xylenes, Totał              | 136.9            | 5,00   | 150               | 0           | 91.3 | 70             | 130          |             |               |            |      |
| Surr: 1,2-Dichloroethane-d4 | 29.96            | 0      | 30                | 0           | 6.66 | 70             | 130          |             |               |            |      |
| Surr: 4-Bromofluorobenzene  | 27.47            | 0      | 30                | . 0         | 91.6 | 70             | 130          |             |               |            |      |
| Surr: Dibromofluoromethane  | 31.61            | 0      | 30                | 0           | 105  | 70             | 130          |             |               |            |      |
| Surr: Toluene-d8            | 29.65            | 0      | 30                | 0           | 98.8 | 70             | 130          |             |               |            |      |

Fay, Spofford & Thorndike CLIENT:

0805025 Work Order:

**Project**:

WM-046, 1.4 Exp

|   | <b>≯</b>  |
|---|-----------|
| C | ∍         |
| ľ | ~         |
| i | 0/78      |
|   | ×         |
| ۱ | ~         |
|   | lestCode: |
| ۰ | 3         |
|   | Ξ         |
| , | ٦         |
| ۱ | J         |
|   | _         |
|   | e.        |
|   | v         |
| ŀ | _         |
|   |           |
|   |           |
|   |           |
|   |           |

| Sum id-1, MB-1, Lord   Marker   Same   Sam   |                      |               |                                |          |           |                          |          |               |                     |                 |                |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------|--------------------------------|----------|-----------|--------------------------|----------|---------------|---------------------|-----------------|----------------|-----------|
| Result         POL         SPR PRIOR         (SPR PRIOR)         Arealysis Date         SPT PRIOR         SPR PRIOR         PRIOR         SPR PRIOR         SPR PRIOR         PRIOR         SPR PRIOR         SPR PRIOR         PRIOR         PRIOR         SPR PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR         PRIOR <th< th=""><th>Sample ID: MB-100</th><th>920</th><th>SampType: MBLK</th><th>TestCode</th><th>8270 W</th><th>Units: µg/L</th><th>Prep</th><th></th><th>80</th><th>RunNo: 235</th><th>56</th><th></th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample ID: MB-100    | 920           | SampType: MBLK                 | TestCode | 8270 W    | Units: µg/L              | Prep     |               | 80                  | RunNo: 235      | 56             |           |
| Result   POL   SPK value   SPK Fed Val   SREC   Lond-inth   Hightlinit   RPD Ref Ved   SRPD   RPDLinit   RPD Ref Ved   SRPD Ref Ved Ved   SRPD Ref Ved Ved Ved Ved Ved Ved Ved Ved Ved Ved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |               | Batch ID; 10076                | TestNo   | SW8270C   |                          | Analysis |               | 80                  | SeqNo: 231      | 370            |           |
| ND   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.   | Analyte              |               | Result                         | PQL      | SPK value | SPK Ref Val              |          | ſ             |                     | %RPD            | RPDLimit       | Qual      |
| ND   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100     | 1,2,4-Trichlorobenze | ene           | QN                             | 1.00     |           |                          |          |               |                     |                 |                |           |
| ND   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100     | 1,2-Dichlorobenzene  | Œ.            | QN                             | 1.00     |           |                          |          |               |                     |                 |                |           |
| ND   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.   | 1,2-Dinitrobenzene   |               | QN                             | 1.00     |           |                          |          |               |                     |                 |                |           |
| ND   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.   | 1,3-Dichlorobenzens  | ø             | ON.                            | 1.00     |           |                          |          |               |                     |                 |                |           |
| ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND   1.00   ND     | 1,3-Dinítrobenzene   |               | QN                             | 1.00     |           |                          |          |               |                     |                 |                |           |
| end         ND         1 00           ND         1 00         Reserved everantilation imits         Reserved was added excovery limits           ND         1 00         Reserved was added recovery limits         Reserved was added recovery limits         Reserved was added recovery limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,4-Dichlorobenzen   | o             | ON .                           | 1.00     |           |                          |          |               |                     |                 |                |           |
| enol ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 1 | 1,4-Dinitrobenzene   |               | QN                             | 1.00     |           |                          |          |               |                     |                 |                |           |
| ND   1.00   1.00   1.00   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                 | 2,3,4,6-Tetrachlorop | phenoi        | Q                              | 1.00     |           |                          |          |               |                     |                 |                |           |
| ND   1,00   1,00   1,00   ND   | 2,4,5-Trichloropheno | 10            | N N                            | 1.00     |           |                          |          |               |                     |                 |                |           |
| ND   1.00   1.00   1.00   ND   | 2,4,6-Trichloropheno | 0             | ON.                            | 1.00     |           |                          |          |               |                     |                 |                |           |
| ND         1,00           ND         5,00           ND         1,00           ND         1,00           ND         1,00           ND         1,00           ND         1,00           Plan         1,00           Plan         1,00           Plan         1,00           Plan         1,00           Plan         1,00           Plan         1,00           Analyte detected below quantitation limits         ND         1,00           ND         1,00         1,00           ND <t< td=""><td>2,4-Dichlorophenol</td><td></td><td>ON</td><td>1.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,4-Dichlorophenol   |               | ON                             | 1.00     |           |                          |          |               |                     |                 |                |           |
| nne         ND         5.00           ND         1.00         1.00           nne         ND         1.00           nne         ND         1.00           nne         ND         1.00           dine         1.00         1.00           Methyphenol         ND         1.00           Aphenol         ND         1.00           phenol         ND         1.00           nD         1.00         1.00           ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,4-Dimethylphenol   |               | QZ                             | 1.00     |           |                          |          | ٠             |                     |                 |                |           |
| ND         1,00           ND         1,00           ND         1,00           ND         1,00           ND         1,00           Methylphenol         ND         1,00           Methylphenol         ND         1,00           Methylphenol         ND         1,00           Methylphenol         ND         1,00           phenol         ND         1,00           phenol         ND         1,00           phenol         ND         1,00           phenol         ND         1,00           ND         1,00         1,00           Analyte detected below quantitation limits         ND         NOA Detected at the Reporting Limit         R         RPD outside recovery limits           Spike Recovery outside recovery limits         ND         ND         ND         ND         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,4-Dinitrophenol    |               | <u>0</u> 2                     | 5.00     |           |                          |          |               |                     |                 |                |           |
| ND         1.00           ND         1.00           ND         1.00           Mb         1.00           Mb         1.00           Methylphenol         ND           ND         1.00           Methylphenol         ND           ND         1.00           Phenol         ND           ND         1.00           Phenol         ND           ND         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,4-Dinitrotoluene   |               | <u>Q</u>                       | 1.00     |           |                          |          |               |                     |                 |                |           |
| ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         Not Detected at the Reporting Limit         R         RPD outside recovery limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,6-Dinitrotoluene   |               | Q                              | 1.00     |           |                          |          |               |                     |                 |                |           |
| ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         5.00           ND         1.00           ND         Not Detected at the Reporting Limit         R         RPD outside recovery limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-Chloronaphthalen   | je<br>e       | Q                              | 1.00     |           |                          |          |               |                     |                 |                |           |
| ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         Not Detected at the Reporting Limit         R PD outside recovery limits    RPD outside recovery limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-Chloropheriol      |               | QN                             | 1.00     |           |                          |          |               |                     |                 |                |           |
| ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         Not Detected at the Reporting Limit         R RPD outside recovery limits           very outside recovery limits         R RPD outside recovery limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2-Methylnaphthalen   | 9             |                                | 1.00     |           |                          |          |               |                     |                 |                |           |
| ND         1.00           ND         1.00           ND         1.00           ND         5.00           ND         1.00           ND         Not Detected at the Reporting Limit         R Protected by quantitation limits           ND         Not Detected at the Reporting Limit         R Protected by Quantitation limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2-Methylphenol       |               | QN                             | 1.00     |           |                          |          |               |                     |                 |                |           |
| ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         Not Detected at the Reporting Limit         R RPD outside recovery limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2-Nitroaniline       |               | Ð                              | 1.00     |           |                          |          |               |                     |                 |                |           |
| ND         1.00           ND         1.00           ND         5.00           ND         1.00           ND         Not Detected at the Reporting Limit         Holding times for preparation or analysis executed below quantitation limits           very outside recovery limits         ND         Not Detected at the Reporting Limit         RPD outside recovery limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-Nitrophenol        |               | QN                             | 1.00     |           |                          |          |               |                     |                 |                |           |
| ND         1.00           ND         5.00           ND         1.00           ND         Not Detected at the Reporting Limit         R Produing times for preparation or analysis exercited below quantitation limits           very outside recovery limits         R RPD outside recovery limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3,3'-Dichlorobenzidi | ine           | ON                             | 1.00     |           | •                        |          |               |                     |                 |                |           |
| ND         5.00         ND         1.00           ND         1.00         1.00         1.00         1.00           ND         1.00         1.00         1.00         1.00         1.00           ND         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-Methylphenol/4-M   | lethytphenol  | QN.                            | 1.00     |           |                          |          |               |                     |                 |                |           |
| ND         5.00           ND         1.00           Accepted below quantitation limits         E         Value above quantitation range         H         Holding times for preparation or analysis expected below quantitation limits           Accepted below quantitation limits         ND         Not Detected at the Reporting Limit         R         RPD outside recovery limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3-Nitroaniline       |               | QV                             | 1.00     |           |                          |          |               |                     |                 |                |           |
| ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           ND         1.00           Accreted below quantitation limits         E         Value above quantitation range         H         Holding times for preparation or analysis expected below quantitation limits           According Limit         B         Not Detected at the Reporting Limit         R         RPD outside recovery limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4,6-Dinitro-2-Methyl | lphenol       | QN                             | 5.00     |           |                          |          |               |                     |                 |                |           |
| ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND Not Detected at the Reporting Limit RPD outside recovery limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4-Bromophenyl Phe    | anyl Ether    | <u>Q</u>                       | 1.00     |           |                          |          |               |                     |                 |                |           |
| ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND 1.00  ND 1.00 ND 1.00 ND 1.00 ND 1.00  E Value above quantitation range  H Holding times for preparation or analysis excepted below quantitation limits  E Value above quantitation limits  M Not Detected at the Reporting Limit  R RPD outside recovery limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4-Chloro-3-Methylpt  | henol         | Q                              | 1.00     |           |                          |          |               |                     |                 |                |           |
| ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND 1.00 E Value above quantitation range H Holding times for preparation or analysis excepted below quantitation limits  E Value above quantitation range M RPD outside recovery limits  E Value above quantitation range H Holding times for preparation or analysis excepted below quantitation limits  E Value above quantitation range H Holding times for preparation or analysis excepted below quantitation limits  E Value above quantitation range H Holding times for preparation or analysis excepted below quantitation limits  E Value above quantitation range H Holding times for preparation or analysis excepted below quantitation limits  E Value above quantitation range  H Holding times for preparation or analysis excepted below quantitation limits  E Value above quantitation limits  E Value above quantitation range  H Holding times for preparation or analysis excepted below quantitation limits  E Value above quantitation limits  E Value above quantitation range  H Holding times for preparation or analysis excepted below quantitation limits  E Value above quantitation limits  H Holding times for preparation or analysis excepted at the Reporting Limit R RPD outside recovery limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4-Chloroaniline      |               | QN                             | 1.00     |           |                          |          |               |                     |                 |                |           |
| ND 1.00  ND 1.00  ND 1.00  BRL Below Reporting Limit  J Analyte detected below quantitation limits  S Spike Recovery outside recovery limits  ND Not Detected at the Reporting Limit  R RPD outside recovery limits  R RPD outside recovery limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4-Chlorophenyl Phe.  | enyl Ether    | Q                              | 1.00     |           |                          |          |               |                     |                 |                | -         |
| BRL Below Reporting Limit  J. Analyte detected below quantitation limits  S. Spike Recovery outside recovery limits  ND Not Detected at the Reporting Limit  RPD outside recovery limits  RPD outside recovery limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4-Nitroaniline       |               | QN                             | 1,00     |           |                          |          |               |                     |                 |                |           |
| BRL Below Reporting Limit  J Analyte detected below quantitation limits  Spike Recovery outside recovery limits  Spike Recovery outside recovery limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4-Nitrophenol        | !             | ON                             | 1.00     |           |                          |          | A COLOR BRIDA |                     |                 |                |           |
| Analyte detected below quantitation limits ND Not Detected at the Reporting Limit Recovery outside recovery limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |               | ting Limit                     |          |           | above quantitation rang  | 25       | H             | Holding times for p | reparation or a | nalysis exceed | Þ         |
| Spike Recovery outside recovery limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ſ                    | Analyte detec | cted below quantitation limits |          |           | etected at the Reporting | , Limit  | <b>~</b>      | RPD outside recovi  | ery limits      |                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                   | Spike Recove  | ery outside recovery limits    |          |           |                          |          |               |                     |                 | Pag            | e 14 of 3 |

Fay, Spofford & Thorndike CLIENT:

0805025 Work Order: WM-046, 1.4 Exp Project:

TestCode: 8270\_w

| 0.000                                 | + · · ·                                    | ŀ       |                 | :                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                     |                                                    | ************************************** |                                         |
|---------------------------------------|--------------------------------------------|---------|-----------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------|----------------------------------------|-----------------------------------------|
| Sample ID: MB-10070                   | Sampilype: MBLN                            | l estro | estCode: 82/0_W | Units: µg/L                         | Prep Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | te: 5/6/2008          | RunNo: 23556                                       | 556                                    |                                         |
| Client ID: ZZZZZ                      | Batch ID: 10076                            | Test    | estNo: SW8270C  | (SW3510)                            | Analysis Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | te: 5/7/2008          | SeqNo: 231370                                      | 11370                                  | *************************************** |
| Analyte                               | Result                                     | POL     | SPK value       | SPK Ref Val                         | "REC LowLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HighLimit RPD Ref Val | Val %RPD                                           | RPDLimit                               | Qual                                    |
| Acenaphthene                          | QV                                         | 1.00    |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Acenaphthylene                        | QN                                         | 1.00    |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Acetophenone                          | QN                                         | 1.00    |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Aniline                               | Q                                          | 5.00    |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Anthracene                            | QN                                         | 1.00    |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Azobenzene                            | QN                                         | 5.00    |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Benz(a)Anthracene                     | Q                                          | 0.100   |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Benzidine                             | QV                                         | 5.00    |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Benzo(a)Pyrene                        | Q                                          | 0.100   |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Benzo(b)Fluoranthene                  | ON.                                        | 0.500   |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Benzo(g,h,i)Perylene                  | 2                                          | 1.00    |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Benzo(k)Fluoranthene                  | <del>Q</del> N                             | 0.500   |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Benzyi Alcohoi                        | Q.                                         | 1.00    |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Bis(2-Chtoroethoxy)Methane            | g                                          | 1.00    |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Bis(2-Chloroethyl)Ether               | QN                                         | 1,00    |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Bis(2-Chloroisopropyl)Ether           | QN                                         | 1.00    |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Bis(2-Ethylhexyl)Phthalate            | QV                                         | 1.00    |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Butyl Benzyl Phthalate                | QN                                         | 1,00    |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Carbazole                             | QN                                         | 1.00    |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Chrysene                              | QN                                         | 1.00    |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Dibenz(a,h)Anthracene                 | QN                                         | 0.100   |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Dibenzofuran                          | Ð                                          | 1.00    |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Diethyl Phthalate                     | QN                                         | 1.00    |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Dimethyl Phthalate                    | QN                                         | 1.00    |                 |                                     | ٠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                    |                                        |                                         |
| Di-n-Butyl Phthalate                  | QN                                         | 1,00    |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Di-n-Octyl Phthalate                  | ON                                         | 1.00    |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Fluoranthene                          | QN                                         | 1.00    |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Fluorene                              | QN.                                        | 1.00    |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Hexachlorobenzene                     | QN                                         | 0.100   |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Hexachlorobutadiene                   | ON                                         | 0.100   |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Hexachtorocyclopentadiene             | QN                                         | 5.00    |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                                        |                                         |
| Qualifiers: BRL Below Reporting Limit | ting Limit                                 | -       | E Value al      | Value above quantitation range      | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | H Holding time        | Holding times for preparation or analysis exceeded | malysis exceeded                       | 5                                       |
| J Analyte detec                       | Analyte detected below quantitation limits |         | ND Not Det      | Not Detected at the Reporting Limit | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R RPD outside         | RPD outside recovery limits                        |                                        |                                         |
| S Spike Recove                        | Spike Recovery outside recovery limits     |         |                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    | Dog I                                  | Page 15 of 33                           |

Fay, Spofford & Thorndike 0805025 CLIENT:

Work Order:

WM-046, 1.4 Exp **Project:** 

TestCode: 8270\_w

| Cample ID: MB-40078                   | SampTyne, BBIK                             | Tectorda                                | TectOrde: 9270 W | Hoiter net!                         |         | Pron Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . E/8/2000                    | BunNo: 22556                                       | 2              | Γ           |
|---------------------------------------|--------------------------------------------|-----------------------------------------|------------------|-------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------|----------------|-------------|
|                                       |                                            | -                                       |                  | 1 2                                 |         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | Training Post                                      | •              |             |
| Client ID: ZZZZ                       | Batch ID: 10076                            | TestNo                                  | TestNo: SW8270C  | (SW3510)                            |         | Analysis Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | : 5/7/2008                    | SeqNo: 231370                                      | 02             |             |
| Analyte                               | Result                                     | PQL                                     | SPK value        | SPK Ref Val                         | %REC    | LowLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HighLimit RPD Ref Val         | %RPD                                               | RPDLimit Qual  | <del></del> |
| Hexachloroethane                      | QN                                         | 1.00                                    |                  |                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                    | -              | ]           |
| Indeno(1,2,3-cd)Pyrene                | QN                                         | 0.100                                   |                  |                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                    |                |             |
| Isophorone                            | QN                                         | 1.00                                    |                  |                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                    |                |             |
| Naphthalene                           | QN                                         | 1.00                                    |                  |                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                    |                |             |
| Nitrobenzene                          | QN                                         | 1.00                                    |                  |                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                    |                |             |
| N-Nitrosodimethylamine                | QN                                         | 5.00                                    |                  |                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                    |                |             |
| N-Nitrosodi-n-Propylamine             | QN                                         | 1.00                                    |                  |                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                    |                |             |
| N-Nitrosodiphenylamine                | QN                                         | 5,00                                    |                  |                                     |         | ٠.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                                    |                |             |
| Pentachlorophenol                     | QN                                         | 1.00                                    |                  | *                                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                    |                |             |
| Phenanthrene                          | QV                                         | 1.00                                    |                  |                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                    |                |             |
| Phenof                                | QN                                         | 1.00                                    |                  |                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                    |                |             |
| Pyrene                                | ON.                                        | 1.00                                    |                  |                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                    |                |             |
| Pyridine                              | QN                                         | 5.00                                    |                  |                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                    |                |             |
| Surr: 2,4,6-Tribromophenol            | 40.84                                      | 0                                       | 75               | 0                                   | 54.4    | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 150                           |                                                    |                |             |
| Surr; 2-Fluorobiphenyl                | 39.44                                      | 0                                       | 50               | 0                                   | 78.9    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130                           |                                                    |                |             |
| Surr: 2-Fluorophenol                  | 34.66                                      | 0                                       | 75               | 0                                   | 46.2    | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110                           |                                                    |                |             |
| Surr; Nitrobenzene-d5                 | 50.51                                      | 0                                       | 50               | 0                                   | 101     | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130                           |                                                    |                |             |
| Surr: Phenol-d6                       | 33.45                                      | 0                                       | 75               | 0 .                                 | 44.6    | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110                           |                                                    |                |             |
| Surr: Terphenyl-d14                   | 23.86                                      | 0                                       | 50               | O                                   | 47.7    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130                           |                                                    |                |             |
| Sample ID: LCS-10076                  | SampType: LCS                              | TestCode                                | TestCode: 8270_w | Units: µg/L                         |         | Prep Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5/6/2008                      | RunNo: 23556                                       | 9              |             |
| Client ID: ZZZZZ                      | Batch ID: 10076                            | TestNo                                  | TestNo: SW8270C  | (SW3510)                            |         | Analysis Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | : 5/7/2008                    | SeqNo: 231371                                      | 7.1            |             |
| Analyte                               | Result                                     | POL                                     | SPK value        | SPK Ref Val                         | %REC    | LowLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HighLimít RPD Ref Val         | %RPD F                                             | RPDLimit Qual  |             |
| 1,2,4-Trichlorobenzene                | 15.74                                      | 1.00                                    | 25               | 0                                   | 62.9    | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 140                           |                                                    |                | 1           |
| 1,2-Dichlorobenzene                   | 16.48                                      | 1.00                                    | 25               | 0                                   | 62.9    | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 140                           |                                                    |                |             |
| 1,2-Dinitrobenzene                    | 21.39                                      | 1.00                                    | 25               | 0                                   | 85.6    | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 140                           |                                                    |                |             |
| 1,3-Dichlorobenzene                   | 16.06                                      | 1.00                                    | 25               | 0                                   | 64.2    | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 140                           |                                                    |                |             |
| 1,3-Dinitrobenzene                    | 17.94                                      | 1.00                                    | 25               | 0                                   | 71.8    | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 140                           |                                                    |                |             |
| 1,4-Dichlorobenzene                   | 16.80                                      | 1.00                                    | 25               | 0                                   | 67.2    | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 140                           |                                                    |                |             |
| Qualifiers; BRL Below Reporting Limit | rting Limit                                | *************************************** | E Value a        | Value above quantitation range      | - afi   | PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF TH | H Holding times f             | Holding times for preparation or analysis exceeded | lysis exceeded |             |
|                                       | Analyte detected below quantitation limits |                                         | ND Not Det       | Not Detected at the Reporting Limit | g Limit |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R RPD outside recovery limits | overy limits                                       |                |             |
| S Spike Recov                         | Spike Recovery outside recovery limits     |                                         |                  |                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                    | Page 16 of 33  | 133         |

Fay, Spotford & Thorndike CLIENT:

0805025 Work Order: WM-046, 1.4 Exp Project:

TestCode: 8270\_w

| Sample ID: LCS-10076                  | SampType: LCS                              | TestCode: 8270_w | 8270_w          | Units: µg/L                         |          | Prep Date:     | te: 5/6/2008                  | RunNo: 23556                                       | 9             |         |
|---------------------------------------|--------------------------------------------|------------------|-----------------|-------------------------------------|----------|----------------|-------------------------------|----------------------------------------------------|---------------|---------|
| Client ID: ZZZZZ                      | Batch ID: 10076                            | TestNo:          | TestNo: SW8270C | (SW3510)                            |          | Analysis Date: | te: 5/7/2008                  | SeqNa: 231371                                      | Σ             |         |
| Analyte                               | Result                                     | PQL              | SPK value       | SPK Ref Val                         | %REC     | LowLimit       | HighLimit RPD Ref Val         | %RPD R                                             | RPDLimit Q    | Qual    |
| 1,4-Dinitrobenzene                    | 19,22                                      | 1.00             | 25              | 0                                   | 76.9     | 40             | 140                           |                                                    |               |         |
| 2,3,4,6.Tetrachlorophenol             | 12.97                                      | 1.00             | 25              | 0                                   | 51.9     | 30             | 130                           |                                                    |               |         |
| 2,4,5-Trichlorophenol                 | 15.13                                      | 1.00             | 25              | 0                                   | 60.5     | 30             | 130                           |                                                    |               |         |
| 2,4,6-Trichlorophenol                 | 14.99                                      | 1.00             | 25              | 0                                   | 0'09     | 30             | 130                           |                                                    |               |         |
| 2,4-Dichlorophenol                    | 14.86                                      | 1.00             | 22              | 0                                   | 59.4     | 30             | 130                           |                                                    |               |         |
| 2,4-Dimethylphenol                    | 18.10                                      | 1.00             | 25              | 0                                   | 72.4     | 30             | 130                           |                                                    |               |         |
| 2,4-Dinitrophenol                     | <u>Q</u>                                   | 5.00             | 25              | 0                                   | 18.4     | 30             | 130                           |                                                    |               | S       |
| 2,4-Dinitrotoluene                    | 19.47                                      | 1.00             | 25              | 0                                   | 77.9     | 40             | 140                           |                                                    |               |         |
| 2,6-Dínitrotoluene                    | 18.52                                      | 1.00             | 22              | 0                                   | 74.1     | 40             | 140                           |                                                    |               |         |
| 2-Chloronaphthalene                   | 20.10                                      | 1.00             | 25              | 0                                   | 80.4     | 40             | 140                           |                                                    |               |         |
| 2-Chlorophenol                        | 15.81                                      | 1.00             | 22              | 0                                   | 63.2     | 30             | 130                           |                                                    |               |         |
| 2-Methylnaphthalene                   | 19.45                                      | 1.00             | 25              | 0                                   | 77.8     | 40             | 140                           |                                                    |               |         |
| 2-Methyiphenoi                        | 16.62                                      | 1.00             | 25              | 0                                   | 66.5     | 30             | 130                           |                                                    |               |         |
| 2-Nitroaniline                        | 19.58                                      | 1.00             | 25              | 0                                   | 78.3     | 40             | 140                           |                                                    |               |         |
| 2-Nitrophenol                         | 15,67                                      | 1.00             | 25              | 0                                   | 62.7     | 30             | 130                           |                                                    |               |         |
| 3,3'-Dichlorobenzidine                | 23.56                                      | 1.00             | 25              | 0                                   | 94.2     | 40             | 140                           |                                                    |               |         |
| 3-Methylphenol/4-Methylphenol         | 16.23                                      | 1.00             | 25              | 0                                   | 64.9     | 30             | 130                           |                                                    |               |         |
| 3-Nitroaniline                        | 20.07                                      | 1.00             | 25              | 0                                   | 80.3     | 40             | 140                           |                                                    |               |         |
| 4,6-Dinitro-2-Methyiphenol            | 8.905                                      | 5.00             | 25              | 0                                   | 35.6     | 30             | 130                           |                                                    |               |         |
| 4-Bromophenyi Phenyi Ether            | 19.52                                      | 1.00             | 25              | 0                                   | 78.1     | 40             | 140                           |                                                    |               |         |
| 4-Chloro-3-Methylphenol               | 17.42                                      | 1.00             | 25              | 0                                   | 2.69     | 30             | 130                           |                                                    |               |         |
| 4-Chloroaniline                       | 26,31                                      | 1.00             | 25              | 0                                   | 105      | 40             | 140                           |                                                    |               |         |
| 4-Chlorophenyi Phenyi Ether           | 20.33                                      | 1.00             | 25              | 0                                   | 81.3     | 40             | 140                           |                                                    |               |         |
| 4-Nitroaniline                        | 20.07                                      | 1.00             | 25              | 0                                   | 80.3     | 40             | 140                           |                                                    |               |         |
| 4-Nitrophenol                         | 9,775                                      | 1,00             | 25              | 0                                   | 39.1     | 30             | 130                           |                                                    |               |         |
| Acenaphthene                          | 20.18                                      | 1.00             | 25              | 0                                   | 80.7     | 40             | 140                           |                                                    |               |         |
| Acenaphthylene                        | 24.10                                      | 1.00             | 25              | 0                                   | 96.4     | 40             | 140                           |                                                    |               |         |
| Acetophenone                          | 18.04                                      | 1.00             | 25              | 0                                   | 72.2     | 40             | 140                           |                                                    |               |         |
| Aniline                               | 30.50                                      | 5.00             | 25              | 0                                   | 122      | 40             | 140                           |                                                    |               |         |
| Anthracene                            | 24.30                                      | 1.00             | 25              | 0                                   | 97.2     | 40             | 140                           |                                                    |               |         |
| Azobenzene                            | 26.56                                      | 5.00             | 25              | 0                                   | 106      | 40             | 140                           |                                                    |               |         |
| Qualifiers: BRL Below Reporting Limit | ting Limit                                 |                  | E Value         | Value above quantitation range      | ာရိ      |                | H Holding times for p         | Holding times for preparation or analysis exceeded | ysis exceeded | İ       |
|                                       | Analyte detected below quantitation limits | Kan              | ND Not Do       | Not Detected at the Reporting Limit | g Linuit |                | R RPD outside recovery limits | ery limits                                         |               |         |
| S Spike Recove                        | Spike Recovery outside recovery limits     |                  |                 |                                     |          |                |                               |                                                    | Page 17 of 33 | 7 of 33 |
|                                       |                                            |                  |                 |                                     |          |                |                               |                                                    | 0             |         |

Spike Recovery outside recovery limits

~ ~

Fay, Spofford & Thorndike CLIENT:

0805025 Work Order:

WM-046, 1.4 Exp **Project:** 

TestCode: 8270\_w

| Another Line (17.10)         Result (1)         Circle (1)         SexPort SWEZTOG         SWEZTOG         SWEZTOG         SWEZTOG         SWEZTOG         Convinint         Highland         Rep (14.10)         SWEZTOG         Convinint         Highland         Rep (14.10)         SWEZTOG         Convinint         Highland         Rep (14.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample ID: LCS-10076        | SampType: LCS                          | TestCoc | TestCode: 8270_w | Units: µg/L            |         | Prep Date:  | (e: 5/6/2008 | HUNNO: 23256               |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------|---------|------------------|------------------------|---------|-------------|--------------|----------------------------|--------|
| Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page 14   Page   |                             | Batch ID: 10076                        | Test    | lo: SW8270C      | (SW3510)               |         | Analysis Da |              | SeqNo: 231371              |        |
| 26.02         0.100         25         0         104         40         140           22.08         5.00         25         0         93.1         40         140           22.08         0.100         25         0         86.3         40         140           21.34         0.500         25         0         86.2         40         140           23.201         1.00         25         0         86.2         40         140           17.40         1.00         25         0         86.2         40         140           17.41         1.00         25         0         86.2         40         140           17.40         1.00         25         0         86.2         40         140           17.40         1.00         25         0         86.7         40         140           18.1         1.00         25         0         86.7         40         140           21.5         1.00         25         0         86.7         40         140           22.10         1.00         25         0         86.4         40         140           22.10         1.00 <th>Analyte</th> <th>Result</th> <th>PQL</th> <th>SPK value</th> <th>SPK Ref Val</th> <th>%REC</th> <th>LowLimit</th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyte                     | Result                                 | PQL     | SPK value        | SPK Ref Val            | %REC    | LowLimit    |              |                            |        |
| 10         10         331         40         140           21,34         0,100         25         0         88,3         40         140           21,34         0,100         25         0         88,4         40         140           22,01         1,00         25         0         88,0         40         140           17,40         1,00         25         0         86,2         40         140           17,40         1,00         25         0         88,2         40         140           17,54         1,00         25         0         88,2         40         140           1,00         25         0         88,2         40         140           1,00         25         0         83,7         40         140           2,343         1,00         25         0         83,7         40         140           2,48         1,00         25         0         88,7         40         140           2,548         1,00         25         0         88,4         40         140           2,548         1,00         25         0         26         0 <t< td=""><td>Benz(a)Anthracene</td><td>26.02</td><td>0.100</td><td>25</td><td>0</td><td>104</td><td>40</td><td>140</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Benz(a)Anthracene           | 26.02                                  | 0.100   | 25               | 0                      | 104     | 40          | 140          |                            |        |
| 22.08 0.100 25 0 0 88.3 40 140 21.34 0.500 25 0 85.4 40 140 22.01 1.00 25 0 85.4 40 140 22.01 1.00 25 0 85.2 40 17.40 1.00 25 0 85.2 40 17.54 1.00 25 0 85.2 40 17.54 1.00 25 0 89.7 40 17.54 1.00 25 0 89.7 40 17.54 1.00 25 0 89.7 40 17.54 1.00 25 0 89.7 40 17.54 1.00 25 0 89.7 40 17.54 1.00 25 0 89.7 40 17.54 1.00 25 0 89.7 40 17.54 1.00 25 0 89.7 40 17.54 1.00 25 0 89.7 40 17.54 1.00 25 0 89.7 40 17.54 1.00 25 0 89.7 40 17.54 1.00 25 0 89.7 40 17.54 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25 0 89.8 40 17.55 1.00 25  | Benzidine                   | 82.76                                  | 5.00    | 25               | 0                      | 331     | 40          | 140          |                            | S      |
| 1,134   0,500   25   0   86.4   40   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   | Benzo(a)Pyrene              | 22.08                                  | 0.100   | 25               | 0                      | 88.3    | 40          | 140          |                            |        |
| 22.01 1.00 25 0 68.0 40 40 140  12.380 0.500 25 0 68.5 40 140  17.40 1.00 25 0 77.1 40 140  17.54 1.00 25 0 77.2 40 140  17.54 1.00 25 0 83.7 40 140  22.43 1.00 25 0 83.7 40 140  22.48 1.00 25 0 83.7 40 140  22.48 1.00 25 0 83.5 40 140  22.50 1.00 25 0 83.5 40 140  22.10 1.00 25 0 83.5 40 140  22.20 1.00 25 0 83.5 40 140  22.20 1.00 25 0 83.5 40 140  22.20 1.00 25 0 83.5 40 140  22.20 1.00 25 0 83.5 40 140  22.20 1.00 25 0 98.8 40 140  22.20 1.00 25 0 98.8 40 140  22.20 1.00 25 0 98.8 40 140  22.20 1.00 25 0 9 83.5 40 140  22.20 1.00 25 0 9 83.5 40 140  22.20 1.00 25 0 9 83.5 40 140  23.378 1.00 25 0 9 87.9 40 140  23.378 1.00 25 0 9 87.9 40 140  23.378 1.00 25 0 9 87.9 40 140  23.378 1.00 25 0 9 87.9 40 140  23.378 1.00 25 0 9 87.9 40 140  23.378 1.00 25 0 9 87.9 40 140  24.40 14.42 1.00 25 0 9 87.9 40 140  24.40 14.42 1.00 25 0 9 87.9 40 140  24.40 14.42 1.00 25 0 9 87.9 40 140  24.40 14.42 1.00 25 0 9 87.9 40 140  24.40 14.42 1.00 25 0 9 87.9 40 140  24.40 14.42 1.00 25 0 9 87.9 40 140  24.40 14.40 14.40 20 140  24.40 14.40 14.40 20 140  24.40 14.40 14.40 20 140  25.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14. | Benzo(b)Fluoranthene        | 21.34                                  | 0.500   | 25               | 0                      | 85.4    | 40          | 140          |                            |        |
| 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Benzo(g,h,i)Perylene        | 22.01                                  | 1.00    | 25               | 0                      | 88.0    | 40          | 140          |                            |        |
| 17.40   1.00   25   0   69.6   40   140   140   140   154   140   154   140   155   140   155   140   155   140   155   154   160   155   160   155   160   155   160   155   160   155   160   155   160   155   160   155   160   155   160   155   160   155   160   155   160   155   160   155   160   155   160   155   160   155   160   155   160   155   160   155   160   155   160   155   160   155   160   155   160   155   160   155   160   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150    | Benzo(k)Fluoranthene        | 23.80                                  | 0.500   | 25               | 0                      | 95.2    | 40          | 140          |                            |        |
| re 19.26 1.00 25 0 77.1 40 140 140 140 17.54 1.00 25 0 70.2 40 140 140 17.54 1.00 25 0 84.2 40 140 140 140 140 140 140 140 140 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Benzyl Alcohol              | 17.40                                  | 1.00    | 25               | 0                      | 9.69    | 40          | 140          |                            |        |
| r 21.06 1.00 25 0 70.2 40 140 140 140 123.43 1.00 25 0 84.2 40 140 140 140 140 140 140 140 140 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bis(2-Chloroethoxy)Methane  | 19.26                                  | 1.00    | 25               | 0                      | 77.1    | 40          | 140          |                            |        |
| c         21.06         1.00         25         0         84.2         40         140           23.43         1.00         25         0         83.7         40         140           22.43         1.00         25         0         86.2         40         140           21.54         1.00         25         0         86.2         40         140           25.48         1.00         25         0         86.2         40         140           25.48         1.00         25         0         102         40         140           20.86         0.100         25         0         60.6         40         140           15.16         1.00         25         0         60.6         40         140           26.24         1.00         25         0         60.6         40         140           26.24         1.00         25         0         88.2         40         140           21.99         1.00         25         0         88.2         40         140           15.28         0.100         25         0         60.6         40         140           21.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bis(2-Chloraethyl)Ether     | 17.54                                  | 1.00    | 25               | 0                      | 70.2    | 40          | 140          |                            |        |
| 23.43       1.00       25       0       93.7       40       140         22.43       1.00       25       0       88.7       40       140         21.54       1.00       25       0       86.2       40       140         25.48       1.00       25       0       86.2       40       140         20.86       0.100       25       0       83.5       40       140         20.86       0.100       25       0       88.4       40       140         18.87       1.00       25       0       88.4       40       140         18.87       1.00       25       0       88.4       40       140         26.24       1.00       25       0       105       40       140         26.24       1.00       25       0       105       40       140         27.05       1.00       25       0       88.0       40       140         16.28       0.10       25       0       87.9       40       140         23.22       1.00       25       0       135       40       140         19.19       1.00 <td< td=""><td>Bis(2-Chloroisapropyl)Ether</td><td>21.06</td><td>1.00</td><td>25</td><td>0</td><td>84.2</td><td>40</td><td>140</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bis(2-Chloroisapropyl)Ether | 21.06                                  | 1.00    | 25               | 0                      | 84.2    | 40          | 140          |                            |        |
| 22.43       1,00       25       0       89.7       40       140         21.54       1,00       25       0       86.2       40       140         25.48       1,00       25       0       102       40       140         20.86       0,100       25       0       83.5       40       140         22.10       1,00       25       0       88.4       40       140         18.87       1,00       25       0       88.4       40       140         18.87       1,00       25       0       60.6       40       140         26.24       1,00       25       0       60.6       40       140         26.29       1,00       25       0       60.6       40       140         27.99       1,00       25       0       61.1       40       140         16.28       0.10       25       0       61.1       40       140         16.29       1,00       25       0       87.9       40       140         23.20       1,00       25       0       62.9       40       140         19.19       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bis(2-Ethylhexyl)Phthalate  | 23.43                                  | 1.00    | 25               | 0                      | 93.7    | 40          | 140          |                            | ٠      |
| 21.54       1,00       25       0       86.2       40       140         25.48       1,00       25       0       102       40       140         20.86       0,100       25       0       83.5       40       140         22.10       1,00       25       0       88.4       40       140         18.87       1,00       25       0       60.6       40       140         22.10       1,00       25       0       60.6       40       140         26.24       1,00       25       0       60.6       40       140         21.99       1,00       25       0       88.0       40       140         22.05       1,00       25       0       88.0       40       140         14.26       1,00       25       0       88.0       40       140         14.26       1,00       25       0       61.1       40       140         21.37       0,10       25       0       87.9       40       140         23.22       1,00       25       0       135       40       140         19.19       1,00 <td< td=""><td>Butyl Benzyl Phthalate</td><td>22.43</td><td>1.00</td><td>25</td><td>0</td><td>89.7</td><td>40</td><td>140</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Butyl Benzyl Phthalate      | 22.43                                  | 1.00    | 25               | 0                      | 89.7    | 40          | 140          |                            |        |
| 25.48         1.00         25         0         102         40         140           20.86         0.100         25         0         83.5         40         140           22.10         1.00         25         0         88.4         40         140           18.87         1.00         25         0         75.5         40         140           16.16         1.00         25         0         60.6         40         140           26.24         1.00         25         0         60.6         40         140           24.69         1.00         25         0         98.8         40         140           21.99         1.00         25         0         88.0         40         140           18.25         0.100         25         0         88.0         40         140           19.28         0.100         25         0         61.1         40         140           21.97         0.100         25         0         87.9         40         140           23.22         1.00         25         0         76.8         40         140           19.19         1.00<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Carbazole                   | 21.54                                  | 1.00    | 25               | 0                      | 86.2    | 40          | 140          |                            |        |
| 20.86       0.100       25       0       63.5       40       140         22.10       1.00       25       0       68.4       40       140         18.87       1.00       25       0       75.5       40       140         15.16       1.00       25       0       60.6       40       140         26.24       1.00       25       0       60.6       40       140         26.24       1.00       25       0       98.8       40       140         21.99       1.00       25       0       88.0       40       140         22.05       1.00       25       0       88.0       40       140         15.28       0.100       25       0       88.2       40       140         14.26       1.00       25       0       88.2       40       140         21.97       0.100       25       0       87.9       40       140         23.22       1.00       25       0       87.9       40       140         19.78       1.00       25       0       135       40       140         11.44       5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Chrysene                    | 25.48                                  | 1.00    | 25               | 0                      | 102     | 40          | 140          |                            |        |
| 22.10     1.00     25     0     88.4     40     140       1887     1.00     25     0     75.5     40     140       26.24     1.00     25     0     60.6     40     140       26.24     1.00     25     0     60.6     40     140       24.69     1.00     25     0     98.8     40     140       21.99     1.00     25     0     88.0     40     140       22.05     1.00     25     0     88.0     40     140       16.28     0.100     25     0     88.0     40     140       16.28     0.100     25     0     61.1     40     140       14.26     1.00     25     0     61.1     40     140       21.97     0.100     25     0     87.9     40     140       23.22     1.00     25     0     87.9     40     140       23.22     1.00     25     0     87.9     40     140       19.19     1.00     25     0     45.8     40     140       19.78     1.00     25     0     78.1     40     140       19.78 <t< td=""><td>Dibenz(a,h)Anthracene</td><td>20.86</td><td>0.100</td><td>25</td><td>0</td><td>83.5</td><td>40</td><td>140</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dibenz(a,h)Anthracene       | 20.86                                  | 0.100   | 25               | 0                      | 83.5    | 40          | 140          |                            |        |
| 18.87       1.00       25       0       75.5       40       140         15.16       1.00       25       0       60.6       40       140         26.24       1.00       25       0       60.6       40       140         24.69       1.00       25       0       98.8       40       140         21.99       1.00       25       0       88.0       40       140         18.25       0.100       25       0       88.2       40       140         18.25       0.100       25       0       61.1       40       140         14.26       1.00       25       0       61.1       40       140         21.97       0.100       25       0       87.9       40       140         23.22       1.00       25       0       87.9       40       140         19.19       1.00       25       0       87.9       40       140         19.78       1.00       25       0       75.8       40       140         19.78       1.00       25       0       45.8       40       140         19.78       1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dibenzofuran                | 22.10                                  | 1.00    | 25               | 0                      | 88,4    | 40          | 140          |                            |        |
| 15.16         1.00         25         0         60.6         40         140           26.24         1.00         25         0         105         40         140           24.69         1.00         25         0         98.8         40         140           21.99         1.00         25         0         88.0         40         140           18.25         0.100         25         0         88.2         40         140           18.25         0.100         25         0         73.0         40         140           14.26         1.00         25         0         61.1         40         140           21.97         0.100         25         0         87.9         40         140           23.28         1.00         25         0         87.9         40         140           23.22         1.00         25         0         76.8         40         140           19.19         1.00         25         0         76.8         40         140           19.78         1.00         25         0         75.8         40         140           19.78         1.00 </td <td>Diethyl Phthalate</td> <td>18.87</td> <td>1.00</td> <td>25</td> <td>0</td> <td>75.5</td> <td>40</td> <td>140</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Diethyl Phthalate           | 18.87                                  | 1.00    | 25               | 0                      | 75.5    | 40          | 140          |                            |        |
| 26.24       1.00       25       0       105       40       140         24.69       1.00       25       0       98.8       40       140         21.99       1.00       25       0       88.0       40       140         22.05       1.00       25       0       88.2       40       140         18.25       0.100       25       0       73.0       40       140         14.26       1.00       25       0       61.1       40       140         21.97       0.100       25       0       87.9       40       140         23.22       1.00       25       0       87.9       40       140         19.19       1.00       25       0       82.9       40       140         19.19       1.00       25       0       76.8       40       140         19.17       1.00       25       0       76.8       40       140         19.18       1.00       25       0       75.8       40       140         19.78       1.00       25       0       75.8       40       140         19.78       1.00       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dimethyl Phthalate          | 15.16                                  | 1.00    | 25               | 0                      | 9.09    | 40          | 140          |                            |        |
| 24,69     1,00     25     0     98.8     40     140       21,99     1,00     25     0     88.0     40     140       22,05     1,00     25     0     88.2     40     140       18,25     0,100     25     0     61.1     40     140       15,28     0,100     25     0     61.1     40     140       21,97     0,100     25     0     87.9     40     140       23,22     1,00     25     0     135     40     140       19,19     1,00     25     0     76.8     40     140       11,44     5,00     25     0     76.8     40     140       19,78     1,00     25     0     76.8     40     140       19,78     1,00     25     0     76.8     40     140       19,78     1,00     25     0     76.8     40     140       19,78     1,00     25     0     79.1     40     140       10,78     25     0     79.1     40     140       10,78     25     0     79.1     40     140       10,00     25     0     79.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Di-n-Butyl Phthalate        | 26.24                                  | 1.00    | 25               | 0                      | 105     | 40          | 140          |                            |        |
| 21.99       1.00       25       0       88.0       40       140         22.05       1.00       25       0       88.2       40       140         18.25       0.100       25       0       73.0       40       140         15.28       0.100       25       0       61.1       40       140         14.26       1.00       25       0       87.9       40       140         21.97       0.100       25       0       87.9       40       140         33.78       1.00       25       0       92.9       40       140         19.19       1.00       25       0       76.8       40       140         11.44       5.00       25       0       76.8       40       140         19.78       1.00       25       0       76.8       40       140         19.78       1.00       25       0       79.1       40       140         According Limit       E. Value above quantitation range       H       H       140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Di-n-Octyl Phthalate        | 24.69                                  | 1.00    | 25               | 0                      | 98.8    | 40          | 140          |                            |        |
| 22.05         1.00         25         0         88.2         40         140           18.25         0.100         25         0         73.0         40         140           15.28         0.100         25         0         61.1         40         140           14.26         1.00         25         0         67.0         40         140           21.97         0.100         25         0         87.9         40         140           33.78         1.00         25         0         135         40         140           23.22         1.00         25         0         76.8         40         140           19.19         1.00         25         0         76.8         40         140           19.78         1.00         25         0         76.8         40         140           19.78         1.00         25         0         79.1         40         140           Reporting Limit         1.00         25         0         79.1         40         140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fluoranthene                | 21.99                                  | 1.00    | 25               | . 0                    | 88,0    | 40          | 140          |                            |        |
| 18.25         0.100         25         0         73.0         40         140           15.28         0.100         25         0         61.1         40         140           14.26         1.00         25         0         57.0         40         140           21.97         0.100         25         0         87.9         40         140           33.78         1.00         25         0         135         40         140           23.22         1.00         25         0         76.8         40         140           19.19         1.00         25         0         76.8         40         140           19.78         1.00         25         0         76.8         40         140           19.78         1.00         25         0         79.1         40         140           According Limit         E. Value above quantitation range         B         H         140         140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fluorene                    | 22.05                                  | 1.00    | 25               | 0                      | 88.2    | 40          | 140          |                            |        |
| 15.28     0.100     25     0     61.1     40     140       14.26     1.00     25     0     57.0     40     140       21.97     0.100     25     0     87.9     40     140       23.22     1.00     25     0     92.9     40     140       19.19     1.00     25     0     76.8     40     140       11.44     5.00     25     0     45.8     40     140       Reporting Limit     E     Value above quantitation range     H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hexachiorobenzene           | 18.25                                  | 0.100   | 25.              | 0                      | 73.0    | 40          | 140          |                            |        |
| 14.26         1.00         25         0         57.0         40         140           21.97         0.100         25         0         87.9         40         140           33.78         1.00         25         0         135         40         140           23.22         1.00         25         0         92.9         40         140           19.19         1.00         25         0         76.8         40         140           Reporting Limit         1.00         25         0         79.1         40         140           Reporting Limit         E         Value above quantitation range         B         H         140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hexachtorobutadiene         | 15,28                                  | 0.100   | 25               | 0                      | 61.1    | 40          | 140          |                            |        |
| 21.97 0.100 25 0 87.9 40 140 33.78 1.00 25 0 135 40 140 23.22 1.00 25 0 92.9 40 140 19.19 1.00 25 0 76.8 40 140 140 25 0 76.8 40 140 140 25 0 76.8 40 140 140 25 0 79.1 40 140 140 25 0 79.1 40 140 140 140 140 140 140 140 140 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hexachloroethane            | 14.26                                  | 1.00    | 25               | 0                      | 57.0    | 40          | 140          |                            |        |
| 33.78 1.00 25 0 135 40 140 23.22 1.00 25 0 92.9 40 140 19.19 1.00 25 0 76.8 40 140 11.44 5.00 25 0 76.8 40 140 19.78 1.00 25 0 79.1 40 140 Reporting Limit E Value above quantitation range H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Indeno(1,2,3-cd)Pyrene      | 21.97                                  | 0.100   | 25               | 0                      | 87.9    | 40          | 140          |                            |        |
| 23.22 1.00 25 0 92.9 40 140 19.19 1.00 25 0 76.8 40 140 140 11.44 5.00 25 0 75.8 40 140 140 19.78 1.00 25 0 79.1 40 140 140 140 15.00 25 0 79.1 40 140 140 140 15.00 25 0 79.1 40 140 140 140 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15 | (sophorone                  | 33.78                                  | 1.00    | 25               | 0                      | 135     | 40          | 140          |                            |        |
| 19.19 1.00 25 0 76.8 40 140 140 11.44 5.00 25 0 45.8 40 140 140 19.78 1.00 25 0 79.1 40 140 140 140 140 140 140 140 140 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Naphthalene                 | 23,22                                  | 1,00    | 25               | 0                      | 92.9    | 40          | 140          |                            |        |
| 11.44   5.00   25   0   45.8   40   140   140   19.78   1.00   25   0   79.1   40   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140    | Nitrobenzene                | 19.19                                  | 1.00    | 25               | 0                      | 76.8    | 40          | 140          |                            |        |
| Reporting Limit E Value above quantitation range H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N.Nitrosodimethylamine      | 11.44                                  | 5.00    | 25               | 0                      | 45.8    | 40          | 140          |                            |        |
| BRL Below Reporting Limit E Value above quantitation range H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N-Nitrosodi-n-Propylamine   | 19.78                                  | 1.00    | 25               | 0                      | 79.1    | 40          | 140          |                            |        |
| T And the American Electron Propies NOT New Debases of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the Depast of the | BRL                         | ding Limit                             |         |                  | above quantitation ran |         |             |              | preparation or analysis ex | ceeded |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | and the land and another fine lives to |         |                  | tacted at the Denortin | , time; |             |              | reary liverides            |        |

Fay, Spofford & Thorndike CLIENT:

0805025 Work Order: WM-046, 1.4 Exp

**Project:** 

TestCode: 8270\_w

ANALYTICAL QC SUMMARY REPORT

| Sample ID: LCS-10076       | SampType: LCS   | TestCo | TestCode: 8270_w | Units: µg/L |      | Prep Date:   | e: 5/6/2008                         | RunNo: 23556  |      |
|----------------------------|-----------------|--------|------------------|-------------|------|--------------|-------------------------------------|---------------|------|
| Client ID: ZZZZZ           | Batch ID: 10076 | Test   | estNo: SW8270C   | (SW3510)    |      | Analysis Dat | Analysis Date: 5/7/2008             | SeqNo: 231371 |      |
| Analyte                    | Result          | PQL    | SPK value        | SPK Ref Val | %REC | LowLimit     | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit | Qual |
| N-Nitrosodiphenylamine     | 24.01           | 5.00   | 25               | 0           | 96.0 | 40           | 140                                 |               |      |
| Pentachlorophenol          | 9.235           | 1.00   | 25               | 0           | 36.9 | 30           | 130                                 |               |      |
| Phenanthrene               | 24.02           | 1.00   | 25               | 0           | 96.1 | 40           | 140                                 |               |      |
| Phenol                     | 10.02           | 1.00   | 25               |             | 40.1 | 30           | 130                                 |               |      |
| Pyrene                     | 28.18           | 1.00   | . 25             | 0           | 113  | 40           | 140                                 |               |      |
| Pyridine                   | 11.34           | 5.00   | 25               | 0           | 45.3 | 40           | 140                                 |               |      |
| Surr: 2,4,6-Tribromophenol | 42.18           | 0      | 75               | 0           | 56.2 | 5            | 110                                 |               |      |
| Surr: 2-Fluorabiphenyl     | 41,68           | 0      | 50               | 0           | 83.4 | 30           | 130                                 |               |      |
| Surr: 2-Fluorophenol       | 32.01           | 0      | 75               | 0           | 42.7 | 15           | 110                                 |               |      |
| Surr: Nitrobenzene-d5      | 35.67           | 0      | 90               | . 0         | 71.3 | 30           | 130                                 |               |      |
| Surr: Phenol-d6            | 24.74           | 0      | 75               | 0           | 33.0 | 15           | 110                                 |               |      |
| Surr: Terphenyl-d14        | 49.71           | 0      | 50               | 0           | 99.4 | 30           | 130                                 |               |      |

щS Analyte detected below quantitation limits BRL Below Reporting Limit

Qualifiers:

Spike Recovery outside recovery limits

Not Detected at the Reporting Limit Value above quantitation range

Holding times for preparation or analysis exceeded RPD outside recovery limits H ×

RPD outside recovery limits

E Value above quantitation range ND Not Detected at the Reporting Limit

Analyte detected below quantitation limits Spike Recovery outside recovery limits

BRL Below Reporting Limit

Qualifiers:

Fay, Spofford & Thomdike CLIENT:

0805025 Work Order: WM-046, 1.4 Exp

Project:

TestCode: ag\_w

| Sample ID: MB-10051  | SampType: MBLK                | TestCod | TestCode: ag_w               | Units: mg/L              |          | Prep Date: 5/2/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2/2008                              | RunNo: 23480                                |      |      |
|----------------------|-------------------------------|---------|------------------------------|--------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------|------|------|
| Client ID: ZZZZZ     | Batch ID: 10051               | TestA   | estNo: 200.7                 | (SW3010A)                | *        | Analysis Date: 5/5/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/2008                              | SeqNo: <b>230662</b>                        |      |      |
| Analyte              | Result                        | PaL     | SPK value                    | SPK value SPK Ref Val    | %REC     | LowLimit Highl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | "REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit                               | imit | Qual |
| Silver               | ON                            | 0.00700 |                              |                          |          | A TAXABLE TO PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY |                                     |                                             |      |      |
| Sample ID: LCS-10051 | SampType: LCS Batch ID: 10051 | TestCoc | TestCode: ag_w TestNo: 200.7 | Units: mg/L<br>(SW3010A) | <b>,</b> | Prep Date: 5/2/2008<br>Analysis Date: 5/5/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2/2008<br>5/2008                    | RunNo: <b>23480</b><br>SeqNo: <b>230663</b> |      |      |
| Analyte              | Result                        | POL     | SPK value                    | SPK value SPK Ref Val    | %REC     | LowLimit Highl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit                               | 1    | Qual |
| Silver               | 0.3990                        | 0.00700 | 0.425                        | 0                        | 93.9     | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120                                 |                                             |      |      |

RPD outside recovery limits

H N

E Value above quantitation range
ND Not Detected at the Reporting Limit

Analyte detected below quantitation limits Spike Recovery outside recovery limits

BRL Below Reporting Limit

Qualifiers:

Fay, Spofford & Thorndike CLIENT:

0805025 Work Order:

**Project:** 

WM-046, 1.4 Exp

TestCode: CN\_W\_SM

| Sample ID: MB-R23624  | SampType: MBLK   | TestCo | TestCode: CN_W_SM     | Units: mg/L |      | Prep Date:               | THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY O |          | RunNo: 23624         | 24                 |      |
|-----------------------|------------------|--------|-----------------------|-------------|------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|--------------------|------|
| Client ID: ZZZZ       | Batch ID: R23624 | Test   | TestNo: SM 4500-CN-   | <u>.</u>    | -    | Analysis Date: 5/12/2008 | 5/12/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | J,       | SeqNo: <b>232074</b> | 074                |      |
| Analyte               | Result           | Pal    | SPK value SPK Ref Val | SPK Ref Val | %REC | LowLimit                 | %REC LowLimit HighLimit RPD Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | r Val    | %RPD                 | %RPD RPDLimit Qual | Qual |
| Cyanide, Total        | QN               | 0.0197 |                       |             |      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |                    |      |
| Sample ID: LCS-R23624 | SampType: LCS    | TestCo | TestCode: CN_W_SM     | Units: mg/L |      | Prep Date:               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>.</u> | RunNo: 23624         | 24                 |      |
| Client ID: ZZZZ       | Batch ID: R23624 | Test   | TestNo: SM 4500-CN-   | 4           | 7    | Analysis Date: 5/12/2008 | :: 5/12/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5,       | SeqNo: 232075        | 376                |      |
| Analyte               | Result           | PQL    | SPK value SPK Ref Val | SPK Ref Val | %REC | LowLimit                 | "REC LowLimit HighLimit RPD Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Val     | %RPD                 | %RPD RPDLimit Qual | Qual |
| Cyanide, Total        | 0.1726           | 0.0197 | 0.183                 | 0           | 94.3 | 85                       | 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | T                    |                    |      |
|                       |                  |        |                       |             |      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |                    |      |

RPD outside recovery limits

E Value above quantitation range
ND Not Detected at the Reporting Limit Value above quantitation range

> Analyte detected below quantitation limits Spike Recovery outside recovery limits

BRL Below Reporting Limit

Qualifiers:

Fay, Spofford & Thorndike 0805025 Work Order: CLIENT:

WM-046, 1.4 Exp

Project:

TestCode: Cr6\_WW

| Sample ID: MB-R23495  | SampType; MBLK   | TestCode | TestCode: Cr6_WW  | Units: mg/L           |      | Prep Date:  | .ie                                 |                                         | RunNo: 23495  | 95                 |      |
|-----------------------|------------------|----------|-------------------|-----------------------|------|-------------|-------------------------------------|-----------------------------------------|---------------|--------------------|------|
| Client ID: ZZZZ       | Batch ID: R23495 | TestNc   | estNo: M3500.Cr D | <b>C</b> .            | ∢    | malysis Dat | Analysis Date: 5/6/2008             |                                         | SeqNo: 230862 | 1862               |      |
| Anafyte               | Result           | POL      | SPK value         | SPK value SPK Ref Val | %REC | LowLimit    | %REC LowLimit HighLimit RPD Ref Val | 'D Ref Val                              | %RPD          | %RPD RPDLimit Qual | Qual |
| Chromium, Hexavalent  | ON               | 0.0500   |                   |                       |      |             |                                     |                                         |               |                    |      |
| Sample ID: LCS-R23495 | SampType: LCS    | TestCode | TestCode: Cr6_WW  | Units: mg/L           |      | Prep Date:  | (a)                                 | *************************************** | RunNo: 23495  | 95                 |      |

|                       |                  | *************************************** |                       |             |      |                   |                                     |                      |                    |      |
|-----------------------|------------------|-----------------------------------------|-----------------------|-------------|------|-------------------|-------------------------------------|----------------------|--------------------|------|
| Sample ID: LCS-R23495 | SampType: LCS    | TestCoc                                 | TestCode: Cr6_WW      | Units: mg/L |      | Prep Date:        | 6                                   | RunNo: 23495         | 195                |      |
| Client ID: ZZZZ       | Batch ID; R23495 | Test                                    | TestNo: M3500.Cr D    |             | *    | Analysis Date: 5/ | e: <b>5/6/2008</b>                  | SeqNo: <b>230863</b> | 3863               |      |
| Analyte               | Result           | Pal                                     | SPK value SPK Ref Val | SPK Ref Vai | %REC | LowLimit          | %REC LowLimit HighLimit RPD Ref Val | %RPD                 | %RPD RPDLimit Qual | Quai |
| Chromium, Hexavalent  | 0,4610           | 0.0500                                  | 0.5                   | 0           | 92.2 | 85                | 115                                 |                      |                    |      |

Page 23 of 33

Analyte detected below quantitation limits Spike Recovery outside recovery limits

| - 2           |
|---------------|
| _             |
|               |
| $-\delta$     |
| <u>-</u>      |
| ,             |
| $\simeq$      |
|               |
| ~             |
|               |
|               |
|               |
| 5             |
|               |
| $\mathbf{z}$  |
| =             |
| SUN           |
| <b>V</b> 2    |
| 7 )           |
| $\mathbf{x}$  |
|               |
|               |
| AL            |
|               |
| 73            |
|               |
|               |
|               |
| $\rightarrow$ |
|               |
|               |
| 7             |
| -             |
| A             |
| 7             |
|               |

TestCode: EPHP\_W

| -046, 1.4 Exp |  |
|---------------|--|
| roject: WM-   |  |

Fay, Spofford & Thorndike 0805025

Work Order: CLIENT:

| .4 Exp    |  |
|-----------|--|
| WM-046, I |  |
| ••        |  |

| Sample ID: MB-10060            | SampType: MBLK  | TestCo | estCode: EPHP_W              | Units: µg/L  |      | Prep Dat     | Prep Date: 5/5/2008            |           | RunNo: 23489  | 189      |      |
|--------------------------------|-----------------|--------|------------------------------|--------------|------|--------------|--------------------------------|-----------|---------------|----------|------|
| Client ID: ZZZZZ               | Batch ID: 10060 | Test   | TestNo: MADEP EPH_ (eph_Wpr) | H_ (eph_Wpr) |      | Analysis Dat | Analysis Date: 5/5/2008        |           | SeqNo: 230812 | 1812     |      |
| Analyte                        | Result          | Pal    | SPK value                    | SPK Ref Vai  | %REC | LowLimit     | LowLimit HighLimit RPD Ref Val | J Ref Val | %RPD          | RPDLimit | Qual |
| Naphthalene                    | QN.             | 1.00   | -                            |              |      |              |                                |           |               |          |      |
| 2-Methylnaphthalene            | QN              | 1.00   |                              |              |      |              |                                |           |               |          |      |
| Acenaphthene                   | Q.              | 1.00   |                              |              |      |              |                                |           |               | 0.2      |      |
| Phenanthrene                   | QN              | 1.00   |                              |              |      |              |                                |           | ٠             |          |      |
| Acenaphthylene                 | QN              | 1.00   |                              |              |      |              |                                |           |               |          |      |
| Fluorene                       | QN              | 1.00   |                              |              |      |              |                                |           |               |          |      |
| Anthracene                     | QN              | 1.00   |                              |              |      |              |                                | •         |               |          |      |
| Fluoranthene                   | Q               | 1.00   |                              |              |      |              |                                |           |               |          |      |
| Pyrene                         | QN              | 1.00   |                              |              |      |              |                                |           |               |          |      |
| Benzo(a)Anthracene             | Q               | 0.400  | ÷                            |              |      |              |                                |           |               |          |      |
| Chrysene                       | QN              | 1.00   |                              |              |      |              |                                |           |               |          |      |
| Benzo(b)Fluoranthene           | DN.             | 1.00   |                              |              |      |              |                                |           |               |          |      |
| Benzo(k)Fluoranthene           | ND<br>ND        | 1.00   |                              |              |      |              |                                |           |               |          |      |
| Benzo(a)Pyrene                 | ND              | 0.200  | ٠                            |              |      |              |                                |           |               |          |      |
| Inderio(1,2,3-cd)Pyrene        | <u>N</u>        | 0.400  |                              |              |      |              |                                |           |               |          |      |
| Dibenz(a,h)Anthracene          | QN              | 0.400  |                              |              |      |              |                                |           |               |          |      |
| Benzo(g,h,i)Perylene           | QN              | 1.00   |                              |              |      |              |                                |           |               |          |      |
| Total PAH Target Concentration | - ND            | 0      |                              |              |      |              | ٠                              |           |               |          |      |
| Surr: 2,2'-Difluorobiphenyl    | 25.19           | 0      | 25                           | 0            | 101  | 40           | 140                            |           |               |          |      |
| Surr: 2-Fluorobiphenyl         | 23.20           | 0      | 25                           | 0            | 92.8 | 40           | 140                            |           |               |          |      |
|                                |                 |        |                              |              |      |              |                                |           |               |          |      |

| Analyte         Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val         %RPD         RPDLimit         Qual           Naphthalene         26.86         1.00         50         0         59.7         40         140         A         A         A         A         A         A         B         A         B         A         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B | Sample ID: LCS-10060<br>Client ID: ZZZZZ | SampType: LCS<br>Batch ID: 10060           | TestCod<br>TestN | TestCode: EPHP_W<br>TestNo: MADEP EP | iCode: EPHP_W Units: µg/L<br>estNo: MADEP EPH_ (eph_Wpr) | 1    | Prep Dat<br>Analysis Dat | Prep Date: 5/5/2008<br>Analysis Date: 5/5/2008 | RunNo: 23489<br>SeqNo: 230813 | 489<br>0813 |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------|------------------|--------------------------------------|----------------------------------------------------------|------|--------------------------|------------------------------------------------|-------------------------------|-------------|------|
| 26.86     1.00     50     0     53.7     40       29.85     1.00     50     0     59.7     40       32.40     1.00     50     0     64.8     40       36.47     1.00     50     0     72.9     40       9     31.79     1.00     50     0     63.6     40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analyte                                  | Result                                     | POL              | SPK value                            | SPK Ref Val                                              | %REC | LowLimit                 | HighLimit RPD Ref Val                          | %RPD                          | RPDLimit    | Qual |
| aslene     29.85     1.00     50     0     59.7     40       32.40     1.00     50     0     64.8     40       36.47     1.00     50     0     72.9     40       9     31.79     1.00     50     0     63.6     40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Naphthalene                              | 26.86                                      | 1.00             | 50                                   | 0                                                        | 53.7 | 40                       | 140                                            |                               |             |      |
| 32.40     1.00     50     0     64.8     40       36.47     1.00     50     0     72.9     40       9     31.79     1.00     50     0     63.6     40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-Methylnaphthalene                      | 29.85                                      | 1.00             | 50                                   | 0                                                        | 59.7 | 40                       | 140                                            |                               |             |      |
| 36.47 1.00 50 0 72.9 40<br>e 31.79 1.00 50 0 63.6 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Acenaphthene                             | 32.40                                      | 1.00             | 50                                   | 0                                                        | 64.8 | 40                       | 140                                            |                               | •           |      |
| 31.79 1.00 50 0 63.6 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Phenanthrene                             | 36.47                                      | 1.00             | 50                                   | 0                                                        | 72.9 | 40                       | 140                                            |                               |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Acenaphthylene                           | 31.79                                      | 1.00             | 20                                   | 0                                                        | 63.6 | 40                       | 140                                            |                               |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l Analyte detect                         | Analyte detected below anantitation limits |                  | NID Mot Die                          | NO Not Distorted at the Beneather I imit                 | ,    |                          | manage and the same of the same of             |                               | and make    | 3    |

Fay, Spofford & Thorndike CLIENT:

0805025 Work Order: WM-046, 1.4 Exp

Project:

TestCode: EPHP\_W

ANALYTICAL QC SUMMARY REPORT

| Sample ID: LCS-10060           | SampType: LCS   | TestCo | TestCode: EPHP_W             | Units: µg/L  |      | Prep Date:              | Prep Date: 5/5/2008            | RunNo: 23489           |
|--------------------------------|-----------------|--------|------------------------------|--------------|------|-------------------------|--------------------------------|------------------------|
| Client ID: ZZZZZ               | Batch ID: 10060 | Test   | [estNo: MADEP EPH_ (eph_Wpr) | ا_ (eph_Wpr) |      | Analysis Date: 5/5/2008 | 5/5/2008                       | SeqNo: 230813          |
| Analyte                        | Result          | PQL    | SPK value                    | SPK Ref Val  | %REC | LowLimit                | LowLimit HighLimit RPD Ref Val | Val %RPD RPDLimit Qual |
| Fluorene                       | 39.49           | 1,00   | 50                           | 0            | 79.0 | 40                      | 140                            |                        |
| Anthracene                     | 37.42           | 1.00   | 50                           | 0            | 74.8 | 40                      | 140                            |                        |
| Fluoranthene                   | 40.18           | 1.00   | 50                           | 0            | 80.4 | 40                      | 140                            |                        |
| Pyrene                         | 40.38           | 1.00   | 50                           | 0            | 80.8 | 40                      | 140                            | •                      |
| Benzo(a)Anthracene             | 39.36           | 0.400  | . 50                         | 0            | 78.7 | 40                      | 140                            |                        |
| Сhrysene                       | 38.67           | 1.00   | 50                           | 0            | 77.3 | 40                      | 140                            |                        |
| Benzo(b)Fiuoranthene           | 33.58           | 1.00   | 20                           | 0            | 67.2 | 40                      | 140                            |                        |
| Benzo(k)Fiuoranthene           | 49.30           | 1.00   | 90                           | 0            | 98.6 | 40                      | 140                            |                        |
| Benzo(a)Pyrene                 | 44.37           | 0.200  | 90                           | 0            | 88.7 | 40                      | 140                            |                        |
| Indeno(1,2,3-cd)Pyrene         | 41.81           | 0.400  | 20                           | 0            | 83.6 | 40                      | 140                            |                        |
| Dibenz(a,h)Anthracene          | 42.73           | 0.400  | 20                           | 0            | 85.5 | 40                      | 140                            |                        |
| Benzo(g,h,i)РегуІеле           | 40.33           | 1.00   | 50                           | 0            | 80.7 | 40                      | 140                            |                        |
| Total PAH Target Concentration | 645.0           | 0      |                              |              |      |                         |                                |                        |
| Surr: 2,2'-Difluorobiphenyl    | 20.53           | 0      | 25                           | 0            | 82.1 | 40                      | 140                            |                        |
| Surr: 2-Fluorobiphenyl         | 17.17           | 0      | 25                           | 0            | 68.7 | 40                      | 140                            |                        |

E Value above quantitation range

ND Not Detected at the Reporting Limit Analyte detected below quantitation limits Spike Recovery outside recovery limits

BRL Below Reporting Limit

Qualifiers:

H Holding times for preparation or analysis exceeded R RPD outside recovery limite RPD outside recovery limits

RPD outside recovery limits

Value above quantitation range Not Detected at the Reporting Limit

J Analyte detected below quantitation limits S Spike Recovery outside recovery limits

BRL Below Reporting Limit

Qualifiers:

CLIENT: Fay, Spofford & Thorndike

Work Order: 0805025

WM-046, 1.4 Exp

Project:

TestCode: epht\_w

| Sample ID: MB-10060          | SampType: MBLK  | TestCoc | TestCode: epht_w | Units: µg/L                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prep Dat                | Prep Date: 5/5/2008                 | RunNo: 23545  |      |
|------------------------------|-----------------|---------|------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------|---------------|------|
| Client ID: ZZZZZ             | Batch ID: 10060 | Testh   | lo: MADEP EF     | TestNo: MADEP EPH (eph_Wpr) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analysis Dat            | Analysis Date: 5/6/2008             | SeqNo: 231284 |      |
| Analyte                      | Result          | PQL     | SPK value        | SPK value SPK Ref Val       | %REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LowLimit                | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit | Qual |
| Adjusted C11-C22 Aromatics   | ON              | 100     |                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                     |               |      |
| C09-C18 Aliphatics           | QN              | 100     |                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                     |               |      |
| C19-C36 Aliphatics           | QN<br>QN        | 100     |                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                     |               |      |
| Unadjusted C11-C22 Aromatics | QN              | 100     |                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                     |               |      |
| Surr: 1-Chlorooctadecane     | 00'99           | 0       | 100              | 0                           | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                      | 140                                 |               |      |
| Surr: o-Terphenyl            | 73.00           | 0       | 100              | 0                           | 73.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                      | 140                                 |               |      |
| Sample ID: LCS-10060         | SampType: LCS   | TestCod | TestCode; epht_w | Units: µg/L                 | THE PERSON NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAMED IN COLUMN NAM | Prep Date               | Prep Date: 5/5/2008                 | RunNo; 23545  |      |
| Client ID: ZZZZ              | Batch ID: 10060 | TestN   | o: MADEP EF      | TestNo: MADEP EPH (eph_Wpr) | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Analysis Date: 5/6/2008 | a; 5/6/2008                         | SeqNo: 231285 |      |
| Analyte                      | Result          | Pal     | SPK value        | SPK value SPK Ref Val       | %REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LowLimit                | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit | Qual |
| C09-C18 Aliphatics           | QN              | 100     | 100              | 0                           | 48.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                      | 140                                 |               |      |
| C19-C36 Aliphatics           | ON.             | 100     | 100              | 0                           | 64.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                      | 140                                 |               |      |
| Unadjusted C11-C22 Aromatics | ON.             | 100     | 100              | 0                           | 86.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                      | 140                                 |               |      |
| Surr: 1-Chlorooctadecane     | 52.00           | 0       | 100              | 0                           | 52.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                      | 140                                 |               |      |
| Surr; o-Terphenyl            | 73.00           | 0       | 100              | 0                           | 73.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                      | 140                                 |               |      |

H Holding times for preparation or analysis exceeded R RPD outside recovery limits

Not Detected at the Reporting Limit Value above quantitation range

ш <del>Q</del>

Analyte detected below quantitation limits Spike Recovery outside recovery limits

BRL Below Reporting Limit

Qualifiers:

Fay, Spofford & Thorndike CLIENT:

Work Order:

WM-046, 1.4 Exp

Project:

TestCode: hg-245.1\_w

|                      |                                  |          |                                        | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | -    |                                                |                                                            | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |            |      |
|----------------------|----------------------------------|----------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|
| Sample ID: MB-10071  | SampType: MBLK                   | TestCod  | Code: hg-245.1_w                       | Units: mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | Prep Date:                                     | Prep Date: 5/5/2008                                        | RunNo: 23475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |      |
| Client ID: ZZZZZ     | Batch ID: 10071                  | Testh    | TestNo: E245.1                         | (SW7470A)E2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ν.   | Analysis Date: 5/5/2008                        | 5/5/2008                                                   | SeqNo: 230595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |      |
| Analyte              | Result                           | PQL      | SPK value SPK Ref Val                  | SPK Ref Vai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %REC | LowLimit                                       | "REC LowLimit HighLimit RPD Ref Val                        | %RPD RPDLimit Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Jimit      | nal  |
| Mercury              | QN                               | 0.000500 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |
| Sample ID: LCS-10071 | SampType: LCS<br>Batch ID: 10071 | TestCor  | TestCode: hg-245.1_w<br>TestNo: E245.1 | Units: mg/L<br>(SW7470A/E2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1    | Prep Date: 5/5/2008<br>Analysis Date: 5/5/2008 | Prep Date: <b>5/5/2008</b><br>Alysis Date: <b>5/5/2008</b> | RunNo: 23475<br>SeqNo: 230596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |      |
| Analyte              | Result                           | Pal      | SPK value                              | SPK Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %REC | LowLimit                                       | %REC LowLimit HighLimit RPD Ref Val                        | %RPD RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RPDLimit Q | Qual |
| Mercury              | 0.005060                         | 0.000500 | 0.005                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 101  | 80                                             | 120                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |

Page 27 of 33

Holding times for preparation or analysis exceeded

RPD outside recovery limits

H H

E Value above quantitation range ND Not Detected at the Reporting Limit

> Analyte detected below quantitation limits Spike Recovery outside recovery limits

~ s

BRL Below Reporting Limit

Qualifiers:

40

68.5 74.0

100

0.200

1.369

Total Petroleum Hydrocarbons Surr: o-Terphenyl

| CLIENT: Fay, Spofford & Ti  Work Order: 0805025  Project: WM-046 1 4 Fyra | Fay,Spofford & Thorndike 0805025  | To the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANALYTICAL QC SUMMARY REPORT                   | MMARY REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                           |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y CALCOURS.                                    | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sample ID: WB1-10059<br>Client ID: ZZZZZ                                  | SampType: MBLK<br>Batch ID: 10059 | TestCode: tph_w<br>TestNo: 8100M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Units: mg/L<br>(8100M) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prep Date: 5/5/2008<br>Analysis Date: 5/5/2008 | RunNo: 23505<br>SeqNo: 230939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Analyte                                                                   | Result                            | PQL SPK value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e SPK Ref Val          | %REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LowLimit HighLimit RPD Ref Val                 | %RPD RPDLimit Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total Petroleum Hydrocarbons<br>Surr: o-Terphenyl                         | 00.96                             | 0.200<br>0 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 0 0                  | 96.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40 140                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sample ID: MB-10088<br>Client ID: ZZZZZ                                   | SampType: MBLK<br>Batch ID: 10088 | TestCode: tph_w<br>TestNo: 8100M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Units: mg/L<br>(8100M) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prep Date: 5/7/2008<br>Analysis Date: 5/7/2008 | RunNo: 23549<br>SeqNo: 231311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Analyte                                                                   | Result                            | PQL SPK value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e SPK Ref Val          | %REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LowLimit HighLimit RPD Ref Val                 | %RPD RPDLimit Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total Petroleum Hydrocarbons<br>Sur: o-Terphenyl                          | ND<br>94.00                       | 0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0                    | 94.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40 140                                         | - Andread Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of |
| Sample ID: LW1-10059<br>Client ID: ZZZZZ                                  | SampType: LCS<br>Batch ID: 10059  | TestCode: tph_w<br>TestNo: 8100M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Units: mg/L<br>(8100M) | . The commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence | Prep Date: 5/5/2008<br>Analysis Date: 5/5/2008 | RunNo: 23505<br>SeqNo: 230937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Analyte                                                                   | Result                            | PQL SPK value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e SPK Ref Val          | %REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LowLimit HighLimit RPD Ref Val                 | %RPD RPDLimit Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total Petroleum Hydrocarbons<br>Surr: o-Terphenyl                         | 1.576<br>74.00                    | 0.200 2<br>0 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 0<br>0 0             | 78.8<br>74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>4</b> 0 140<br>40 140                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sample ID: LW2-10059<br>Client ID: ZZZZZ                                  | SampType: LCS<br>Batch ID: 10059  | TestCode: tph_w<br>TestNo: 8100M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Units: mg/L<br>(8100M) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prep Date: 5/5/2008<br>Analysis Date: 5/5/2008 | RunNo: 23505<br>SeqNo: 230938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Analyte                                                                   | Result                            | PQL SPK value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e SPK Ref Val          | %REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LowLimit HighLimit RPD Ref Val                 | %RPD RPDLimit Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total Petroleum Hydrocarbons<br>Surr: o-Terphenyl                         | 1.276<br>66.00                    | 0.200 2<br>0 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 0<br>0 0             | 63.8<br>66.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40 140<br>40 140                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sample ID: LCS-10088<br>Client ID: ZZZZ                                   | SampType: LCS<br>Batch ID: 10088  | TestCode: tph_w TestNo: 8100M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Units: mg/L<br>(8100M) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prep Date: 5/7/2008<br>Analysis Date: 5/7/2008 | RunNo: 23549<br>SeqNo: 231312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Analyte                                                                   | Result                            | PQL SPK value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SPK Ref Vai            | %REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LowLimit HighLimit RPD Ref Val                 | %RPD RPDLimit Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Holding times for preparation or analysis exceeded RPD outside recovery limits

H Z

E Value above quantitation range
ND Not Detected at the Reporting Limit

Analyte detected below quantitation limits Spike Recovery outside recovery limits

BRL Below Reporting Limit

Qualifiers:

Fay, Spofford & Thorndike CLIENT:

0805025 Work Order: WM-046, 1.4 Exp

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: tph\_w

| Sample ID: LCS2-10088<br>Client ID: ZZZZ | SampType: LCS<br>Batch ID: 10088 | TestCo | TestCode: tph_w<br>TestNo: 8100M | Units: mg/L<br>(8100M) | ,    | Prep Dat<br>Analysis Dat | Prep Date: 5/7/2008<br>Analysis Date: 5/7/2008 | RunNo: 23549<br>SeqNo: 231315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|------------------------------------------|----------------------------------|--------|----------------------------------|------------------------|------|--------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Analyte                                  | Result                           | PQL    | SPK value                        | SPK value SPK Ref Val  | %REC | LowLimit                 | WREC LowLimit HighLimit RPD Ref Val            | %RPD RPDLimit Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Qual |
| Total Petroleum Hydrocarbons             | 1.840                            | 0.200  | 2                                | 0                      | 92.0 | 40                       | 140                                            | A CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY O |      |
| Surr: o-Terphenyl                        | 104.0                            | 0      | 100                              | 0                      | 104  | 40                       | 140                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                          |                                  |        |                                  |                        |      |                          |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |

Fay, Spofford & Thorndike 0805025 Work Order: CLIENT:

WM-046, 1.4 Exp

Project:

ANALYTICAL QC SUMMARY REPORT TestCode: TRC\_W

| Sample ID: MB-R23484    | SampType; MBLK          | TestCo  | tCode; TRC_W      | Units: mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        | Prep Date:              | *************************************** | RunNo: 23484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
|-------------------------|-------------------------|---------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Client ID: ZZZZ         | Batch ID: R23484        | Test    | estNo: Hach 8167  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | Analysis Date: 5/5/2008 | 5/2008                                  | SeqNo: 230752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |
| Analyte                 | Result                  | Pal     | SPK value         | SPK value SPK Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %REC                                   | LowLimit HighL          | %REC LowLimit HighLimit RPD Ref Val     | %RPD RPDLimit Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | it Qual |
| Total Residual Chlorine | GN                      | 0.162   |                   | Additional and a second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second st | ************************************** |                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Sample ID: LCS-R23484   | SampType: LCS           | TestCoo | TestCode: TRC_W   | Units: mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        | Prep Date:              |                                         | RunNo: 23484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| Client ID.              | Batch ID: <b>K23484</b> |         | estivo: Hach 816/ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                      | Analysis Date: 5/5/2008 | 5/2008                                  | SeqNo: 230753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -       |
| Analyte                 | Kesult                  | Pal     | SPK value         | SPK value SPK Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %REC                                   | LowLimit HighL          | %REC LowLimit HighLimit RPD Ref Val     | %RPD RPDLimit Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | it Qual |
| Total Residual Chlorine | 1.040                   | 0.162   | _                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 104                                    | 85                      | 115                                     | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |         |

|                                            |   | PART ( ) WHIRE WAS AN AN AN AN AN AN AN AN AN AN AN AN AN |
|--------------------------------------------|---|-----------------------------------------------------------|
| Below Reporting Limit                      | Щ | Value above quantitation range                            |
| Analyte detected below quantitation limits | S | ND Not Detected at the Reporting Limit                    |
| Spike Recovery outside recovery limits     |   |                                                           |

BRL Below Reporting Limit

Qualifiers:

H Holding times for preparation or analysis exceeded R RPD outside recovery limits RPD outside recovery limits

RPD outside recovery limits

H Z

E Value above quantitation range ND Not Detected at the Reporting Limit

> Analyte detected below quantitation limits Spike Recovery outside recovery limits

BRL Below Reporting Limit

Qualifiers:

CLIENT: Fay, Spofford & Thorndike

Work Order: 0805025

Project: WM-046, 1.4 Exp

TestCode: TSS

| Sample ID: MB-R23464   | SampType: MBLK   | TestCode: TSS | e: TSS         | Units: mg/L           |      | Prep Date;   | ;e;                                 | RunNo: 23464  | 164                |      |
|------------------------|------------------|---------------|----------------|-----------------------|------|--------------|-------------------------------------|---------------|--------------------|------|
| Client ID: ZZZZ        | Batch ID: R23464 | TestN         | FestNo: E160.2 |                       |      | Analysis Dal | Analysis Date: 5/5/2008             | SeqNo: 230464 | 1464               |      |
| Analyte                | Result           | PQL           | SPK value      | SPK value SPK Ref Val | %REC | LowLimit     | %REC LowLimit HighLimit RPD Ref Val | %RPD          | %RPD RPDLimit Qual | Qual |
| Total Suspended Solids | QN               | 4.00          |                |                       |      |              |                                     |               |                    |      |
| Sample ID: LCS-R23464  | SampType: LCS    | TestCode: TSS | e. TSS         | Units: mg/L           |      | Prep Date:   |                                     | RunNo: 23464  | 164                |      |
| Client ID: ZZZZZ       | Batch ID: R23464 | TestN         | TestNo: E160.2 |                       |      | Analysis Dat | Analysis Date: 5/5/2008             | SeqNo: 230465 | 1465               |      |
| Analyte                | Result           | PaL           | SPK value      | SPK Ref Val           | %REC | LowLimit     | %REC LowLimit HighLimit RPD Ref Val | %RPD          | %RPD RPDLimit      | Quai |
| Total Suspended Solids | 74.00            | 4.00          | 66.5           | 0                     | 141  | 80           | 120                                 |               |                    |      |

Quai

%RPD RPDLimit

%REC LowLimit HighLimit RPD Ref Val

SPK value SPK Ref Val

PQ

Result

75.0 75.0

Unadjusted C9-C12 Aliphatic Hydrocarb Unadjusted C5-C8 Aliphatic Hydrocarbo

Methyl Tert-Butyl Ether

Ethylbenzene

Toluene Benzene

m,p-Xyiene

o-Xylene

C9-C10 Aromatic Hydrocarbons

Analyte

5.00 5.00 5.00 5.00 5.00

5.00 20.0

Adjusted C5-C8 Aliphatic Hydrocarbons

Qualifiers:

Naphthalene

| CLIENT:     | Fay, Spofford & Thorndike |
|-------------|---------------------------|
| Work Order: | 0805025                   |

ANALYTICAL QC SUMMARY REPORT

TestCode: VPH W2

WM-046, 1.4 Exp

Project:

| Sample ID: MBLK                       | SampType: MBLK   | MBLK        | TestCod  | TestCode: VPH_W2 | Units: pg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prep Date:                              | :e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | RunNo: 23623                             | 23       |      |
|---------------------------------------|------------------|-------------|----------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------|----------|------|
| Client ID: ZZZZ                       | Batch ID: R23623 | R23623      | TestN    | FestNo; VPH      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Analysis Datı                           | Analysis Date: 5/9/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | SeqNo: 232073                            | 573      |      |
| Analyte                               |                  | Result      | PQL      | SPK value        | SPK value SPK Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LowLimit                                | "REC LowLimit HighLimit RPD Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PD Ref Val | %RPD                                     | RPDLimit | Qual |
| C9-C10 Aromatic Hydrocarboris         | (0               | ND          | 75.0     |                  | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *************************************** | To the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th |            | - Anna Anna Anna Anna Anna Anna Anna Ann |          |      |
| Unadjusted C5-C8 Aliphatic Hydrocarbo | drocarbo         | QN          | 75.0     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                          |          |      |
| Unadjusted C9-C12 Aliphatic Hydrocarb | ydrocarb         | QN          | 75.0     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                          |          |      |
| Methyl Tert-Butyl Ether               |                  | Q.          | 5.00     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                          |          | -    |
| Benzene                               |                  | S           | 5,00     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                          |          |      |
| Toluene                               |                  | Ü           | 5.00     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                          |          |      |
| Ethylbenzene                          |                  | N<br>Q<br>N | 5.00     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                          |          |      |
| m,p-Xylene                            |                  | Q.          | 5.00     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                          |          |      |
| o-Xylene                              |                  | Q           | 5.00     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                          |          |      |
| Naphthalene                           |                  | Q           | 20.0     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                          |          |      |
| Adjusted C5-C8 Aliphatic Hydrocarbons | carbons          | 2           | 75.0     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                          |          |      |
| Adjusted C9-C12 Aliphatic Hydrocarbon | ocarbon          | QN          | 75.0     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                          |          |      |
| Surr: 2,5-Dibromotoluene FID          | _                | 72.73       | 0        | 100              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70                                      | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                          |          |      |
| Surr: 2,5-Dibromotoluene PID          | (                | 71.59       | 0        | 100              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 71.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70                                      | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                          |          | c    |
| Sample ID: MBLK                       | SampType: MBLK   | WBLK        | TestCode | TestCode: VPH_W2 | Units: µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Minimum Market and Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Co | Prep Date:                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | RunNo: 23658                             | 8:       |      |
| Cilent ID: ZZZZZ                      | Batch ID: R23658 | 423658      | TestNo   | estNo: VPH       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \nalysis Date                           | Analysis Date: 5/13/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | SeqNo: 232577                            | 11       |      |
|                                       |                  |             |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                          |          | -    |

| -        |                                            |   |                                     |   | TOTAL CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPER |   |
|----------|--------------------------------------------|---|-------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 58       | L. Below Reporting Limit                   | ш | Value above quantitation range      | H | Holding times for preparation or analysis exceeded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _ |
| <b>-</b> | Analyte detected below quantitation limits | Ð | Not Detected at the Reporting Limit | ~ | RPD outside recovery limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| S        | Spike Recovery outside recovery limits     |   |                                     |   | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |

| REPO            |
|-----------------|
|                 |
| F-1             |
|                 |
| $\simeq$        |
|                 |
| $\rightarrow$   |
|                 |
| _               |
| < €             |
|                 |
| >               |
|                 |
|                 |
| =               |
| ·               |
| (C)             |
|                 |
| ( )             |
| _               |
| $\simeq$        |
| OC SUMMARY REPO |
| _               |
| _               |
| _               |
| _               |
| _               |
| _               |
| _               |
| _               |
| _               |
| _               |
| _               |
| _               |
| NALYTICAL       |
| NALYTICAL       |
| ANALYTICAL OC   |
| NALYTICAL       |
| NALYTICAL       |
| NALYTICAL       |

TestCode: VPH\_W2

| 10          | 6, 1.4 Exp |
|-------------|------------|
| 0805025     | WM-046, I  |
| Work Order: | Project:   |

Fay, Spofford & Thorndike 0805025

CLIENT:

| l.4 Exp |
|---------|
| 7.      |
| 46,     |
| WM-046, |
| ≶       |
|         |
|         |
|         |

| Exp     |  |
|---------|--|
| 4.      |  |
| WM-046, |  |
|         |  |
|         |  |

| Sample ID: MBLK Samp                                                                            | SampType: MBLK          | TestCod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TestCode: VPH_W2 | Units: µg/L                         |              | Prep Date:     | es:                 |                             | RunNo: 23658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |
|-------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------|--------------|----------------|---------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Client ID: ZZZZZ Bate                                                                           | Batch ID: <b>R23658</b> | Testh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TestNo: VPH      |                                     |              | Analysis Date: | e: <b>5/13/2008</b> | 308                         | SeqNo: 232577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
| Analyte                                                                                         | Result                  | Pal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SPK value        | SPK Ref Val                         | %REC         | LowLimit       | HighLimit           | RPD Ref Val                 | %RPD RPDLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Qual          |
| Adjusted C9-C12 Aliphatic Hydrocarbon Surr; 2,5-Dibromotoluene FID Surr; 2,5-Dibromotoluene PID | ND<br>79.01<br>73.17    | 75.0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100              | 0                                   | 79.0<br>73.2 | 70<br>70       | 130<br>130          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Sample ID: LCS Samp                                                                             | SampType: LCS           | TestCoo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TestCode: VPH_W2 | Units: µg/L                         |              | Prep Date:     |                     |                             | RunNo: 23623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |
| 23                                                                                              | Batch ID: R23623        | Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TestNo: VPH      |                                     |              | Analysis Date: | e: 5/9/2008         | 80                          | SeqNo: 232071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
| Analyte                                                                                         | Result                  | Pal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SPK value        | SPK Ref Val                         | %REC         | LowLimít       | HighLímit           | RPD Ref Val                 | %RPD RPDLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Qual          |
| C9-C10 Aromatic Hydrocarbons                                                                    | 79.77                   | 75.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100              | 5.648                               | 74.1         | 70             | 130                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Unadjus(ed C5-C8 Aliphatic Hydrocarbo                                                           | 523.6                   | 75.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 600              | 51.05                               | 78.8         | 70             | 130                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Unadjusted C9-C12 Aliphatic Hydrocarb                                                           | 483.6                   | 75.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 909              | 20.12                               | 77.3         | 20             | 130                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Methyl Tert-Butyl Ether                                                                         | 73.67                   | 5,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100              | 0                                   | 73.7         | 20             | 130                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Benzene                                                                                         | 70.61                   | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100              | 0                                   | 9.07         | 20             | 130                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Toluene                                                                                         | 74.21                   | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100              | 0                                   | 74.2         | 20             | 130                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Ethylbenzene                                                                                    | 79.34                   | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100              | 0                                   | 79.3         | 70             | 130                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| m,p-Xylene                                                                                      | 168.0                   | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200              | 0                                   | 84.0         | 70             | 130                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| o-Xylene                                                                                        | 75.59                   | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100              | 0                                   | 75.6         | 20             | 130                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Naphthalene                                                                                     | 40.07                   | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100              | 0                                   | 70.1         | 20             | 130                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Surr: 2,5-Dibromotoluene FID                                                                    | 76.08                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100              | 0                                   | 76,1         | 70             | 130                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Surr: 2,5-Dibromotoluene PID                                                                    | 70.11                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100              | 0                                   | 70.1         | 70             | 130                 |                             | And the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t |               |
| Sample ID: LCS Samp                                                                             | SampType: LCS           | TestCo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TestCode: VPH_W2 | Units: µg/L                         |              | Prep Date:     | .;                  |                             | RunNo: 23658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |
| Client ID: ZZZZ Bate                                                                            | Batch ID: <b>R23658</b> | Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TestNo: VPH      |                                     |              | Analysis Date: | ie: 5/13/2008       | 900                         | SeqNo: 232575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
| Analyte                                                                                         | Result                  | POL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SPK value        | SPK Ref Val                         | %REC         | LowLimit       | HighLimit           | RPD Ref Val                 | %RPD RPDLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Qual          |
| C9-C10 Aromatic Hydrocarbons                                                                    | 91.84                   | 75.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100              | 4.97                                | 86.9         | 70             | 130                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Unadjusted C5-C8 Aliphatic Hydrocarbo                                                           | 573.3                   | 75.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 900              | 18.73                               | 92.4         | 70             | 130                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Unadjusted C9-C12 Aliphatic Hydrocarb                                                           | 519.2                   | 75.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 900              | 18.75                               | 83.4         | 70             | 130                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Methyl Tert-Butyl Ether                                                                         | 76.66                   | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100              | 0                                   | 7.97         | 70             | 130                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Вепzепе                                                                                         | 72.19                   | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100              | 0                                   | 72.2         | 20             | 130                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Qualifiers: BRL Below Reporting Limit                                                           | iít                     | CACAMINET TO STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE | E Value          | Value above quantitation range      | ngc          |                | H                   | Holding times for           | Holding times for preparation or analysis exceeded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |
| J Analyte detected below quantitation limits                                                    | w quantitation limits   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND Not D         | Not Detected at the Reporting Limit | ng Limit     |                | ×                   | RPD outside recovery limits | ·сту limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |
| S Spike Recovery outside recovery limits                                                        | de recovery limits      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                     |              |                |                     |                             | Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Page 32 of 33 |

Holding times for preparation or analysis exceeded R RPD outside recovery limits

RPD outside recovery limits

E Value above quantitation range
ND Not Detected at the Reporting Limit

Analyte detected below quantitation limits Spike Recovery outside recovery limits

BRL Below Reporting Limit

Qualifiers:

Fay, Spofford & Thorndike CLIENT:

0805025 Work Order: WM-046, 1.4 Exp

**Project:** 

TestCode: VPH\_W2

| Sample ID: LCS               | SampType: LCS           | TestCo | TestCode: VPH_W2 | Units: µg/L               |      | Prep Date:   | .9                                  | RunNo: 23658       |
|------------------------------|-------------------------|--------|------------------|---------------------------|------|--------------|-------------------------------------|--------------------|
| Client ID: ZZZZZ             | Batch ID: <b>R23658</b> | Test   | TestNo: VPH      |                           | 7    | Analysis Dat | Analysis Date: 5/13/2008            | SeqNo: 232575      |
| Analyte                      | Result                  | PaL    | SPK value        | POL SPK value SPK Ref Val | %REC | LowLimit     | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual |
| Toluene                      | 81.79                   | 5.00   | 100              | 0                         | 81.8 | 70           | 130                                 |                    |
| Ethylbenzene                 | 82.20                   | 5.00   | 100              | 0                         | 82.2 | 20           | 130                                 |                    |
| m,p-Xylene                   | 183.0                   | 5.00   | 200              | 0                         | 91.5 | 70           | 130                                 |                    |
| o-Xylene                     | 72.69                   | 5.00   | 100              | 0                         | 72.7 | 70           | 130                                 |                    |
| Naphthalene                  | 81.03                   | 20.0   | 100              | 0                         | 81.0 | 20           | 130                                 |                    |
| Surr: 2,5-Dibromotoluene FID | 96.83                   | 0      | 100              | 0                         | 96.8 | 20           | 130                                 |                    |
| Surr: 2,5-Dibromotokene PID  | 75.44                   | 0      | 100              | 0                         | 75.4 | 70           | 130                                 |                    |

とうのは 7007 5, SEE ATT ACHED ₹ 3 LITE25 木 かいなる Page BO SAMPLE Filter 13 il Special Instructions 10, 00, NO, 00. 1 Requirements: circle choice (s) 35 800 011 61.2 | Sample Handling: circle effects
| Sample Handling: circle effects
| Sample Handling: circle effects
| Sample Handling: circle effects
| Sample Handling: circle effects
| Sample Handling: circle effects
| Not Mended | 859 Not Meeded 559 Preservation Data Delivery: circle choice (s) CHAIN OF CUSTODY RECORD GeoLabs, Inc. Environmental Laboratories 45 Johnson Lane, Brainfree, MA 02184 p 781.848.7844 • f 781.848.7811 www.geolabs.com GeoLabs, Inc.

5

\_ < @ 0 = Other C) \* TEMPERATURE NH (2508) NJ (MA-009) RI (LA000252) ألمها しっちれい 175 /TR > 4 B = Bag P = Plastic V = Voa CT RCP (Reasonable Confidence Profocols) CHZONY HEXVN 7 4 Analysis Request 0% 9 101 m 24 4 WM-046 1 4 Date / Tanyé A = Amber G = Glass S = Summa Containers しんで行う 1 1 =01 MA K) MA (MA - 015) PA (68-03417) をひつく State / Fed Program - Criteria L L 7 = 0ther Q 7d 1 4 + invoice to \*:\_ Project PO: 10278 Project: . 1 CT (PH-0148) NY(11796) 4 Ļ 1 4 5 ≈ Na0H 6 = MEOHHON? Preserative: 005 600 800 400 Geolabs SAMPLE NUMBER アット ころい てのろ  $\frac{1}{8}$ 4 = Na2S203Payment due within 30 days unless other arrangaments are made. Past due balances subject to interest and collection cast. Note: Hemcownors and Law Firms must pay when dropping off samples. We accept cash, check and credit cards. MCP Methods 3 = H2S04Other Preservatives Spass Received by 100 2 = HN031 = Hcl 77 DU RICIN क स ब ख GW-1 S-1 OC 1255 PAI Received on Ice 4.40% ಲ≎ ೬ 181-3 7 ---= مدون حدم CONTAINER d **ロコベスート**> 1 لا د email PDF Phone: email: Fax: - - a u 7 0) < 5 Date / Time OT = Other A = AirBLANK SAMPLE LOCATION / ID Format: Excel) S == Soil 0 = 0Eax DURKIN るころ 100 1500 るに S DW = Drinking Water i,  $\bar{\omega}$ By Rehingto いなり 5 / 7-days SL = Sludge Turnaround: circle one 4 しなり いよし ⊀ങ മെപ്പളമു⊳ര 3-day Contact: LATCIEN 280265.J&P.C of CR.03/07/08 7 COLLECTION 1c 55 P 1000 と077 9016 1140 GW = Ground Water WW = Waste Water しついる Refinquished by: Matrix Codes: 1-day 2-day Address: K, E 子も 14130 かあこと Client: 0 4 1- 11 11

## FST 6905 Groundwater RGP Appendix VI Methods

- 1. Volatile Organics (8260)
- 2. VPH
- 3. Semi-Volatile Organics (8270)
- 4. EPH
- 5. TPH
- 6. PCBs
- 7. Cyanide
- 8. RCRA 8 Metals, plus Iron, Copper, Antimony, Nickel
- 9. Hexavalent Chrome
- 10. Total Suspended Solids
- 11. Total Residual Chlorine

Appendix B Stephen's Associates Geotechnical Report



## Certified W/DBE in MA, ME, NH and VT www.stephensengineers.com

60 Northrup Dr Brentwood, NH 03833 Phone: (603) 772-1417 Fax: (603) 772-1418 668 Main Street, Suite 250 Wilmington, MA 01887 Phone: (978) 988-2115 Fax: (978) 988-2117



## GEOTECHNICAL ENGINEERING REPORT MWRA CONTRACT NO. 6905 LYNNFIELD/SAUGUS PIPELINES SAUGUS, MASSACHUSETTS

SA Project No. 026-08-007 October 6, 2008

### Prepared for:

### FAY, SPOFFORD & THORNDIKE, LLC.

5 Burlington Woods Burlington, Massachusetts 01803

**ENGINEERS** 



Prepared by:

**Stephens Associates Consulting Engineers, LLC** 

James E. Turner, PE

Project Engineer

Junes Zunen

Robert S. Stephens, PE

Principal Engineer



## Certified W/DBE in MA, ME, NH and VT

www.stephensengineers.com

60 Northrup Dr Brentwood, NH 03833 Phone: (603) 772-1417 Fax: (603) 772-1418 668 Main Street, Suite 250 Wilmington, MA 01887 Phone: (978) 988-2115 Fax: (978) 988-2117



October 6, 2008

Fay, Spofford & Thorndike, LLC 5 Burlington Woods
Burlington, MA 01803
Attention, Mr. Donnie Boucher

Attention: Mr. Dennis Boucher

Re: Geotechnical Report MWRA Contract No. 6905

Lynnfield/Saugus Pipelines Saugus, Massachusetts SA Project No. 026-08-007

#### Ladies and gentlemen:

The attached Report presents the results of geotechnical engineering evaluation provided by Stephens Associates Consulting Engineers, LLC (SA) for the Subject Project. This Report has generally been prepared in accordance with our Agreement for these services, and is subject to the limitations presented throughout the Report, including Tables, Figures and Appendices.

We have enclosed one unbound original, 5 bound copies, 7 unbound copies and one CD-RW disk with pdf file of our Report, as requested.

We trust that this Report meets your current needs, and appreciate the opportunity to assist you on this Project. Please contact us if you have any questions.

Sincerely,

Stephens Associates Consulting Engineers, LLC

James E. Turner, PE Project Engineer

Robert S. Stephens, PE, PG

Principal

RSS:tgbg

## GEOTECHNICAL REPORT MWRA CONTRACT NO. 6905, LYNNFIELD/SAUGUS PIPELINES SAUGUS, MASSACHUSETTS

#### **SUMMARY**

This Report ("Report") provides the results of geotechnical engineering evaluation performed by Stephens Associates Consulting Engineers, LLC ("SA," "we," "our," or "us") for Fay, Spofford & Thorndike, LLC ("FST," "Client," "you," "your," etc.) for the proposed Lynnfield/Saugus Pipelines ("Pipelines," or "Project"), Massachusetts Water Resource Authority ("MWRA" or "Owner") Contract No. 6905 in Saugus, Massachusetts. This Report is subject to the limitations presented herein, including Figures, Tables and Appendices, (e.g. Appendix A – Limitations, etc.). SA performed these services for FST in general accordance with our Agreement dated January 28, 2008. The purpose of our services was to evaluate geotechnical conditions and provide geotechnical recommendations for design and construction of the proposed pipeline.

The Site is located on U.S. Rte. 1 (aka Broadway), extending south from the Saugus-Lynnfield town line about 6,400 ft. The Project consists of installation of about 2,560 ft. of 36-in. diameter MWRA water main, 4,240 ft. of 24-in. diameter MWRA water main, and 6,000 ft. of 12-in. water main for the Town of Saugus, parallel to the MWRA main. At the southern end, the proposed route will follow the eastern shoulder of the northbound lane, cross Rte. 1 to the western shoulder of the southbound lane and extend to about Sta. 48+40SB (Stationing is described in Section 1.1, extends south to north from Sta 0+00 to 64+00). North of this station, the MWRA is considering routes following either the northbound shoulder or the southbound shoulder, to be determined.

SA reconnoitered the Site for readily visible surficial signs of geologic conditions. We noted significant rock outcrops west of Rte. 1 from about Sta. 18+00SB to 23+00SB and about Sta. 61+00SB to 64+00SB, and east of Rte. 1 from about Sta. 51+00NB to 64+00NB. Published geologic information generally indicates soils in the Site vicinity to consist of glacial till, and in some locations overlying shallow bedrock consisting of granite, granodiorite, or diorite.

The MWRA engaged Green International Affiliates, Inc. who engaged Hager GeoScience, Inc. ("Hager," or "GPR Consultant") to perform geophysical surveys of the northbound and southbound shoulders of Rte. 1 using ground penetrating radar ("GPR") to attempt to identify the depth of bedrock and buried obstructions prior to excavation. Hager provided the results in a report titled, "Geophysical Subsurface Characterization, MWRA Lynnfield/Saugus Pipeline Project, Route 1, Saugus, MA," dated June 2008, prepared for Green International Affiliates, Inc. ("GPR Report"). The GPR Report indicates variable fractured bedrock surface elevations of about 3.5 to 45 ft. below ground surface. The GPR Report also identifies numerous subsurface obstructions and possible buried utilities, and areas of possible reinforced concrete located below the existing asphalt pavement. SA included the bedrock profile interpreted by Hager and the above features, as interpreted by Hager, on our subsurface profiles shown in Figures 5 through 7. Figure 4 shows the baseline locations of SA's subsurface profiles, which are based on the GPR traverses.

FST engaged GeoLogic Earth Exploration, Inc., of Norfolk, Massachusetts ("GeoLogic" or "Drillers"), to drill 27 borings and install 9 groundwater observation wells at locations selected by FST along the proposed pipeline alignment between March 30 and April 25, 2008 using a truck-mounted drill rig. The purpose of the borings was to evaluate geotechnical conditions (by SA) and to obtain samples for environmental and corrosion testing (by others). Figure 4 shows the boring locations, Appendix B contains SA's boring logs, and Figures 5 to 7 show generalized subsurface profiles.

Stephens Associates
Consulting Engineers
Insightful, Costsaving Solutions
for Buildings and
Infrastructure
Hydrology & Hydraulics

026-08-007 S-i 10/6/08

The subsurface explorations generally encountered Asphalt overlying subbase and Fill consisting of mostly dense to very dense fine to coarse sand with varying proportions of silt and gravel (USCS classification SM, SW, GP) extending about 3 to 12 ft. below ground surface. Underlying the Fill, the Drillers generally encountered medium dense to very dense Sand with varying proportions of silt and gravel (SW, SP, SM, GP), or bedrock consisting of granitic, dioritic, or granodioritic rock. Where encountered, bedrock depths ranged from about 3 to 15 ft. below ground surface. Water levels measured by FST in observation wells installed in the borings were about 4.1 to 13.7 ft. below ground surface.

SA performed 48 grain-size distribution analyses, 11 hydrometer analyses, and 2 Atterberg limits tests on samples obtained from the borings. The purposes of the geotechnical laboratory testing were to assist in soil classification and preparation of boring logs, to evaluate re-use of existing soils, and to assist in permeability evaluation. Geotechnical laboratory test results are summarized in Table 2 and are presented in detail in Appendix C. Based on the laboratory data, SA estimated vertical permeability using the Kozeny-Carmen Formula to range from about  $3.6 \times 10^{-2}$  to  $5.9 \times 10^{-7}$  cm/s. The references indicate that measured values of hydraulic conductivity usually range from 1/3 to 3 times the estimated value. FST performed field permeability tests ("slug tests") in the observation wells installed in selected borings. FST estimated permeabilities from the slug tests to range between  $1 \times 10^{-2}$  and  $4.7 \times 10^{-4}$  cm/s, which are summarized in Table 3. Refer to Section 2.5.

Pipe trench bottom depths are anticipated to be about 8 to 9 ft. below ground surface. The subsurface conditions identified at these depths in the borings generally consist of medium dense to very dense Sand, Sand and Gravel, or Bedrock and are generally suitable for foundation support of the proposed pipes with proper trench excavation and pipe bedding. Buried utilities, including gas mains, sewer/drain lines, telecommunications, etc. are located in close proximity to the proposed pipelines. In our opinion, the subsurface conditions will significantly affect pipeline design and construction in several ways, including the following:

- Shallow bedrock We anticipate up to 7 ft. of bedrock excavation, and typically 1 to 5 ft., may be needed to reach proposed trench bottom depths where shallow bedrock was encountered in the borings and GPR results. Table 3.3.2 summarizes anticipated rock excavation depths and locations.
- Shallow groundwater Groundwater was generally measured between 4.1 and 9 ft. below ground surface. Excavation will require dewatering. Refer to Section 4.5.
- Highly permeable soils Large quantities of water may be pumped during dewatering and the influence of groundwater drawdown could extend a significant distance from excavation. Refer to Sections 2.5 and 4.5.
- Buried utilities Close proximity of buried utilities will affect methods for rock removal and will likely require shoring of excavations. Refer to Sections 3.5, 4.3 and 4.4.
- Subsurface obstructions The GPR results indicate numerous subsurface obstructions (e.g. boulders), and SA's borings, particularly those performed near Hawke's Pond, encountered boulders on the order of 1 to 3 ft. diameter. Excavation of boulders could be difficult and could increase trench sizes. Boulders could also hinder excavation support installation.
- Pipeline route selection north of Sta. 48+40SB Based on the subsurface explorations, GPR data, and SA's review of plans from MassHighway, we anticipate that the northbound route may require less bedrock excavation and fewer boulders, but possibly shallower groundwater. Refer to Section 3.2.

Section 3.3 discusses pipe support factors. Where shallow rock is encountered, the trench should be excavated at least one foot below the proposed pipe bottom elevation. Pipe bedding should consist of crushed stone,



026-08-007 S-ii 10/6/08

MassHighway material M2.01.5 and should be wrapped with geotextile filter fabric, meeting the requirements of MassHighway (1995) M9.50.0 Type I – Separation, to reduce risk of migration of fines, and potential ground deformations resulting from such migration of fines into the crushed stone. Backfill placed over the pipe and pipe bedding should consist of Ordinary Borrow, MassHighway M1.01.0, with a maximum particle size of 3 in., placed in 8-in. maximum loose lifts and compacted to at least 92 percent maximum dry density as measured by ASTM D1557. Within two feet of proposed ground surface, but beneath the pavement section, backfill should consist of Gravel Borrow, MassHighway M1.03.0 placed in 8-in. maximum loose lifts and compacted to at least 95 percent of maximum dry density as measured by ASTM D1557. The pavement section should be designed and constructed in accordance with MassHighway standards. Based on the grain-size analyses, we anticipate that most excavated soils from the trench can generally be reused as Ordinary Borrow after screening for particles larger than 3 in.

Sections 3.5 and 4.3 discuss lateral earth pressures, trench design factors, and excavation support. The presence of structures, including buildings, bridges, culverts, utilities, drainage structures (e.g. catch basins, etc.), pavements, etc., in close proximity to the proposed pipelines will affect trench design and construction. Excessive lateral ground movements (rotation or translation) of excavation support systems, if not properly designed and executed, could result in nearby structural deformations and settlement. Likewise, dewatering and ground loss at the excavation support system into the trench could result in vertical and lateral ground deformations, even at potentially much greater distances. Trenches should be shored to limit lateral ground movements to 1 inch or less. The excavation support system should be designed by a registered professional engineer engaged by the Contractor.

Up to 7 ft. of bedrock excavation may be required. The proximity of the Walnut St. Bridge and buried utilities, and especially buried gas mains within several feet of the proposed pipeline, should be carefully considered in the selection of rock removal technique. Bedrock elevations vary significantly near the Walnut St. Bridge and rock removal should be anticipated under or near Bridge. The selection of a rock removal technique should strive to balance risk to adjacent utilities and structures with opposing factors such as excavation cost and production rate. Rock can typically be excavated by explosive or non-explosive methods, such as mechanical excavation (e.g. hydraulic rams, etc.), trenching, chemical splitting, or other, proprietary methods. The primary factors affecting selection of method include cost, risk of damage to adjacent structures from vibrations, airblast, flyrock, etc., and permissions from regulating authorities. Section 4.4 discusses rock removal.

The detailed evaluation, recommendations, and assumptions on which they are based, described in the body of this Report, should be read in entirety, reviewed and understood.



026-08-007 S-iii 10/6/08

## GEOTECHNICAL REPORT MWRA CONTRACT NO. 6905, LYNNFIELD/SAUGUS PIPELINES SAUGUS, MASSACHUSETTS

## TABLE OF CONTENTS

| SU | SUMMARY                                                                                                                                                          | S-:                                            |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| TA | TABLE OF CONTENTS                                                                                                                                                | TOC-                                           |
| 1. | 1. INTRODUCTION                                                                                                                                                  |                                                |
|    | <ul><li>1.2 Site Location and Description</li><li>1.3 Project Understanding and Background</li></ul>                                                             |                                                |
| 2. | 2. SITE AND SUBSURFACE INFORMAT                                                                                                                                  | ION                                            |
|    | <ul> <li>2.2 Available Geologic Information</li></ul>                                                                                                            |                                                |
| 3. | 3. EVALUATION AND RECOMMENDA                                                                                                                                     | TIONS10                                        |
|    | 3.2 Pipeline Route Considerations 3.2.1 Bedrock 3.2.2 Boulders 3.2.3 Groundwater 3.3 Pipe Support Factors 3.3.1 Pipe Foundations 3.3.2 Pipe Bedding and Backfill | 10 10 11 12 12 12 12 12 12 15 16 17 Factors 17 |
| 4. | 4. ADDITIONAL RECOMMENDATIONS                                                                                                                                    | AND CONSTRUCTION CONSIDERATIONS 18             |
|    | 4.2 Reuse of Existing Site Soils                                                                                                                                 |                                                |
| 5  | 5 REFERENCES                                                                                                                                                     | 24                                             |



| FIGURE     | Figure 1 – Site Location Map                                   | Attached |
|------------|----------------------------------------------------------------|----------|
|            | Figure 2 – Site Aerial Photo                                   | Attached |
|            | Figure 3 – Excerpt of Massachusetts Bedrock Geologic Map       | Attached |
|            | Figures 4-1 to 4-7 – Boring Location Plans                     | Attached |
|            | Figure 5 – Subsurface Profile Legend and Notes                 | Attached |
|            | Figures 6-1 to 6-6 – Southbound Subsurface Profiles            | Attached |
|            | Figures 7-1 to 7-6 – Northbound Subsurface Profiles            | Attached |
|            | Figure 8 – Factors Affecting Pipeline Design                   |          |
| TABLES     | Table 3.2.1 – Bedrock Depths in Northern Borings               | 12       |
|            | Table 3.3.2 – Estimated Bedrock Excavation from GPR Data       |          |
|            | Table 3.3.2.1 – Pipe Bedding Gradation                         | 16       |
|            | Table 1 – Summary of Groundwater Observation Well Measurements | Attached |
|            | Table 2 – Summary of Geotechnical Laboratory Test Results      |          |
|            | Table 3 – Field Permeability Test Results                      |          |
| APPENDICES | Appendix A – Limitations                                       |          |
|            | Appendix B – Boring Logs                                       |          |
|            | Appendix C – Geotechnical Laboratory Test Results              |          |
|            | Appendix D – Excavations                                       |          |
|            |                                                                |          |

# GEOTECHNICAL REPORT MWRA CONTRACT NO. 6905, LYNNFIELD/SAUGUS PIPELINES SAUGUS, MASSACHUSETTS

#### 1. INTRODUCTION

This Report ("Report") provides the results of geotechnical engineering evaluation performed by Stephens Associates Consulting Engineers, LLC ("SA," "we," "our," or "us") for Fay, Spofford & Thorndike, LLC ("FST," "Client," "you," "your," etc.) for the proposed Lynnfield/Saugus Pipelines ("Pipelines," or "Project"), Massachusetts Water Resource Authority ("MWRA" or "Owner") Contract No. 6905 in Saugus, Massachusetts. This Report is subject to the limitations presented herein, including Figures, Tables and Appendices, (e.g. Appendix A – Limitations, etc.). SA performed these services for FST in general accordance with our Agreement dated January 28, 2008.

This Report first describes the Site and its location, our Project understanding, background, and purpose and scope of services. Section 1 presents our Site reconnaissance observations, available geologic data, results of current subsurface explorations, and summary of geotechnical laboratory testing. Section 3 describes our evaluation and recommendations of subsurface conditions, pipeline route selection considerations, and design recommendations. Section 4 provides additional recommendations and construction considerations. References are listed in Section 5.

#### 1.1 Stationing and Datum

FST provided SA with the drawing titled, "Existing Conditions Plan", January 30, 2008, prepared by Bryant Associates, Inc. ("Existing Conditions Plan"). The Existing Conditions Plan indicates the vertical datum as the Boston City Base, which is 5.65 ft. below the National Geodetic Vertical Datum of 1929, and the horizontal datum as the Massachusetts State Plane Coordinate System NAD 1983. Elevations cited herein are with respect to this datum.

FST indicated that Project stationing along the proposed pipeline will be established later in the design process. For the purpose of presenting subsurface profiles, interpreted ground penetrating radar ("GPR") data provided by others, and this Report, two baselines with stationing were established by coordination and consent between SA, FST, MWRA and the GPR Consultant. The baselines were set following GPR traverses on the northbound and southbound shoulders of Rte. 1, with station 0+00 at the southern end. Stationing referenced herein is therefore denoted as 0+00SB or 0+00NB where SB and NB refer to the southbound or northbound baseline, respectively, and are in units of feet. In general, stations on the two baselines are similar at the southern end and differ by about 30 ft. near the northern end because they follow curvature of Rte. 1. The Existing Conditions Plan also shows a baseline and stationing for the Rte. 1 roadway, which is substantially similar to baselines and stationing shown on previous plans since 1926, as discussed below.

#### 1.2 Site Location and Description

Site location is shown on Figure 1 – Site Location Map and Figure 2 – Site Aerial Photo. The Site is located on U.S. Rte. 1 (aka Broadway), extending south from the Saugus-Lynnfield town line about 6,400 ft. Rte. 1 is a historic, major three-lane thoroughfare with commercial and industrial businesses located just off the shoulders. Uncontrolled access and egress to commercial and industrial property is prevalent on Rte. 1. USGS topographic maps of the Boston Quadrangle (USGS 1903) and Lawrence Quadrangle (USGS 1893) show a road in similar location and geometry as the present day road. An interchange with Rte. 129 (Walnut Street) is located near Sta. 15+50NB, where the Walnut Street Bridge crosses over and connects with Rte. 1



026-08-007 Page 1 of 26 10/6/08

via on- and off-ramps. Hawkes Pond, retained by Hawkes Pond Dam, is located immediately west of Rte. 1, approximately between stations 51+50NB and 60+00NB. According to the National Inventory of Dams database (NID 2008), Hawkes Pond Dam (NID ID No. MA00245) is owned by the Lynn Water and Sewer Department and was constructed in 1895. The Lynnfield Water District Pump Station is the Site northern terminus, on the eastern side of Rte. 1 near Sta. 64+00NB.

In general, ground surface elevations increase from south to north along Rte. 1 at the Site. According to the Existing Conditions Plan and our Site observations, south of the Walnut St. Bridge (approx. Sta. 0+00 to 15+50NB), the Site slopes gently upward from about El. 48 to El. 53. Northward from the Walnut St. Bridge, the Site slopes moderately upward to a peak of about El. 69.7 near Sta. 28+00NB, and then slopes gently downward to a relatively level section of about El. 63 to 66 between Sta. 31+00NB and 45+00NB. From Sta. 45+00, the Site slopes relatively steeply upward to about El. 115 ft. near Sta. 63+00NB, and then gently downward to about El. 113 near the Pump Station.

#### 1.3 Project Understanding and Background

Our understanding of the Project is described in our Agreement dated January 28, 2008 and is further described throughout this Report. Our understanding of the Project is based on the following:

- Our email correspondence with Messrs. John Krawczyk and Dennis Boucher, and Ms. Erica Lotz of FST between December 13, 2006 and January 8, 2008;
- Meetings with Mr. Krawczyk on March 26, 2007, and with Mr. Boucher on July 5, 2007;
- Email correspondence and meetings with Mr. Larry Durkin and Dennis Boucher between January 8 and July 14, 2008.
- The document titled, "Massachusetts Water Resources Authority, Request for Qualifications Statements/Proposals, Lynnfield/Saugus Pipelines Design/CA/RI, Contract 6905," dated November 29, 2006 ("RFQ/P").
- The document titled, "Field Testing Work Plan, Lynnfield/Saugus Pipelines Project, MWRA Contract No. 6905," March 18, 2008, prepared by FST.
- Drawing titled, "Rte. 1, Saugus, MA, Existing Conditions Plan," January 30, 3008, prepared by Bryant Associates, Inc. ("Existing Conditions Plan")
- Sketches titled, "Typical Trench Section MWRA 36" Main Only," "– Saugus 12" Main Only," and "– Common Pipe Trench," provided by FST on June 8, 2008, referred to herein as "Trench Sketches."

The RFQ/P indicates that the MWRA intends to construct about 2,560 ft. of 36-in. diameter water main, 4,240 ft. of 24-in. diameter water main, and 6,000 ft. of 12-in. water main and 6-in. diameter blow-off piping along Rte. 1 in Saugus, Massachusetts. The 12-in. water main is being constructed for the Town of Saugus (referred to herein as "Saugus 12-in. main") and will generally parallel the MWRA 24/36-in. main. FST indicated that the MWRA main at the southern end will be 36-in. diameter and will transition to 24-in pipe near Sta. 19+00SB just north of the Walnut St. Bridge, which will continue to the northern terminus. The Field Testing Work Plan indicates that the southern project limit has been moved northward since the RFQ/P, reducing the length of 36-in. diameter pipeline because of recent development at the Shops at Saugus site where a MWRA water main extension was installed.

At the southern end, the proposed route will follow the eastern shoulder of the northbound lane (referred to herein as "northbound shoulder" or "northbound side") from about Sta. 0+00 to 10+50NB, where it will cross the road to the western shoulder of the southbound lane (referred to herein as "southbound shoulder" or "southbound side") and extend to about Sta. 48+40SB (48+80NB). North of this station, FST indicated that

Stephens Associates
Consulting Engineers

Insightful. Costsaving Solutions
for Buildings and
Infrastructure
Hydrology & Hydraulics

the MWRA is considering routes following either the northbound shoulder or the southbound shoulder, to be determined after MWRA's review of subsurface conditions presented herein and other factors such as utility conflicts, coordination with the Town of Saugus, etc. At the northern end, the pipeline will tie into the existing Lynnfield Water District Pump Station just north of the Lynnfield/Saugus town line, east of the northbound shoulder. The route following the southbound shoulder, if selected, would cross to the northbound shoulder near Sta. 62+70NB and then connect to the Pump Station near Sta. 64+00NB. The Field Testing Work Plan indicates that the Saugus 12-in. main will begin at the southern end and terminate just south of Hawkes Pond near Sta. 52+00NB, tying into the existing Town of Saugus water main at Walden Avenue.

The Trench Sketches provided by FST show a horizontal spacing of 6 ft. between inside edges of the MWRA 24/36 in. main and the Saugus 12-in. main. The Trench Sketches also show the pipe crowns located 5 ft. below ground surface. Where the pipes will be installed in a common trench, the Trench Sketches show a trench width of 14 ft. and depth of about 9 ft. Where installed in separate trenches, the trenches for the MWRA 36-in. and Saugus 12-in. pipes are shown as about 9 ft. deep by 9 ft. and 3 ft. wide, respectively. FST indicated that where the MWRA pipe will be 24-in. diameter, the trench depth will be about 8 ft. below ground surface. The proposed pipes may need to be placed deeper to pass beneath existing utilities where the pipes cross over Rte. 1 (northern and southern cross-overs) and at several other locations including a stone culvert crossing Rte. 1 near Sta. 36+00SB and the Lynn Raw Water Pump Station Main near Sta. 57+00SB (57+50NB). FST anticipates that the trench bottom depth at these locations might be 10 ft. below ground surface, but will not be decided until utility locations are confirmed during design. We assume the finished ground surface will be similar to, if not the same as, the existing ground surface.

FST indicated that the MWRA prefers to use Class 52 (ANSI thickness classification) ductile iron for the 24 and 36-in. pipes, though FST may also consider steel pipe in their preliminary design report. FST is assuming the Saugus 12-in. main will likely be Class 52 ductile iron pipe, and indicated that ANSI/AWWA C600 "Installation of Ductile-Iron Water Mains and Their Appurtenances" will be used as a design guide.

#### 1.4 Purpose and Scope of Services

The purpose of our services was to evaluate geotechnical conditions and provide geotechnical recommendations for design and construction of the proposed pipeline. Our scope of services is summarized as follows:

- 1. Assist in Development of Field Testing Program (FTP)
- 2. Review Available Geotechnical Information
- 3. Assist in Preparation of Draft FTP Technical Memorandum
- 4. Meet with MWRA and FST
- 5. Respond to MWRA Comments on draft FTP Technical Memorandum
- 6. Assist in Finalization of FTP Technical Memorandum
- 7. Exploration Program Work Plan
- 8. Exploration Program Implementation
- 9. Geotechnical Laboratory Testing
- 10. Geotechnical Evaluation and Preparation of this Report



026-08-007 Page 3 of 26 10/6/08

SA's scope of services does not include an environmental assessment of any kind, including but not limited to assessments for the presence or absence of wetlands or hazardous or toxic materials or organisms (e.g., fungi, flora, fauna, microorganisms, etc.) in the soil, surface water, groundwater, or air, on or below or around this site. Any observations of odors, colors, or unusual or suspicious items or conditions noted by SA were incidental to our services, and any statements regarding such observations are strictly for the information of the Client.

#### 2. SITE AND SUBSURFACE INFORMATION

#### 2.1 Site Reconnaissance

SA reconnoitered the Site for readily visible surficial signs of geologic conditions. We noted significant rock outcrops north of the Walnut St. Bridge, on the western side of Rte. 1, from about Sta. 18+00SB to 23+00SB. The ground surface in this area slopes steeply upward to near vertical west of Rte. 1, suggesting that the rock was excavated for construction of Rte. 1. SA also noted large surface boulders placed in landscaped areas between Sta. 27+00SB and 31+00SB on the western side of Rte. 1. From about Sta. 47+00SB to 59SB+00, in the vicinity of Hawkes Pond, SA noted that the ground surface sloped downward west of Rte. 1, indicating fill was placed to create the Rte. 1 embankment. Based on topography shown on the Existing Conditions Plan, the embankment is on the order of 11 ft. high. SA noted exposed bedrock over relatively large areas on the shore of Hawkes Pond at the embankment bottom. West of Rte. 1 from about Sta. 61+00SB to 64+00SB, the ground surface slopes upward and SA observed rock outcrops in the sidewalk. The sidewalk was also constructed sloping steeply upward westerly, suggesting shallow rock left in place instead of excavation to create a level sidewalk. On the eastern side of Rte. 1 from about Sta. 51+00NB to 64+00NB, the ground surface generally slopes steeply upward to the east, and SA noted numerous rock outcrops.

#### 2.2 Available Geologic Information

#### 2.2.1 Published Data

The Surficial Geologic Map of the Reading Quadrangle (Oldale 1962) shows the Site vicinity north of Hawkes Pond to consist of Ground moraine, described as, "till with minor amounts of stratified drift". The Map further describes till as "poorly sorted to unsorted mixture of gravel, sand, silt and clay deposited directly by glacial ice. Deposition of the till was by lodgement (plastering beneath the moving ice) or by ablation of the ice." The Map describes a younger, or upper till and older, or lower till. Younger till is indicated as more extensive geographically, however, the older till may have greater volume due to greater thickness. Younger till is described as "loose, unsorted and unstratified mixture of sand and gravel with varying amounts of silt and clay. Boulders in the younger till vary greatly in number and size... Lenses of zones of stratified sand and gravel occur within the deposits." The upper 1 to 1.5 ft. is generally "yellowish brown or brown and contains somewhat more silt and clay than the unoxidized light gray till below it... In most places it (the younger till) is only a few feet to 15 feet thick, but in some places it can be considerable thicker." The Map also indicates, "the loose sandy texture of younger till makes it easy to excavate, fairly permeable, and useful as fill material. Slope stability in the sand till is good: in most places the till will stand on a 2:1 slope. The numerous large boulders in younger till at some places might make excavation of the till difficult."



026-08-007 Page 4 of 26 10/6/08

The Map describes the older till as, "in most places is a very compact, unsorted and unstratified mixture of gravel, sand, silt and clay. It appears to have a somewhat higher silt and clay content than the younger till. Older till is plastic when wet and is indurated to varying degrees when dry. Permeability is low in the older till... Older till is found in drumlins and in most places where the ground moraine is thick. It is rarely less than 15 feet thick and may be as much as 250 feet thick." The upper 10 to 25 feet is reddish brown or olive brown, whereas at greater depths the older till is light to dark gray. The Map also indicates that, "the compactness and induration of the older till makes excavation difficult to very difficult...Older till is very unstable in cuts, and careful planning as to the degree of slope and amount of drainage is necessary to insure a successful cut slope."

A smaller scale Surficial Geologic Map of the Boston Area (Kaye 1977) shows surficial soils to consist of Rocky Terrain, described as, "many bedrock outcrops, thin, spotty drift," and Stratified Drift, described as, "sand, gravel, and clay, minor till; in places overlain by swamp." These data are generally consistent with that shown on the Surficial Geologic Map of the Reading Quadrangle.

Figure 3 shows an excerpt of the Bedrock Geologic Map of Massachusetts (Zen et al. 1983). Based on Figure 3, bedrock in the site vicinity generally consists of gray granite to granodiorite. At the northern end of the Site, the Bedrock Map shows Peabody Granite, described as alkalic granite containing ferro-hornblende, middle Devonian age, intruding diorite and granodiorite. South of Hawkes Pond, the Bedrock Map shows gray granite to granodiorite, indicated as intruding the Westboro Formation of quartzite and argillite further south.

The Tectonic Map of Massachusetts (inset on the Bedrock Geologic Map) shows the Site vicinity to be part of the Milford-Dedham Zone, in an area shown as Brittlely Deformed Terraine and the Peabody Pluton, located within the Brittlely Deformed Terraine. The Brittlely Deformed Terraine is located between the northeast-southwest trending Bloody Bluff Fault to the northwest and the similar trending Northern Border Fault bordering the Boston Basin to the southeast.

According to the Metamorphic Map of Massachusetts (also inset on the Bedrock Map), except for the Peabody Pluton which is not metamorphosed, the Map indicates Low grade metamorphism consisting of, "Predominately greenschist, greenstone, felsite, and quartzite, commonly enveloped in granite."

Another preliminary bedrock map (Barosh et al. 1977) shows bedrock in the Site vicinity to consist of Dedham Granodiorite, Peabody Granite, Hybrid Dedham and Middlesex Fells Volcanic Rock, and quartzites and gneissoid metavolcanics. These descriptions are generally consistent with that shown on the Bedrock Geologic Map of Massachusetts.

#### 2.2.2 Previous Subsurface Explorations

The Field Testing Work Plan contains an appendix of existing geotechnical data obtained by FST from the MWRA and Massachusetts Highway Department ("MassHighway"). The data included:

- A Geotechnical Letter Report, August 31, 2006, prepared for a new 120-ft. long MWRA water main in the northbound shoulder of Rte. 1 at the Lynnfield pumping station. This letter report presented results of two subsurface explorations, IB-1 and IB-2.
- Logs of borings BB-1A, BB-2 and BB-3 performed at the Walnut St. Bridge, July 1997 and provided by MassHighway



026-08-007 Page 5 of 26 10/6/08

• A Geotechnical Report titled, "Geotechnical Investigation, Shops at Saugus, Saugus, Massachusetts," January 10, 2007, prepared by JGI Eastern, Inc. for the Shops at Saugus commercial development near the southern end of the proposed alignment.

The borings performed near the Lynnfield Pumping Station generally encountered about 4 to 5 ft. of fine to coarse sand overlying bedrock consisting of light gray, hard, fine to coarse grained, fresh to moderately weathered Granite. Rock quality designation (RQD) values were 68 and 78 percent. The boring logs indicate that drill water was lost when coring rock, and groundwater was not encountered.

The borings performed at the Walnut St. Bridge generally encountered medium dense to very dense fine to coarse sand overlying granitic bedrock at depths of about 42 to 66 ft. below ground surface (bgs). Groundwater was noted in borings BB-1A and BB-2, performed behind the abutments of Walnut St. Bridge and about 12 ft. higher than Rte. 1, at boring completion at about 25 ft. below ground surface. In boring BB-2, performed on Rte. 1, groundwater was noted as about 9 ft. bgs.

The Geotechnical Report for the Shops at Saugus provides boring and test pit logs for 49 explorations, however, a boring location plan was not provided. The site location plan included in the report shows the general area of construction. The report summarizes the subsurface conditions at the northern portion of the site as granular fill overlying organic silt and wood debris, overlying glacial soils. In the southern and eastern portions of the site, the report summarizes subsurface conditions as blast rock fill overlying boulders or bedrock. Thirty nine of the 49 explorations encountered bedrock or boulders at depths from exposure at the ground surface to 23.5 ft. below the ground surface at the time of the explorations. Groundwater was noted at about 4 to 7 ft. below ground surface. Surface elevations may have changed since the explorations were made, thus changing bedrock and groundwater correlations with depth. The report recommends supporting the proposed buildings on shallow foundations bearing on structural fill, existing fill, glaciofluvial soil, glacial till or intact bedrock with a maximum net allowable bearing pressure of 6,000 pounds per square foot.

#### 2.2.3 Ground Penetrating Radar

The MWRA engaged Green International Affiliates, Inc. who engaged Hager GeoScience, Inc. ("Hager," or "GPR Consultant") to perform geophysical surveys of the northbound and southbound shoulders of Rte. 1 using ground penetrating radar ("GPR"), supplemented by seismic refraction of the southbound shoulder from about Sta. 7+70 to 11+80. Hager performed the survey between April 15 and May 15, 2008, reduced and intepreted the data, and provided the results in a report titled, "Geophysical Subsurface Characterization, MWRA Lynnfield/Saugus Pipeline Project, Route 1, Saugus, MA," dated June 2008, prepared for Green International Affiliates, Inc. ("GPR Report"). The GPR Report indicates that, "the objective of the investigation was to identify the depth of bedrock and buried obstructions prior to excavation, with the specific goal to map areas along the proposed alignment with bedrock at depths of 10 feet or less."

In the GPR Report, Hager indicates, "GPR records showed two apparent unique reflective boundaries, which we interpret as fractured (weathered) bedrock overlying more competent (harder) rock." Inasmuch as this is a quote of the Hager GPR Report, the "we" in the quote refers exclusively to Hager. In correspondence between Hager and SA, Hager indicated that the degree of fracturing or weathering of the upper layer cannot be evaluated from the GPR data, and their interpretation was based on comparison between the GPR data and SA's draft boring logs provided to Hager by the MWRA. The GPR Report indicates variable fractured bedrock surface elevations of about 5 to 108 ft. (depths about 3 to 45 feet below ground surface) on the southbound shoulder, and about 14 to 109 ft. (depths about 3.5 to 38 ft. below ground surface) on the northbound shoulder. The GPR Report also identifies numerous subsurface obstructions and possible buried

Stephens Associates
Consulting Engineers

Insightful, Costsaving Solutions
for Buildings and
Infrastructure
Hydrology & Hydraulics

026-08-007 Page 6 of 26 10/6/08

utilities, and areas of possible reinforced concrete located below the existing asphalt pavement. Further discussion of the GPR results is presented in following sections.

As noted in Section 1.1, the GPR traverses were established as baselines for subsurface profiles with stationing beginning with 0+00 at the southern end through coordination and consent between SA, FST, MWRA and the GPR Consultant. Hager provided SA with the GPR traverses plotted on the Existing Conditions Plan in electronic AutoCAD format. Figure 4 shows the baselines. Hager also provided SA with subsurface profiles of the interpreted GPR results showing bedrock elevations, subsurface obstructions, possible buried utilities, and possible reinforced concrete under the asphalt in electronic AutoCAD format on June 23, 2008. SA included these features, as interpreted by Hager, on our subsurface profiles shown in Figures 5 through 7.

#### 2.3 Current Subsurface Explorations

FST engaged GeoLogic Earth Exploration, Inc., of Norfolk, Massachusetts ("GeoLogic" or "Drillers"), to drill the borings and install groundwater observation wells along the proposed pipeline alignment between March 30 and April 25, 2008 using a truck-mounted drill rig. A total of 27 borings were drilled and 9 wells installed. The purpose of the borings was to evaluate geotechnical conditions (by SA) and to obtain samples for environmental and corrosion testing (by others). FST selected the boring and observation well locations and depths, and the Drillers marked the locations in the field and notified DigSafe System Inc. for utility clearance prior to drilling, as required by law. SA observed and logged the borings in the field, screened the samples using a photoionization detector (PID), measured ties to each boring from existing Site features, and jarred portions of the split spoon samples in environmental containers as requested by FST.

The boring logs are attached in Appendix B. FST provided ground surface elevations at the boring locations as noted on the boring logs. Figure 4 shows the exploration locations and Figures 5 to 7 show subsurface profiles. At the request of FST, SA used the Existing Conditions Plan and photogrammetric topographic data provided by FST to generate a ground surface profile along the baselines from which to plot the subsurface profiles showing the GPR data and boring results. The surface profiles generally follows the contours shown on the Existing Conditions Plan, but show localized variations, generally less than 0.5 ft. from a 'smooth' surface line. The variations result from the surface modeling routine used by AutoCAD Civil3D 2008 with the provided topographic data.

The Drillers advanced the borings to depths of about 12 to 21 ft. below ground surface ("bgs") using wash boring techniques. These techniques were selected over other methods (e.g. hollow stem auger drilling) because of the significant presence of boulders and bedrock, and sand below the water table, for which wash boring techniques were judged to be better suited. The Drillers performed Standard Penetration Tests ("SPT") and obtained split spoon samples continuously within the top 12 to 13 ft., where not impeded by boulders, and at 5-ft. intervals at greater depths, in general accordance with ASTM D-1586. The Drillers generally used soil cuttings to backfill the borings, except at borings B-3 and B-19 where PID readings exceeded 50 parts per million (ppm), the cuttings were drummed for disposal. The 50 ppm PID criterion was selected by FST. At boring B-19, it was later found that the PID had mis-read, and readings of the soil samples with a new PID indicated zero ppm.

The borings were spaced at approximately 300 ft. and subsurface conditions could vary significantly between boring locations. The generalized subsurface descriptions presented below and on Figures 6 and 7 are interpretations intended to highlight the major subsurface strata based on available data. Bedrock elevations shown on the subsurface profiles were provided by Hager based on their interpreted GPR data, as described

Stephens Associates
Consulting Engineers

Insightful, Costsaving Solutions
Geotechnical
Intrastructure
Hydrology & Hydraulics

026-08-007 Page 7 of 26 10/6/08

above. More detailed descriptions of subsurface conditions are presented in the logs of the individual explorations. Interested parties should review the exploration logs presented in Appendix B for specific information at individual boring locations. The strata and groundwater shown on the logs and Figures 6 and 7 approximate conditions at the exploration locations at the time of drilling. Variations may occur and should be expected between exploration locations and over time. The strata and groundwater delineations represent interpretations of the approximate boundaries between subsurface materials. The actual transition may be gradual. Our generalized description of subsurface conditions is as follows:

<u>Asphalt</u> – The Drillers generally encountered about 6 to 8 inches of asphalt at the ground surface of the borings. Many borings encountered either 4 to 6 inches of concrete or about 6 inches of cobbles beneath the asphalt.

<u>Subbase</u> – Underlying the Asphalt and concrete or cobbles, the Drillers generally encountered 2 to 6 inches of gray to gray and black medium to coarse Sand (Unified Soil Classification System (USCS) SP soil), with varying proportions of gravel, and crushed asphalt in some locations.

<u>Fill</u> – The Drillers generally encountered Fill consisting of gray-brown to brown fine to coarse sand with varying proportions of silt and gravel (SM,SW,GP) below the asphalt subbase and extending to depths of about 3 to 12 ft. below ground surface. Boulders on the order of one to two feet from top to bottom were encountered in borings B-1, -12, -17, -20, -23, -25, -26 and -27. Many samples penetrated less than 6 inches after 50 blows, or less than 12 inches after 100 blows, which is defined as sampler refusal. For samples that penetrated 12 in., Standard Penetration Test ("SPT") N-values ranged from 6 to 131 bpf, with most values greater than 22 bpf, generally indicating dense to very dense consistency.

<u>Sand</u> – In most borings, the Drillers encountered light brown, brown, or gray fine, fine to medium, or fine to coarse Sand (SW,SP,SM,GP), with varying proportions of gravel and non-plastic silt, underlying the Fill. In general, south of the Walnut St. Bridge, the sand was finer with more silt and less gravel. In the northern portion of the route, the sand was not encountered or was difficult to distinguish from the overlying Fill. Where bedrock was not encountered underlying the Sand, the Sand generally extended to depths of about 9 to 16 ft. bgs, in many cases the exploration bottom depth. In borings B-12, B-21 and B-23, a few inches of sand with trace organics were encountered at the top of this layer, suggesting possible former topsoil over which fill was placed. SPT N-values ranged from 6 to 109 bpf, with most values greater than 20 bpf, indicating mostly medium dense to very dense consistency.

<u>Silt</u> – Non-plastic to slightly plastic Silt was encountered in borings B-4, B-5 and B-17. In boring B-4, the Drillers encountered slightly plastic Silty Clay to Clayey Silt (CL/ML), trace to 'and' fine Sand at about 10 ft. bgs, extending to about 19 ft. bgs, and overlying fine to coarse sand and gravel (SW) extending to the boring bottom at about 21 ft. bgs. In boring B-5, non-plastic Silt was encountered from about 5.5 ft. bgs to the exploration bottom at about 21 ft. bgs. Boring B-17 likely encountered non-plastic Silt, some fine Sand from about 8 to 16 ft. bgs. The top few inches of Silt in borings B-5 and B-17 contained trace organics, suggesting former topsoil over which fill was placed. SPT N-values in the Silt ranged from 6 to 28 bpf, indicating medium stiff to very stiff consistency.



<u>Bedrock</u> – In borings B-7, -8, -10 and -11, the Drillers encountered bedrock at depths of about 3 to 4 ft. bgs. In borings B-18 through B-27, the Drillers encountered bedrock at depths of about 5 to 15 ft. bgs, with most depths less than 9 ft. bgs. The bedrock generally consisted of very hard, gray and black to pink and black, fresh to slightly weathered, medium grained, Granitic rock; very hard, gray and black, fresh to slightly weathered, fine to medium grained Granodioritic rock; or very hard, black, fresh to moderately weathered, fine grained Dioritic rock. Joints were generally closely spaced, dipping near horizontal to near vertical. Healed joints with veins of mineral infilling were generally observed in the Dioritic rock. Rock Quality Designations (RQD) ranged from 0 to 100 percent with most values between 30 and 83 percent. In general, rock coring was difficult because drill water generally did not return to the ground surface and the rock core barrel jammed frequently.

<u>Water</u> – In borings where monitoring wells were installed, SA measured water levels after each well was installed, and 2 hours to 4 days after installation at wells that could be accessed within the Driller's traffic control setup. FST measured water levels in the observation wells between April 27 and May 1, 2008, about 9 to 21 days after well installations. Table 1 summarizes measurements of groundwater levels in observation wells by SA and FST. Based on the observation well measurements, groundwater levels generally varied from about 4.1 to 13.7 ft. bgs, with most values between 5.3 and 9 ft. bgs. SA also measured water levels of about 1.6 to 10.9 ft. bgs at the end of drilling in borings where monitoring wells were not installed. The drilling technique, however, added water to the borings and SA's measured water levels may not depict natural groundwater levels. Groundwater levels will likely fluctuate seasonally, and depths at the time of construction differ from those indicated above.

In general, the Site soils and bedrock encountered in the borings are consistent with the surficial materials noted in the published geologic references and previous subsurface explorations described above.

#### 2.4 Geotechnical Laboratory Test Results

Geotechnical laboratory test results are summarized in Table 2 and are presented in detail in Appendix C. SA performed 48 grain-size distribution analyses, 11 hydrometer analyses, and 2 Atterberg limits tests on samples obtained from the borings. The purposes of the geotechnical laboratory testing were to assist in soil classification and preparation of boring logs, to evaluate re-use of existing soils, and to assist in permeability evaluation.

#### 2.5 Estimated Permeability

SA estimated hydraulic conductivity (permeability) of subsurface materials based on the gradation results. FST performed field permeability tests ("slug tests") in observation wells B-3-OW, B-4-OW, B-5-OW, B-9-OW, B-13-OW, and B-18-OW installed in the borings. The permeability data estimated from gradation analyses and field permeability tests contained in this Report should be used in conjunction with engineering analysis and engineering judgment in the design of dewatering and earth support systems for the Project.

SA estimated hydraulic conductivity based on the Kozeny-Carman Formula (Carrier 2003, Aubertin et al. 2005, Chapuis and Aubertin 2003). The Kozeny-Carman Formula estimates hydraulic conductivity based on fluid properties (i.e. water), void spaces (i.e. void ratio), and solid grain surface characteristics (i.e. specific surface area or SSA). Various authors present methods for estimating SSA based on grain-size distribution. Hydraulic conductivity is particularly affected by the estimate of SSA, which is largely dependant on the smallest particle size ( $D_0$ ) in the grain-size distribution. SA estimated SSA using methods described by Chapuis and Aubertin (2003), which includes a method for estimating  $D_0$  in the absence of hydrometer data.

Stephens Associates
Consulting Engineers

Insightful, Costsaving Solutions
for Buildings and
Infrastructure
Hydrology & Hydraulics

Carrier (2003) notes that the formula applies to non-plastic silt, but is not appropriate for clayey soils where interpartical forces affect flow. For larger particles, Carrier notes that the formula applies to gravely sands, but tends to overpredict permeability in gravels. SA therefore did not estimate permeability of clayey soils or gravels using the Kozeny-Carmen formula, or of near-surface soils that are above the groundwater table.

Based on the Kozeny-Carmen formula and the gradation data, we estimate *vertical* hydraulic conductivity of the soils tested to range from about  $3.6 \times 10^{-2}$  to  $5.9 \times 10^{-7}$  cm/s. Aubertin, et al. (2005) indicate that measured values of hydraulic conductivity usually range from 1/3 to 3 times the estimated value. Table 2 shows our estimates of hydraulic conductivity based on the grain-size test results.

SA *did not measure permeability*. The references note that values estimated with the Kozeny-Carman Formula are usually within the range of 1/3 to 3 times measured values. The estimated values are within the typical range of values for silty Sand to Silt and are generally considered to be low to high permeability. SA estimated permeability only of soils recovered from the split-spoon sampler. The samples therefore did not include large gravel, cobbles or boulders that could not be sampled. Permeability of soil containing such materials can vary significantly from soils containing purely smaller particles, and such permeabilities are not easily estimated without direct field measurement. The references note that nearly all laboratory measurements used to validate the Kozeny-Carman Formula were based on *vertical* hydraulic conductivity. The composition and permeability of existing Fill likely varies, and horizontal and vertical permeability could differ substantially depending on materials used and locations placed.

FST performed field permeability (slug) tests in selected observation wells indicated above and interpreted the data. Table 3 presents FST's summary of field permeability values. The values range from  $1x10^{-2}$  cm/s to  $4.7x10^{-4}$  cm/s. In interpreting the results, FST indicated the following:

The results generally agree in that low permeabilities calculated by one method correspond to low results by the other methods, such as at B-5. Variations in the results illustrate issues present in these methods. How completely the wells were developed and the limited displaced volume affect slug tests. Estimates from grain size distribution are dependent on the how representative the sample is, particularly in its relationship to the entire length of the entire screened interval. This method has difficulty accounting for layering in sediments not seen in bulk samples used for sieving. The results plus the boring logs should allow for preliminary evaluation of dewatering requirements.

#### 3. EVALUATION AND RECOMMENDATIONS

The following sections present our recommendations regarding significant geotechnical design and construction-related issues for the subject Project based on information provided by FST and on our subsurface explorations described above. Recommendations in Section 4, Additional Recommendations and Construction Considerations, are integral to the design recommendations presented herein.

#### 3.1 General Impacts of Subsurface Conditions

As indicated above, trench bottom depths are anticipated to be about 9 ft. below ground surface for stations 0 to 19+00, and about 8 ft. below ground surface for stations north of 19+00. The subsurface conditions identified at these depths in the borings generally consist of medium dense to very dense Sand, Sand and Gravel, or Bedrock and are generally suitable for foundation support of the proposed pipes with proper trench excavation and pipe bedding. Materials to be excavated generally consist of Sand or Sand and Gravel, or

Stephens Associates
Consulting Engineers

Insightful, Costsaving Solutions
for Buildings and
Infrastructure
Hydrology & Hydraulics

026-08-007 Page 10 of 26 10/6/08

Sand, Gravel and Boulders. Buried utilities, including gas mains, sewer/drain lines, telecommunications, etc. are located in close proximity to the proposed pipelines. In our opinion, the subsurface conditions will significantly affect pipeline design and construction in several ways, including the following:

- Shallow bedrock We anticipate up to 7 ft. of bedrock excavation, and typically 1 to 5 ft., may be needed to reach proposed trench bottom depths where shallow bedrock was encountered in the borings and GPR results. The GPR Report indicates bedrock shallower than proposed excavation bottom depths from about Sta. 15+30SB to 23+80SB; Sta. 25+20SB to 28+50SB; and frequently north of Sta 49+50SB.
- Shallow groundwater Groundwater was generally measured between 4.1 and 9 ft. below ground surface. Excavation will require dewatering.
- Highly permeable soils Large quantities of water may be pumped during dewatering and the influence of groundwater drawdown could extend a significant distance from excavation.
- Buried utilities Close proximity of buried utilities will affect methods for rock removal and will likely require shoring of excavations.
- Subsurface obstructions The GPR results indicate numerous subsurface obstructions (e.g. boulders), and SA's borings, particularly those performed near Hawke's Pond, encountered boulders on the order of 1 to 3 ft. diameter. Excavation of boulders could be difficult and could increase trench sizes. Boulders could also hinder excavation support installation.

The following sections further discuss these and other factors affecting pipeline design and construction, and should be reviewed in detail and understood.

#### 3.2 Pipeline Route Considerations

As discussed above, north of Sta. 48+40SB, the MWRA is considering installing the 24-in. pipe following a route along either the northbound or southbound shoulder (also referred to as "northbound route" or "southbound route"). Factors affecting the selection of northbound versus southbound route include subsurface conditions, utility conflicts, coordination with the Town of Saugus, and possibly others. To assist in the evaluation of subsurface conditions, FST selected boring locations on each side of Rte. 1 to be approximately opposite each other, and the MWRA engaged the GPR Consultant to perform GPR surveys on each side of Rte. 1.

Subsurface conditions potentially affecting route selection include shallow bedrock, boulders, and groundwater. These factors are discussed in detail in the following subsections. In general:

- The GPR results and SA's borings performed north of Sta. 49+50SB on both sides of Rte. 1 encountered bedrock shallower than the proposed excavation depth of 8 ft. Although the borings encountered bedrock at similar depths on both sides of Rte. 1, the GPR results suggest that the route following the northbound shoulder may require less bedrock excavation than the southbound shoulder.
- Historic plans obtained from MassHighway by SA suggest that bedrock along the northbound lanes/shoulder and the northern portion of the southbound lanes/shoulder (north of Sta. 61+20SB) was likely over-excavated during previous construction for installation of utilities.
- The GPR results and SA's borings indicate subsurface obstructions on both sides of Rte. 1. Based on the borings and our Site reconnaissance, the route following the northbound shoulder may encounter fewer boulders than the southbound shoulder.



• Groundwater levels measured in observation wells at borings B-17-OW and B-18-OW suggest that water levels on the southbound shoulder may be deeper than on the northbound shoulder north of Sta. 49+50SB. Ground surface topography decreases relatively steeply south and west in this area towards Hawke's Pond, suggesting that groundwater may follow a similar trend.

#### 3.2.1 Bedrock

The borings performed for evaluation of route selection approximately north of Sta. 48+00 generally encountered bedrock at depths and rock quality designation values shown in Table 3.1.1 below.

| TABLE 3.2.1 – BEDROCK DEPTHS IN NORTHERN BORINGS |                           |                  |                   |                           |                  |  |  |  |
|--------------------------------------------------|---------------------------|------------------|-------------------|---------------------------|------------------|--|--|--|
| Southbound Route                                 |                           |                  | Northbound Route  |                           |                  |  |  |  |
| Boring No.                                       | Depth to<br>Bedrock (ft.) | RQD <sup>a</sup> | Boring No.        | Depth to<br>Bedrock (ft.) | RQD <sup>a</sup> |  |  |  |
| 17                                               | >21                       | N/A              | 18                | 15                        | 71               |  |  |  |
| 20                                               | 8                         | 100              | 19                | 8.5                       | 0                |  |  |  |
| 21                                               | 9                         | 0                | 22                | 7.5                       | 98               |  |  |  |
| 23                                               | 12                        | 58               | 24                | 8                         | 54               |  |  |  |
| 25 <sup>b</sup>                                  | 7                         | 42               | 26                | 7                         | 50               |  |  |  |
| 27                                               | 5                         | 30               | IB-1 <sup>c</sup> | 4.3                       | 78               |  |  |  |
|                                                  |                           |                  | IB-2 <sup>c</sup> | 4.9                       | 68               |  |  |  |

<sup>&</sup>lt;sup>a</sup> Rock quality designation (RQD) values shown are for rock core taken within about 1 to 5 ft. of bedrock surface, which may need excavation.

The borings on the southbound side generally encountered bedrock at depths of about 5 to 12 ft. bgs, and the northbound side generally encountered bedrock at depths of about 4.3 to 8.5 ft. bgs. For a proposed trench bottom depth of 8 ft. below ground surface, the borings on both sides generally indicate little bedrock excavation except for the northern-most area (borings B-25 to B-27, IB-1 and IB-2), where we expect the amount of bedrock excavation to be greater. Rock quality designation values on both sides are comparable, indicating that bedrock will likely be difficult to excavate on both sides. The GPR data, however, indicate shallower bedrock between boring locations on the southbound side.

As indicated above Figures 6-5, 6-6, 7-3 and 7-4 show subsurface profiles of the GPR data and bedrock surface interpreted by Hager. For a proposed trench depth of 8 ft. below ground surface, SA compared the plotted GPR data with the trench bottom shown in Figures 6-5, 6-6, 7-3 and 7-4. From Sta. 50+00 to 60+00, we estimate that about 60 percent of the southbound route has bedrock shallower than 8 ft. bgs, compared to about 20 percent on the northbound side. The thickness of bedrock excavation on the southbound side is estimated to be on the order of 1 to 2 ft. typical, whereas the northbound bedrock excavation thickness is likely to be on the order of 1 ft. typical between these stations. North of Sta. 60+00, we estimate that most, if not all, of the profile on both sides would require bedrock excavation on the order of 2 to 3 ft. typical. These data suggest that the northbound route may require less bedrock excavation than the southbound route. The above estimates are based solely on the GPR data provided by others and actual conditions could vary.

026-08-007 Page 12 of 26 10/6/08

<sup>&</sup>lt;sup>b</sup> In boring B-25, the Drillers advanced the roller bit about 1.5 ft. into rock before coring.

<sup>&</sup>lt;sup>c</sup> Borings IB-1 and IB-2 performed in 2006. See Section 2.2.2.

Based on SA's Site reconnaissance, where we observed significant rock outcrops east and west of Rte. 1 and existing topography sloping relatively steeply downward from east to west, we would expect the depth to bedrock on the northbound route (i.e. eastern side of Rte. 1) to be shallower than indicated by the borings and GPR, and to be shallower than depths to bedrock along the southbound route (i.e. western side of Rte. 1), contrary to what the data indicate. Based on the boring and GPR results and our observations, we hypothesize that bedrock was over-excavated along the northbound lanes/shoulder, and north of B-25 on the southbound lanes/shoulder, during past construction/widening of Rte. 1 to allow for below-grade utility installation. We also hypothesize that the soil overlying bedrock in these locations was likely placed as fill after the bedrock was removed.

To assist us in evaluating our hypotheses, SA contacted MassHighway, requesting plans, profiles, sections and boring logs from past Rte. 1 construction. MassHighway found no previous boring logs in this area, but provided plan and profile drawings from 1926 to 1966. We understand that FST and MWRA also requested MassHighway boring information and received only three borings performed at the Walnut St. Bridge. FST also reviewed drawing files from the Town of Saugus, but only found a few sewer profiles that do not show bedrock.

SA compared MassHighway plan Nos. RP 656 0017 and RP 656 0018, showing as-built conditions from 1927-1928 ("1928 Plans") with plan Nos. RP 657 0017 and RP 657 0018, showing as-built conditions from 1935-1936 ("1926 Plans") after Rte. 1 was widened from one to multiple lanes (in each direction) and a center median was added. Both sets of plans show a baseline with stations, the Hawkes Pond Dam spillway and the Lynnfield pump house on the western side of Rte. 1, and the Saugus-Lynnfield Town line. Comparing the stations and baselines with these landmarks, SA concluded that the baselines and stations for the two sets of plans were substantially similar, if not the same. In comparison to the current Existing Conditions Plan using the same methods, the Rte. 1 baseline and stationing shown on the Existing Conditions Plan is substantially similar to, or nearly the same as, the previous baselines and stationing. Comparing these three sets of plans, SA noted the following over the area north of Sta. 48+80:

- Rte. 1 was widened circa 1935-36 by adding about 75 ft. to the eastern side while maintaining a similar western edge location;
- An additional 25 ft. was added to the eastern side between 1936 and 2008 while the western side was maintained in a similar location, or widened slightly.
- The 1928 Plans show "ledge" outcrops on the eastern side of Rte. 1 near Sta. 49+20SB to 50+20SB, Sta. 58+20SB, and from about Sta. 62+20SB to 63+70SB. On the 1928 western side of Rte. 1, "ledge" outcrops are shown near Sta. 61+20SB and about 62+70SB to 63+70SB (stations indicated on current southbound baseline referenced in this Report).
- The 1936 Plans do not show (legible) bedrock or ledge outcrops;
- Since Rte. 1 was widened easterly after 1928, we presume the ledge noted on the 1928 Plans was removed/excavated during the corresponding widening;
- The 1936 Plans show construction of catch basins and drain pipe not shown on the 1928 Plans. The catch basin bottom elevations are shown on the order of 4 to 6 ft. below the 1936 finished ground surface, suggesting that bedrock was either excavated along a trench for each pipe, or, more likely, over excavated during grading for the corresponding widening.
- SA could not reconcile ground surface elevations shown on profile views on the 1928 Plans and 1936 Plans because of apparent differences in datum. The plans do not indicate a datum.



Based on these plans, the boring and GPR results, and our Site observations, we conclude that bedrock along the northbound lanes/shoulder and the northern portion of the southbound lanes/shoulder was likely over-excavated during previous construction for installation of utilities. The data above also suggest that less bedrock excavation may be required along the northbound route.

#### 3.2.2 Boulders

Boulders could be difficult to excavate during construction, resulting in larger/wider trenches, undermining of adjacent utilities, greater backfill quantities, and higher costs. Borings B-17, 20, 23, 25 and 27, performed on the southbound side encountered fill containing significant boulders overlying the bedrock. Boulders were also encountered on the northbound side in boring B-26. Based on our Site reconnaissance and review of historic plans indicated above, we suspect that boulder fill was placed for the original construction of Rte. 1, or possibly construction of Hawkes Pond Dam, at the southbound shoulder/embankment. Although we suspect that the soil overlying bedrock on the northbound shoulder is also fill, the borings did not encounter as many boulders as at the southbound shoulder. The GPR data indicate similar numbers of subsurface obstructions on each side. Based on the boring results, the boulders may be on the order of 1 to 3-ft. diameter. Based on these data, the northbound side may have fewer boulders overlying bedrock.

#### 3.2.3 Groundwater

As noted in Section 2.3, groundwater levels measured in the borings at the end of drilling varied significantly, and are not likely indicative of the actual groundwater level because of water added during drilling. FST measured water levels in observation wells installed in borings B-17 and B-18, performed on the southbound and northbound sides, respectively, of about 13.7 and 6.9 ft. below ground surface. These data suggest that trench excavation along the northbound side may encounter groundwater and dewatering might be needed, whereas excavation along the southbound side may not encounter groundwater. The topography, however, slopes steeply to the north and east from both of these wells, and groundwater depths in the vicinity could differ significantly.

#### 3.3 Pipe Support Factors

Figure 8 shows factors affecting pipeline design. Pipelines are typically designed based on experience, by standardized design methods (e.g. AWWA C150 2002, DIPRA 2006), or by analytical methods such as the Marston-Spangler Load Theory (Spangler and Handy, 1982). Loads on buried pipes include surface loads (e.g. traffic), earth load, and internal pressure. Load carrying capacity of the pipe is dependant on the structural characteristics of the pipe, bedding characteristics and shape around the pipe bottom (i.e. bedding angle), compaction of backfill at pipe sides. The load carrying capacity of the pipe is also affected by trench width and ability of native soils to confine the bedding/backfill and provide horizontal resistance.

AWWA Standard C150 presents a method for designing the thickness of ductile iron pipe. In this method the pipe thickness is designed separately for internal pressure and trench load (earth plus surface loads). The larger thickness from the two designs is selected, and pipe deflection is checked. For 24 and 36-in. diameter pipes, a casting allowance of 0.07 in. is added to the calculated thickness.



026-08-007 Page 14 of 26 10/6/08

Traffic loads are tabulated in AWWA C150 for a single AASHTO H-20 truck, 16 kip wheel load placed over the pipe with an effective pipe length of 3 ft. and a 1.5 impact factor. For 24- and 36-in. pipes with 5 ft. of cover over the pipe crown, AWWA C150 Table 1 indicates traffic loads acting on the pipe of 1.1 psi. Trench backfill unit weight,  $\gamma$  should be taken as 120 lb/ft<sup>3</sup>. Design parameters including modulus of soil reaction, E', bending moment coefficient,  $K_b$  and deflection coefficient,  $K_x$  depend on the depth and type of pipe bedding. As noted above, FST provided a typical pipe detail showing bedding placed to the pipe midpoint with 6 inches of bedding below the pipe. This bedding configuration is considered Type 5 in the Standard, and values of E',  $K_b$ , and  $K_x$  should be taken as 700 psi, 0.128 and 0.085, respectively. Other bedding configurations with less bedding thickness below or beside the pipe (Types 1 through 4) will result in larger trench loads, and correspondingly lower values of E' and higher values of  $K_b$  and  $K_x$  should be selected in accordance with AWWA C150. If other methods are used to design the proposed pipeline, SA should be consulted on the applicability of the above values before their use in design.

#### 3.3.1 Pipe Foundations

The borings indicate that pipe foundation soils at proposed trench depths of 8 to 9 ft. generally consist of medium dense to very dense Sand, Sand and Gravel, or Bedrock. Medium stiff to hard, non-plastic to slightly plastic, sandy Silt was encountered in borings B-4, B-5, and B-17 at depths similar to the proposed trench bottom depths and will likely be encountered at the trench bottom in localized areas. The Sand, Sand and Gravel, Bedrock, and Silt are suitable for foundation support of the proposed pipe. Trench bottoms/foundation subgrades should be prepared as described in Section 4. Disturbed subgrades should be remedied in accordance with this Report.

Several inches of dark brown Sand or Silt with traces of organics, likely a former topsoil over which Fill was placed, were encountered in borings B-5, -12, -17, -21, -23 at depths of about 5 to 8 ft. below ground surface. Soils containing organics are unsuitable for foundation support of the proposed pipe. Where encountered at the trench bottom, these materials should be removed and replaced with compacted granular soil or crushed stone. Thickness of such materials could vary significantly between borings.

For trench bottom depths of 9 ft. below ground surface south of Sta. 19+00SB, and 8 ft. below ground surface north of Sta. 19+00SB, the GPR data indicate that bedrock excavation will likely be required as follows:

| Table 3.3.2 – Estimated Bedrock Excavation from GPR Data |            |                                             |  |  |  |
|----------------------------------------------------------|------------|---------------------------------------------|--|--|--|
| Stations                                                 | Route      | Approximate Bedrock Excavation<br>Thickness |  |  |  |
| 15+30SB to 23+80SB                                       | Southbound | 4 to 7 ft. typical                          |  |  |  |
| 25+20SB to 28+50SB                                       | Southbound | 2 to 5 ft. typical                          |  |  |  |
| 49+50SB to 60+00SB                                       | Southbound | 1 to 2 ft. typical over 60 percent          |  |  |  |
| 55+00NB to 60+00NB                                       | Northbound | ~1 ft. typical over 20 percent              |  |  |  |
| 60+00SB to Northern End                                  | Southbound | 2 to 3 ft. typical                          |  |  |  |
| 60+00NB to Northern End                                  | Northbound | 2 to 3 ft. typical                          |  |  |  |

The above estimates are based solely on the GPR data provided by others and actual conditions could vary. These estimates are not intended to be a quantity estimate.



026-08-007 Page 15 of 26 10/6/08

The bedrock surface shown in the GPR Report generally agrees with the top of bedrock encountered in the borings within one to two feet, except at boring B-9, where the boring was advanced through a boulder (or boulders) from about 8.5 ft. to 12.5 ft. bgs and underlying soil whereas the GPR Report shows bedrock at about 9 ft below ground surface. Though we cannot reconcile this discrepancy, the boulders and/or bedrock at this location is deeper than the proposed trench bottom and will not likely impact pipeline construction. Variations in the actual bedrock surface from that estimated by the GPR data should be expected.

The GPR Report also shows a second, lower bedrock surface, interpreted by the GPR Consultant to be "more competent (harder) rock" underlying "fractured (weathered) bedrock." We generally find this delineation between possible fractured bedrock and more competent rock difficult to correlate with the rock core RQD values obtained in the borings.

Bedrock generally consists of very hard Dioritic, Granitic, and/or Granodioritic rock. Over the anticipated depth of excavation, Rock Quality Designation values ranged from 0 to 100, with most values between 42 and 78, indicating slightly to moderately fractured bedrock. We recommend excavating bedrock to at least one foot below the proposed pipe bottom elevation. We anticipate that such bedrock will generally be difficult to excavate. Section 4.4 describes further considerations about bedrock excavation.

#### 3.3.2 Pipe Bedding and Backfill

As noted above, FST indicated that excavation depths for the 24-in. and 36-in. pipes will likely extend about 1-ft. below the pipe bottom, to about 8 and 9 ft. below ground surface, respectively, and pipes will therefore have about 5 ft. of cover. Typical details of pipe trench construction provided by FST, however, show 6 in. of pipe bedding stone placed beneath the pipe and up to the pipe centerline. We recommend placing at least 6 in. of crushed stone as pipe bedding beneath the pipe. The depth of proposed trench excavation and bedding thickness may be reconciled by reducing excavation below pipe bottom elevation to 6 inches, increasing thickness of bedding to 1 ft., or placing 6 inches of Gravel Borrow at the trench bottom prior to placing 6 inches of bedding. Where bedrock removal is required to establish the proposed trench bottom elevation, bedrock should be excavated at least one foot below the pipe bottom, and a minimum of one-foot of pipe bedding should be placed over the bedrock surface.

AWWA C600 indicates that Type 5 bedding should consist of granular material (sand, gravel, or crushed stone). The typical detail provided by FST shows crushed stone pipe bedding. Crushed stone pipe bedding may be imported or processed on-Site from excavated rock. Crushed stone pipe bedding should conform to MassHighway Crushed Stone M2.01.5 (1/2" nominal crushed stone) which, among other requirements, has the following gradation specification:

| TABLE 3.3.2.1 - PIPE BEDDING GRADATION |                         |  |
|----------------------------------------|-------------------------|--|
| Sieve Size                             | Percent Finer By Weight |  |
| 5/8 in.                                | 100                     |  |
| 1/2 in.                                | 85-100                  |  |
| 3/8 in.                                | 15-45                   |  |
| No. 4                                  | 0-15                    |  |
| No. 8                                  | 0-5                     |  |



026-08-007 Page 16 of 26 10/6/08

Geotextile filter fabric, meeting the requirements of MassHighway (1995) M9.50.0 Type I – Separation, should be placed over the trench bottom and wrapped around the crushed stone to reduce risk of migration of fines, and potential ground deformations resulting from such migration of fines into the crushed stone.

Backfill placed over the pipe and pipe bedding should consist of Ordinary Borrow, MassHighway M1.01.0, with a maximum particle size of 3 in., placed in 8-in. maximum loose lifts and compacted to at least 92 percent maximum dry density as measured by ASTM D1557. Within two feet of proposed ground surface, but beneath the pavement section, backfill should consist of Gravel Borrow, MassHighway M1.03.0 placed in 8-in. maximum loose lifts and compacted to at least 95 percent of maximum dry density as measured by ASTM D1557. The pavement section should be designed and constructed in accordance with MassHighway standards. Based on the grain-size analyses, we anticipate that most excavated soils from the trench can generally be reused as Ordinary Borrow after screening for particles larger than 3 in.

#### 3.4 Lateral Earth Pressures and Trench Design Factors

The presence of structures, including buildings, bridges, culverts, utilities, drainage structures (e.g. catch basins, etc.), pavements, etc., in close proximity to the proposed pipelines will affect trench design and construction. Excessive lateral ground movements (rotation or translation) of excavation support systems, if not properly designed and executed, could result in nearby structural deformations and settlement. Such ground deformations could damage adjacent structures within a distance of about 3 times the trench depth away from the excavation. Structures located within the active earth wedge, defined by a line extending from the trench bottom, outward and upward at an angle of about 60 degrees, may be particularly affected, as we would expect the most ground deformation within this zone. Likewise, dewatering and ground loss at the excavation support system into the trench could result in vertical and lateral ground deformations, even at potentially much greater distances.

Based on a trench depth of 9 ft., we estimate that rotation or translation of the trench wall of about 0.1 inches would be needed to mobilize active lateral earth pressures. Additional movements should be expected from ground loss and dewatering, depending on the types of trench support and dewatering systems implemented. For example, ground loss at the trench walls is typical when trench box earth support is used, due to raveling, collapse and seepage into irregularities in the space between the trench box and the trench walls. Other construction-related factors may cause ground movements as well, and should be evaluated and addressed by the Contractor's Professional Engineer in submittals before construction. Additional construction considerations of specific earth support techniques are discussed in Section 4.3.

Where movements required to develop active earth pressures risk damage to adjacent utilities, excavation support can be designed using at-rest pressures with an equivalent fluid unit weight of 65 pcf for soils above the groundwater level during excavation. This unit weight is based on a coefficient of at-rest earth pressure,  $K_0$ , of 0.5, multiplied by a soil unit weight of 130 pcf for Sand, Sand and Gravel, or Sand and Gravel Fill. For soils below the groundwater level during excavation, use an equivalent fluid unit weight of 34 pcf plus hydrostatic forces. Where movements required to develop active earth pressures are acceptable, excavation support can be designed using an equivalent fluid unit weight of 43 pcf for soils above the groundwater level during excavation. This unit weight is based on a coefficient of active earth pressure,  $K_a$ , of 0.33, multiplied by a soil unit weight of 130 pcf for Sand, Sand and Gravel, or Sand and Gravel Fill. For soils below the groundwater level during excavation, use an equivalent fluid unit weight of 22 pcf plus hydrostatic forces.



026-08-007 Page 17 of 26 10/6/08

Loads from construction equipment and traffic, if located within a distance 1.5 times the excavation depth from the excavation top, should be applied uniformly over the excavation support height on the side of the active loading. These loads should be evaluated and used by the Contractor's Professional Engineer, however, at a minimum, a surcharge load equal to placement of 3 ft. of additional fill should be included.

The excavation support designer (Contractor's Professional Engineer) should consider the location and depth of adjacent buried structures (e.g. catch basins, manholes, etc.) in comparison with the trench bottom depth to check that adjacent structures will not be undermined by excavation. Where risks of undermining adjacent structures are identified in the Construction Contract, the Contractor should design and construct earth support or underpinning at these locations.

#### 4. ADDITIONAL RECOMMENDATIONS AND CONSTRUCTION CONSIDERATIONS

The following sections represent our recommendations regarding significant geotechnical construction-related issues for the subject Project.

#### 4.1 Site Preparation and Earthwork

Earthwork should conform to local, state and federal regulations, including but not limited to environmental regulations regarding mitigation of runoff impacts to drainage systems and wetlands. Prior to earthwork, measures should be taken to direct surface runoff away from the construction area. Drainage should be directed to minimize sedimentation of lower portions of the Site. Earthwork should further conform to MassHighway Standard Specifications. A registered design professional or his representative should be on the Project at all times while fill is being placed and compacted.

Trench excavations will extend below the water table and will require dewatering, discussed later. Water will influence construction since subgrade support capacities will deteriorate when the soil becomes wet, frozen and/or disturbed. Wet or freezing conditions will significantly reduce the workability of Site soils. The Contractor should keep exposed subgrades properly drained and free of ponded water. This may be achieved by sloping the Site topography adjacent to the construction to direct the water away from the excavation, or by trenching and berming to collect the excess run-off, or by other means.

The Contractor should not place pipe bedding on wet or disturbed subgrades. Disturbed subgrades should be evaluated by the engineer and remedied in accordance with this Report. Pipe bedding should be placed over undisturbed subgrades consisting of existing Sand, Sand and Gravel, Silt, or bedrock after placing geotextile filter fabric, as described above. Where bedrock excavation is required to reach design subgrade elevation, loose soil and rock should be removed from the trench bottom after rock blasting or breaking.

We recommend completing final excavations to desired subgrades immediately before the placement of pipe bedding. The Contractor should take care during excavation to minimize disturbance of the subgrade and should provide a subgrade at the excavation bottom smooth enough to support the geotextile without damaging it during backfilling. We recommend performing final excavation using a smooth-edged excavator bucket or by finishing the excavation with hand tools. Disturbed subgrades should be recompacted smooth. A qualified geotechnical engineer should observe the excavation and subgrade finishing, and make recommendations on modifications to the excavation/compaction based on the subgrades and their response to the excavation/compaction. If the on-Site geotechnical engineer observes that compaction/smoothing disturbs the



026-08-007 Page 18 of 26 10/6/08

subgrade, these activities should be terminated and alternative means should be evaluated. Compaction of soils with significant fines, such as those encountered in the borings south of the Walnut St. Bridge, will be difficult when wet. Where compaction causes excessively deep disturbance of these soils, disturbed subgrades should be removed and replaced with crushed stone pipe bedding or Gravel Borrow, as recommended by the on-Site geotechnical engineer. Any loose or soft zones observed during excavation, smoothing/compaction, or placement of pipe bedding should be recompacted to natural density. If this cannot be accomplished, the disturbed soils should be excavated and replaced with compacted crushed stone. Voids created in the subgrade by removing boulders or loose broken bedrock should be filled with Gravel Borrow or crushed stone to match the subgrade elevation, in a manner consistent with the recommendations of this Report for those materials.

#### **4.2 Reuse of Existing Site Soils**

Exclusive of materials affected by environmental restrictions, and subject to the provisions of this Report, clean native soils and existing fills (exclusive of construction debris) that meet the requirements of the MassHighway Standard Specifications for Ordinary Borrow may be reused on Site as backfill over the pipe providing that they can be adequately placed and compacted. Based on the grain-size analysis results, we anticipate that most excavated soils meet the gradation requirements of Ordinary Borrow and can be reused as backfill after screening for particles larger than 3 inches. Samples that did *not* meet the criteria for Ordinary Borrow included B-5, -18, -20, and -23 (7 to 9 ft. bgs), B-17 (8 to 10 ft. bgs), and B-24 (5 to 7 ft. bgs). Grain-size analyses of select, near-surface samples (~1 to 3 ft. bgs) from borings B-8 and B-11 through B-16 indicate gradations that generally meet the criteria for Gravel Borrow after screening for particles larger than 3 inches. Samples taken from greater depths in borings B-4 (~6-8 ft. bgs), B-16 (~7-9 ft. bgs) and B-19 (~3-5 ft. bgs) meet the grain-size criteria for Gravel Borrow. If the Contractor plans to reuse these materials when encountered during trench excavation, these materials should be stockpiled separately from material not meeting the gradation for Gravel Borrow. A qualified environmental consultant should evaluate the environmental impacts of the reuse of contaminated on-site soils for the Project, if such soils are encountered. Imported materials such as Pipe Bedding and Gravel Borrow should be free of environmental contaminants.

#### **4.3 Excavation Support**

All excavations should be supported in accordance with current Occupational Safety and Health Administration (OSHA) requirements. Refer to Appendix D for additional information. Structures, including but not limited to buildings, bridges, culverts, utilities, drainage structures, and pavements, etc., in close proximity to the proposed pipelines will affect, and be affected by, trench excavation. Trenches should be shored to limit movements to tolerable levels. The Contractor should be required to submit deformation-based earth support designs prepared and stamped by a professional civil engineer registered in the Commonwealth of Massachusetts (Contractor's PE). The Contractor should be allowed to use commonly accepted means and methods for excavation support, with movement tolerances and daily monitoring of movement-sensitive structures specified in the earthwork or other specification sections.

The Contractor may prefer to support excavations with a trench box. Trench boxes, however, generally result in greater movements of surrounding earth than other excavation support techniques, and may not be suitable where adjacent structures are in close proximity. Excavation with a trench box generally proceeds below the box bottom, leaving soil unsupported, and the excavation sides do not typically conform closely to the box dimensions, often leaving voids between the excavation walls and box sides. These factors can cause vertical and lateral soil movements that could damage adjacent structures. The Contractor's excavation support plan may include the use of trench boxes where soil movement will not jeopardize adjacent structures. Alternative excavation support methods, such as driven sheeting, might be considered where structures are in close



proximity to the proposed trench. Installation of sheeting, however, may be difficult where subsurface obstructions, such as boulders are present. The Contractor's excavation support plan should include contingencies for difficulties encountered in installing the designed earth support system.

Poor construction practices will cause excessive settlement of nearby structures. As deflections occur in excavation walls or bottom, these deflections are manifest in nearby ground movements and surface settlements. The Contractor should limit the deflections of the trench walls and bottom, especially where the trench is deepest, to 1 inch. Additionally, risks of ground deformations and instability from wall and bottom deflections, consolidation, ground loss, creep, etc., increase significantly with time. The longer the excavations are open, the greater the risk. It should be noted that, as is typical for such excavation and construction, some ground deformation will occur in the vicinity of the construction. Proper care taken during design and construction can manage such deformations to acceptable levels.

The Contractor's excavation support design should consider the location and depth of adjacent structures in comparison with the trench bottom depth, and include measures to support these structures and underlying soil without undermining.

#### 4.4 Bedrock Excavation

The feasibility of bedrock excavation techniques depends, to a large extent, on the rock hardness and quality (e.g. spacing, frequency, and orientation of fractures). Selection of a bedrock excavation technique will be significantly affected by the existing structures, particularly the gas main, within several feet of the proposed pipeline, and the Walnut St. Bridge. The GPR data noted in Section 3.3.1 shows shallow bedrock under the Walnut St. Bridge, however, the MassHighway borings performed at the Bridge in 1997 encountered bedrock at much greater depths. The GPR data and borings indicate that bedrock elevations vary significantly in this area, and bedrock excavation near, if not under, the Walnut St. Bridge should be anticipated. As summarized in Table 3.3.2, we generally anticipate 2 to 7 ft. of bedrock excavation north of the Walnut St. Bridge, and 1 to 3 ft. of bedrock excavation over the northern portion of the proposed alignment. In the following sections, we describe our observations of bedrock quality based on the borings and GPR data, followed by bedrock excavation methods, and bedrock blasting risks and criteria.

#### 4.4.1 Bedrock Quality

Section 3.3.1 summarizes GPR data interpreted to show likely stations and depths (i.e. thickness) of bedrock excavation. Based on the borings, the bedrock generally consists of Dioritic, Granodioritic, and Granitic rock, which are common igneous rocks. The bedrock is generally very hard. Joints and fractures are slightly weathered to fresh without a well-defined zone of increased surficial weathering at the top of the bedrock.

As noted above, the GPR Report also shows a second, lower bedrock surface, interpreted by the GPR Consultant to be "more competent (harder) rock" underlying "fractured (weathered) bedrock." We generally find this delineation between possible fractured bedrock and more competent rock difficult to correlate with the rock core RQD values obtained in the borings. Based on the borings, the bedrock surface did not appear to be significantly more weathered or fractured than bedrock at greater depths. In some borings, RQD values were higher at the bedrock surface and decreased with depth where localized fracture zones were encountered.



026-08-007 Page 20 of 26 10/6/08

Over the proposed depth of bedrock excavation, the RQD values range from 0 to 100, with most values between 42 and 78, indicating moderately fractured rock. Orientation of joints varied from near horizontal to near vertical. Based on the boring results and Site observations, we hypothesize that over-blast from previous bedrock blasting to construct Rte. 1, particularly north of the Walnut St. Bridge from about Sta. 15+30SB to 28+50SB, may have fractured or loosened the rock.

#### 4.4.2 Rock Excavation Methods

The proximity of the Walnut St. Bridge and buried utilities, and especially buried gas mains within several feet of the proposed pipeline, should be carefully considered in the selection of rock removal technique. As noted above, bedrock elevations vary significantly near the Walnut St. Bridge and rock removal should be anticipated under or near the Bridge. The selection of a rock removal technique should strive to balance risk to adjacent utilities and structures with opposing factors such as excavation cost and production rate.

FST indicated that for construction of the interim connection at the Lynnfield Water District Pump Station, the contractor encountered very hard bedrock and was not allowed to blast because of close proximity to a buried gas pipeline. We understand that mechanical excavation by hoe-ram was used for the Interim Connection at the Lynnfield Water District Pumping Station, and that the bedrock hardness presented significant challenges and slow progress.

Rock can typically be excavated by explosive or non-explosive methods, such as mechanical excavation (e.g. hydraulic rams, etc.), trenching, chemical splitting, or other, proprietary methods. The primary factors affecting selection of method include cost, risk of damage to adjacent structures from vibrations, airblast, flyrock, etc., and permissions from regulating authorities. Factors affecting cost include, but are not limited to, the following:

- Method production rate
- Rock hardness
- Rock fractures
- Special measures such as reinforcement of adjacent bedrock by drilling and grouting steel dowels
- Size of excavated material that could requiring further breaking or crushing
- Control of trench size, which affects quantity of backfill
- Permitting
- Method-specific restrictions on working hours
- Traffic stoppages
- Monitoring and mitigation measures for damage to adjacent structures

Blasting is typically more cost effective than non-explosive methods, however, for this Project, controlled blasting needed to reduce risks to nearby buried and above ground structures as well as permitting and safety measures would increases costs, and non-explosive methods might be viable. Furthermore, as described below, blasting requires cooperation and permission from adjacent buried utility owners as well as the Town of Saugus Fire Marshal and MassHighway, and may not be permitted. Alternatively, in our opinion, mechanical excavation is feasible, though excavation progress will likely be slow because of the bedrock hardness and, where high RQD values were encountered, the limited fracture frequency.



026-08-007 Page 21 of 26 10/6/08

#### 4.4.3 Rock Blasting

Rock blasting should conform to local and federal regulations, as well as State Board of Fire Prevention Section 527 CMR 13 – Explosives ("State Blasting Regulations"), which describes State regulations regarding explosives. We recommend that the Owner or general Contractor engage a well-qualified licensed blasting contractor with experience in trench blasting near existing buried utilities, and that the contract specifications require the blaster to submit their qualifications to the Owner and Engineer for review prior to blasting.

SA contacted Captain Daniel McNeil at the Saugus Fire Department who provided a copy of the blasting permit application and the Saugus Fire Department Blasting Regulations, which reference the State Blasting Regulations. Cpt. McNeil indicated that where the proposed blast is in close proximity to existing buried utilities, the Town requires the Owner/Applicant to involve the existing utility owner in the blast planning and seek and receive approval from the utility owner. If the existing utility owner does not agree to blasting, the Town will not generally permit blasting. Cpt. McNeil also indicated that blasting has previously been performed in Saugus in close proximity to a buried gas pipeline owned by Tennessee Gas. He was unsure as to why blasting was not allowed at the Lynnfield Water District Pump Station Interim Connector, but speculated that perhaps the gas pipeline owner would not agree to blasting.

Some risks associated with rock blasting are damage to adjacent structures from vibrations, and airblast; risks to nearby sensitive electronic equipment; safety concerns with flyrock and handling explosives on a state highway; and potential noise complaints from nearby residents and businesses.

Risks to adjacent structures can be mitigated by performing pre-blast condition surveys of adjacent structures and requiring the blasting contractor to prepare, submit, and adhere to a blasting plan to control vibrations, airblast, and noise levels within allowable limits. Where blasting is performed in close proximity to existing structures, the distance to such structures should be checked and compared to the proposed rock fracture zone. Movement of rock blocks within the proposed fracture zone could damage such structures. Methods to mitigate such risks include reinforcing the rock near existing utilities by drilling and grouting steel dowels into the rock, or designing the blasting plan to produce less energy. Section 527 CMR 13 requires the blasting contractor to performed a blast analysis and prepare a blasting plan considering structures, buildings, building foundations, utilities, septic systems, swimming pools and area geology within 250 ft. of the center of the blast site.

Section 527 CMR 13.09 (9) and (10) require the Owner/blaster to offer preblast surveys to owners of any structure within 250 ft. of the blast, unless waived by the local fire department head or if the blaster uses charges per delay less than the limits specified in Tables 1 and 2 of Section 527 CMR 13.09 (9) and (10) for scaled distance. Regardless of blasting charges used, we recommend that the Owner engage a qualified engineer to perform pre-blast surveys of adjacent structures (e.g., houses, wells) prior to construction to document the structures' existing conditions. The blasting contractor or engineer should also research the location and type of electronic equipment in the Site vicinity that may be susceptible to vibrations. Such surveys reduce risk to the Owner and Contractor of fraudulent damage claims.

#### 4.4.3.1 <u>Vibration and Airblast Criteria</u>

527 CMR 13.09 Tables 1 and 2 and Figures (a) and (b) specify ground vibration limits at adjacent *inhabited* buildings or structures. 527 CMR 13.09 Tables 1 and 2 indirectly set vibration criteria by restricting charge weight per delay as a function of scaled distance and distance to the nearest structure. Alternatively, through petition to the State Fire Marshal or local fire department head, 527 CMR 13.09 Figures (a) and (b) set allowable vibration criteria that are a function of peak particle velocity (PPV) and frequency. Blasting should be controlled to maintain vibrations at nearby structures within these limits.

527 CMR 13.09 Table 3 specifies limits for airblast at adjacent inhabited buildings or structures. The limits are set as a function of the lower frequency limit of the measuring system and range from 105 to 134 peak decibels. The Regulations also indicate that for pipeline construction where the specified vibration limits or airblast limits would be overly restrictive, higher vibration and/or airblast levels are allowable when authorized in writing by the owners of adjacent inhabited buildings or structures within the blast area.

The Regulations note that the vibration and airblast criteria apply to inhabited structures, but no limits are given for other structures such as buried utilities and bridges. Being the owner of the Walnut St. Bridge, MassHighway will likely specify allowable vibration criteria for blasting in the vicinity of the Bridge.

Siskind et al. (2000, 1994a,b) summarize studies performed by the US Bureau of Mines ("USBM") on vibration effects on buried, pressurized steel and PVC pipelines with diameters of 6 to 20 in. and a distance of 48 ft. The study found no damage to the pipelines with PPV values between 0.5 and 25 in./s, and recommended a conservative safe vibration level of 5 in./s. Oriard (1994, as reported by Siskind 2000) summarizes studies performed for blasting a new pipeline trench adjacent to an existing pipeline in the same right-of-way. He reports a blast within 2 to 3 ft. of the existing pipeline that generated 50 to 150 in./s and caused no damage. Based on his research, Oriard recommended the following for blasting near pipelines (as reported by Siskind 2000):

- A general limit of 12 in/s vibration
- A limit of one hole per delay when existing pipes are within 20 ft. of the blast hole
- A limited hole diameter of 2.5 in.

These criteria are guidelines and should *not* relieve the blasting contractor of designing and executing safe blasts that do not damage existing structures. The blasting contractor should carefully evaluate locations, geology, and structure types and materials, and design appropriate blasts that protect them.

Every blast should be monitored by seismographs placed, at a minimum, at adjacent structures. The seismograph data should be monitored and interpreted by qualified personnel after each blast to check that vibrations remain within specified values. Where vibrations exceed specified limits, the blaster should be notified immediately, should cease blasting and modify the blasting plan to achieve vibrations within specified limits.

Some rock blasting safety risks result from handling explosives on a state highway and potential for flyrock striking vehicles, structures, or people. The blasting contractor should maintain close security of the Site and blast vicinity to maintain public safety during blasting. Traffic on Rte. 1 and potentially on feeder

Stephens Associates
Consulting Engineers

Insightful, Costsaving Solutions
Geotechnical
Intrastructure
Hydrology & Hydraulics

routes would need to be stopped prior to and during each blast. 527 CMR 13.09 (1)(n) indicates that no blasts shall be fired between sunset or sunrise unless otherwise authorized in writing by the State Fire Marshal or the head of the local fire department. Since traffic would need to be stopped during blasting, blasting might occur at night (as was required for the subsurface explorations) and special permission would be needed. Blasting mats should be used on every blast to reduce risks of flyrock. Flyrock that escapes blasting mats should be immediately recovered and steps taken to reduce flyrock.

#### 4.5 Groundwater Control and Dewatering

Measurements of groundwater levels in observation wells by SA and FST generally indicate groundwater levels about 4.1 to 13.7 ft. below ground surface. Pipe excavation will extend to 8 to 9 ft. below ground surface and will require dewatering. An important element of construction will be dewatering and its affect on stability of trench walls and bottom, as well as its potential to cause settlement of nearby structures

The change (increase) in effective stresses in the soil will be significant where water elevations are lowered by dewatering. If adjacent structures are founded on loose or soft soils, increases in soil effective stress resulting from groundwater table lowering could cause settlement and potentially damage nearby structures. Risks of adjacent structures settling increase where structures are closer to the area of dewatering and the depth of drawdown is greater. Based on the subsurface explorations and our Site reconnaissance, we would expect areas of greater risk to be where rock outcrops were not observed in the Site vicinity.

Water levels should be maintained a minimum of 1 foot below the trench bottom at all times while the trench is open. Away from the trench, groundwater should be maintained at or near ambient levels. We strongly recommend that the Contractor measure the actual groundwater levels at the time of construction to assess groundwater impact on the construction and the impact of the construction on groundwater. Placement of pipe and pipe bedding in a wet excavation or on a wet subgrade should not be permitted. The Contractor should maintain the groundwater level below the excavation, and maintain a dry excavation during wet weather. The Contractor should be permitted to employ whatever commonly accepted means and practices are necessary to accomplish this. The dewatering system designer should design the dewatering system with appropriate filters to be compatible with, and prevent loss of, the existing Silt and Sand.

Based on the estimated permeability data indicated in Section 2.5, and that observation wells responded rapidly during FST's field permeability testing, we expect that dewatering will likely generate large volumes of water. Pumped water can be used in recharge wells, if needed to maintain water levels away from the excavation, subject to regulations and environmental considerations/restrictions. Otherwise, pumped water should be properly disposed of in accordance with all applicable regulations.

For evaluating buoyancy of the empty pipe during construction, the pipeline designer should consider a design groundwater elevation at the ground surface. For design of temporary earth support and dewatering, the Contractor's Professional Engineer should interpret a design groundwater elevation based on the well and boring water levels and time of year. The Contractor's Professional Engineer should submit a design groundwater level for each section in the shoring and dewatering submittal(s). In no case should the design groundwater depth be greater than one-half the measured depth to groundwater indicated in Table 1 for the corresponding well and nearby portion of the pipeline.



026-08-007 Page 24 of 26 10/6/08

#### 5. REFERENCES

American Water Works Association (AWWA)/American National Standards Institute (ANSI) (2002) "Thickness Design of Ductile-Iron Pipe", Standard C150/A21.50-02.

Aubertin, M. et al. (2005) "Discussion of Goodbye, Hazen; Hello, Kozeny-Carman," *Journal of Geotechnical and Geoenvironmental Engineering*, August 2005, Vol. 131, No. 8, ASCE.

Barosh, P.J., Fahey, R.J., and Pease, M.H. Jr. (1977), "Preliminary Compilation of the Bedrock Geology of the Land Area of the Boston 2° sheet, Massachusetts, Connecticut, Rhode Island and New Hampshire," Open-File Report OF-77-285, United States Geological Survey.

Carrier III, W.D. (2003) "Goodbye, Hazen; Hello, Kozeny-Carman," *Journal of Geotechnical and Geoenvironmental Engineering*, November 2003, Vol. 129, No. 11, ASCE.

Chapuis, R.P., and Aubertin, M. (2003) "Evaluation of the Kozeny-Carman's Equation to Predict the Hydraulic Conductivity of a Soil," Canadian Geotechnical Journal, 40(3), 616-628.

Ductile Iron Pipe Research Association, DIPRA (2006) "Ductile Iron Pipe Design," published December 1991, revised July 2006, 245 Riverchase Parkway East, Suite O, Birmingham, Alabama 35244-1856

Kaye, C.A. (1977), "Surficial Geologic Map of the Boston Area, Massachusetts," Open-File Report OF-78-111, United States Geological Survey, scale 1:100,000

Massachusetts Highway Department (MassHighway) (1995) <u>Standard Specifications for Highways and Bridges</u>

National Inventory of Dams, http://crunch.tec.army.mil/nidpublic/webpages/nid.cfm, accessed May 8, 2008.

Oldale, R.N. (1962) "Geologic Map of the Reading Quadrangle, Massachusetts, Surficial Geology", United States Geological Survey, in cooperation with the Commonwealth of Massachusetts Department of Public Works, scale 1:24,000

Oriard, L.L (1994), "Vibration and Ground Rupture Criteria for Buried Pipelines", Proc. 20<sup>th</sup> Annual Converence on Explosives and Blasting Techniques, International Society of Explosives Engineers (ISEE), Austin, TX, pp. 243-254, as cited in Siskind, D.E. (2000), Vibrations From Blasting, ISEE.

Siskind, D.E., (2000), <u>Vibrations From Blasting</u>, International Society of Explosives Engineers, Cleveland, OH

Siskind, D.E., Stagg, M.S., Wiegand, J.E., Schulz, D.L. (1994a), Surface Mine Blasting Near Pressurized Transmission Pipelines, U.S. Bureau of Mines RI 9523, 51 pp.

Siskind, D.E. and Stagg, M.S., (1994b), Surface Mine Blasting Near Transmission Pipelines, *Mining Engineering*, December 1994, pp. 1357-1360.

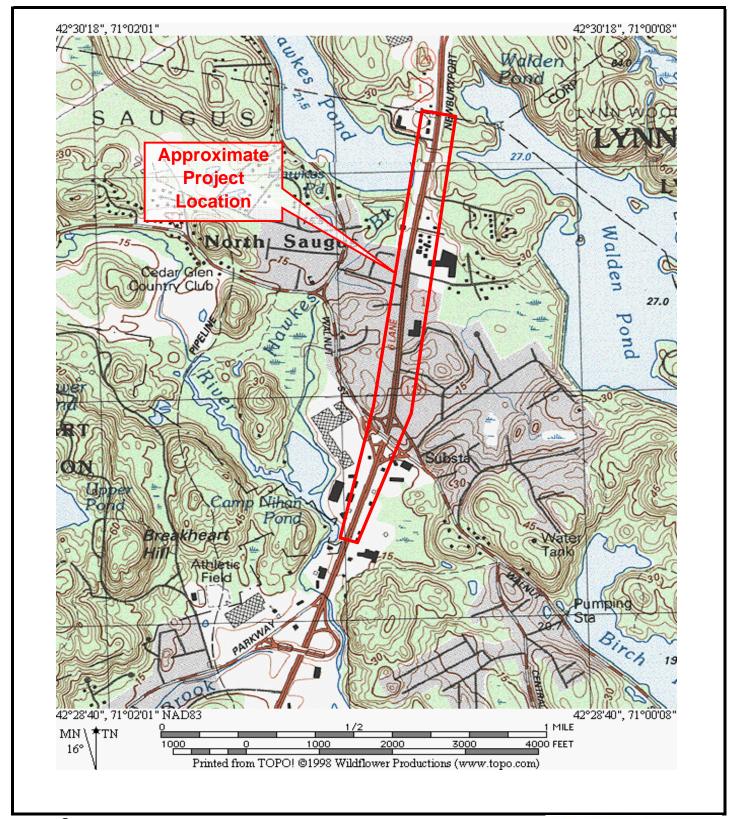
Spangler, M.G. and Handy, R.L (1982), <u>Soil Engineering</u>, Fourth Edition, Harper & Row Publishers, New York.

Stephens Associates
Consulting Engineers

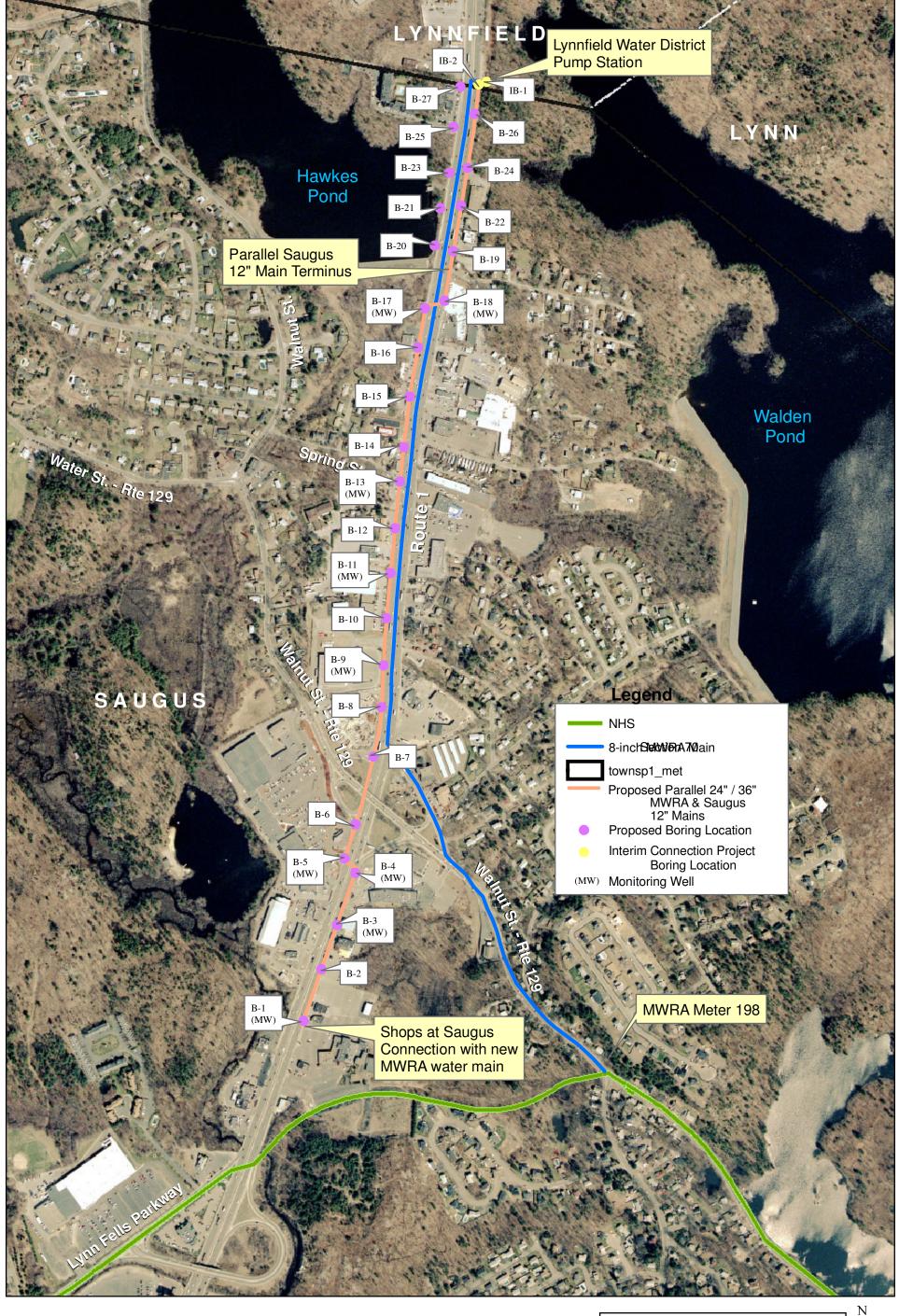
Insightful, Costsaving Solutions
for Buildings and
Infrastructure
Hydrology & Hydraulics

United States Geologic Survey (USGS) (1903) 15-minute topographic map, Boston Quadrangle, accessed at University of New Hampshire, Diamond Library, Documents Department and Data Center, <a href="http://docs.unh.edu/nhtopos/Boston.htm">http://docs.unh.edu/nhtopos/Boston.htm</a>, May 8, 2008.

United States Geologic Survey (USGS) (1893) 15-minute topographic map, Lawrence Quadrangle, accessed at University of New Hampshire, Diamond Library, Documents Department and Data Center, <a href="http://docs.unh.edu/nhtopos/Lawrence.htm">http://docs.unh.edu/nhtopos/Lawrence.htm</a>, May 8, 2008.


Zen, E-an, Goldsmith, Richard, Ratcliffe, N.M., Robinson, Peter, Stanley, R.S., Hatch, N.L., Shride, A.F., Weed, G.A., and Wones, D.R. (1983), <u>Bedrock Geologic Map of Massachusetts</u>, U.S. Geological Survey, scale 1:250000.

## **FIGURES**




Project: Number: 026-08-007 Sheet 1 of Proposed Pipeline, MWRA Contract No. 6905 Name: Route 1, Saugus, Massachusetts

Original Work: FIGURE 1 - Site Location Map Ву: J. Turner Date: June 30, 2008 Subject: Checked By: Date:

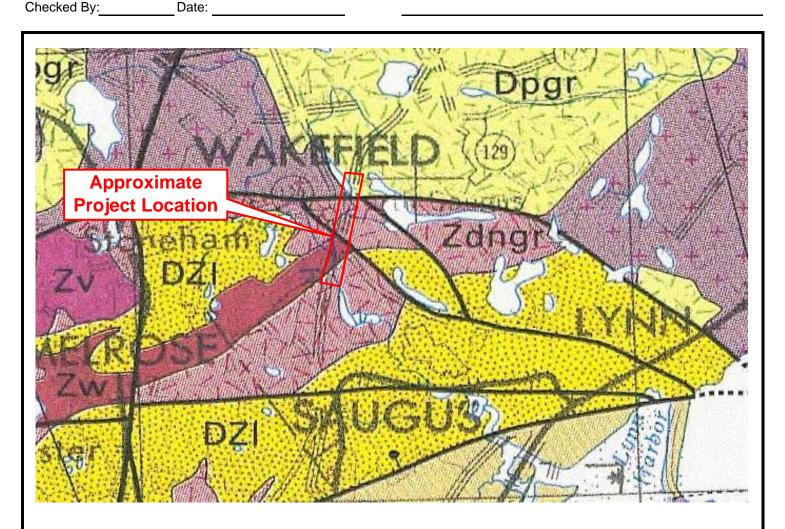


| Copyright © 2007 Stephens A<br>Revisions: | Associates Consult | ing Engineers, LLC                                            | Ohens Associates<br>Consulting Engineers               |
|-------------------------------------------|--------------------|---------------------------------------------------------------|--------------------------------------------------------|
| By:                                       | Date:              | saving                                                        | attul, Cost-<br>g Solutions Structural<br>Geotechnical |
| By:                                       | Date:              | for Bull                                                      | tructure Hydrology & Hydraulics                        |
| SACE 00-1 (v. 1) 1/00                     |                    | www.stephensengineers.com 668 Main Street, Wilmington, MA 018 | 887 (978) 988-2115                                     |



# LYNNFIELD/SAUGUS PIPELINES PROJECT

500 250 0 500 1,000 1,500 Feet


Stephens Associates Consulting Engineers, LLC Project 026-08-007
Figure 2 - Site Aerial Photo
Provided by FST, Inc.



 Project:
 Number:
 026-08-007
 Sheet
 1
 of
 1

 Proposed Pipeline, MWRA Contract No. 6905
 Proposed Pipeline, MWRA Contract No. 6905
 Route 1, Saugus, Massachusetts

 By:
 J. Turner
 Date:
 May 13, 2008
 Subject:
 FIGURE 3 - Excerpt of Bedrock Geologic Map

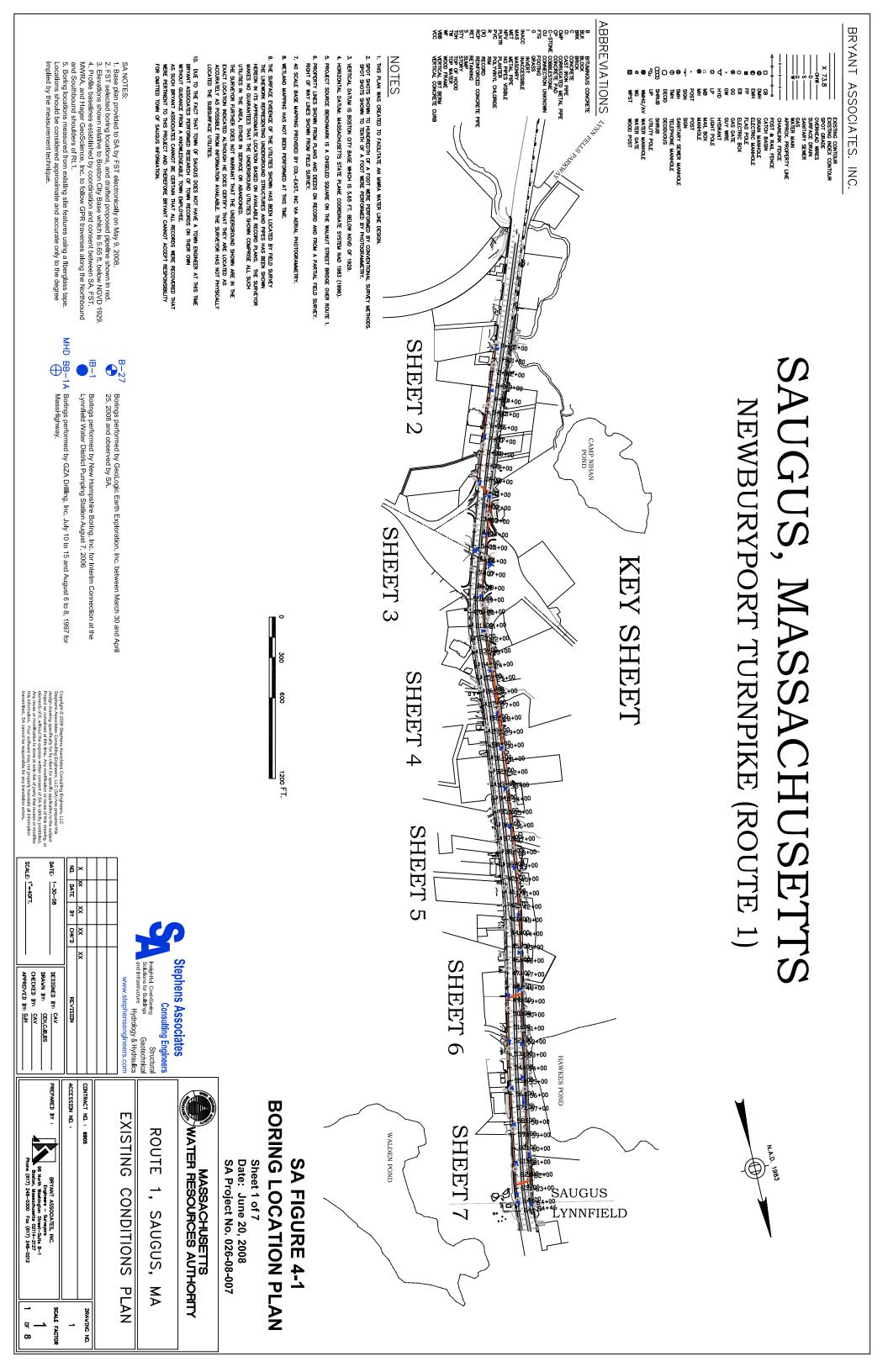


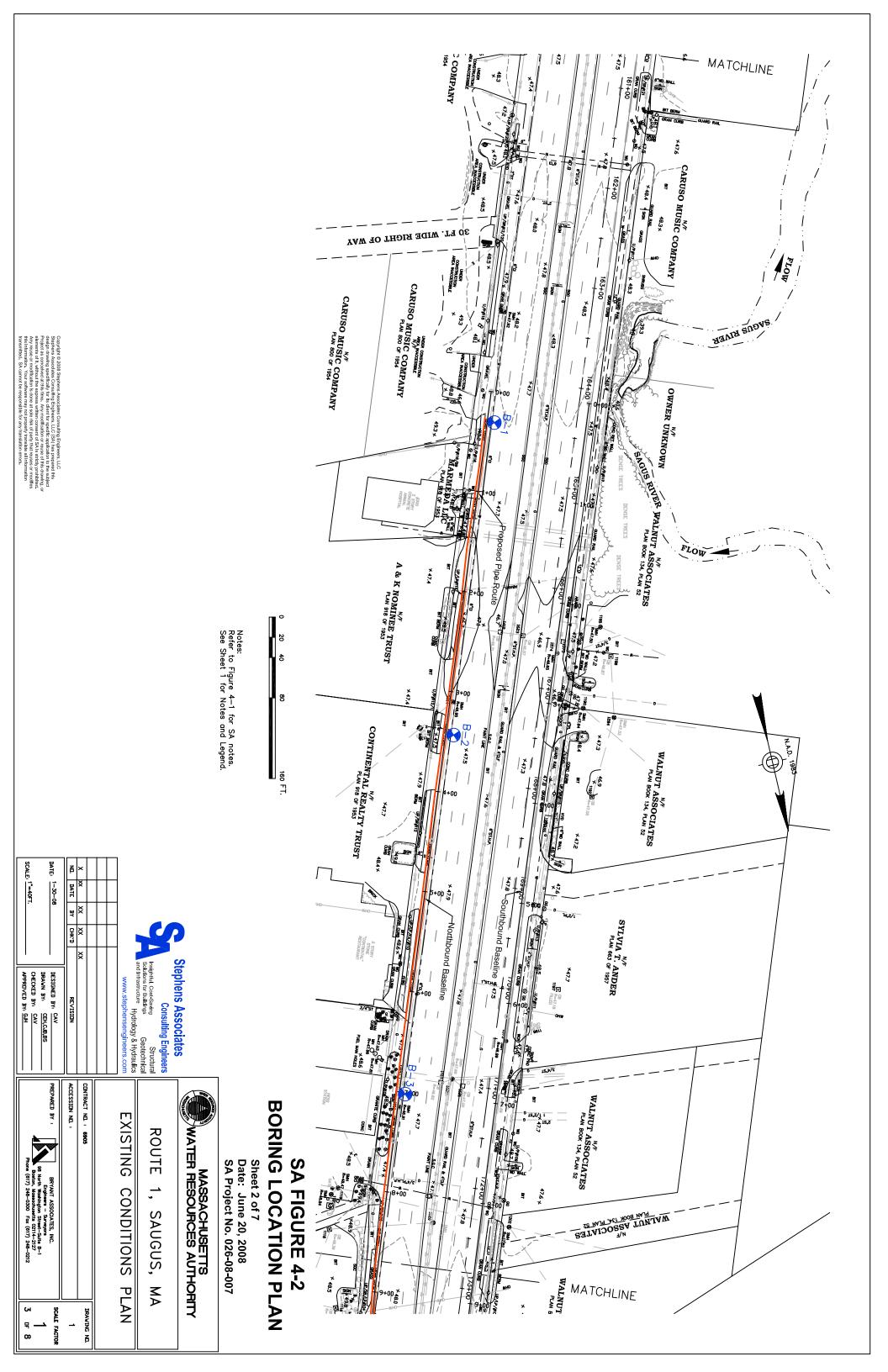
#### Symbol descriptions from Bedrock Geologic Map:

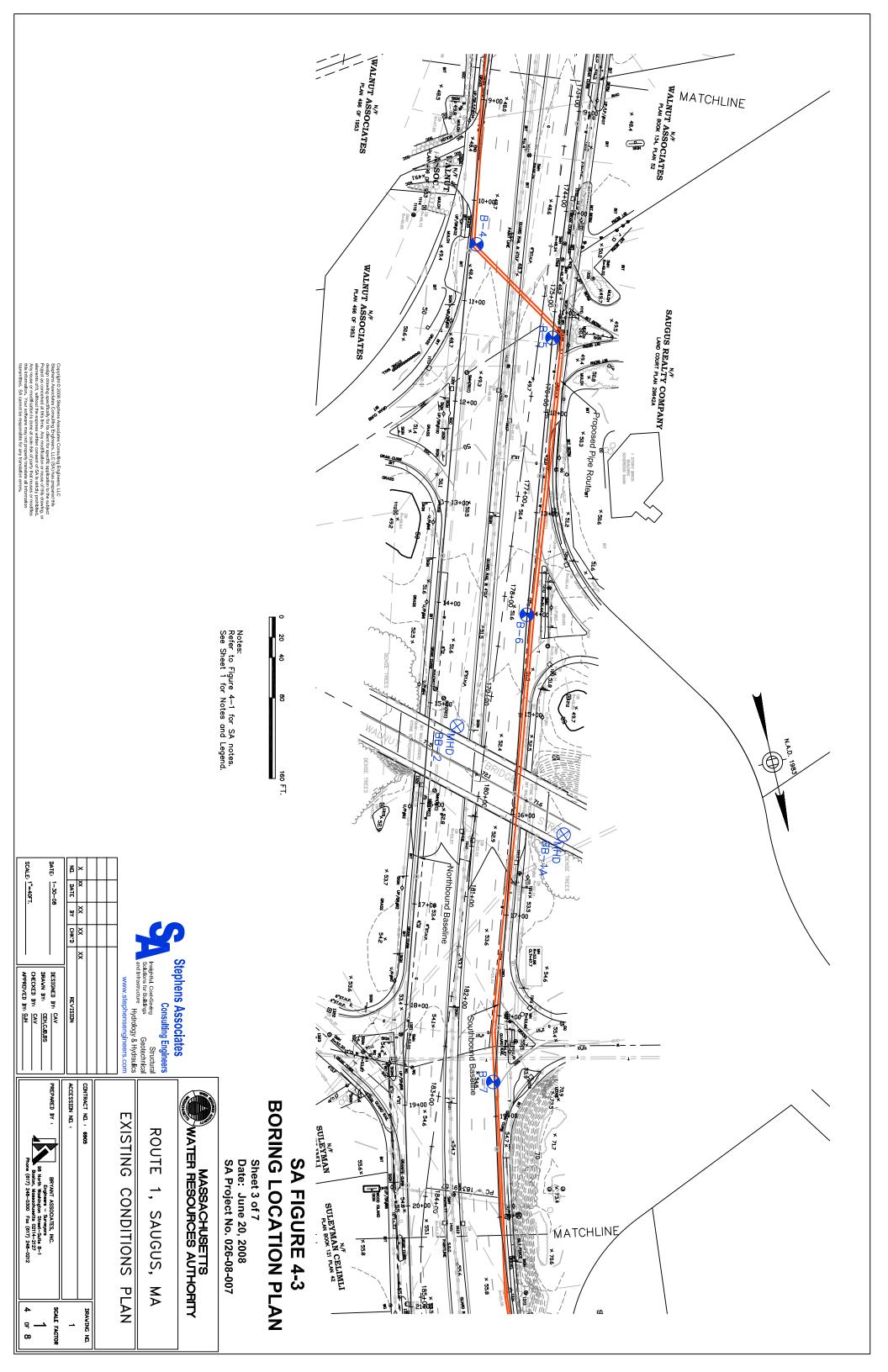
SACE 00-1 (v. 1) 1/00

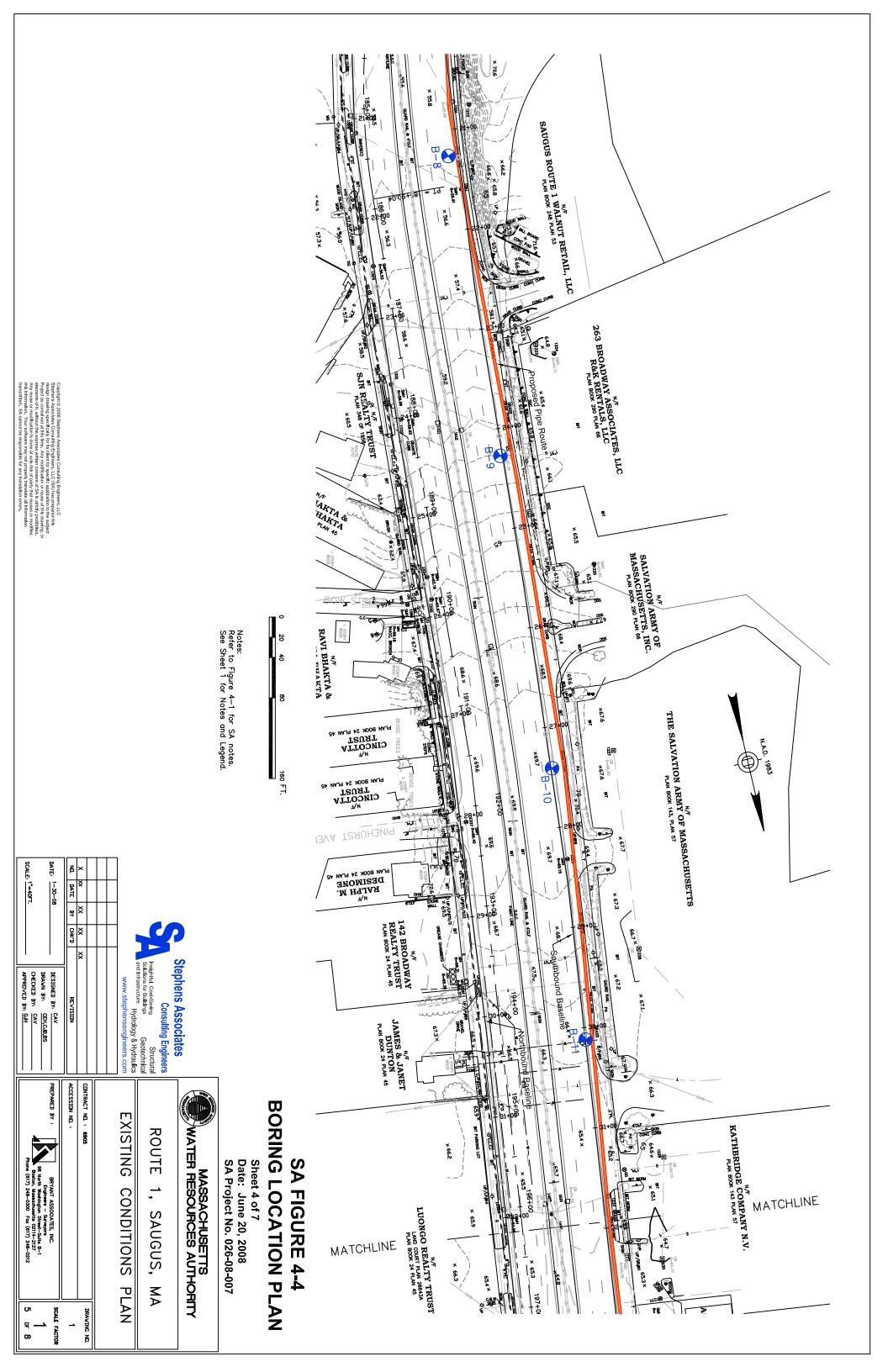
Dpgr - Peabody Granite (Middle Devonian) - Alkalic granite containing ferro-hornblend. Intrudes Zgb, Zdngr.

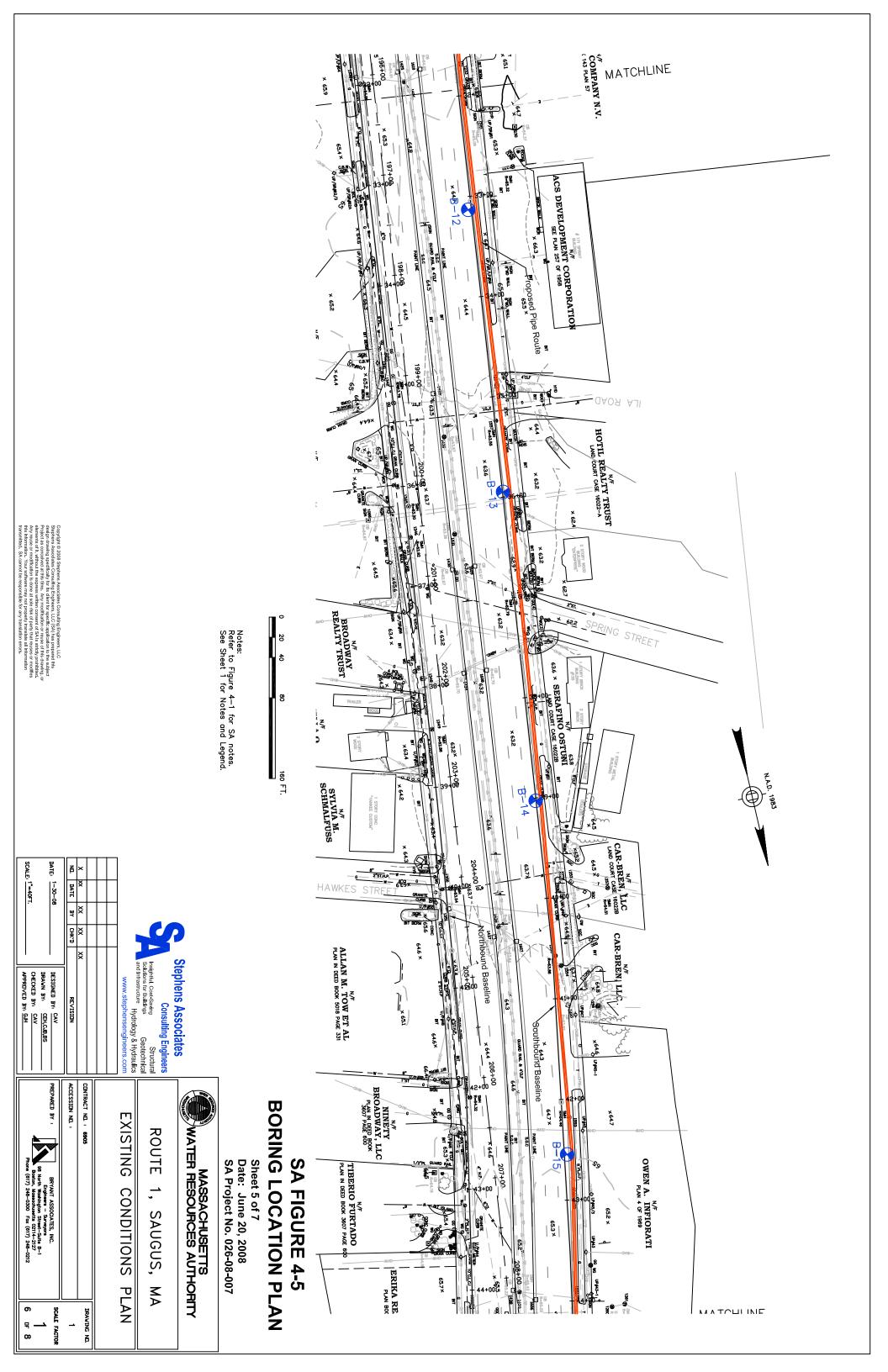
Zdngr - Gray granite to granodiorite, more mafic than Zdgr (Dedham Granite) North of Boston. Intrudes Zw, Zv.

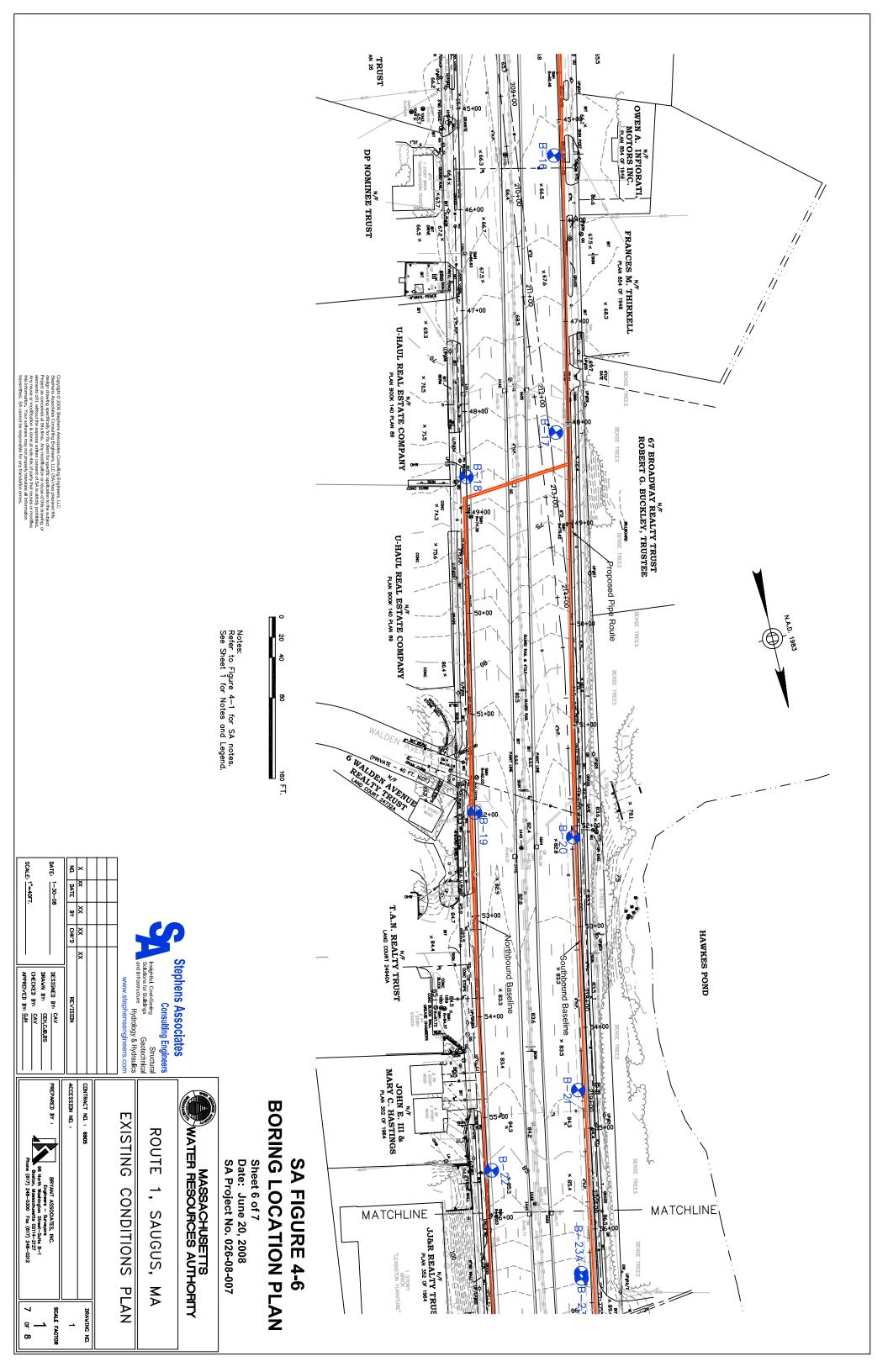

Zdigb - Diorite and Gabbro (Proterozoic Z) - Complex of diorite and gabbro, subordinate metavolcanic rock, and intrusive granite and granodiorite.

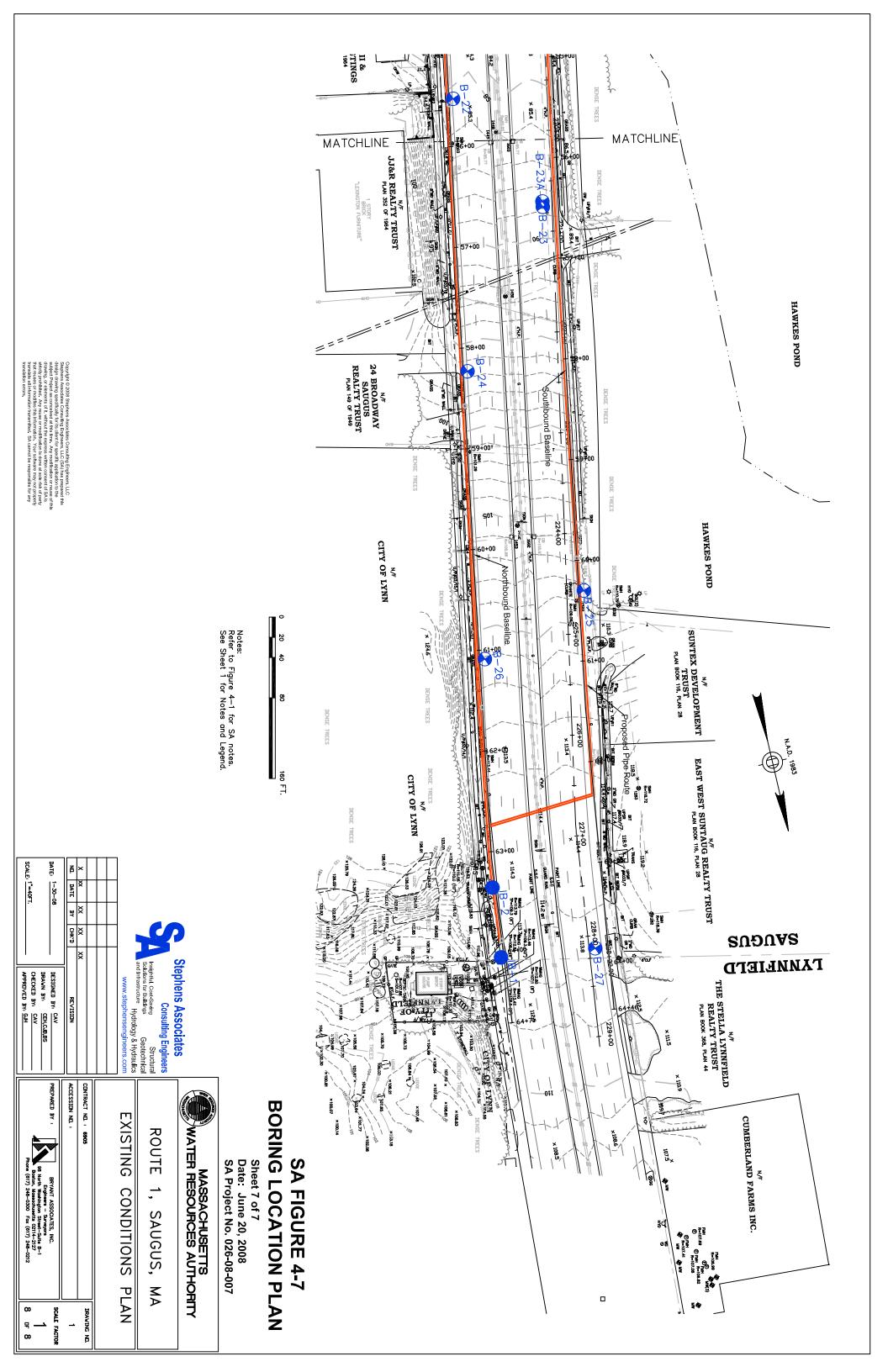

Zw - Westboro Formation (Proterozoic Z) - Quartzite, schist calc-silicate quartzite and amphibolite. Consists of quartzite and argillite in Lynnfield and Saugus area.

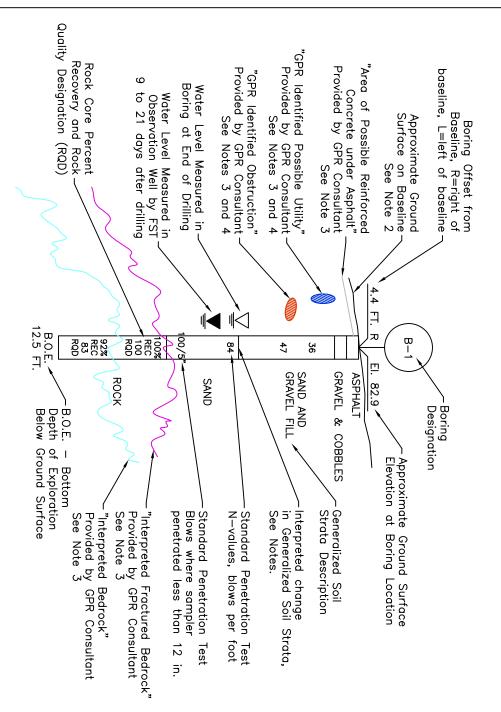

| 0 | 5 Miles |
|---|---------|
|   |         |


Map excerpt from: Zen, E-an, Goldsmith, Richard, Ratcliffe, N.M., Robinson, Peter, Stanley, R.S., Hatch, N.L., Shride, A.F., Weed, E.G.A., and Wones, D.R. (1983) Bedrock Geologic Map of Massachusetts, U.S. Geological Survey, scale 1:250000.


| Copyright © 2008 Steph | nens Associates Consulting Engineers, LLC | C | Stephens Assoc<br>Consulting          | iates<br>Engineers         |
|------------------------|-------------------------------------------|---|---------------------------------------|----------------------------|
| By:                    | Date:                                     |   | Insightful, Cost-<br>saving Solutions | Structural<br>Geotechnical |
| By:                    | Date:                                     |   | for Buildings and                     | & Hydraulics               |



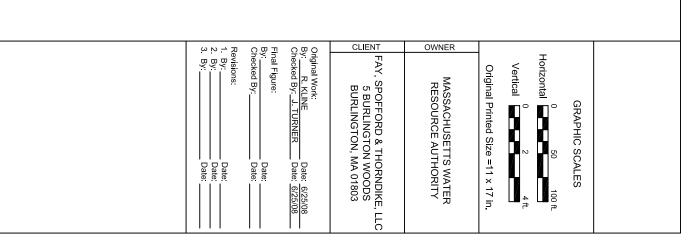





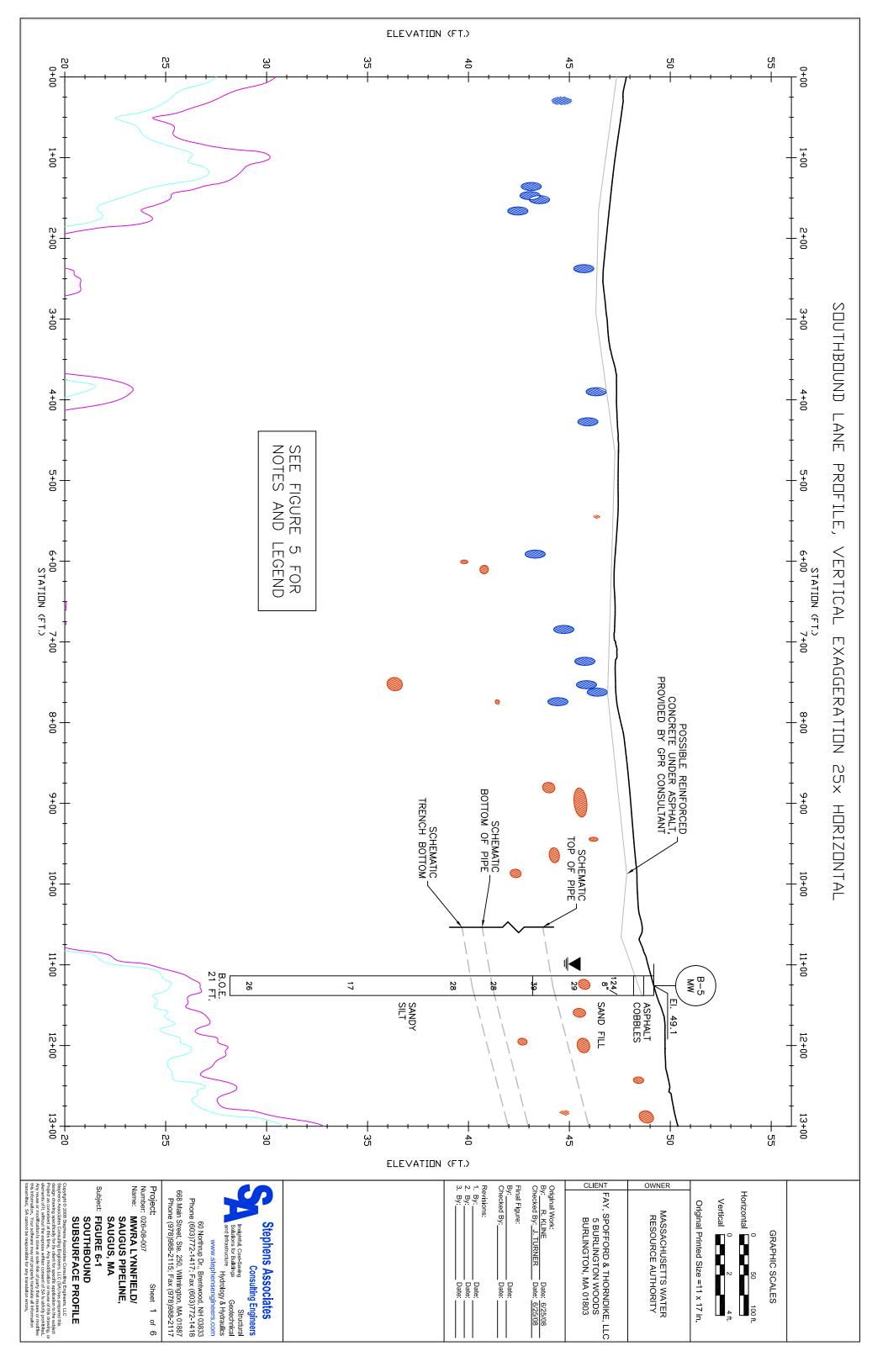


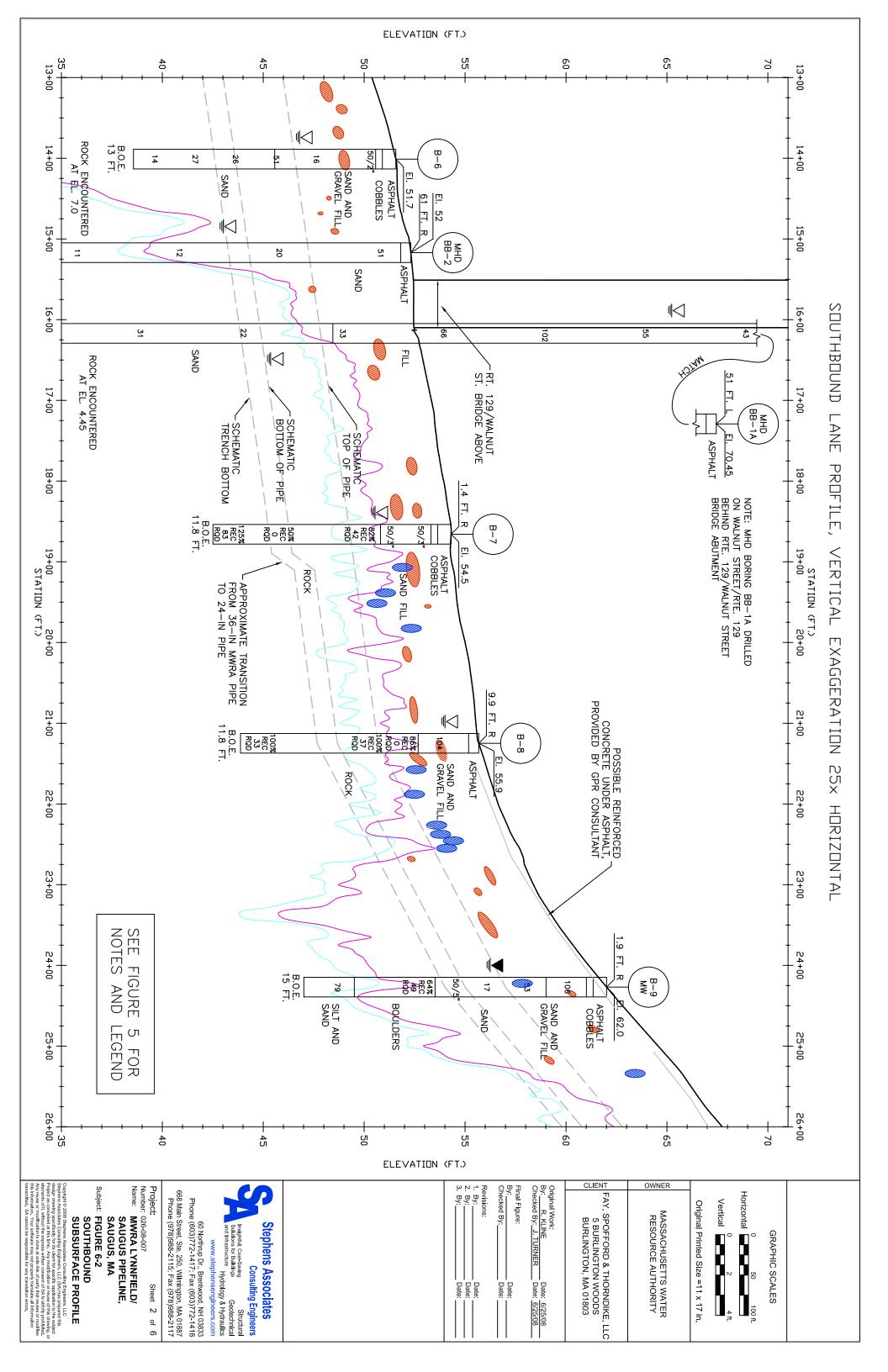


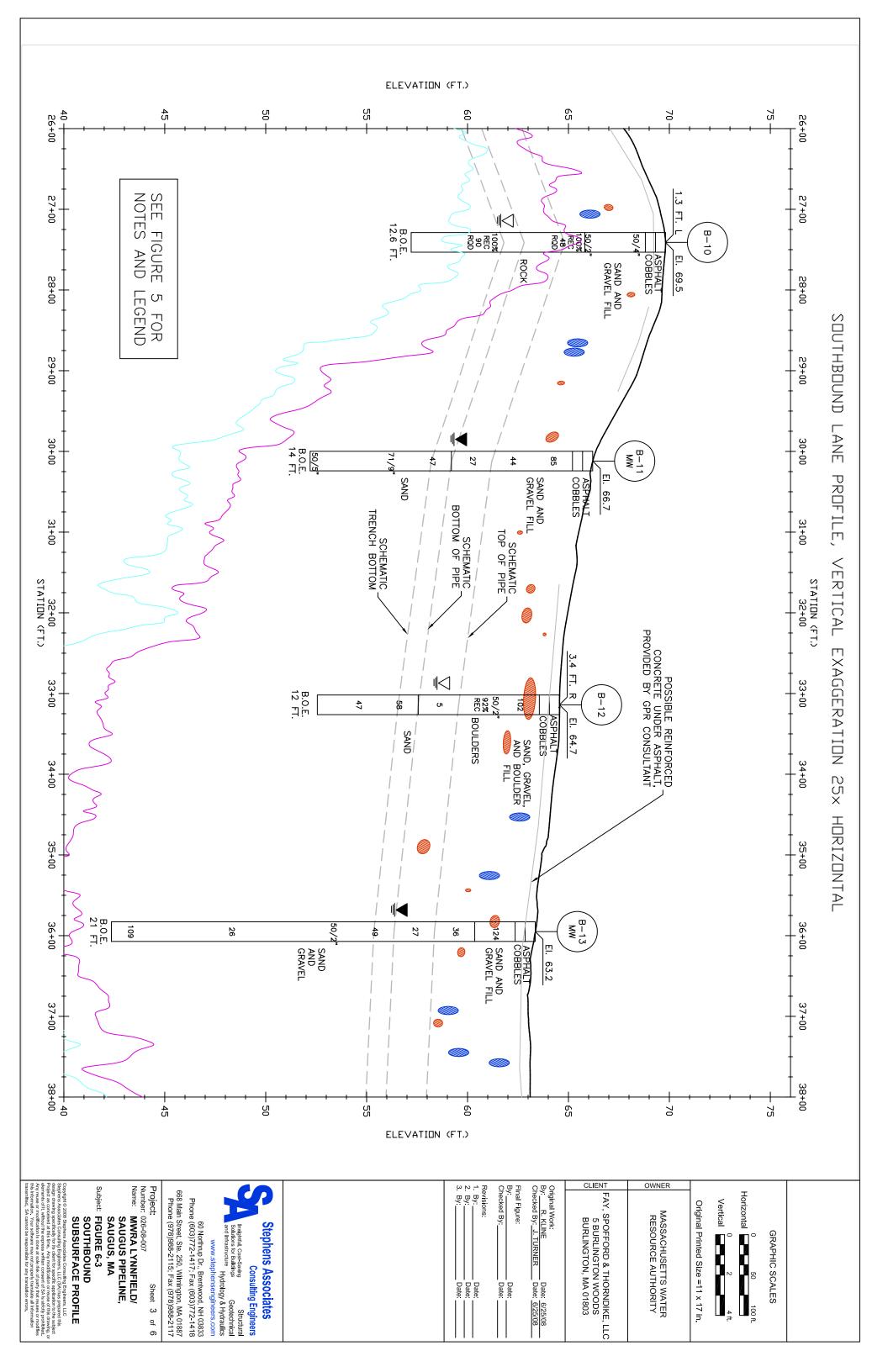


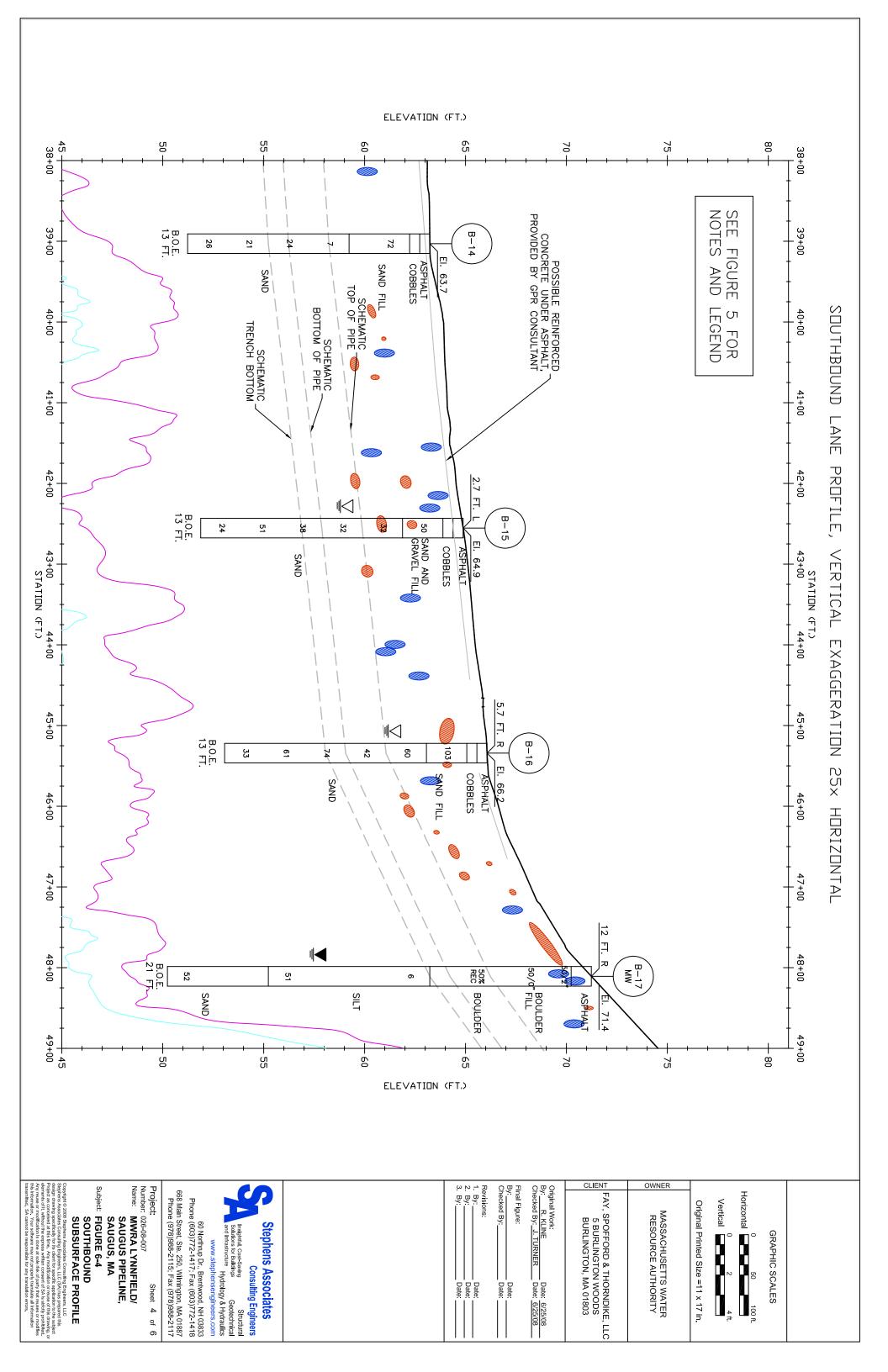



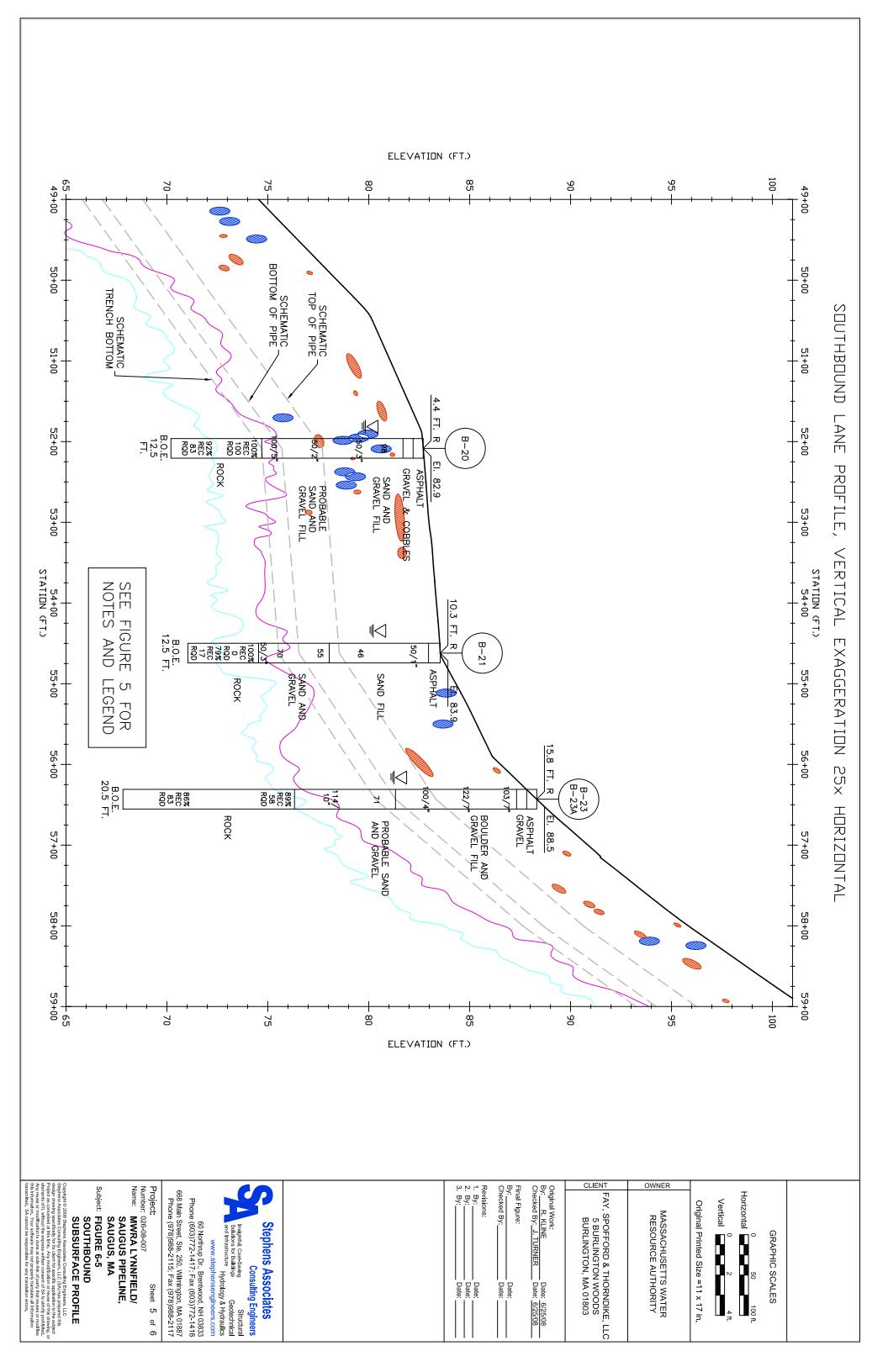

- 1. Profile baselines established by coordination and consent between SA, FST, MWRA, and Hager GeoScience, Inc. to follow GPR traverses along the Northbound and Southbound shoulders of Rt.1. SA's Profiles are therefore denoted as "Northbound Profile" and "Southbound Profile". Refer to Figures 4-1 to 4-7 for locations and stationing of baselines.
- June 23, 2008, which SA inserted into the profiles in Figures 6 and 7. SA did not review surface model and generate 'smooth' surface profiles was beyond SA's scope of services with the provided topographic data. Modification of the provided data to manipulate the Plan, but show localized variations, generally less than 0.5 ft. from a 'smooth' surface line. 2008. The surface profile generally follows the contours shown on June 2008, prepared by Hager GeoScience, Inc., for further information. Characterization, MWRA Lynnfield/Saugus Pipeline Project, Route 1, Saugus MA," dated this information for accuracy. Refer to the Report titled, "Geophysical SubSurface Asphalt", "GPR Identified Possible Utilities", and "GPR Identified Obstructions" shown on ("GPR Consultant") to evaluate subsurface conditions by ground penetrating radar The MWRA engaged Green International Affiliates, Inc. and Hager GeoScience, Inc. The variations result from the surface modeling routine used by AUTOCAD Civil 3D 2008 SA generated the ground surface profile along the baselines using the profiles. The GPR consultant provided these plotted features to SA electronically on Fractured Bedrock", "Interpreted Bedrock", "Areas of Possible Reinforced Concrete under (Figures 4-1 to 4-7) and additional topographic data provided to S*I* Approximate ground surface profile on baselines obtained from Thorndike, LLC electronically on May 9, and 21, 2008, respectively. At the request of FST "GPR"). The GPR consultant interpreted the GPR data and plotted the "Interpreted \ by Fay, Spofford & **Existing Conditions Plan** the Existing Conditions **AUTOCAD Civil 3D**
- 4. Hager GeoScience, Inc. Notes:
- "Possible utilities have been depicted with an exaggerated diameter for visualization purposes, and do not represent their true size. However, the depth and station location have been adjusted to show their proper location."
- "Obstructions depicted on the plates (i.e. Profiles) represent their shallowest component; however, they may extend to greater depths."
- 5. Pipe location shown schematically with 5 ft. of cover at boring locations and varying linearly between borings.
- 6. Elevations shown relative to Boston City Base Datum, which is 5.65 ft. below NGVD 1929.
- Boring locations selected by FST.
- 8. Borings performed by GeoLogic Earth Exploration, Inc. between March 30 and April 25, 2008 and observed by SA. Borings IB-1 and IB-2 performed by New Hampshire Boring, Inc., August 8, 2006 for Interim Connection at Lynnfield Water District Pump Station. Borings MHD BB-1A and MHD BB-2 performed by GZA Drilling, Inc. July and August 1997 for MassHighway.
- Boring locations measured from existing site features using a fiberglass tape. Locations should be considered approximate and accurate only to the degree implied by the measurement technique.
- 10. The soil/rock strata and groundwater surface presented in this Drawing and the Geotechnical Report for the Project are generalized interpretations from widely spaced data and represent the approximate boundaries between subsurface materials. The actual transition between strata may be gradual. Explorations (e.g. boring and/or test pit logs) should be reviewed for specific information at respective locations. The data shown on the logs prepared by SA represent the conditions only at the actual exploration locations at the time the explorations were undertaken. Variations in subsurface conditions may occur and should be expected between exploration locations and over time. Seasonal fluctuation of water and groundwater depths should be anticipated.

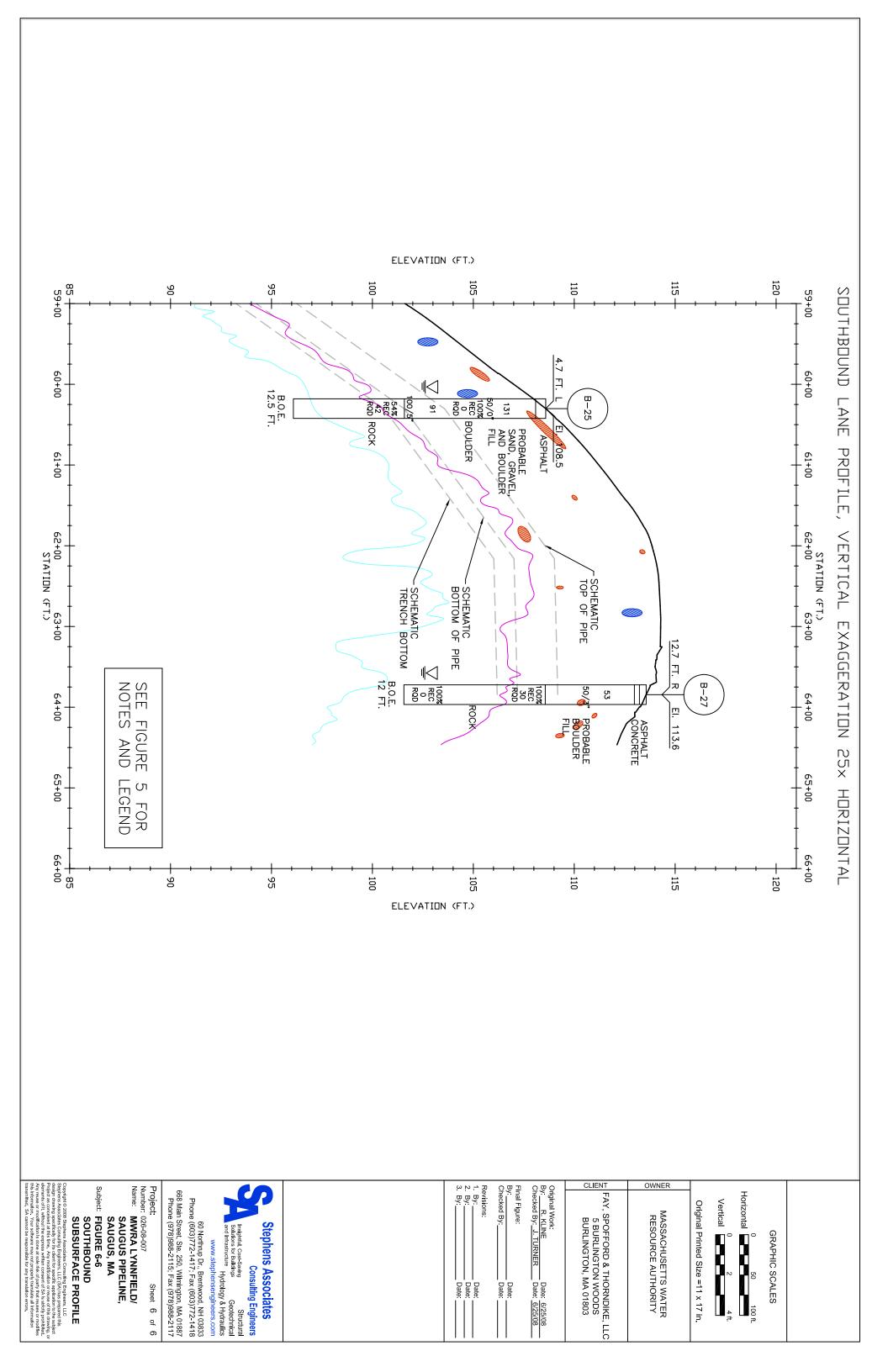

Subject: FIGURE 5

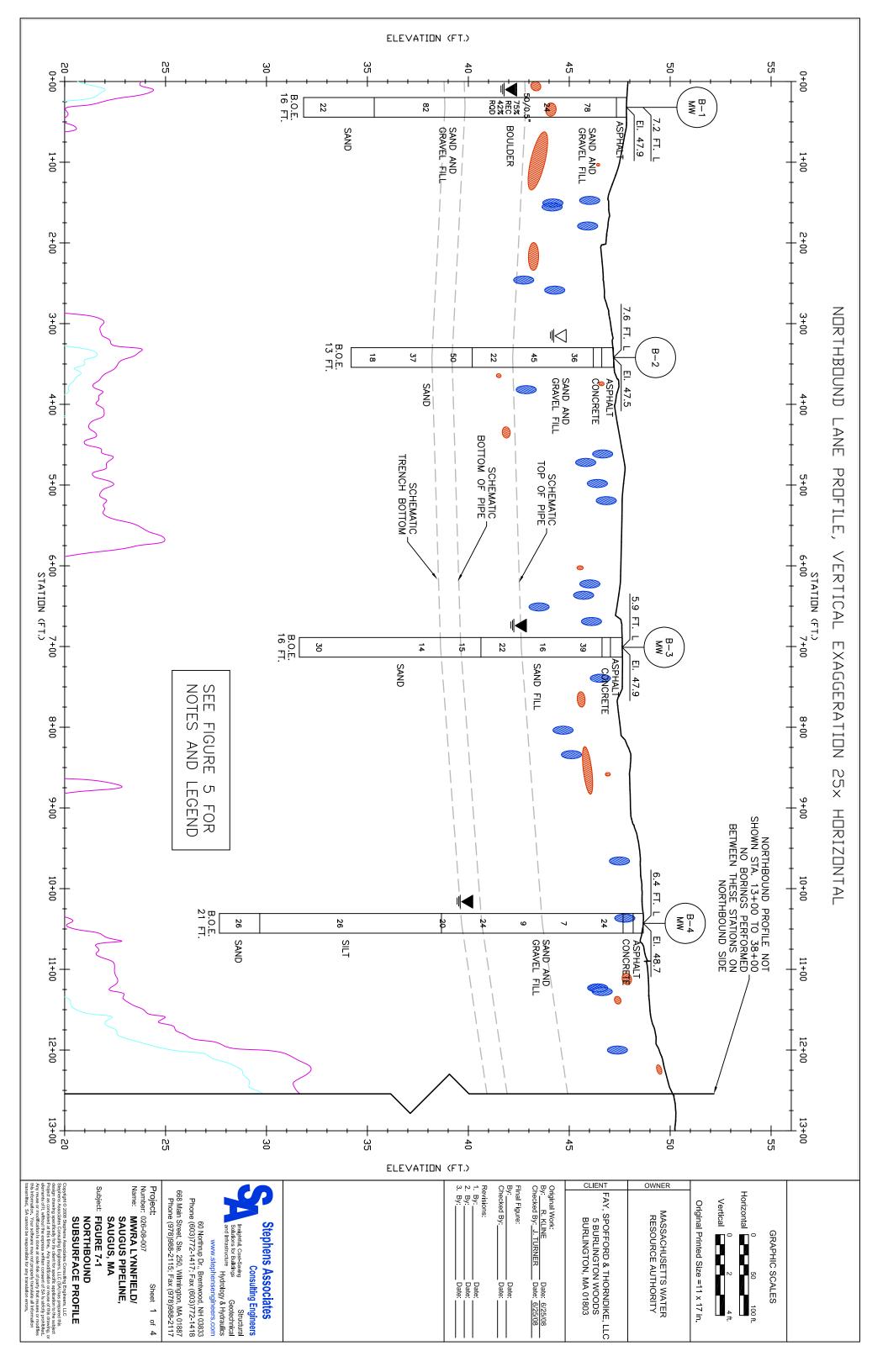

**LEGEND AND NOTES** 

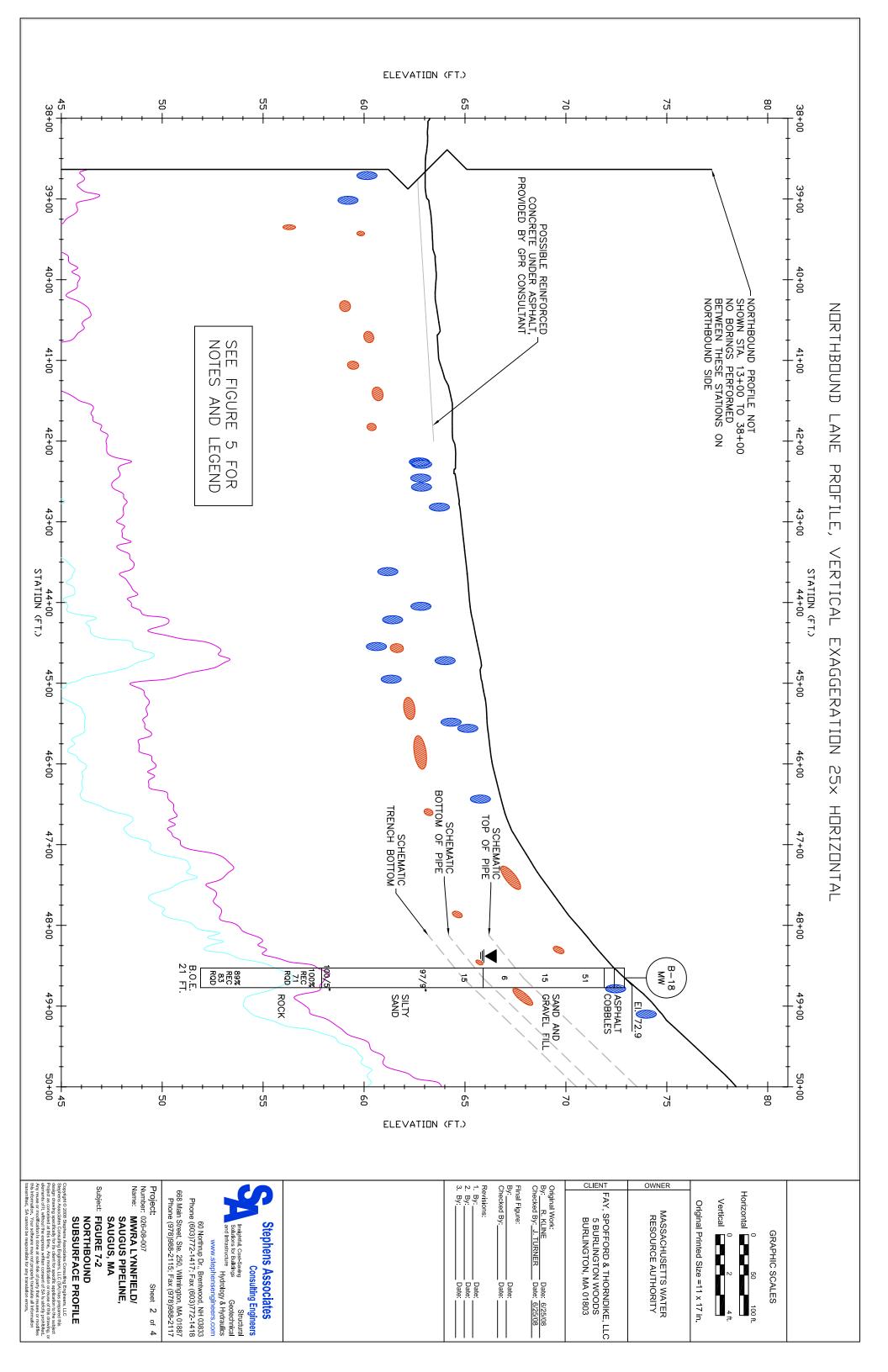

SUBSURFACE PROFILE

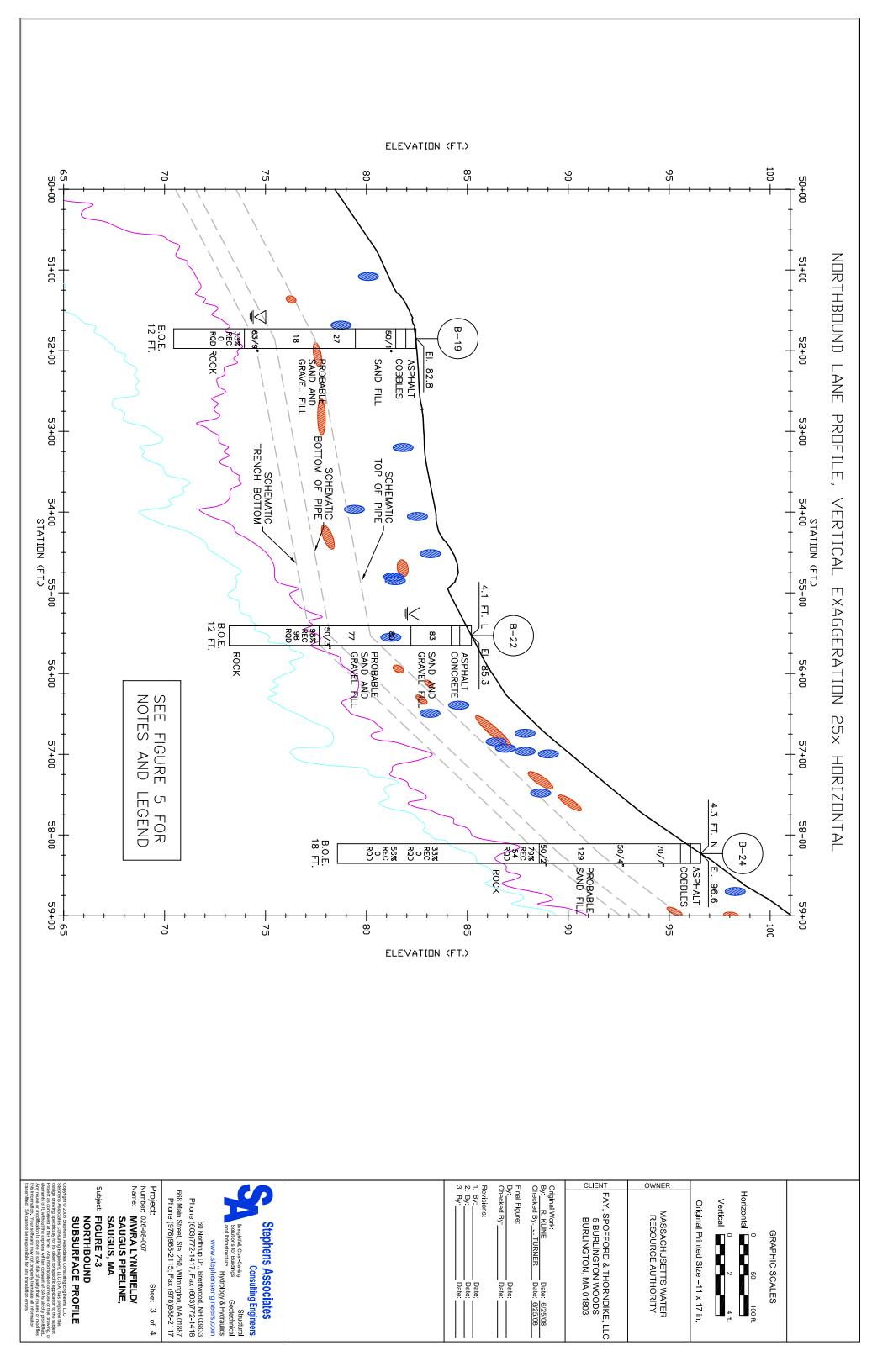


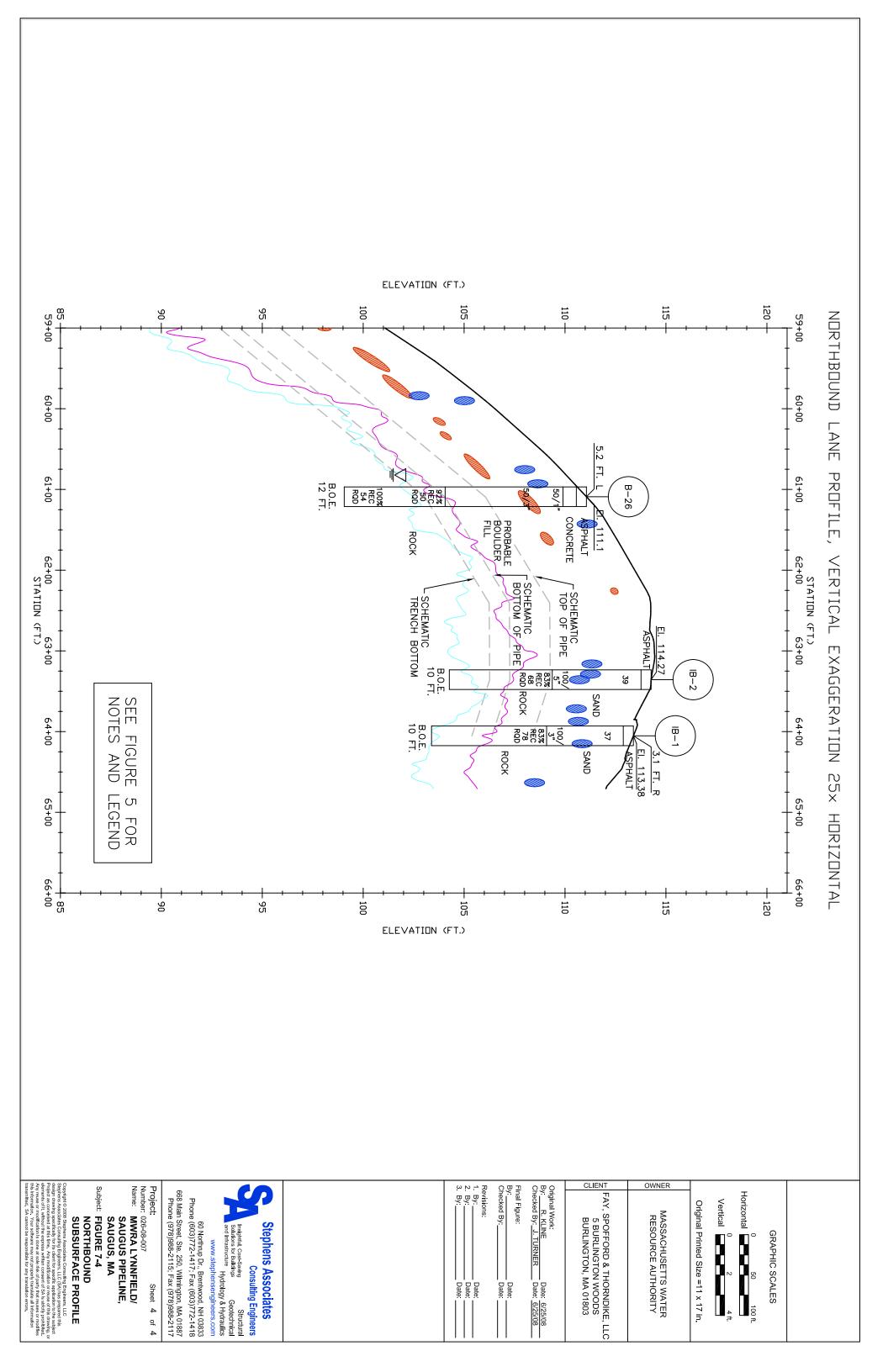


| Stephens Associates Consulting Engineers Insightut, Cost-Saving Structural Solutions for Buildings Aand Infrastructure Hydrology & Hydraulics www.stephensengineers.com |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                         |





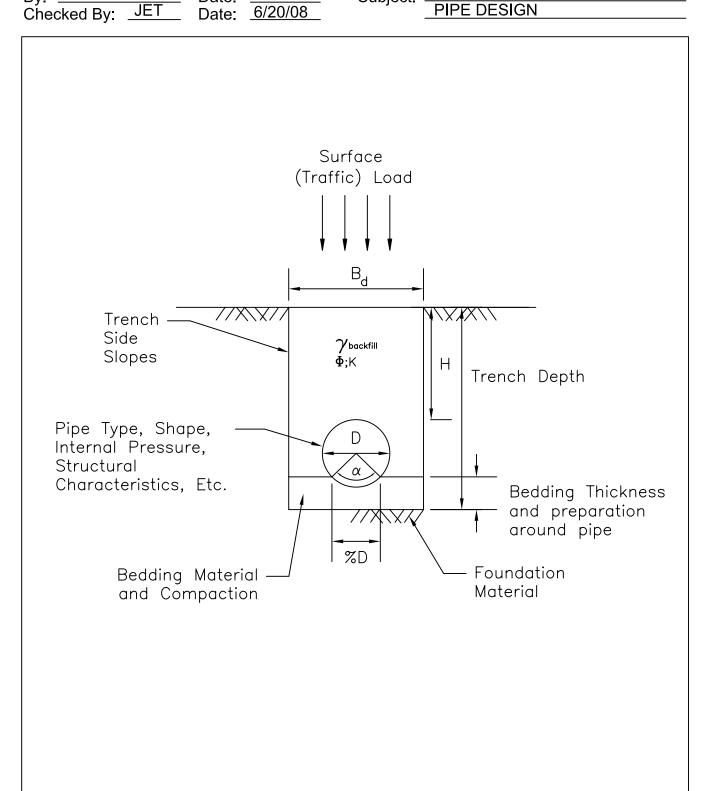









Project: Number: <u>026-08-007</u> .Sheet <u>1 of 1</u>


Name: -

MWRA Lynnfield/Saugus

Pipeline, Saugus, MA Original Work: By: R. Kline Date: 6/20/08 Subject: -

FIGURE 8 - FACTORS AFFECTING

PIPE DESIGN



| Revisions: |       |
|------------|-------|
| By:        | Date: |
| By:        | Date: |



# **TABLES**



 Project:
 Number:
 026-08-007
 Sheet
 1
 of
 1

 Name:
 Proposed Pipeline, MWRA Contract No. 6905
 Proposed Pipeline, MWRA Contract No. 6905
 Route 1, Saugus, Massachusetts

 By:
 J. Turner
 Date:
 July 25, 2008
 Subject:
 TABLE 1

**Summary of Observation Well Measurements** 

#### **SUMMARY OF OBSERVATION WELL READINGS**

Date:

Checked By:

| Observation<br>Well No. | Well<br>Installation<br>Date | Date of<br>Reading | Water Depth<br>(ft.) | Comments                                       |
|-------------------------|------------------------------|--------------------|----------------------|------------------------------------------------|
| B-1-MW                  | 4/17/08                      | 4/17/08            | 5.4                  | Reading 1.6 hrs. after installation            |
| D-1-10100               | 4/17/00                      | 4/27/08            | 6.0                  | Reading by FST                                 |
| B-3-MW                  | 4/17/08                      | 4/17/08            | 4.1                  | Reading 3.5 hrs. after installation            |
| D-2-1616A               | 4/17/06                      | 4/27/08            | 5.3                  | Reading by FST                                 |
| B-4-MW                  | 4/18/08                      | 4/18/08            | 8.4                  | Reading after well installed and backfilled    |
| D-4-IVIVV               | 4/10/00                      | 4/27/08            | 9.0                  | Reading by FST                                 |
| B-5-MW                  | 4/16/08                      | 4/16/08            | 4.1                  | Reading after well installed and backfilled    |
| D-2-1414A               | 4/10/00                      | 5/1/08             | 4.2                  | Reading by FST                                 |
|                         |                              | 4/13/08            | 5.5                  | Reading after well installed and backfilled    |
| B-9-MW                  | 4/13/08                      | 4/14/08            | 5.6                  | Reading ~22 hrs. after installation            |
|                         |                              | 5/1/08             | 5.7                  | Reading by FST                                 |
|                         |                              | 4/10/08            | 4.7                  | Reading ~20 min. after well inst. and backfill |
| B-11-MW                 | 4/10/08                      | 4/10/08            | 6.8                  | Reading ~18 hrs. after installation            |
| D-11-WW                 | 4/10/00                      | 4/14/08            | 6.8                  |                                                |
|                         |                              | 4/30/08            | 6.8                  | Reading by FST                                 |
| B-13-MW                 | 4/9/08                       | 4/9/08             | 6.9                  | Reading ~20 hours after installation           |
| D-12-10100              | 4/9/00                       | 4/30/08            | 6.9                  | Reading by FST                                 |
| B-17-MW                 | 4/7/08                       | 4/7/08             | 7.6                  | Reading after well installed and backfilled    |
| D-17-IVIVV              | 4/1/00                       | 4/30/08            | 13.7                 | Reading by FST                                 |
| B-18-MW                 | 3/31/08                      | 4/1/08             | 7.0                  |                                                |
| D-10-1014               | 3/3/1/06                     | 4/28/08            | 6.9                  | Reading by FST                                 |

Depths are measured from the ground (pavement) surface.

Copyright © 2008 Stephens Associates Consulting Engineers, LLC Revisions:

By: Date: Date:



### TABLE 2 - SUMMARY OF GEOTECHNICAL LABORATORY TEST RESULTS

|        |                   | Grain-Siz                | e Analyses                     | Estimated Hydraulic Conductivity |                               |                                                                               |                                      |                                                                                |
|--------|-------------------|--------------------------|--------------------------------|----------------------------------|-------------------------------|-------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------|
| Boring | Sample            | <sup>1</sup> Depth (ft.) | <sup>2</sup> Percent<br>Gravel | <sup>3</sup> Percent<br>Sand     | <sup>4</sup> Percent<br>Fines | 5,6Probable lower<br>bound of<br>measured k = 1/3<br>of estimated k<br>(cm/s) | <sup>5,6</sup> Estimated k<br>(cm/s) | 5,6Probable upper<br>bound of<br>measured k = 3<br>times estimated k<br>(cm/s) |
| B-1    | SS-1              | 1-3                      | 72.2                           | 27.1                             | 0.7                           |                                                                               |                                      |                                                                                |
| B-1    | SS-4              | 9-11                     | 59.3                           | 36.6                             | 4.1                           | 2.8E-03                                                                       | 8.4E-03                              | 2.5E-02                                                                        |
| B-2    | SS-1              | 1-3                      | 61.5                           | 32.6                             | 5.9                           |                                                                               |                                      |                                                                                |
| B-2    | SS-2              | 3-5                      | 33.9                           | 52.2                             | 13.9                          | 5.7E-04                                                                       | 1.7E-03                              | 5.1E-03                                                                        |
| B-2    | SS-4              | 7-9                      | 1.7                            | 88.3                             | 10                            | 1.8E-04                                                                       | 5.4E-04                              | 1.6E-03                                                                        |
| B-2    | SS-5              | 9-11                     | 6.1                            | 87.4                             | 6.5                           | 1.4E-03                                                                       | 4.1E-03                              | 1.2E-02                                                                        |
| B-2    | SS-6              | 11-13                    | 0.0                            | 70.9                             | 29.1                          | 7.6E-04                                                                       | 2.3E-03                              | 6.8E-03                                                                        |
| B-4    | SS-1              | 1-3                      | 18.0                           | 56.5                             | 25.5                          |                                                                               |                                      |                                                                                |
| B-4    | SS-4              | 7-9                      | 30.9                           | 56.4                             | 12.7                          | 1.9E-03                                                                       | 5.7E-03                              | 1.7E-02                                                                        |
| B-4    | SS-5              | 9-11                     | 0.0                            | 2.9                              | 97.1                          |                                                                               |                                      |                                                                                |
| B-5    | SS-4              | 7-9                      | 0.0                            | 40.8                             | 59.2                          | 3.9E-05                                                                       | 1.2E-04                              | 3.5E-04                                                                        |
| B-5    | SS-5              | 9-11                     | 0.7                            | 7.2                              | 92.1                          | 5.5E-06                                                                       | 1.6E-05                              | 4.9E-05                                                                        |
| B-6    | SS-4              | 7-9                      | 14.3                           | 82.2                             | 3.5                           | 1.0E-02                                                                       | 3.1E-02                              | 9.3E-02                                                                        |
| B-6    | SS-5              | 9-11                     | 4.7                            | 78.1                             | 17.2                          | 8.6E-04                                                                       | 2.6E-03                              | 7.8E-03                                                                        |
| B-8    | <sup>1</sup> SS-1 | 1-3                      | 19.8                           | 79.9                             | 0.3                           |                                                                               |                                      |                                                                                |
| B-8    | <sup>1</sup> SS-1 | 1-3                      | 37.7                           | 56                               | 6.3                           |                                                                               |                                      |                                                                                |
| B-9    | SS-2              | 3-5                      | 23.3                           | 65.8                             | 10.9                          | 3.5E-04                                                                       | 1.0E-03                              | 3.1E-03                                                                        |
| B-11   | SS-1              | 1-3                      | 44.3                           | 45                               | 10.7                          |                                                                               |                                      |                                                                                |
| B-11   | SS-4              | 7-9                      | 29.5                           | 41.8                             | 28.7                          | 2.2E-04                                                                       | 6.7E-04                              | 2.0E-03                                                                        |
| B-12   | SS-1              | 1-3                      | 54.4                           | 40.6                             | 5                             |                                                                               |                                      |                                                                                |
| B-12   | SS-5              | 10-12                    | 0.0                            | 43.1                             | 56.9                          | 2.8E-07                                                                       | 8.4E-07                              | 2.5E-06                                                                        |
| B-13   | SS-1              | 1-3                      | 46.6                           | 44.4                             | 9                             |                                                                               |                                      |                                                                                |
| B-13   | SS-2              | 3-5                      | 30.4                           | 54.3                             | 15.3                          |                                                                               |                                      |                                                                                |
| B-13   | SS-3 & SS-4       | 3-7                      | 66.1                           | 29.1                             | 4.8                           | 1.2E-02                                                                       | 3.5E-02                              | 1.1E-01                                                                        |
| B-13   | SS-6              | 14-16                    | 33.1                           | 64.2                             | 2.7                           | 2.3E-02                                                                       | 7.0E-02                              | 2.1E-01                                                                        |
| B-14   | SS-3              | 6-8                      | 30.8                           | 65.7                             | 3.5                           | 1.0E-02                                                                       | 3.1E-02                              | 9.4E-02                                                                        |
| B-15   | SS-1              | 1-3                      | 32.4                           | 60.8                             | 6.8                           |                                                                               |                                      |                                                                                |
| B-15   | SS-2 & SS-3       | 3-7                      | 19.0                           | 74.5                             | 6.5                           | 1.6E-03                                                                       | 4.8E-03                              | 1.4E-02                                                                        |
| B-15   | SS-4              | 7-9                      | 62.4                           | 33.1                             | 4.5                           | 1.2E-02                                                                       | 3.6E-02                              | 1.1E-01                                                                        |
| B-16   | <sup>1</sup> SS-1 | 1-3                      | 25.6                           | 74                               | 0.4                           |                                                                               |                                      |                                                                                |
| B-16   | <sup>1</sup> SS-1 | 1-3                      | 10.3                           | 77                               | 12.7                          |                                                                               |                                      |                                                                                |
| B-16   | SS-3              | 5-7                      | 11.1                           | 80                               | 8.9                           | 8.9E-04                                                                       | 2.7E-03                              | 8.0E-03                                                                        |
| B-16   | SS-4              | 7-9                      | 49.0                           | 45.4                             | 5.6                           | 1.4E-03                                                                       | 4.1E-03                              | 1.2E-02                                                                        |
| B-17   | SS-4              | 8-10                     | 3.2                            | 27.8                             | 69                            | 6.5E-05                                                                       | 1.9E-04                              | 5.8E-04                                                                        |

026-08-007 T-3 of 4 7/25/08

Stephens Associates
Consulting Engineers

Insightful, Costsaving Solutions
for Buildings and
Infrastructure

Hydrology & Hydraulics

### TABLE 2 (CONTINUED)

|        |        | Grain-Siz                | e Analyses                     |                              |                               | Estimate                                                                      | d Hydraulic Cor                      | ductivity                                                                    |
|--------|--------|--------------------------|--------------------------------|------------------------------|-------------------------------|-------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------|
| Boring | Sample | <sup>1</sup> Depth (ft.) | <sup>2</sup> Percent<br>Gravel | <sup>3</sup> Percent<br>Sand | <sup>4</sup> Percent<br>Fines | 5,6Probable lower<br>bound of<br>measured k = 1/3<br>of estimated k<br>(cm/s) | <sup>5,6</sup> Estimated k<br>(cm/s) | 5,6Probable upper<br>bound of<br>measured k=3<br>times estimated k<br>(cm/s) |
| B-18   | SS-1   | 1-3                      | 13.9                           | 62.4                         | 23.7                          |                                                                               |                                      |                                                                              |
| B-18   | SS-2   | 3-5                      | 33.9                           | 47.7                         | 18.4                          |                                                                               |                                      |                                                                              |
| B-18   | SS-4   | 7-9                      | 8.8                            | 38                           | 53.2                          | 1.3E-05                                                                       | 3.8E-05                              | 1.2E-04                                                                      |
| B-18   | SS-5   | 9-11                     | 20.5                           | 50.7                         | 28.8                          | 2.3E-07                                                                       | 6.8E-07                              | 2.0E-06                                                                      |
| B-19   | SS-2   | 3-5                      | 48.8                           | 42.9                         | 8.3                           |                                                                               |                                      |                                                                              |
| B-20   | SS-4   | 7-9                      | 6.8                            | 46.5                         | 46.7                          | 3.0E-07                                                                       | 9.1E-07                              | 2.7E-06                                                                      |
| B-21   | SS-2   | 3-5                      | 17.1                           | 53.6                         | 29.3                          |                                                                               |                                      |                                                                              |
| B-22   | SS-1   | 1-3                      | 23.9                           | 58.1                         | 18                            |                                                                               |                                      |                                                                              |
| B-22   | SS-3   | 5-7                      | 49.3                           | 36.5                         | 14.2                          | 2.1E-04                                                                       | 6.3E-04                              | 1.9E-03                                                                      |
| B-23   | SS-2   | 3-5                      | 25.9                           | 62.6                         | 11.5                          |                                                                               |                                      |                                                                              |
| B-23   | SS-4   | 7-9                      | 17.5                           | 31.3                         | 51.2                          | 7.9E-07                                                                       | 2.4E-06                              | 7.1E-06                                                                      |
| B-24   | SS-3   | 5-7                      | 3.5                            | 51.1                         | 45.4                          | 2.0E-07                                                                       | 5.9E-07                              | 1.8E-06                                                                      |
| B-25   | SS-1   | 1-3                      | 12.3                           | 76.5                         | 11.2                          |                                                                               |                                      |                                                                              |
| B-25   | SS-3   | 5-7                      | 14.9                           | 54.5                         | 30.6                          | 2.5E-05                                                                       | 7.6E-05                              | 2.3E-04                                                                      |

|        |        | At     | tterberg Limits and | Natural Wa | ater Content Ana   | alyses             |                |
|--------|--------|--------|---------------------|------------|--------------------|--------------------|----------------|
| Doring | Sample | Donth  | Natural Water       | Liquid     | Plastic Limit      | Plasticity Index   | Classification |
| Boring | Sample | Depth  | Content (%)         | Limit (%)  | (%)                | Plasticity flidex  | Classification |
| B-4    | S-5    | 9-11'  | 37                  | 30         | 19                 | 11                 | CL             |
| B-12   | S-5    | 10-12' |                     | I          | Non-plastic, see A | tterberg Limits da | ta sheet       |

#### NOTES:

- 1. Depth values are depths over which split spoon was driven. A representative sample for lab testing taken from the depth indicated. Refer to individual lab data sheets and boring logs for further information on sample location from within split spoon.
- 2. Gravel is defined as particles 0.187" (No. 4 seive) to 3" in diameter. Percent gravel is the percent of material by weight within this range of particles sizes.
- 3. Sand is defined as particles 0.187" (No. 4 sieve) to 0.003" (No. 200 sieve) in diameter. Percent sand is the percent of material by weight within this range of particles sizes.
- 4. Fines are defined as particles smaller than 0.003" (No. 200 sieve) in diameter. Percent fines is the percent of material by weight smaller than this particle size.
- 5. See List of References Appendix C
- 6. The references note that this method may overpredict permeability in gravel, but the results likely present an upper bound. The references further note that the Kozeny-Carmen method is not applicable to clay soils and would overpredict permeability.



026-08-007 T-4 of 4 7/25/08

#### **TABLE 3 - FIELD PERMEABILITY TEST RESULTS**

(after Fay, Spofford & Thorndike, September 24, 2008)

|                            | Field Per  | meability (Slug)      | ) Test Results |                       | Perm                    | eability Estim | ated by SA fron         | n Laboratory Da | ata                         |
|----------------------------|------------|-----------------------|----------------|-----------------------|-------------------------|----------------|-------------------------|-----------------|-----------------------------|
| Well ID  B-3  B-4**  B-5** | Bouwer & R | ice Analysis<br>sult¹ | Hvorslev       | / Result <sup>2</sup> | Sample No. Sample Depth |                | k=1/3 of<br>estimated k | Estimated k     | k=3 times<br>estimated<br>k |
| Well ID                    | feet/min   | cm/s                  | feet/min       | cm/s                  | -                       | (ft.)          | cm/s                    | cm/s            | cm/s                        |
| B-3                        | 0.0067     | 0.003                 | 0.0093         | 0.005                 | -                       | -              | -                       | -               | -                           |
| B-4**                      | 0.039      | 0.02                  | 0.054          | 0.03                  | SS-4                    | 7-9            | 0.0019                  | 0.0057          | 0.017                       |
| B-5**                      | 0.00066    | 0.00034               | 0.00092        | 0.00047               | SS-4                    | 7-9            | 0.000035                | 0.00012         | 0.00035                     |
|                            |            |                       |                |                       | SS-5                    | 9-11           | 0.0000055               | 0.000016        | 0.000049                    |
| B-9*                       | -          | -                     | -              | -                     | SS-2                    | 3-5            | 0.00035                 | 0.001           | 0.0031                      |
| B-13                       | 0.03       | 0.02                  | 0.041          | 0.02                  | SS-3&4                  | 3-7            | 0.012                   | 0.035           | 0.11                        |
| B-13                       | 0.019      | 0.0096**              | 0.026          | 0.0133                | SS-3&4                  | 3-7            | 0.012                   | 0.035           | 0.11                        |
| B-13                       | 0.019      | 0.01                  | 0.027          | 0.01                  | SS-4                    | 7-9            | 0.023                   | 0.070           | 0.21                        |
| B-18**                     | 0.0039     | 0.00196               | 0.0053         | 0.00271               | SS-4                    | 7-9            | 0.000013                | 0.000038        | 0.00012                     |
|                            |            |                       |                |                       | SS-5                    | 9-11           | 0.00000023              | 0.00000068      | 0.0000020                   |

#### **FST Notes:**

#### SA Notes:

Slug tests performed, data interpreted and provided to SA by FST.

<sup>&</sup>lt;sup>1</sup> Freeware used to analyze the data was written by Karl DeBisschop and obtained from http://sourceforge.net/projects/hydrotools <sup>2</sup> Freeware used to analyze the data was written by Karl DeBisschop and obtained from <a href="http://sourceforge.net/projects/hydrotools">http://sourceforge.net/projects/hydrotools</a>



<sup>\*</sup>The data did not have enough variance to analyze the slug test \*\*Off by 1 or more orders of magnitude

# APPENDIX A LIMITATIONS



#### APPENDIX A – REPORT LIMITATIONS

Stephens Associates Consulting Engineers, LLC (SA) has prepared this Report based on the information available to us at this time, including preliminary design information furnished through the Client, the Owner and their representatives for the proposed Project. If any of the noted information is incorrect or has changed (e.g., revisions to the design; subsurface conditions encountered during excavation for construction are different from those noted in this report, etc.), SA should be notified and retained to review the corrections and changes and amend this report. If SA is not retained for these purposes, we cannot be responsible for the impact of those conditions on the performance of the Project. Upon completion of plans and specifications, SA should be retained to review the final design documents before issuance for construction bid. This review will allow us to check that our engineering recommendations have been interpreted and implemented properly in the design. At that time, it may be necessary to submit supplementary recommendations, which SA will do on a time and expense basis according to our Agreement for the Project.

The subsurface descriptions contained in this report are generalized to highlight the major soil strata as interpreted from readily available data. The soil/rock strata and groundwater surface are interpretations from widely spaced data and represent the approximate boundaries between subsurface materials. The actual transition between strata may be gradual. Explorations (e.g., boring and/or test pit logs) should be reviewed for specific information at respective locations. The data shown on the logs prepared by SA represent the conditions only at the actual exploration locations at the time the explorations were undertaken. Further, variations in subsurface conditions may occur and should be expected between exploration locations and over time. Seasonal fluctuation of groundwater depths should be anticipated. We recommend that the contractor measure the actual groundwater levels at the time of construction and evaluate groundwater impact on the construction procedure, and the impact of the construction on groundwater levels.

SA's scope of services does not include an environmental assessment of any kind, including but not limited to assessments for the presence or absence of wetlands or hazardous or toxic materials or organisms (e.g., fungi, flora, fauna, bacteria, viruses, etc.) in the soil, surface water, groundwater, or air, on or below or around this site. Any observations of odors, colors, or unusual or suspicious items or conditions noted by SA were incidental to our services, and any statements regarding such observations are strictly for the information of the Client. We recommend that the Project Owner engage a qualified environmental professional to provide environmental services for this Project.

SA's services were performed using data generated by others (e.g. GPR data interpreted and provided by Hager GeoScience, Inc., field permeability tests data and interpretation provided by FST, etc.). SA relied on these data for cost savings to Client and Owner in lieu of generating these data at higher cost.

We recommend that SA be retained to provide services during design and construction including analysis and engineering of design options, assistance with shop drawing/submittal review and engineering observation of construction. These services will assist the Owner with quality assurance through observation of compliance with design concepts, specifications and recommendations and will allow for the implementation of design changes where necessary due to conditions that differ from those anticipated.

This report has been prepared by SA for the exclusive use of the Client and for the specific application to the subject Project, as conceived at this time. The report is for conceptual design only, and by itself is not sufficient to prepare an accurate cost estimate or construction "bid." Subject to the limitations inherent in the agreed scope of services as to the degree of care, amount of time and expenses to be incurred, and subject to any other limitations contained in the Agreement for SA's services, SA has performed its services with the degree of care and skill ordinarily exercised by other professional engineers under similar circumstances at the time the services were performed. No warranties are implied or expressed.



026-08-007 Page A- 2 of 2 7/25/08

# APPENDIX B BORING LOGS



| Ī    |             |         | Gro          | undwa      | ter:       |                          |           | Project: MWRA Pipeline Project, Contract No. 6905                               | Borin                      | g No          | . B-1-                         | MW          |
|------|-------------|---------|--------------|------------|------------|--------------------------|-----------|---------------------------------------------------------------------------------|----------------------------|---------------|--------------------------------|-------------|
|      | Depth       | ո։      | 5.3 ft.      |            | 5.4 ft     |                          |           |                                                                                 | -007 <b>S</b> h            |               | 1 <b>of</b>                    |             |
|      | Time:       |         | Well inst    | alled      | 1.6 h      | rs. after                | inst.     |                                                                                 | on <b>ID</b> 1.3           | 75" <b>(</b>  | <b>DD</b> 2"                   |             |
|      |             |         |              |            |            |                          |           | Foreman: John Galvin Hammer Wt.: 140 lb                                         | Fall:                      | _             | 30"                            |             |
|      |             | "       |              |            |            | _                        |           | Start Date: 4/16/2008 Drill Technique: Drive&Wa                                 | sh <b>ID</b> 4             | ." <b>(</b>   | <b>DD</b> 4.5'                 | '           |
|      | t.)         | Š       | 2            | _          | _          | ue u                     | <u>-</u>  | Finish Date: 4/17/2008 Rig Type: Mobile Dr                                      |                            |               |                                | 1 1         |
|      | Depth (ft.) | Blows   | Sample No.   | Pen. (in.) | Rec. (in.) | Blows/6" or<br>Core Time | PID (ppm) | SACE Staff: J. Turner Northing: 3002111.3 Ea                                    | sting:                     | 7859          | 960.0                          | emarks      |
|      | ptł         | S.      | E            | Ľ.         | S          | e š                      | 3) (      | Surface El.: + 47.9 ft Datum: Vert: BCB; Horiz.                                 | NAD83                      | Eqι           | iipment                        | ıμ          |
| 0    | De          | Cas.    | Sa           | Ре         | Re         | ခြဲ ပိ                   | Ы         | Description & Classification                                                    | Stratum                    | Ins           | stalled                        | Re          |
| 0 —  |             | 146     |              |            |            |                          |           | 6" Asphalt Driller adv. Roller bit to 1ft                                       | Asphalt                    |               |                                |             |
|      |             | 140     |              |            |            |                          |           | Cobbles                                                                         | Cobbles                    |               | je j                           |             |
|      | 1           | 89      | SS-1         | 24         | 11         | 14                       |           | 10" Dense, black medium SAND, little coarse Sand,                               |                            | Sand          | ▝░                             |             |
|      |             |         |              |            |            | 28                       |           | little Gravel, little Asphalt, trace brick (SP), wet                            |                            | Š             |                                |             |
|      |             | 56      |              |            |            | 50                       |           | 1" Very dense, black and brown GRAVEL, little fine                              |                            | ite           | o C                            |             |
|      | 2           |         | 00.0         | 24         | 2          | 39                       | _         | to coarse SAND (GP), wet.                                                       |                            | Bentonite     | 2" ID PVC Well riser           |             |
|      | 3           | 16      | SS-2         | 24         | 2          | 11<br>15                 | 0         | Medium dense, gray-brown, fine to coarse SAND and GRAVEL, trace silt (SW), wet. |                            | Ber           | <sup> 2</sup>     0            |             |
|      |             |         |              |            |            | 9                        |           | *Driller advanced 5" casing to 4 ft., then telescoped                           |                            |               | ft of                          | 1           |
| _    |             | 297*    |              |            |            | 52                       |           | 4" casing to 5 ft.                                                              |                            |               | 2                              |             |
| 5 —  | 5           |         | SS-3         | 0.5        | 0.5        | 50/0.5"                  | 0         | Piece of gravel.                                                                | $\overline{}$              |               | _                              | <b>├</b> ╢  |
|      | 5.5         |         | R-1          | 24         |            | 6 min/ft                 |           | Boulder - very hard, white, yellow and black, fresh                             |                            |               |                                |             |
|      |             |         |              |            |            |                          |           | medium to coarse grained Granitic rock, top 14"                                 |                            |               | tive Casin                     |             |
|      |             |         |              |            |            | 3 min/ft                 |           | one joint near horizontal, bottom 4" gravel                                     |                            |               | <u>= </u>                      |             |
|      |             |         |              |            |            |                          |           | RQD = 10/24" = 42%                                                              |                            |               | reen                           |             |
|      |             |         |              |            |            |                          |           | Driller advanced roller bit through boulders and had                            | FILL                       |               | Pre                            |             |
|      |             |         | ļ            |            |            |                          |           | difficulty advancing casing. Repeated roller bit and                            | Щ                          | _             | Slotted PVC Well screen Protec |             |
|      | 9           |         | SS-4         | 24         | 10         | 30                       | 0         | casing advancement. Very dense, brown, GRAVEL and fine to medium SAND,          |                            | Sand backfill | ×                              |             |
|      | 9           | *_      | 33-4         | 24         | 10         | 37                       | U         | GRAVEL (GW), wet.                                                               |                            | bac           | M                              |             |
| 10 — |             | Push*   |              |            |            | 45                       |           | GIVIVEE (GVV), WGL                                                              |                            | and           | pe                             |             |
|      |             | ш       |              |            |            | 47                       |           | *Driller advanced roller bit ahead of casing to 14 ft                           |                            | S             | Slott                          |             |
|      |             | 16*     |              |            |            |                          |           |                                                                                 |                            |               |                                |             |
|      |             | 10      |              |            |            |                          |           |                                                                                 |                            |               | 10                             |             |
|      |             | 46*     |              |            |            |                          |           | Change occurred between samples                                                 |                            |               | <u> </u> ≡                     |             |
|      |             |         |              |            |            |                          |           |                                                                                 |                            |               |                                |             |
|      |             | 43*     |              |            |            |                          |           |                                                                                 |                            |               | ≡                              |             |
|      | 14          |         | SS-5         | 24         | 5          | 19                       | 0         | Medium dense, brown, fine SAND, trace non-plastic                               |                            |               |                                |             |
|      | 17          |         | 00-0         | 24         | 3          | 11                       | 0         | silt (SP), wet.                                                                 | 0                          |               | V                              |             |
| 15 — |             |         |              |            |            | 11                       |           |                                                                                 | SAND                       |               | •                              |             |
|      |             |         |              |            |            | 16                       |           |                                                                                 | SA                         |               | 5.5"                           |             |
|      |             |         |              |            |            |                          |           | Boring terminated at about 16 ft.                                               |                            | dia           | ameter                         |             |
|      |             |         |              |            |            |                          |           |                                                                                 |                            |               | ehole to                       |             |
|      |             |         |              |            |            |                          |           |                                                                                 |                            |               | ft., 4.5"                      |             |
|      |             |         |              |            |            |                          |           |                                                                                 |                            |               | ameter<br>ehole to             |             |
|      |             |         |              |            |            |                          |           |                                                                                 |                            |               | 16 ft.                         | $\parallel$ |
|      |             |         |              |            |            |                          |           |                                                                                 |                            |               |                                | $\parallel$ |
|      |             |         |              |            |            |                          |           |                                                                                 |                            |               |                                |             |
| 20 — |             |         |              |            |            |                          |           |                                                                                 |                            |               |                                | <b>├</b> ╣  |
|      |             |         |              |            |            |                          |           |                                                                                 |                            |               |                                |             |
|      |             |         |              |            |            |                          |           |                                                                                 |                            |               |                                |             |
|      |             |         |              |            |            |                          |           |                                                                                 |                            |               |                                |             |
|      |             |         |              |            |            |                          |           |                                                                                 |                            |               |                                |             |
|      |             |         |              |            |            |                          |           |                                                                                 |                            |               |                                |             |
|      |             |         |              |            |            |                          |           |                                                                                 |                            |               |                                |             |
|      |             |         |              |            |            |                          |           |                                                                                 |                            |               |                                | $\ \cdot\ $ |
|      |             |         |              |            |            |                          |           |                                                                                 |                            |               |                                | $\ \cdot\ $ |
| 25 — |             |         |              |            |            |                          |           |                                                                                 |                            |               |                                | <b>}</b> ∦  |
|      |             |         |              |            |            |                          |           |                                                                                 |                            |               |                                |             |
|      |             |         |              |            |            |                          |           |                                                                                 |                            |               |                                |             |
|      |             |         |              |            |            |                          |           | Drilling technique added water to boring. Water levels may                      |                            |               |                                |             |
|      |             |         |              |            |            |                          |           | not be indicative of natural groundwater level.                                 |                            |               |                                |             |
|      |             |         | <u> </u>     |            | <u> </u>   |                          |           |                                                                                 |                            |               |                                |             |
|      | (S          |         |              |            |            |                          |           |                                                                                 | Steph                      | ens l         | Associat                       | es          |
|      | Remarks     |         |              |            |            |                          |           |                                                                                 |                            |               | sulting En                     |             |
|      | em          | Soil/ro | ck strata ar | ıd groui   | ndwate     | r surface,               | where i   | indicated, are approximate. Transitions may be gradual.                         | Insightful,<br>saving So   | lutions       |                                | Structural  |
|      | œ           | Variati | ons betwee   | n explo    | ration I   | ocations a               | nd ove    | er time should be expected.                                                     | for Buildin<br>Infrastruct | ure H         | lydrology & H                  |             |

|             |           | Gro          | undwa      | ter:       |                          |           | Project: MWRA Pipeline Project, Contract No. 6905             | Boring                                      | <b>g No.</b> B-                |
|-------------|-----------|--------------|------------|------------|--------------------------|-----------|---------------------------------------------------------------|---------------------------------------------|--------------------------------|
| Deptl       | า:        | 2.9 ft.      |            |            |                          |           | Location: Saugus, MA Project Number: 026-08                   | -007 <b>Sh</b>                              |                                |
| Time        |           | End of d     | Irilling,  | inside     | casing                   |           |                                                               | oon <b>ID</b> 1.3                           | 75" <b>OD</b> 2"               |
|             |           |              |            |            |                          |           | Foreman: John Galvin Hammer Wt.: 140 lb                       | Fall:                                       | 30"                            |
|             |           |              |            |            | _                        |           |                                                               | ash ID 4                                    |                                |
| £.          | Blows     | Sample No.   | _          | _          | Blows/6" or<br>Core Time | 2         |                                                               | ill Truck-m                                 |                                |
| L (f        | 8         | <u>e</u>     | <u>:</u>   | .⊑         | Zi.                      | ď         | SACE Staff: J. Turner Northing: 3002405.9 Ea                  |                                             | 786063.9                       |
| bt          | 'n.       | dμ           | ٠.         | , i        | ĕ ĕ                      | ತಿ        | Surface El.: + 47.5 ft Datum: Vert: BCB; Horiz                |                                             | Equipment                      |
| Depth (ft.) | Cas.      | Sar          | Pen. (in.) | Rec. (in.) | 음<br>당                   | PID (ppm) | Description & Classification                                  | Stratum                                     | Installed                      |
| <b>-</b>    |           | •            | _          | _          |                          |           | 7" Asphalt Driller adv. Roller bit to 1ft                     | Asphalt                                     | motanea                        |
|             | push      |              |            |            |                          |           | 5" Concrete                                                   | Concrete                                    |                                |
| 1           | 40        | SS-1         | 24         | 11         | 17                       | 0         | 4" Medium dense, gray medium to coarse SAND (SP) wet.         | .001.010.0                                  |                                |
|             | 18        |              |            |            | 19                       |           | 7" Medium dense, brown GRAVEL and fine to coarse              |                                             |                                |
|             | 47        |              |            |            | 17                       |           | SAND (GW), trace silt, wet.                                   | $\overline{}$                               |                                |
|             | 47        |              |            |            | 15                       |           |                                                               | -                                           |                                |
| 3           | 10        | SS-2         | 24         | 5          | 20                       | 0         | Dense, brown fine to coarse SAND, some Gravel (SM).           |                                             |                                |
|             | 10        |              |            |            | 24                       |           | little Silt, wet.                                             |                                             |                                |
|             | 27        |              |            |            | 21                       |           |                                                               | FILL                                        |                                |
|             | ۷1        |              |            |            | 18                       |           |                                                               | 正                                           |                                |
| 5           | 36        | SS-3         | 24         | 1          | 19                       | 0         | Similar to SS-2, except medium dense.                         |                                             |                                |
|             |           |              |            |            | 14                       |           |                                                               |                                             |                                |
| <u> </u>    | 18        |              |            |            | 8                        |           |                                                               |                                             |                                |
|             |           | CC 4         | 0.4        |            | 12                       |           | Donne grow fine to meditive CAND to the                       | <b> </b>                                    |                                |
| 7           | 36        | SS-4         | 24         | 9          | 23                       | 0         | Dense, gray fine to medium SAND, trace                        |                                             |                                |
| <u> </u>    |           |              |            |            | 24<br>26                 |           | non-plastic silt (SP-SM), wet.                                |                                             |                                |
| <u> </u>    | 56        |              |            | -          | 28                       |           |                                                               |                                             |                                |
| 9           | (h        | SS-5         | 24         | 14         | 19                       | 0         | Medium dense, gray fine SAND, trace silt (SP-SM),             | SAND                                        |                                |
|             | Hole      | 000          | 27         | 17         | 15                       |           | grading to fine to medium SAND, trace silt (SP-SM)            | δ                                           |                                |
|             | Open I    |              |            |            | 22                       |           | wet.                                                          |                                             |                                |
|             | o         |              |            |            | 23                       |           |                                                               |                                             |                                |
| 11          |           | SS-6         | 24         | 12         | 10                       | 0         | Medium dense, gray fine to medium SAND, some                  |                                             |                                |
|             |           |              |            |            | 9                        |           | non-plastic Silt (SM), wet                                    |                                             |                                |
|             |           |              |            |            | 9                        |           |                                                               |                                             |                                |
|             |           |              |            |            | 12                       |           |                                                               |                                             |                                |
|             |           |              |            |            |                          |           | Boring terminated at about 13 ft.                             |                                             |                                |
|             |           |              |            |            |                          |           |                                                               |                                             |                                |
|             |           |              |            |            |                          |           |                                                               |                                             |                                |
| 1           |           |              |            |            |                          |           |                                                               |                                             |                                |
|             |           |              |            |            |                          |           |                                                               |                                             |                                |
|             |           |              |            |            |                          |           |                                                               |                                             |                                |
|             |           |              |            |            |                          |           |                                                               |                                             |                                |
|             |           |              |            |            |                          |           |                                                               |                                             |                                |
|             | •         |              |            |            |                          |           |                                                               |                                             |                                |
|             |           |              |            |            |                          |           |                                                               |                                             |                                |
|             |           |              |            |            |                          |           |                                                               |                                             |                                |
|             |           |              |            |            |                          |           |                                                               |                                             |                                |
|             |           |              |            |            |                          |           |                                                               |                                             |                                |
|             |           |              |            |            |                          |           |                                                               |                                             |                                |
| <u> </u>    |           |              |            |            |                          |           |                                                               |                                             |                                |
| <u> </u>    | •         |              |            |            |                          |           |                                                               |                                             |                                |
| <u> </u>    |           |              |            |            |                          |           |                                                               |                                             |                                |
| -           |           |              |            |            |                          |           |                                                               |                                             |                                |
| <u> </u>    |           |              |            | -          |                          |           |                                                               |                                             |                                |
| H           | •         |              |            |            |                          |           |                                                               |                                             |                                |
|             |           |              |            |            |                          |           |                                                               |                                             |                                |
|             | •         |              |            |            |                          |           |                                                               |                                             |                                |
|             |           |              |            |            |                          |           |                                                               |                                             |                                |
|             | •         |              | 1          |            |                          |           |                                                               |                                             |                                |
|             |           |              |            |            |                          |           |                                                               |                                             |                                |
|             |           |              |            |            |                          |           |                                                               |                                             |                                |
|             |           |              |            |            |                          |           |                                                               |                                             |                                |
|             |           |              | <u> </u>   |            |                          |           |                                                               |                                             | 2-1-27                         |
| Remarks     | 1. Drilli | ng techniq   | ue adde    | ea water   | to boring                | . wate    | er levels may not be indicative of natural groundwater level. | Steph                                       | ens Associat<br>Consulting Eng |
| ma          | Soil/ro   | ck strata ar | nd groui   | ndwater    | surface. v               | where i   | ndicated, are approximate. Transitions may be gradual.        | Insightful, 0                               |                                |
| O.          |           |              | •          |            |                          |           | r time should be expected.                                    | saving Solution for Building Infrastructure | s and                          |
| ~           |           |              |            |            |                          |           | See Exploration Location Plan 668 Main Street, Wilmingt       |                                             | 10 0050 00                     |

| [    |             |                                                                                                         | Gra                       | undwa        | tor.             |                          |           | Project: MWRA Pipeline Project, Contract No. 6905                                                              | Rorin                           | g No. B-                              | -3-MW                                   |  |  |  |
|------|-------------|---------------------------------------------------------------------------------------------------------|---------------------------|--------------|------------------|--------------------------|-----------|----------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------|-----------------------------------------|--|--|--|
|      | Depti       | h:                                                                                                      | 5.4 ft.                   | unuwa<br>    | ter:<br> 4.1 ft. |                          |           |                                                                                                                | -007 <b>Sh</b>                  |                                       | of 1                                    |  |  |  |
|      | Time        |                                                                                                         | EOD in (                  | cas          |                  | rs. after                | inst      |                                                                                                                | oon <b>ID</b> 1.3               |                                       | 2"                                      |  |  |  |
|      | 111110      | <u>.</u>                                                                                                | LODIII                    | <i>5</i> 43. | 0.0 111          | S. artor                 | 11131.    | Foreman: John Galvin Hammer Wt.: 140 lb                                                                        | Fall:                           | 30"                                   | _                                       |  |  |  |
|      |             |                                                                                                         |                           |              |                  |                          |           |                                                                                                                | <b>Fall.</b><br>ash <b>ID</b> 4 |                                       | 5"                                      |  |  |  |
|      |             | ٧S                                                                                                      | <u> </u>                  |              |                  | or<br>e                  | _         |                                                                                                                |                                 |                                       |                                         |  |  |  |
|      | Depth (ft.) | Blows                                                                                                   | Sample No.                | Pen. (in.)   | n.)              | Blows/6" or<br>Core Time | PID (ppm) | Finish Date: 4/17/2008 Rig Type: Mobile Dr<br>SACE Staff: J. Turner Northing: 3002744.0 Ea                     |                                 | 786184.9                              | P TE                                    |  |  |  |
|      | ŧ           | ω.                                                                                                      | d                         | i) ·         | . (i             | /S/<br>e T               | g)        |                                                                                                                |                                 |                                       | Jar                                     |  |  |  |
|      | eb          | Cas.                                                                                                    | aπ                        | en           | Rec. (in.)       | <u> </u>                 | ₽         |                                                                                                                |                                 | Equipme                               | ent e                                   |  |  |  |
| 0 —  |             |                                                                                                         | S                         | _            | 8                | В                        | 4         | Description & Classification                                                                                   | Stratum                         | Installe                              | a &                                     |  |  |  |
|      |             | push                                                                                                    |                           |              |                  |                          |           | 7" Asphalt Driller adv. Roller bit to 1ft                                                                      | Asphalt                         |                                       |                                         |  |  |  |
|      | _           | 10                                                                                                      | 00.4                      | 0.4          | 40               | 00                       | 007       | 5" Concrete                                                                                                    | Concrete                        | 8                                     |                                         |  |  |  |
|      | 1           | 26                                                                                                      | SS-1                      | 24           | 13               | 23                       | 237       | 4" Dense, gray and black, medium to coarse SAND,                                                               |                                 | Sentonite<br>VC Well ri               |                                         |  |  |  |
|      |             |                                                                                                         |                           |              |                  | 19                       |           | crushed asphalt (SP), wet.                                                                                     | FILL                            | ntor   Ķ                              |                                         |  |  |  |
|      |             | 24                                                                                                      |                           |              |                  | 20<br>15                 |           | 9" Dense, gray fine to medium SAND, trace gravel,                                                              | Щ                               | SC Be                                 |                                         |  |  |  |
|      | 3           |                                                                                                         | SS-2                      | 24           | 9                | 6                        | 265       | trace silt (SP), wet. Petroleum odor (tested with PID) 5" loose, brown f-m SAND, some Gravel, little Silt (SP) |                                 | ┡═                                    |                                         |  |  |  |
|      | 3           | 8                                                                                                       | 33-2                      | 24           | 9                | 4                        | 200       | 3" Medium dense, medium SAND, trace fine sand,                                                                 | abla                            | 5 ft of 2" ID                         | - te                                    |  |  |  |
|      |             |                                                                                                         |                           |              |                  | 12                       |           | trace coarse sand (SP), wet. See Note 1.                                                                       |                                 | t of                                  | Concrete                                |  |  |  |
|      |             | 18                                                                                                      |                           |              |                  | 14                       |           | 1" Brown fine SAND, some non-plastic Silt (SM), wet                                                            |                                 | 5 1                                   | 00                                      |  |  |  |
| 5 —  | 5           |                                                                                                         | SS-3                      | 24           | 12               | 12                       | 8         | Medium dense, brown fine SAND, trace non-plastic                                                               |                                 |                                       |                                         |  |  |  |
|      | ا ا         | 24                                                                                                      | 30.3                      |              | 14               | 10                       |           | silt, trace medium sand (SP), wet.                                                                             |                                 | <u>   = .5</u>                        |                                         |  |  |  |
|      |             |                                                                                                         |                           |              |                  | 12                       |           | S, trado modiam dana (or ), wot.                                                                               |                                 | = ,                                   | ğ 🖂                                     |  |  |  |
|      |             | 12                                                                                                      |                           |              |                  | 17                       |           |                                                                                                                |                                 |                                       | 2                                       |  |  |  |
|      | 7           | push                                                                                                    | SS-4                      | 24           | 12               | 8                        | 6         | Medium dense, brown fine SAND, little non-plastic                                                              |                                 | <u>-</u>   <del>[</del>               | 5                                       |  |  |  |
|      |             | 8                                                                                                       |                           | <u> </u>     |                  | 6                        |           | Silt, (SM), wet.                                                                                               |                                 | reen                                  |                                         |  |  |  |
|      |             |                                                                                                         |                           |              |                  | 9                        |           |                                                                                                                |                                 |                                       |                                         |  |  |  |
|      |             | 18                                                                                                      |                           |              |                  | 11                       |           |                                                                                                                |                                 | Sand backfill Slotted PVC Well screen |                                         |  |  |  |
|      | 9           |                                                                                                         | SS-5                      | 24           | 12               | 7                        | 11        | Medium dense, brown fine SAND, trace non-plastic                                                               |                                 | Sand backfill                         |                                         |  |  |  |
| 10 — |             | Ī                                                                                                       |                           |              |                  | 7                        |           | silt (SP), wet.                                                                                                |                                 | g d                                   |                                         |  |  |  |
| 10   |             |                                                                                                         |                           |              |                  | 7                        |           |                                                                                                                |                                 | San                                   |                                         |  |  |  |
|      |             | Hole                                                                                                    |                           |              |                  | 9                        |           |                                                                                                                |                                 |                                       |                                         |  |  |  |
|      |             | Ī                                                                                                       |                           |              |                  |                          |           |                                                                                                                |                                 | انے                                   |                                         |  |  |  |
|      |             | Open I                                                                                                  |                           |              |                  |                          |           |                                                                                                                |                                 | 10 ft.                                |                                         |  |  |  |
|      |             | ŏ                                                                                                       |                           |              |                  |                          |           |                                                                                                                | □                               | ≡                                     |                                         |  |  |  |
|      |             | ļ<br>•                                                                                                  |                           |              |                  |                          |           |                                                                                                                | SAND                            | ≡                                     |                                         |  |  |  |
|      |             | <u> </u>                                                                                                |                           |              |                  |                          |           |                                                                                                                | S                               |                                       |                                         |  |  |  |
|      | 4.4         |                                                                                                         | 00.0                      | 0.4          | 40               | 40                       | _         | Madium dance brown fine CANID and non-plantic                                                                  |                                 | ≘                                     |                                         |  |  |  |
|      | 14          | ļ                                                                                                       | SS-6                      | 24           | 12               | 10                       | 0         | ledium dense, brown fine SAND and non-plastic                                                                  |                                 |                                       |                                         |  |  |  |
| 15 — |             |                                                                                                         |                           |              |                  | 16<br>14                 |           | SILT (SM), wet.                                                                                                |                                 | ▼                                     |                                         |  |  |  |
|      |             |                                                                                                         |                           |              |                  | 14                       |           |                                                                                                                |                                 | 4.5"                                  | (00000000000000000000000000000000000000 |  |  |  |
|      |             |                                                                                                         |                           |              |                  | 14                       |           | Boring terminated at about 16 ft.                                                                              |                                 | 4.5"<br>diameter                      |                                         |  |  |  |
|      |             |                                                                                                         |                           |              |                  |                          |           | Bonng terminated at about 10 h.                                                                                |                                 | borehole                              |                                         |  |  |  |
|      |             |                                                                                                         |                           |              |                  |                          |           |                                                                                                                |                                 |                                       |                                         |  |  |  |
|      |             | ŀ                                                                                                       |                           |              |                  |                          |           |                                                                                                                |                                 |                                       |                                         |  |  |  |
|      |             |                                                                                                         |                           |              |                  |                          |           |                                                                                                                |                                 |                                       |                                         |  |  |  |
|      |             | İ                                                                                                       |                           |              |                  |                          |           |                                                                                                                |                                 |                                       |                                         |  |  |  |
|      |             |                                                                                                         |                           |              |                  |                          |           |                                                                                                                |                                 |                                       |                                         |  |  |  |
| 20 — |             | Ī                                                                                                       |                           |              |                  |                          |           |                                                                                                                |                                 |                                       |                                         |  |  |  |
| 20 — |             |                                                                                                         |                           |              |                  |                          |           |                                                                                                                |                                 |                                       | []                                      |  |  |  |
|      |             |                                                                                                         |                           |              |                  |                          |           |                                                                                                                |                                 |                                       |                                         |  |  |  |
|      |             |                                                                                                         |                           |              |                  |                          |           |                                                                                                                |                                 |                                       |                                         |  |  |  |
|      |             |                                                                                                         |                           |              |                  |                          |           |                                                                                                                |                                 |                                       |                                         |  |  |  |
|      |             | ļ                                                                                                       |                           |              |                  |                          |           |                                                                                                                |                                 |                                       |                                         |  |  |  |
|      |             |                                                                                                         |                           |              |                  |                          |           |                                                                                                                |                                 |                                       |                                         |  |  |  |
|      |             | ļ                                                                                                       |                           |              |                  |                          |           |                                                                                                                |                                 |                                       |                                         |  |  |  |
|      |             |                                                                                                         |                           |              |                  |                          |           |                                                                                                                |                                 |                                       |                                         |  |  |  |
|      |             | ļ                                                                                                       |                           |              |                  |                          |           |                                                                                                                |                                 |                                       |                                         |  |  |  |
| 25 — |             |                                                                                                         |                           |              |                  |                          |           |                                                                                                                |                                 |                                       | <b>├</b> ┤                              |  |  |  |
|      | -           | }                                                                                                       |                           |              |                  |                          |           |                                                                                                                |                                 |                                       |                                         |  |  |  |
|      |             |                                                                                                         |                           |              |                  |                          |           |                                                                                                                |                                 |                                       |                                         |  |  |  |
|      |             | <b> </b>                                                                                                |                           |              |                  |                          |           | Drilling technique added water to having. Water levels may                                                     |                                 |                                       |                                         |  |  |  |
|      |             |                                                                                                         |                           |              |                  |                          |           | Drilling technique added water to boring. Water levels may not be indicative of natural groundwater level.     |                                 |                                       |                                         |  |  |  |
|      |             | t                                                                                                       |                           |              |                  |                          |           | not so maiodire of natural groundwater level.                                                                  |                                 |                                       |                                         |  |  |  |
| ļ    |             | 1 90~                                                                                                   | nla SS 2 4                | rentach      | cample           | from ton                 | 5" \/0    | A vial from mid 5", environmental jar from mid 5" and                                                          | C1 1                            |                                       | lates                                   |  |  |  |
|      | 1 2 1       |                                                                                                         |                           | -            | •                | э пош юр                 | J , VU    | via nom miu 5 , environmentar jar nom miu 5 anu                                                                | Steph                           | ens Assoc<br>Consulting               | Engineers                               |  |  |  |
|      | nar         |                                                                                                         | ottom 1". Petroleum odor. |              |                  |                          |           |                                                                                                                | Insightful, Cost- Structural    |                                       |                                         |  |  |  |
|      | en          | Soil/rock strata and groundwater surface, where indicated, are approximate. Transitions may be gradual. |                           |              |                  |                          |           |                                                                                                                | saving So<br>for Buildin        | olutions<br>nos and                   | Geotechnical                            |  |  |  |
|      | œ           | Variations between exploration locations and over time should be expected.                              |                           |              |                  |                          |           |                                                                                                                | Infrastruct                     | ture Hydrology                        | & Hydraulics                            |  |  |  |

| 44          |           | Grou        | undwa      | ter:       |                          |           | Project: MWRA Pipeline Project, Contract No. 6905                                                                      | Borin             | g No          | ). E                         | 3-4-N             |
|-------------|-----------|-------------|------------|------------|--------------------------|-----------|------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|------------------------------|-------------------|
| Depth       | ո։        | 8.4 ft.     |            |            |                          |           | Location: Saugus, MA Project Number: 026-08                                                                            | -007 <b>Sh</b>    |               | 1                            |                   |
| Time:       |           | Well inst   | talled     |            |                          |           | Contractor: GeoLogic Sampler Type: Split spo                                                                           | oon <b>ID</b> 1.3 | 75" <b>(</b>  | OD                           | 2"                |
|             |           |             |            |            |                          |           | Foreman: John Galvin Hammer Wt.: 140 lb                                                                                | Fall:             |               | 30"                          |                   |
|             | "         |             |            |            | _                        |           | Start Date: 4/18/2008 Drill Technique: Drive&Wa                                                                        | ash <b>ID</b> 4   | " (           | OD -                         | 4.5"              |
| t.          | Blows     | Sample No.  | _          |            | ne "                     | <u>_</u>  | Finish Date: 4/18/2008 Rig Type: Mobile Dr                                                                             | ill Truck-m       | noun          | ted                          |                   |
| (f          | 쯢         | e le        | غ.         | <u>ء</u> . | s/6<br>Tir               | nd        | SACE Staff: J. Turner Northing: 3003068.3 Ea                                                                           | sting:            | 7862          | 291.                         | 7                 |
| Depth (ft.) | S.        | ш           | Pen. (in.) | Rec. (in.) | ž ē                      | PID (ppm) | Surface El.: + 48.7 ft Datum: Vert: BCB; Horiz.                                                                        |                   | Εqι           | ıipm                         | ent               |
| De          | Cas.      | Sal         | Pe         | Re         | Blows/6" or<br>Core Time | 吕         | Description & Classification                                                                                           | Stratum           |               | stall                        |                   |
|             |           |             |            |            |                          |           | 6" Asphalt Driller adv. Roller bit to 1ft                                                                              | Asphalt           |               |                              |                   |
|             | push      |             |            |            |                          |           | 6" Concrete                                                                                                            | Concrete          |               |                              | 1                 |
| 1           | _         | SS-1        | 24         | 11         | 10                       | 0         | 2" Medium dense, gray and black, medium SAND,                                                                          |                   |               | 5 ft of 2" ID PVC Well riser |                   |
|             | 8         |             |            |            | 13                       |           | trace crushed asphalt (SP), wet.                                                                                       |                   | Bentonite     | Vell                         |                   |
|             | 23        |             |            |            | 11                       |           | 9" Medum dense, gray, fine to coarse SAND, some                                                                        |                   | ent           | ο̈                           |                   |
|             | 20        |             |            |            | 9                        |           | Silt, little Gravel (SM), wet.                                                                                         | _                 | В             | ď                            | Ш                 |
| 3           | 5         | SS-2        | 24         | 1          | 6                        | 0         | Loose, gray fine to medium SAND, little Silt, little                                                                   | FILL              |               | ₽                            |                   |
|             |           |             |            |            | 4                        |           | Gravel (SM), wet.                                                                                                      |                   |               | of 2                         | rete              |
|             | 8         |             |            |            | 3                        |           |                                                                                                                        |                   |               | £ (                          | Concrete          |
|             |           | 00.0        | 0.4        |            | 3                        |           | 0: 11                                                                                                                  |                   |               | "                            | ၂၁                |
| 5           | 5         | SS-3        | 24         | 2          | 7                        | 0         | Similar to SS-2.                                                                                                       |                   |               |                              | ng                |
|             |           |             |            |            | 6                        |           |                                                                                                                        |                   |               | ≣                            | Sasi              |
| <b> </b>    | 9         |             |            |            | 3                        |           |                                                                                                                        |                   |               | $ \equiv $                   | e C               |
| 7           |           | SC 4        | 24         | 10         | 2<br>12                  | 0         | Madium dance, gray fine to madium SAND, same                                                                           |                   |               | =                            | €cti              |
| 7           | 5         | SS-4        | 24         | 10         | 9                        | 0         | Medium dense, gray fine to medium SAND, some Gravel, little Silt (SM) grading to GRAVEL and fine                       |                   |               | ee                           | Protective Casing |
| $\vdash$    |           |             |            |            | 15                       |           | to medium SAND (GP).                                                                                                   |                   |               | SCre                         | Δ.                |
| $\vdash$    | 36        |             |            |            | 21                       |           |                                                                                                                        |                   | _             | le/                          |                   |
| 9           |           | SS-5        | 24         | 9          | 18                       | 0         | 5" Medium dense, gray-brown GRAVEL and fine to                                                                         |                   | Sand backfill | ≶                            |                   |
|             | 18        |             |            |            | 8                        |           | medium SAND, little Silt (GM), grading to                                                                              |                   | 1 ba          | §                            |                   |
|             | 00        |             |            |            | 12                       |           | 4" very stiff, brown, slightly plastic Silty CLAY, trace                                                               | <b> </b>          | and           | ted                          |                   |
|             | 20        |             |            |            | 10                       |           | fine Sand (CL), wet.                                                                                                   |                   | S             | Slotted PVC Well screen      |                   |
|             | 26        |             |            |            |                          |           | ` ''                                                                                                                   |                   |               |                              |                   |
|             | 26        |             |            |            |                          |           |                                                                                                                        |                   |               |                              |                   |
|             | 31        |             |            |            |                          |           |                                                                                                                        |                   |               | $ \equiv $                   |                   |
|             | JΙ        |             |            |            |                          |           |                                                                                                                        | SILT              |               | ≡                            |                   |
| igsqcut     | 27        |             |            |            |                          |           |                                                                                                                        | S                 |               | ≡                            |                   |
|             |           | 00 -        | <u> </u>   |            |                          |           |                                                                                                                        |                   |               | ≡                            |                   |
| 14          |           | SS-6        | 24         | 19         | 12                       | 0         | Very stiff, brown, very slightly plastic Clayey SILT, little fine                                                      |                   |               |                              |                   |
| <b> </b>    |           |             |            |            | 13                       |           | Sand (ML), wet.                                                                                                        |                   |               | ▼                            |                   |
| $\vdash$    | ம         |             |            |            | 13                       |           |                                                                                                                        |                   |               | 4                            |                   |
|             | Hole      |             |            |            | 14                       |           |                                                                                                                        |                   | ٦i            | 4.5"<br>amete                | ⊇r                |
| <del></del> | en F      |             |            |            |                          |           |                                                                                                                        |                   |               | oreho                        |                   |
| $\vdash$    | Ope       |             |            |            |                          |           |                                                                                                                        |                   |               |                              | -                 |
| $\vdash$    | O         |             |            |            |                          |           |                                                                                                                        |                   |               |                              |                   |
|             |           |             |            |            |                          |           |                                                                                                                        |                   |               |                              |                   |
|             |           |             |            |            |                          |           | Driller noted change near 19 ft. when adv. roller bit                                                                  |                   |               |                              |                   |
| 19          |           | SS-7        | 24         | 4          | 6                        | 0         | Medium dense, brown fine to coarse SAND and                                                                            |                   |               |                              |                   |
|             |           |             |            |            | 12                       |           | GRAVEL (SW), wet.                                                                                                      | Ω                 |               |                              |                   |
|             |           |             |            |            | 14                       |           | , , ,                                                                                                                  | SAND              |               |                              |                   |
|             |           |             |            |            | 14                       |           |                                                                                                                        | Ŝ                 |               |                              |                   |
|             |           |             |            |            |                          |           | Boring terminated at about 21 ft.                                                                                      |                   |               |                              |                   |
|             |           |             |            |            |                          |           |                                                                                                                        |                   |               |                              |                   |
| l T         | _         |             |            |            |                          |           |                                                                                                                        |                   |               |                              |                   |
| ╙           |           |             |            |            |                          |           |                                                                                                                        |                   |               |                              |                   |
|             |           |             |            |            | ļ                        |           |                                                                                                                        |                   |               |                              |                   |
|             |           |             |            | 1          |                          |           |                                                                                                                        |                   |               |                              |                   |
|             |           |             |            |            |                          |           |                                                                                                                        |                   | Ī             |                              |                   |
|             |           |             |            |            |                          |           |                                                                                                                        |                   |               |                              |                   |
|             |           |             |            |            |                          |           |                                                                                                                        |                   |               |                              |                   |
|             |           |             |            |            |                          |           |                                                                                                                        |                   |               |                              |                   |
|             |           |             |            |            |                          |           |                                                                                                                        |                   |               |                              |                   |
|             |           |             |            |            |                          |           |                                                                                                                        |                   |               |                              |                   |
|             |           |             |            |            |                          |           |                                                                                                                        |                   |               |                              |                   |
|             |           |             |            |            |                          |           |                                                                                                                        |                   |               |                              |                   |
|             | 4 Daily   | ng test "   | 100 cdd    |            | rto house                | . \\/     | valence may not be indicating of natural arguments to be a local section.                                              |                   |               |                              |                   |
| ıks         | 1. Drilli | ng techniqu | ue adde    | ed wate    | r to boring              | ı. Wate   | er levels may not be indicative of natural groundwater level.                                                          | Steph             | iens /        | Asso<br>nsultir              | ciate             |
| ark         |           |             |            |            |                          |           | er levels may not be indicative of natural groundwater level.  Indicated, are approximate. Transitions may be gradual. | Steph             | Co            | Asso<br>nsultir              | ciate             |

| ſ    |             |                                                                                                                                                                                     | Gro         | undwa      | ater.      |                          |           | Project: MWRA Pipeline Project, Contract No. 6905                                                         | Borin                                                                    | a Na          | <b>).</b> B-5-                | MM       |  |  |
|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|------------|--------------------------|-----------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------|-------------------------------|----------|--|--|
|      | Deptl       | ո։                                                                                                                                                                                  | 4.7 ft.     | unuwa<br>  | 4.1 ft.    | .                        |           |                                                                                                           | -007 <b>Sh</b>                                                           |               | 7. <u>6-5-</u><br>1 <b>of</b> |          |  |  |
|      | Time        |                                                                                                                                                                                     | EOD in      | cas.       |            | installed                |           |                                                                                                           | oon <b>ID</b> 1.3                                                        |               |                               |          |  |  |
|      |             |                                                                                                                                                                                     |             |            |            |                          |           | Foreman: John Galvin Hammer Wt.: 140 lb                                                                   | Fall:                                                                    |               | 30"                           |          |  |  |
|      |             | "                                                                                                                                                                                   |             |            |            | _                        |           |                                                                                                           | ash <b>ID</b> 4                                                          | <b>" (</b>    | <b>OD</b> 4.5'                | •        |  |  |
|      | ť.)         | Blows                                                                                                                                                                               | Sample No.  | ·          | ·          | ne ne                    | (L        | Finish Date: 4/16/2008 Rig Type: Mobile Dr                                                                | ill Truck-m                                                              | noun          | ted                           | S        |  |  |
|      | h (f        | 품                                                                                                                                                                                   | e<br>Se     | j.         | (i.        | s/6<br>Tir               | udc       | SACE Staff: J. Turner Northing: 3003174.7 Ea                                                              | sting:                                                                   | 7862          | 237.5                         | ] x      |  |  |
|      | Depth (ft.) | vi.                                                                                                                                                                                 | Ē           | Pen. (in.) | Rec. (in.) | ow                       | PID (ppm) | Surface El.: <u>+</u> 49.1 ft Datum: Vert: BCB; Horiz.                                                    | NAD83                                                                    | Εqι           | uipment                       | Remarks  |  |  |
| 0 —  | De          | Ĉ                                                                                                                                                                                   | Sa          | Pe         | Re         | Blows/6" or<br>Core Time | Ы         | Description & Classification                                                                              | Stratum                                                                  | Ins           | stalled                       | Re       |  |  |
| 0 —  |             | push                                                                                                                                                                                |             |            |            |                          |           | 6" Asphalt Driller adv. Roller bit to 1ft                                                                 | Asphalt                                                                  |               |                               |          |  |  |
|      |             | pusii                                                                                                                                                                               |             |            |            |                          |           | Cobbles                                                                                                   | Cobbles                                                                  |               | 5 ft of 2" ID PVC Well riser  |          |  |  |
|      | 1           | 1*                                                                                                                                                                                  | SS-1        | 14         | 2          | 17                       | 0         | 4" Dense, black medium to coarse SAND (SP), wet.                                                          |                                                                          | ţe.           |                               | 1        |  |  |
|      |             |                                                                                                                                                                                     |             |            |            | 74                       |           | 10" Very dense, gray-brown, fine to coarse SAND,                                                          | FILL                                                                     | Bentonite     |                               |          |  |  |
|      |             | 57*                                                                                                                                                                                 |             |            |            | 50/2"                    |           | little Gravel (SW), wet, slight petroleum odor                                                            | Щ                                                                        | Ben           | D PVC                         |          |  |  |
|      | 3           |                                                                                                                                                                                     | SS-2        | 24         | 3          | 25                       | 0         | *Driller advanced roller bit to 3 ft., then drove casing Medium dense, brown, fine to medium SAND, little |                                                                          |               | <br>Const                     |          |  |  |
|      | 3           | 51                                                                                                                                                                                  | 00-2        | 27         | 3          | 19                       | 0         | Silt, trace organics, trace wood fibers (SM), wet,                                                        | $\nabla$                                                                 |               | o     5                       |          |  |  |
|      |             |                                                                                                                                                                                     |             |            |            | 10                       |           | slight petroleum odor.                                                                                    | -                                                                        |               | #                             |          |  |  |
| _    |             | 54                                                                                                                                                                                  |             |            |            | 7                        |           |                                                                                                           | _                                                                        |               | "                             |          |  |  |
| 5 —  | 5           | 13                                                                                                                                                                                  | SS-3        | 24         | 11         | 7                        | 0         | 8" Medium dense, brown fine to medium SAND, trace                                                         |                                                                          |               |                               |          |  |  |
|      |             | 13                                                                                                                                                                                  |             |            |            | 15                       |           | coarse sand, little Silt, trace organics (SM), wet                                                        |                                                                          |               | <u> </u>   asi                |          |  |  |
|      |             | 31                                                                                                                                                                                  |             |            |            | 24                       |           | 3" Medium dense, gray-brown fine SAND, little                                                             |                                                                          |               |                               |          |  |  |
|      | 7           |                                                                                                                                                                                     | CC 4        | 0.4        | 40         | 30                       | 0         | non-plastic Silt (SM), wet                                                                                |                                                                          |               | <del>=</del>  i∳              |          |  |  |
|      | 7           | *                                                                                                                                                                                   | SS-4        | 24         | 18         | 18<br>12                 | 0         | Very stiff, light brown, non-plastic SILT and fine SAND (ML), wet.                                        |                                                                          |               | reen                          | <b></b>  |  |  |
|      |             |                                                                                                                                                                                     |             |            |            | 16                       |           | *Driller pulled 4" casing to 4 ft. to change sections. Casing                                             |                                                                          |               | SCr                           | -        |  |  |
|      |             | *                                                                                                                                                                                   |             |            |            | 12                       |           | skewed when redriving. Pull casing, drive 5" cas. to 9 ft                                                 |                                                                          | <b> </b>      | Slotted PVC Well screen       |          |  |  |
|      | 9           |                                                                                                                                                                                     | SS-5        | 24         | 8          | 11                       | 0         | Very stiff, light brown, non-plastic SILT, trace fine                                                     |                                                                          | Sand backfill | ်ၘ                            | (        |  |  |
| 10 — |             | •                                                                                                                                                                                   |             |            |            | 14                       |           | Sand (ML), wet.                                                                                           |                                                                          | q p           | ₫                             |          |  |  |
| 10 — |             |                                                                                                                                                                                     |             |            |            | 14                       |           |                                                                                                           |                                                                          | San           | tted                          |          |  |  |
|      |             |                                                                                                                                                                                     |             |            |            | 14                       |           | Driller advanced boring open hole using 5" roller bit.                                                    |                                                                          | 0,            |                               |          |  |  |
|      |             |                                                                                                                                                                                     |             |            |            |                          |           |                                                                                                           | ⊢                                                                        |               | 10 ft.                        |          |  |  |
|      |             |                                                                                                                                                                                     |             |            |            |                          |           |                                                                                                           | SANDY SILT                                                               |               | <u>  <del>-</del>  </u>       |          |  |  |
|      |             | •                                                                                                                                                                                   |             |            |            |                          |           |                                                                                                           | ><br>-                                                                   |               | ≣                             |          |  |  |
|      |             | <u>e</u>                                                                                                                                                                            |             |            |            |                          |           |                                                                                                           | Ω                                                                        |               | ≡                             |          |  |  |
|      |             | Hole                                                                                                                                                                                |             |            |            |                          |           |                                                                                                           | SA                                                                       |               | ≡                             |          |  |  |
|      | 14          | en                                                                                                                                                                                  | SS-6        | 24         | 11         | 9                        | 0         | Similar to SS-5.                                                                                          |                                                                          |               |                               |          |  |  |
| 15 — |             | Open                                                                                                                                                                                |             |            |            | 8                        |           |                                                                                                           |                                                                          |               | lacktriangle                  |          |  |  |
| 13   |             |                                                                                                                                                                                     |             |            |            | 9                        |           |                                                                                                           |                                                                          |               |                               |          |  |  |
|      |             |                                                                                                                                                                                     |             |            |            | 12                       |           |                                                                                                           |                                                                          | di            | 5.5"<br>ameter                |          |  |  |
|      |             |                                                                                                                                                                                     |             |            |            |                          |           |                                                                                                           |                                                                          |               | orehole                       |          |  |  |
|      |             |                                                                                                                                                                                     |             |            |            |                          |           |                                                                                                           |                                                                          |               |                               |          |  |  |
|      |             |                                                                                                                                                                                     |             |            |            |                          |           |                                                                                                           |                                                                          |               |                               |          |  |  |
|      |             |                                                                                                                                                                                     |             |            |            |                          |           |                                                                                                           |                                                                          |               |                               |          |  |  |
|      |             |                                                                                                                                                                                     |             |            |            |                          |           |                                                                                                           |                                                                          |               |                               |          |  |  |
|      | 19          |                                                                                                                                                                                     | SS-7        | 24         | 16         | 9                        | 0         | Very stiff, gray, slightly plastic SILT, little fine                                                      |                                                                          |               |                               |          |  |  |
| 20 — |             |                                                                                                                                                                                     |             |            |            | 10                       |           | Sand (ML), wet.                                                                                           |                                                                          |               |                               |          |  |  |
|      |             |                                                                                                                                                                                     |             |            |            | 16                       |           |                                                                                                           |                                                                          |               |                               |          |  |  |
|      |             |                                                                                                                                                                                     |             |            |            | 16                       |           | Poring terminated at about 24 ft                                                                          |                                                                          |               |                               |          |  |  |
|      |             |                                                                                                                                                                                     |             |            |            |                          |           | Boring terminated at about 21 ft.                                                                         |                                                                          |               |                               |          |  |  |
|      |             |                                                                                                                                                                                     |             |            |            |                          |           | 1                                                                                                         |                                                                          |               |                               |          |  |  |
|      |             | •                                                                                                                                                                                   |             |            |            |                          |           |                                                                                                           |                                                                          |               |                               |          |  |  |
|      |             |                                                                                                                                                                                     |             |            |            |                          |           |                                                                                                           |                                                                          |               |                               |          |  |  |
|      |             | ·<br>                                                                                                                                                                               |             |            |            |                          |           |                                                                                                           |                                                                          |               |                               |          |  |  |
|      |             |                                                                                                                                                                                     |             |            |            |                          |           |                                                                                                           |                                                                          |               |                               |          |  |  |
| 25 — |             |                                                                                                                                                                                     |             |            |            |                          |           |                                                                                                           |                                                                          |               |                               | <b> </b> |  |  |
| _~   |             |                                                                                                                                                                                     |             |            |            |                          |           | 1                                                                                                         |                                                                          |               |                               |          |  |  |
|      |             |                                                                                                                                                                                     |             |            |            |                          |           |                                                                                                           |                                                                          |               |                               |          |  |  |
|      |             |                                                                                                                                                                                     |             |            |            |                          |           |                                                                                                           |                                                                          |               |                               |          |  |  |
|      |             |                                                                                                                                                                                     |             |            |            |                          |           | 1                                                                                                         |                                                                          |               |                               |          |  |  |
|      |             |                                                                                                                                                                                     |             |            |            |                          |           |                                                                                                           |                                                                          |               |                               |          |  |  |
| ļ    |             | 1. Drilli                                                                                                                                                                           | ina technia | ue adde    | ed wate    | r to boring              | ı. Wate   | er levels may not be indicative of natural groundwater level.                                             | Storb                                                                    | one           | Accoriat                      | 000      |  |  |
|      | rks         | Soil/rock strata and groundwater surface, where indicated, are approximate. Transitions may be gradual.  Variations between exploration locations and over time should be expected. |             |            |            |                          |           |                                                                                                           | Stephens Associates Consulting Enginee                                   |               |                               |          |  |  |
|      | ma          |                                                                                                                                                                                     |             |            |            |                          |           |                                                                                                           | Insightful, Cost- Structu                                                |               |                               |          |  |  |
|      | Re          |                                                                                                                                                                                     |             |            |            |                          |           |                                                                                                           | saving Solutions for Bulldings and Intrastructure Hydrology & Hydraulics |               |                               |          |  |  |
|      |             |                                                                                                                                                                                     |             |            |            | ·                        |           |                                                                                                           |                                                                          |               |                               |          |  |  |

|               |          | Gro        | undwa      | iter:      |                          |           | Project: MWRA Pipeline Project, Contract No. 6905                      | Borin             | <b>q No.</b> B |
|---------------|----------|------------|------------|------------|--------------------------|-----------|------------------------------------------------------------------------|-------------------|----------------|
| Depth         | ո։       | 4.7 ft.    |            |            |                          |           | Location: Saugus, MA Project Number: 026-08                            |                   | eet 1 of       |
| Time:         |          | End of d   | Irilling,  | inside     | e casing                 |           |                                                                        | oon <b>ID</b> 1.3 |                |
|               |          |            | J,         |            |                          |           | Foreman: John Galvin Hammer Wt.: 140 lb                                | Fall:             | 30"            |
|               |          | _          |            |            | _                        |           |                                                                        | ash <b>ID</b> 4   |                |
| $\overline{}$ | Blows    | Sample No. | _          | _          | Blows/6" or<br>Core Time | _         |                                                                        | ill Truck-m       |                |
| #)            | <u>6</u> | e P        | ı.         | n.)        | .9/<br>.jm               | E         | SACE Staff: J. Turner Northing: 3003437.8 Ea                           |                   | 786319.4       |
| 듚             |          | ldι        | Ë          |            | ws<br>e T                | <u>a</u>  |                                                                        |                   |                |
| Depth (ft.)   | Cas.     | an         | Pen. (in.) | Rec. (in.) | o io                     | PID (ppm) |                                                                        |                   | Equipmen       |
|               | O        | S          |            | œ          | шО                       | <u> </u>  | Description & Classification                                           | Stratum           | Installed      |
|               |          |            |            |            |                          |           | 8" Asphalt Driller adv. Roller bit to 1ft                              | Asphalt           |                |
|               | push     | 00.4       |            | _          | E0/0"                    |           | Cobbles                                                                | Cobbles           |                |
| 1             |          | SS-1       | 2          | 2          | 50/2"                    | 0         | Very dense, dark gray medium SAND, little fine                         |                   |                |
|               |          |            |            |            |                          |           | Sand (SP), wet.                                                        |                   |                |
|               | 24*      |            |            |            |                          |           | *Driller advanced roller bit to 3 ft. then drove casing                |                   |                |
| 2             |          | SS-2       | 24         | 3          | 21                       | 0         | Madium dance dark brown fine to coorse SAND little                     | FILL              |                |
| 3             | 24       | 33-2       | 24         | 3          | 7                        | U         | Medium dense, dark brown fine to coarse SAND, little Gravel (SW), wet. | ☶                 |                |
|               |          |            |            |            | 9                        |           | Graver (Svv), wet.                                                     | $\overline{}$     |                |
|               | 27       |            |            |            | 24                       |           |                                                                        |                   |                |
| 5             |          | SS-3       | 24         | 8          | 16                       | 0         | 7" Dense brown fine to coarse SAND, trace non-plastic                  |                   |                |
| J             | 38       | JJ-3       | 24         | 0          | 26                       | U         | silt (SP-SM), wet. Sampled for corrosion analysis.                     |                   |                |
|               |          |            |            |            | 25                       |           | 1" Dense, light brown fine SAND, some non-plastic                      | <b> </b>          |                |
|               | 37       |            |            |            | 23                       |           | silt (SM), wet. Sampled for record and geotech.                        |                   |                |
| 7             |          | SS-4       | 24         | 14         | 23                       | 0         | 4" Medium dense, brown, fine to coarse SAND, little                    |                   |                |
| <b> -</b>     | 29       | 55-4       | <u> </u>   | '          | 14                       | U         | non-plastic Silt (SM), wet See Note 1.                                 |                   |                |
|               |          |            |            |            | 12                       |           | 6" Medium dense, brown, f-c SAND, little Gravel (SP).                  |                   |                |
|               | 22       |            |            |            | 17                       |           | 4" Medium dense, brown fine SAND, some non-plastic                     |                   |                |
| 9             |          | SS-5       | 24         | 12         | 15                       | 0         | Silt (SM), wet.                                                        | SAND              |                |
|               | Open     |            |            |            | 11                       |           | SS-5: Medium dense, brown fine to medium SAND,                         | √S                |                |
|               | Hole     |            |            |            | 16                       |           | little non-plastic Silt, trace gravel (SM), wet                        |                   |                |
|               |          |            |            |            | 19                       |           | and their places only states graver (only, were                        |                   |                |
| 11            |          | SS-6       | 24         | 6          | 6                        | 0         | Similar to SS-5.                                                       |                   |                |
|               |          |            |            | Ť          | 7                        |           |                                                                        |                   |                |
|               |          |            |            |            | 7                        |           |                                                                        |                   |                |
|               |          |            |            |            | 7                        |           |                                                                        |                   |                |
|               |          |            |            |            |                          |           | Boring terminated at about 13 ft.                                      |                   |                |
|               |          |            |            |            |                          |           |                                                                        |                   |                |
|               |          |            |            |            |                          |           |                                                                        |                   |                |
|               |          |            |            |            |                          |           |                                                                        |                   |                |
|               |          |            |            |            |                          |           |                                                                        |                   |                |
|               |          |            |            |            |                          |           |                                                                        |                   |                |
|               |          |            |            |            |                          |           |                                                                        |                   |                |
|               |          |            |            |            |                          |           |                                                                        |                   |                |
|               |          |            |            |            |                          |           |                                                                        |                   |                |
|               |          |            |            |            |                          |           |                                                                        |                   |                |
|               |          |            |            |            |                          |           |                                                                        |                   |                |
|               |          |            |            |            |                          |           |                                                                        |                   |                |
|               |          |            |            |            |                          |           |                                                                        |                   |                |
|               |          |            |            |            |                          |           |                                                                        |                   |                |
|               |          |            |            |            |                          |           |                                                                        |                   |                |
|               |          |            |            |            |                          |           |                                                                        |                   |                |
|               |          |            |            |            |                          |           |                                                                        |                   |                |
| <u> </u>      |          |            |            |            |                          |           |                                                                        |                   |                |
|               |          |            |            |            |                          |           |                                                                        |                   |                |
|               |          |            |            |            |                          |           |                                                                        |                   |                |
|               |          |            |            |            |                          |           |                                                                        |                   |                |
|               |          |            |            |            |                          |           |                                                                        |                   |                |
|               |          |            |            |            |                          |           |                                                                        |                   |                |
|               |          |            |            |            |                          |           |                                                                        |                   |                |
|               |          |            |            |            |                          |           |                                                                        |                   |                |
|               |          |            |            |            |                          |           |                                                                        |                   |                |
|               |          |            |            |            |                          |           |                                                                        |                   |                |
|               |          |            |            |            |                          |           | Drilling technique added water to boring. Water levels may not         |                   |                |
| 11            |          |            |            |            |                          |           | be indicative of natural groundwater level.                            |                   |                |
| $\vdash$      |          |            |            |            |                          |           |                                                                        |                   |                |

Variations between exploration locations and over time should be expected. B-6 Location:

See Exploration Location Plan

Soil/rock strata and groundwater surface, where indicated, are approximate. Transitions may be gradual.

| Depth       | <b>i</b> : | 3.7 ft.     |            |            |                          |           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -   |
|-------------|------------|-------------|------------|------------|--------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Time:       |            | End of d    | Irilling,  | in ca      | sing                     |           | Contractor: GeoLogic Sampler Type: Split spoon ID 1.375" OD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2   |
|             |            |             |            |            |                          |           | Foreman: John Galvin Hammer Wt.: 140 lb Fall: 30"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|             | Ø          | o.          |            |            | , o                      |           | Start Date: 4/14/2008 Drill Technique: Drive&Wash ID 4" OD 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.5 |
| ft.)        | Cas. Blows | Sample No.  | Ŀ          | Ţ          | Blows/6" or<br>Core Time | Ē         | Finish Date: 4/15/2008 Rig Type: Mobile Drill Truck-mounted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| Depth (ft.) | B          | ple         | Pen. (in.) | Rec. (in.) | 's⁄.<br>∐                | PID (ppm) | SACE Staff: J. Turner Northing: 3003883.9 Easting: 786488.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| )<br>pt     | JS.        | <u>ו</u>    | Ĕ.         | <u>က</u>   | ow<br>ore                | ٥         | Surface El.: <u>+</u> 54.5 ft Datum: Vert: BCB; Horiz. NAD83 Equipme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| ۵           | ပၱ         | Š           | Pe         | Re         | шç                       |           | Description & Classification Stratum Installe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )d  |
|             |            |             |            |            |                          |           | 8" Asphalt Driller adv. Roller bit to 1ft Asphalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|             | push       |             |            |            |                          |           | Cobbles Cobbles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 1           |            | SS-1        | 9          | 3          | 23                       | 0         | 2" Dense, gray medium to coarse SAND, trace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|             |            |             |            |            | 50/3"                    |           | gravel (SP), wet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|             |            |             |            |            |                          |           | 1" Very dense, brown fine to coarse SAND, trace<br>gravel (SW), wet. Roller bit to 3 ft.<br>교                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 2           |            | 000         | 2          | 4          | E0/2"                    | 0         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 3.8         |            | SS-2<br>R-1 | 3<br>60    | 1<br>49    | 50/3"<br>4 min/ft        | 0         | No recovery.  Very hard, gray and black, slightly weathered, medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| 3.6         |            | N-1         | 00         | 49         | 4 111111/11              |           | grained Granitic rock, moderately fractured, rust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|             |            |             |            |            | 4 min/ft                 |           | staining in joints, thin silty sand seam in one joint near                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|             |            |             |            |            | 1                        |           | mid run, iginte near harizontal to vertical come                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|             |            |             |            |            | 4 min/ft                 |           | healed joints with minear infilling  RQD = 25/60" = 42%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|             |            |             |            |            |                          |           | RQD = 25/60" = 42%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
|             |            |             |            |            | 6 min/ft                 |           | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|             |            | _           |            |            |                          |           | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|             |            |             |            |            | 5 min/ft                 |           | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|             |            |             |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 8.8         |            | R-2         | 24         | 12         | 1 min/ft                 |           | Similar to R-1, except highly fractured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|             |            |             |            |            | 4 min/ft                 |           | RQD =0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|             |            |             |            |            | 4 min/ft                 |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| 10.8        |            | R-3         | 12         | 15         | 6 min/ft                 |           | Similar to R-1, except top 5" highly fractured, bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| 10.0        |            | 11-5        | 12         | 10         | O IIIIII/IC              |           | 10" intact.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|             |            |             |            |            |                          |           | RQD = 10/12" = 83%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
|             |            |             |            |            |                          |           | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|             |            |             |            |            |                          |           | Boring terminated at about 11.8 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|             |            |             |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|             |            |             |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|             |            |             |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|             |            |             |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|             |            |             |            |            |                          |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|             |            |             |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|             |            |             |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|             |            |             |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|             |            |             |            |            |                          |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|             |            |             |            |            |                          |           | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|             |            |             |            |            |                          |           | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|             |            |             |            |            |                          |           | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|             |            |             |            |            |                          |           | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| <b> </b>    |            |             |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|             |            |             |            |            |                          |           | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| $\vdash$    |            |             |            |            |                          |           | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|             |            |             |            |            |                          |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|             |            |             |            |            | 1                        |           | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|             |            |             | 1          |            |                          |           | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|             |            |             |            |            |                          |           | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|             |            |             |            |            |                          |           | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|             |            |             |            |            |                          |           | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|             |            |             |            |            |                          |           | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|             |            |             |            |            |                          |           | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| <b>  </b>   |            |             |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| -           |            |             |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| $\vdash$    |            |             |            |            |                          |           | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|             | 4.5        |             |            | -41-1      | <u> </u>                 | a :       | I and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of | _   |
| arphi       |            |             |            |            |                          | •         | west of boring and shoulder.  Stephens Assoc Consulting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | įį  |
| ar          |            |             |            |            | r to boring              |           | rieveis may not be indicative of natural groundwater level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , . |
|             |            |             |            |            |                          |           | indicated, are approximate. Transitions may be gradual.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |

-7 Location:

|                                                  | ·I       |             | undwa                                            | ater:      | 1                                                |           |                                                                                                                         | -8                                      |
|--------------------------------------------------|----------|-------------|--------------------------------------------------|------------|--------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Dep                                              |          | 1.6 ft.     | Juillie -                                        |            |                                                  | , o -l    | Location: Saugus, MA Project Number: 026-08-007 Sheet 1 of                                                              |                                         |
| Time                                             | 9:       | End of c    | drilling,                                        | , casır    | ig remov                                         | /ed       | Contractor: GeoLogic Sampler Type: Split spoon ID 1.375" OD 2"                                                          | 4                                       |
|                                                  |          |             |                                                  |            |                                                  |           | Foreman: John Galvin Hammer Wt.: 140 lb Fall: 30"                                                                       |                                         |
| _                                                | S)       | o.          |                                                  |            | o o                                              |           | Start Date: 4/14/2008 Drill Technique: Drive&Wash ID 4" OD 4.5"                                                         | "-                                      |
| Depth (ft.)                                      | Blows    | Sample No.  | <u>-</u>                                         | <u>-</u>   | Blows/6" or<br>Core Time                         | PID (ppm) | Finish Date: 4/14/2008 Rig Type: Mobile Drill Truck-mounted                                                             | S S                                     |
| <b>∃</b>                                         | <u>m</u> | a d         | Pen. (in.)                                       | Rec. (in.) | /s/                                              | dd)       | SACE Staff: J. Turner Northing: 3004140.8 Easting: 786490.4                                                             | Remarks                                 |
| ebi                                              | as.      | an l        | en.                                              | ec.        | <u> </u>                                         | <u> </u>  | Surface El.: + 55.9 ft Datum: Vert: BCB; Horiz. NAD83 Equipment                                                         | t E                                     |
| Ď                                                | Ça       | ű           | Ā                                                | Ř          | m O                                              | Ы         | Description & Classification Stratum Installed                                                                          | Ř                                       |
|                                                  | push     |             |                                                  |            |                                                  |           | 6" Asphalt Driller adv. Roller bit to 1ft Asphalt                                                                       |                                         |
| L_                                               | P 4.5    |             |                                                  | 40         |                                                  |           |                                                                                                                         | 1                                       |
| 1                                                | 4        | SS-1        | 20                                               | 16         | 22                                               | 0         | 5" Very dense, gray medium to coarse SAND,                                                                              | 2                                       |
|                                                  | -        |             | -                                                |            | 52                                               |           | (SP) little gravel, wet                                                                                                 |                                         |
|                                                  | 4        |             |                                                  |            | 52<br>50/2"                                      |           | 11" Very dense, brown, fine to coarse SAND and GRAVEL (SP-SM), trace silt, moist. Roller bit to 3 ft.                   |                                         |
| 3                                                |          | R-1         | 22                                               | 19         | 50/2<br>5 min/ft                                 |           | GRAVEL (SP-SM), trace silt, moist. Roller bit to 3 ft. 正<br>Very hard, black and gray, slight pink, slightly            |                                         |
| 3                                                | +        | K-1         | 22                                               | 19         | 5 11111/11                                       |           | weathered, fine to medium grained Granodioritic rock,                                                                   |                                         |
| -                                                |          |             | 1                                                |            | 8 min/1                                          | O"        | highly fractured, fragments <3", rust stained. RQD=0%                                                                   |                                         |
| 4.8                                              | †        | R-2         | 60                                               | 60         | 4 min/ft                                         |           |                                                                                                                         |                                         |
| 7.0                                              |          | 11, 2       | 30                                               | 30         | 7 11111/10                                       |           | Similar to R-1, except more pink near bottom of run, and fragments up to 12 in., healed joints with minearal infilling. | <b>}</b>                                |
|                                                  | †        |             |                                                  |            | 3 min/ft                                         |           | minearal infilling.                                                                                                     |                                         |
|                                                  |          |             |                                                  |            |                                                  |           | RQD = 22/60" = 37%                                                                                                      |                                         |
|                                                  | †        |             | <b>†</b>                                         |            | 4 min/ft                                         |           | 1                                                                                                                       |                                         |
|                                                  |          |             |                                                  |            |                                                  |           | 1                                                                                                                       |                                         |
|                                                  | 1        |             | 1                                                |            | 4 min/ft                                         |           | ]                                                                                                                       |                                         |
|                                                  | 1        |             |                                                  |            |                                                  |           | ]                                                                                                                       |                                         |
|                                                  |          |             |                                                  |            | 4 min/ft                                         |           | ]                                                                                                                       |                                         |
|                                                  | ↓        |             |                                                  |            |                                                  |           | 1                                                                                                                       |                                         |
| 9.8                                              |          | R-3         | 24                                               | 24         | 3 min/ft                                         |           | Similar to R-1. Top 16" highly fractured, fragments <1"                                                                 | <b> </b>                                |
|                                                  | 4        |             |                                                  |            |                                                  |           | bottom 8" intact.                                                                                                       |                                         |
|                                                  | -        |             |                                                  |            | 6 min/ft                                         |           | RQD = 8/24" = 33%                                                                                                       |                                         |
|                                                  | 4        |             | 1                                                |            |                                                  |           |                                                                                                                         | ļ                                       |
|                                                  |          | -           | -                                                |            | -                                                |           | Poring terminated at about 44.9.4                                                                                       |                                         |
|                                                  | +        | <u> </u>    | -                                                |            | -                                                |           | Boring terminated at about 11.8 ft.                                                                                     |                                         |
|                                                  | 1        |             | +                                                |            | -                                                |           | 1 1                                                                                                                     |                                         |
|                                                  | †        |             | +                                                |            | <del>                                     </del> |           | 1 1                                                                                                                     |                                         |
|                                                  | 1        | <u> </u>    | †                                                |            | <u> </u>                                         |           | 1 1                                                                                                                     |                                         |
|                                                  | †        |             | <u> </u>                                         |            |                                                  |           | 1                                                                                                                       |                                         |
|                                                  |          | 1           |                                                  |            | 1                                                |           | 1 1                                                                                                                     | ļ                                       |
|                                                  | L        |             |                                                  |            |                                                  |           | ]                                                                                                                       |                                         |
|                                                  |          |             |                                                  |            |                                                  |           | ]                                                                                                                       |                                         |
|                                                  |          |             |                                                  |            |                                                  |           | ]                                                                                                                       |                                         |
|                                                  | 4        |             |                                                  |            |                                                  |           | 1 1                                                                                                                     |                                         |
| <b></b>                                          |          |             | 1                                                |            | <u> </u>                                         |           |                                                                                                                         |                                         |
| <u> </u>                                         | 4        | -           | 1                                                |            | -                                                |           | 1 1                                                                                                                     |                                         |
|                                                  |          |             | 1                                                |            | <del>                                     </del> |           | 1 1                                                                                                                     | ļ                                       |
| <del>                                     </del> | +        |             | +                                                |            | -                                                |           | 1 1                                                                                                                     | *************************************** |
|                                                  |          |             |                                                  |            | <del>                                     </del> |           | 1 1                                                                                                                     | <b>}</b>                                |
|                                                  | †        |             | <del>                                     </del> |            |                                                  |           | 1 1                                                                                                                     | -                                       |
|                                                  |          |             |                                                  |            | 1                                                |           | 1 1                                                                                                                     |                                         |
|                                                  | †        |             | 1                                                |            |                                                  |           | 1                                                                                                                       |                                         |
|                                                  |          | 1           |                                                  |            | 1                                                |           | 1 1                                                                                                                     |                                         |
|                                                  | 1        |             |                                                  |            |                                                  |           | 1 1                                                                                                                     |                                         |
|                                                  |          |             |                                                  |            |                                                  |           | ]                                                                                                                       |                                         |
|                                                  |          |             |                                                  |            |                                                  |           | ]                                                                                                                       |                                         |
|                                                  |          |             |                                                  |            |                                                  |           |                                                                                                                         |                                         |
|                                                  |          |             |                                                  |            |                                                  |           | 1 1                                                                                                                     | ļ                                       |
|                                                  | 4        |             | <u> </u>                                         |            |                                                  |           | ]                                                                                                                       | <b></b>                                 |
| <b>-</b>                                         |          |             | 1                                                |            | <u> </u>                                         |           |                                                                                                                         |                                         |
|                                                  | 4        |             | -                                                |            | -                                                |           | 1 1                                                                                                                     |                                         |
|                                                  |          | -           | -                                                |            | -                                                |           | 1 1                                                                                                                     |                                         |
|                                                  | +        | <u> </u>    | -                                                |            | -                                                |           |                                                                                                                         |                                         |
|                                                  | 4.5      | li sud ( Di | <u> </u>                                         | -41- I-    | <u> </u>                                         | -1: ·     |                                                                                                                         | <u> </u>                                |
| ķs                                               |          |             |                                                  |            |                                                  | •         | west of boring and shoulder.  Stephens Associat Consulting En                                                           | gineers                                 |
| Jar                                              |          |             |                                                  |            |                                                  |           | er levels may not be indicative of natural groundwater level.                                                           | Structural                              |
| Remarks                                          |          |             | •                                                |            |                                                  |           | indicated, are approximate. Transitions may be gradual.                                                                 | technical                               |
| _                                                |          |             |                                                  |            |                                                  |           | er time snould be expected. Hydrology & H                                                                               |                                         |
| Bori                                             | ng No.:  |             | B-8                                              |            | Locatio                                          | n:        | See Exploration Location Plan 668 Main Street, Wilmington, MA 01887 (978) 988                                           | 8-211                                   |

|             |           |              | ındwa      | -          |                                                  |           | Project: MWRA Pipeline Project, Contract No. 6905            |                          | <b>g No.</b> B-9-                                       |
|-------------|-----------|--------------|------------|------------|--------------------------------------------------|-----------|--------------------------------------------------------------|--------------------------|---------------------------------------------------------|
| Deptl       | า:        | 5.5 ft.      |            |            | . (+22 hr                                        |           |                                                              | -007 <b>Sh</b>           |                                                         |
| Time        | :         | Well inst    | alled      | 4/14/      | 08 9:04                                          | PM        | Contractor: GeoLogic Sampler Type: Split spe                 | oon <b>ID</b> 1.3        | 375" <b>OD</b> 2'                                       |
|             |           |              |            |            |                                                  |           | Foreman: John Galvin Hammer Wt.: 140 lb                      | Fall:                    | 30"                                                     |
|             |           |              |            |            | _                                                |           |                                                              | ash <b>ID</b> 4          |                                                         |
| ·           | Blows     | Sample No.   | _          | _          | o e                                              | _         | Finish Date: 4/13/2008 Rig Type: Mobile Dr                   |                          |                                                         |
| Depth (ft.) | Ó         | e            | Pen. (in.) | Rec. (in.) | /6"<br>irr                                       | PID (ppm) |                                                              |                          |                                                         |
| 표           |           | ā            | i.         | Ξ.         | VS/                                              | ď         |                                                              |                          | 786501.9                                                |
| de          | as.       | me .         | Ę.         | ပ္စ        | ov<br>ore                                        | ٥         | Surface El.: <u>+</u> 62.0 ft Datum: Vert: BCB; Horiz        |                          | Equipmen                                                |
| Ď           | Ca        | Š            | Ь          | R          | Blows/6" or<br>Core Time                         | Ы         | Description & Classification                                 | Stratum                  | Installed                                               |
|             |           |              |            |            |                                                  |           | 8" Asphalt Driller adv. Roller bit to 1ft                    | Asphalt                  | i i i                                                   |
|             |           |              |            |            |                                                  |           | Cobbles                                                      |                          | Bentonite Bentonite Concrete                            |
| 1           | push      | SS-1         | 24         | 14         | 36                                               | 0         | 3" Very dense gray medium to coarse SAND (SP), wet.          | FILL                     | 5 1                                                     |
| •           |           |              |            |            | 52                                               |           | 11" Very dense, brown fine to coarse SAND, some              | 正                        | Bentonite                                               |
|             |           |              |            |            | 54                                               |           | Gravel (SW), wet.                                            | 1                        | [ 후   근   년                                             |
|             | 21        |              |            |            | 45                                               |           |                                                              |                          | Bent Concrete                                           |
| _           |           | 00.0         | 0.4        | _          |                                                  | _         | Driller advanced roller bit to 3 ft. then drove casing       |                          | <del>─</del> ─∃⊟€                                       |
| 3           | 30        | SS-2         | 24         | 8          | 23                                               | 0         | Very dense, brown fine to coarse SAND, some                  | _                        | ≡   8                                                   |
|             |           |              |            |            | 25                                               |           | Gravel (SW-SM), little (-) silt, wet                         | $\exists$                | <b>1</b>  ≡                                             |
|             | 63        |              |            |            | 28                                               |           |                                                              | SAND                     |                                                         |
|             | 00        |              |            |            | 21                                               |           |                                                              | (O)                      |                                                         |
| 5           |           | SS-3         | 24         | 0          | 17                                               | 0         | No recovery.                                                 |                          | Sand backfill VC Well scre ve Casing —                  |
|             |           |              |            |            | 6                                                |           | •                                                            |                          | sin ell                                                 |
|             |           |              |            |            | 11                                               |           |                                                              | '                        | S   ≤   Ind                                             |
|             |           |              |            |            | 9                                                |           |                                                              | ļ                        | Sa<br>VC                                                |
| 7           |           | SS-4         | 11         | 4          | 10                                               | 0         | Very dense, brown and black GRAVEL, some fine to             | ļ                        | d P                                                     |
| <b>-</b> '- |           | 50.4         | - ' '      | -          | 50/5"                                            |           | coarse Sand, trace non-plastic silt (GP), wet                | ļ                        | Sand backfill Slotted PVC Well screen Protective Casing |
|             |           |              |            | 1          | 50/5                                             |           | Coarse Sand, trace non-plastic siit (GF), wet                |                          |                                                         |
| 8.5         |           | R-1          | 45         | 29         | Note 1                                           |           | Driller cored ~2 in rock core jammed. Set 3" casing          | <b>∤</b> <sup>!</sup>    | ±                                                       |
| 0.0         |           | lV-1         | 40         | 29         | Note 1                                           |           | and wash out. No water return during coring.                 | ,                        |                                                         |
|             |           |              |            |            | 7                                                |           |                                                              | (0                       |                                                         |
|             |           |              |            | -          | 7 min/ft                                         | •         | 14" Very hard, black, fresh, fine grained Dioritic rock, one | 85                       |                                                         |
|             |           |              |            |            |                                                  |           | drilling fracture dipping ~60 deg., rust staining at bot.    | BOULDERS                 | ▼                                                       |
|             |           |              |            |            | 2 min/ft                                         |           | 15" Very hard, pink and black (5") to gray and               | ]                        | 1                                                       |
|             |           |              |            |            |                                                  |           | black (10"), fresh, medium grained Granitic rock, rust       | 7                        | 4.5"                                                    |
|             |           |              |            |            | 4 min/ft                                         |           | staining at joints. RQD = 22/45" = 49%                       | ĕ                        | diameter                                                |
|             |           |              |            |            |                                                  |           | Driller washed out to 13 ft. with roller bit. Could not adv. | l <sup> </sup>           | borehole                                                |
|             |           |              |            |            |                                                  |           | casing because of boulders. Attempted split spoon            |                          | 1                                                       |
| 13          |           | SS-5         | 24         | 24         | 35                                               | 3         | 13" Very dense, gray medium to coarse SAND (SP), wet.        | SILT AND SAND            | 1                                                       |
|             |           |              |            |            | 43                                               | 0         | 11" Very dense, gray-brown, non-plastic SILT and fine        | S/S                      | 1                                                       |
|             |           |              |            |            | 36                                               |           | SAND (ML), wet.                                              | ₽                        | 1                                                       |
|             |           |              |            |            | 64                                               |           | Driller drove spoon through ~1.5 ft. of blow-in              | \<br>∀                   | 1                                                       |
|             |           |              |            |            | , , ,                                            |           | 3.0.0 Spoon anough 110 ta of 510 m in                        | <u> </u>                 | 1                                                       |
|             |           |              |            | <u> </u>   | <del>                                     </del> |           | Boring terminated about 15 ft.                               | <u> </u>                 | 1                                                       |
|             |           |              |            | -          | <del> </del>                                     |           | Borning terminated about 10 It.                              | ارن                      | 1                                                       |
|             |           |              |            | -          | <del>                                     </del> |           | At and of haring halo stayed open to 10 ft houses            | •                        | 1                                                       |
|             |           |              |            | 1          | <b>!</b>                                         |           | At end of boring hole stayed open to 12 ft., however,        | ļ                        | 1                                                       |
|             |           |              |            | 1          | <u> </u>                                         |           | well could only be installed to 10.5 ft more blow-in         | ļ                        | 1                                                       |
|             |           |              |            |            | ļ                                                |           | occurred.                                                    | ļ                        | 1                                                       |
|             |           |              |            |            |                                                  |           |                                                              | •                        | 1                                                       |
|             |           |              |            |            |                                                  |           |                                                              | •                        | 1                                                       |
|             |           |              |            | $\perp$    |                                                  |           |                                                              | •                        | 1                                                       |
|             |           |              |            |            |                                                  |           |                                                              | ļ                        | 1                                                       |
|             |           |              |            |            |                                                  |           |                                                              | •                        | 1                                                       |
|             |           |              |            |            |                                                  |           |                                                              | •                        | 1                                                       |
|             |           |              |            |            |                                                  |           |                                                              | •                        | 1                                                       |
|             |           |              |            |            |                                                  |           |                                                              | ļ                        | 1                                                       |
|             |           |              |            |            |                                                  |           |                                                              | ļ                        | 1                                                       |
|             |           |              |            | -          | <del>                                     </del> |           |                                                              | •                        | 1                                                       |
|             |           |              |            | -          | -                                                |           |                                                              | •                        | 1                                                       |
|             |           |              |            | 1          | <b>—</b>                                         |           |                                                              | •                        | 1                                                       |
|             |           |              |            |            | ļ                                                |           |                                                              | ļ                        | 1                                                       |
|             |           |              |            |            |                                                  |           |                                                              | ļ                        | 1                                                       |
|             |           |              |            |            |                                                  |           |                                                              | •                        | 1                                                       |
|             |           |              |            |            |                                                  |           |                                                              |                          | 1                                                       |
|             |           |              |            |            |                                                  |           |                                                              | ·                        | 1                                                       |
|             |           |              |            |            |                                                  |           |                                                              | ļ                        | 1                                                       |
|             |           |              |            |            |                                                  |           | Drilling technique added water to boring. Water levels may   | ļ                        | 1                                                       |
|             |           |              |            |            |                                                  |           | not be indicative of natural groundwater level.              | ļ                        | 1                                                       |
|             |           |              |            |            |                                                  |           | 23diodate of flatarai groundwater level.                     |                          | 1                                                       |
|             | 4 ^       |              | <u> </u>   | L          | <u> </u>                                         | ,         | <u> </u>                                                     | (E) 12                   | <u></u>                                                 |
| Remarks     |           | •            |            | Driller a  | idvanced r                                       | ock co    | re, paused, pulled back, and removed to clear barrel. Time   | Steph                    | iens Associat                                           |
| r.          | for first | foot unclea  | ar.        |            |                                                  |           |                                                              |                          | Consulting En                                           |
| ***         | _         | ak atrata an | nd arou    | ndwate     | r surface.                                       | where     | ndicated, are approximate. Transitions may be gradual.       | Insightful,<br>saving So | Cost-<br>olutions Ger                                   |

| D           |           |            | undwa      | ter:       |                          |           | Project: MWRA Pipeline Project, Contract No. 6905 Boring No. B                      |
|-------------|-----------|------------|------------|------------|--------------------------|-----------|-------------------------------------------------------------------------------------|
| Depth       |           | 8.1 ft.    | willia     | 95.        |                          | رم دا     | Location: Saugus, MA Project Number: 026-08-007 Sheet 1 c                           |
| Time:       |           | End of d   | rilling,   | casın      | g remov                  | ed        | Contractor: GeoLogic Sampler Type: Split spoon ID 1.375" OD 2                       |
|             |           |            |            |            |                          |           | Foreman: John Galvin Hammer Wt.: 140 lb Fall: 30"                                   |
| _           | Ś         | o.         |            |            | 5 4                      |           | Start Date: 4/10/2008 Drill Technique: Drive&Wash ID 4" OD 4.5                      |
| Depth (ft.) | Blows     | Sample No. | <u>:</u>   | <u>.</u>   | Blows/6" or<br>Core Time | Ē         | Finish Date: 4/11/2008 Rig Type: Mobile Drill Truck-mounted                         |
| )           | <u> </u>  | be         | Pen. (in.) | Rec. (in.) | /s/                      | PID (ppm) | SACE Staff: J. Turner Northing: 3004755.8 Easting: 786516.2                         |
| ∍pt         | Cas.      | E          | ď.         | èC.        | o o                      | ۵(        | Surface El.: <u>+</u> 69.5 ft Datum: Vert: BCB; Horiz. NAD83 Equipmen               |
| ď           | ပိ        | 2S         | Pe         | Re         | m ö                      | Б         | Description & Classification Stratum Installed                                      |
|             |           |            |            |            |                          |           | 6" Asphalt Driller adv. Roller bit to 1ft Asphalt                                   |
|             |           |            |            |            |                          |           | Cobbles                                                                             |
| 1           | push      | SS-1       | 10         | 4          | 13                       | 0         | 2" Dense, gray medium to coarse SAND (SP), wet.                                     |
|             | pusii     |            |            |            | 50/4"                    |           | 2" Dense, brown fine to coarse SAND and<br>GRAVEL (SW), wet.                        |
|             |           |            |            |            |                          |           |                                                                                     |
|             |           |            |            |            |                          |           | *Driller adv. roller bit ahead of casing and through                                |
|             | 87*       |            |            |            |                          |           | boulder ~2-3.7 ft.                                                                  |
|             |           | 00.0       |            |            | FO/0"                    |           | Disco of annual in an annual                                                        |
| 4           |           | SS-2       | 2          | 1          | 50/2"                    | 0         | Piece of gravel in spoon tip                                                        |
| 4.4         |           | R-1        | 50         | 50         | 6 min                    |           | 48" Very hard, black and gray, fresh to slightly weathered                          |
|             |           |            |            |            | 7 m:-                    |           | Granodioritic rock, joints spaced 2-16", dipping                                    |
|             |           |            |            |            | 7 min                    |           | ~30-45 deg. 2" Very hard, pink and black , fresh to slightly weathered,             |
|             |           |            |            |            | 8 min                    |           | medium grained Granitic rock.                                                       |
|             |           |            |            |            | O IIIIII                 |           | RQD = 24/50" = 48%                                                                  |
|             |           |            |            |            | 14 min                   |           | No water return when rock coring                                                    |
|             |           |            |            |            |                          |           | \ <u>\</u>                                                                          |
| 8.6         |           | R-2        | 48         | 48         | 10 min                   |           | Very hard, black and gray, fresh, medium grained,                                   |
|             |           |            |            |            |                          |           | Granodioritic rock, joints spaced 4-21 in., dipping                                 |
|             |           |            |            |            | 7 min                    |           | about 30-50 deg., slight rust staining in joints near                               |
|             |           |            |            |            |                          |           | core run hottom, healed joints with nink veins of                                   |
|             |           |            |            |            | 7 min                    |           | mineral infilling.  RQD = 43/48" = 90%                                              |
|             |           |            |            |            |                          |           | RQD = 43/48'' = 90%                                                                 |
|             |           |            |            |            | 8 min                    |           | No water return when rock coring                                                    |
|             |           |            |            |            |                          |           | Design to reciprote diet elecut 40.0%                                               |
|             |           |            |            |            |                          |           | Boring terminated at about 12.6 ft.                                                 |
|             |           |            |            |            |                          |           |                                                                                     |
|             |           |            |            |            |                          |           |                                                                                     |
|             |           |            |            |            |                          |           |                                                                                     |
|             |           |            |            |            |                          |           |                                                                                     |
|             |           |            |            |            |                          |           | 1                                                                                   |
|             |           |            |            |            |                          |           | 1                                                                                   |
|             |           |            |            |            |                          |           | 1                                                                                   |
|             |           |            |            |            |                          |           |                                                                                     |
|             |           |            |            |            |                          |           |                                                                                     |
|             |           |            |            |            |                          |           |                                                                                     |
|             |           |            |            |            |                          |           |                                                                                     |
|             |           |            |            |            |                          |           |                                                                                     |
|             |           |            |            |            |                          |           |                                                                                     |
|             |           |            |            |            |                          |           |                                                                                     |
|             |           |            |            |            |                          |           |                                                                                     |
|             |           |            |            |            |                          |           |                                                                                     |
|             |           |            |            |            |                          |           |                                                                                     |
|             |           |            |            |            |                          |           |                                                                                     |
|             |           |            |            |            |                          |           | 1 1                                                                                 |
|             |           |            |            |            |                          |           | 1                                                                                   |
|             |           |            |            |            |                          |           | 1                                                                                   |
|             |           |            |            |            |                          |           |                                                                                     |
|             |           |            |            |            |                          |           |                                                                                     |
|             |           |            |            |            |                          |           |                                                                                     |
|             |           |            |            |            |                          |           |                                                                                     |
|             |           |            |            |            |                          |           |                                                                                     |
|             |           |            |            |            |                          |           |                                                                                     |
|             |           |            |            |            |                          |           |                                                                                     |
| Remarks     | 1. Drilli | ng techniq | ue adde    | ed wate    | r to boring              | . Wate    | er levels may not be indicative of natural groundwater level.  Stephens Association |
|             |           |            |            |            |                          |           | Consulting                                                                          |

|     |             |                            | Grou                       | undwa      | iter:      |                          |           | Project: MWRA Pipeline Project, Contract No. 6905            | Borin                                   | a No          | <b>b.</b> B-                                  | 11-MV                 |
|-----|-------------|----------------------------|----------------------------|------------|------------|--------------------------|-----------|--------------------------------------------------------------|-----------------------------------------|---------------|-----------------------------------------------|-----------------------|
|     | Depti       | h:                         | 4.7                        |            | -          | . (+18 hr                | s)        |                                                              | -007 <b>S</b> h                         |               |                                               | of 1                  |
|     | Time        | :                          | Well inst                  | alled      | 4/10/      | 08 9 PM                  |           | <u></u> · · · <u></u>                                        | oon <b>ID</b> 1.3                       | 75 <b>" (</b> | OD                                            | 2"                    |
|     |             |                            |                            |            |            |                          |           | Foreman: John Galvin Hammer Wt.: 140 lb                      | Fall:                                   |               | 30"                                           |                       |
|     | _           | S.                         | o.                         |            |            | Blows/6" or<br>Core Time |           |                                                              | ash ID 4                                |               | OD 4                                          | .5"                   |
|     | Depth (ft.) | Blows                      | Sample No.                 | <u>.</u>   | <u>-</u>   | <u>"</u> 6"              | Ē         |                                                              | ill Truck-n                             |               |                                               | <u> </u>              |
|     | ţ.          | <u> </u>                   | ם                          | Pen. (in.) | Rec. (in.) | /sv<br>Le                | PID (ppm) | SACE Staff: J. Turner Northing: 3005025.8 Ea                 |                                         |               | 539.6                                         |                       |
|     | eb          | Cas.                       | am                         | eu         | ec         | o o                      | ⊇         | Surface El.: + 66.7 ft Datum: Vert: BCB; Horiz               |                                         | -             | uipmo                                         | ent E                 |
|     |             | ပ                          | S                          | _          | ~          | a c                      | Δ         | Description & Classification                                 | Stratum                                 | ın            | stalle                                        | d r                   |
|     |             | push                       |                            |            |            |                          |           | 6" Asphalt Driller adv. Roller bit to 1ft<br>Cobbles         | Asphalt                                 | И             |                                               | $\prod_{1}$           |
|     | 1           |                            | SS-1                       | 24         | 13         | 9                        | 2         | 2" Loose, gray medium SAND (SP), wet.                        |                                         |               | 2" ID PVC Well                                | 1 2                   |
|     | -           | 29*                        | - 00 1                     | 27         | 10         | 36                       |           | 11" Very dense, brown fine to coarse SAND and                |                                         | Bentonite     | ĺςĺ                                           |                       |
|     |             | F0*                        |                            |            |            | 49                       |           | GRAVEL, little non-plastic silt (SW-SM), wet                 |                                         | ento          | Q                                             |                       |
|     |             | 53*                        |                            |            |            | 48                       |           | *Driller advanced roller bit to 3 ft. before driving casing. |                                         | æ             |                                               |                       |
|     | 3           | 14                         | SS-2                       | 24         | 2          | 21                       | 2         | Gravel.                                                      | Ⅱ                                       |               | ) j                                           |                       |
|     |             | 17                         |                            |            |            | 18                       |           |                                                              | l <u>"</u>                              |               | 4<br>#                                        |                       |
|     |             | 39                         |                            |            |            | 26                       |           |                                                              |                                         |               | ≡                                             |                       |
|     | 5           |                            | SS-3                       | 24         | 1          | 26<br>22                 | 2         | Medium dense, brown fine to coarse SAND, little              |                                         |               | ≣                                             |                       |
|     | )<br>       | 40                         | <u> </u>                   | ∠4         | 1          | 15                       | 2         | non-plastic Silt, trace gravel (SM), wet                     |                                         |               | <b>≡</b>                                      | ing                   |
|     |             |                            |                            |            |            | 12                       |           | Driller noted mostly gravel in wash                          |                                         |               | <u> </u> ≣                                    | Cas<br>—              |
|     |             | 25                         |                            |            |            | 3                        |           | 2 Hotel Hoody graver in wall                                 |                                         |               |                                               | Protective Casing     |
|     | 7           | 20                         | SS-4                       | 24         | 12         | 22                       | 2         | Dense, brown fine to medium SAND, some (+) non-plastic       |                                         |               |                                               | tect                  |
|     |             | 36                         |                            |            |            | 17                       |           | Silt, some Gravel (SM), wet.                                 |                                         |               | iee                                           | Pro                   |
|     |             | 75                         |                            |            |            | 30                       |           |                                                              |                                         |               | 🚆                                             |                       |
|     | <u> </u>    |                            | 00.5                       | 4-         | 4.0        | 39                       |           | Dance having fine to good to CAND 1991 (1)                   |                                         | Ĕ             | Slotted PVC Well screen               4 ft of |                       |
|     | 9           | Roller bit ahead of casing | SS-5                       | 15         | 10         | 30                       | 2         | Dense, brown fine to medium SAND, little (-) non-plastic     |                                         | Sand backfill | 8                                             |                       |
| ) — |             | ahi                        |                            |            |            | 21<br>50/3"              |           | Silt, trace coarse sand (SM), wet.                           |                                         | pur           | 물                                             | <b> </b>              |
|     |             | r bit ahe<br>casing        |                            |            |            | 30/3                     |           | Driller advanced rollerbit ahead of casing and               |                                         | တိ            | otte                                          |                       |
|     |             | of of                      |                            |            |            |                          |           | through boulder about 10.5 to 12 ft.                         |                                         |               |                                               |                       |
|     |             | Ä                          |                            |            |            |                          |           | J                                                            |                                         |               | 101                                           |                       |
|     |             | 47                         |                            |            |            |                          |           |                                                              | Ω                                       |               | 10 ft.                                        |                       |
|     |             | 71                         |                            |            |            |                          |           |                                                              | SAND                                    |               | ≣                                             |                       |
|     |             | 204                        |                            |            |            |                          |           |                                                              | Ŋ                                       |               | $\overline{\mathbf{T}}$                       |                       |
|     | 14          |                            | SS-6                       | 5          | 0          | 50/5"                    |           | No recovery.                                                 |                                         |               | ▼                                             |                       |
|     | 14          |                            | 33-6                       | 3          | U          | 30/3                     |           |                                                              |                                         |               |                                               |                       |
| _   |             |                            |                            |            |            |                          |           | Boring terminated at about 14 ft.                            |                                         |               |                                               | }                     |
|     |             |                            |                            |            |            |                          |           |                                                              |                                         |               | 4.5"                                          | (neconecone           |
|     |             |                            |                            |            |            |                          |           |                                                              |                                         |               | amete                                         |                       |
|     |             |                            |                            |            |            |                          |           |                                                              |                                         | bo            | orehole                                       |                       |
|     |             | <br>                       |                            |            |            |                          |           |                                                              |                                         |               |                                               |                       |
|     |             |                            |                            |            |            |                          |           |                                                              |                                         |               |                                               |                       |
|     |             |                            |                            |            |            |                          |           |                                                              |                                         |               |                                               |                       |
|     |             |                            |                            |            |            |                          |           |                                                              |                                         |               |                                               |                       |
|     |             |                            |                            |            |            |                          |           |                                                              |                                         |               |                                               | omoonoon.             |
|     |             |                            |                            |            |            |                          |           |                                                              |                                         |               |                                               | <b> </b>              |
|     |             |                            |                            |            |            |                          |           |                                                              |                                         |               |                                               |                       |
|     |             |                            |                            |            |            |                          |           |                                                              |                                         |               |                                               |                       |
|     |             |                            |                            |            |            |                          |           |                                                              |                                         |               |                                               |                       |
|     |             |                            | ļ                          |            |            |                          |           |                                                              |                                         |               |                                               |                       |
|     |             |                            |                            |            |            |                          |           |                                                              |                                         |               |                                               |                       |
|     |             | ł                          |                            |            |            |                          |           |                                                              |                                         |               |                                               |                       |
|     |             |                            |                            |            |            |                          |           |                                                              |                                         |               |                                               |                       |
|     |             | <u> </u>                   |                            |            |            |                          |           |                                                              |                                         |               |                                               |                       |
|     |             |                            |                            |            |            |                          |           |                                                              |                                         |               |                                               |                       |
|     |             |                            |                            |            |            |                          |           |                                                              |                                         |               |                                               |                       |
|     |             |                            |                            |            |            |                          |           |                                                              |                                         |               |                                               |                       |
|     |             |                            |                            |            | -          |                          |           | Drilling technique added water to boring. Water levels may   |                                         |               |                                               |                       |
|     |             | }                          |                            |            |            |                          |           | not be indicative of natural groundwater level.              |                                         |               |                                               |                       |
|     |             | 1 Pos                      | kground PII                | D rood:    | nge 2 r    | nm                       |           |                                                              | 62 .                                    |               | Acc                                           | int -                 |
|     | rks         |                            | kgrouna Pii<br>ad box well |            | •          |                          | ored in   | asphalt                                                      | Steph                                   | Co            | ASSOC<br>Insulting                            | iates<br>Enginee      |
|     | Remarks     |                            |                            |            |            |                          |           | indicated, are approximate. Transitions may be gradual.      | Insightful,                             | Cost-         |                                               | Structu               |
|     | Re          |                            |                            | •          |            |                          |           | or time should be expected.                                  | saving So<br>for Buildin<br>Infrastruct | os and        | Hydrology                                     | Geotechni<br>& Hydrau |
|     |             |                            |                            | - 1-10     |            |                          |           |                                                              |                                         |               | ,                                             | ,,                    |

|                                                  |       | Gro        | undwa      | ter:       |                          |           | Project: MWRA Pipeline Project, Contract No. 6905         | Borin                           | <b>g No</b> . B-1 |
|--------------------------------------------------|-------|------------|------------|------------|--------------------------|-----------|-----------------------------------------------------------|---------------------------------|-------------------|
| Depth                                            | ո։    | 6 ft.      |            |            |                          |           |                                                           | -007 <b>Sh</b>                  |                   |
| Time:                                            |       | End of D   | rilling    | in cas     | sing                     |           | Contractor: GeoLogic Sampler Type: Split spe              | oon <b>ID</b> 1.3               | 75" <b>OD</b> 2"  |
|                                                  |       |            |            |            |                          |           | Foreman: John Galvin Hammer Wt.: 140 lb                   | Fall:                           | 30"               |
|                                                  | "     |            |            |            | _                        |           |                                                           | sh ID 4                         | " <b>OD</b> 4.5"  |
| ı 🛈                                              | Blows | Sample No. | _          | (          | Blows/6" or<br>Core Time | (-        | Finish Date: 4/9/2008 Rig Type: Mobile Dr                 |                                 |                   |
| Depth (ft.)                                      | 36    | <u>e</u>   | Pen. (in.) | Rec. (in.) | 3/6<br>Tir               | PID (ppm) | SACE Staff: J. Turner Northing: 3005325.1 Ea              | sting:                          | 786572.5          |
| ᄫ                                                | S.    | ш          | <u>ا</u>   | c. (       | e Š                      | d) (      | Surface El.: + 64.7 ft Datum: Vert: BCB; Horiz            |                                 | Equipment         |
|                                                  | Cas.  | Sal        | Pel        | Re         | S 8                      | Ы         | Description & Classification                              | Stratum                         | Installed         |
|                                                  |       |            | _          | _          |                          | _         | ~6 in. Asphalt Driller adv. Roller bit to 1ft             | Asphalt                         | motanoa           |
|                                                  | push  |            |            |            |                          |           | Cobbles                                                   |                                 |                   |
| 1                                                |       | SS-1       | 24         | 16         | 32                       | 1         | 5" Very dense, gray medium to coarse SAND (SP), wet.      | SAND GRAVEL AND<br>BOULDER FILL |                   |
| <del>                                     </del> | 18    |            |            |            | 56                       | •         | 11" Very dense, brown GRAVEL and fine to coarse           | ND GRAVEL AI<br>BOULDER FILL    |                   |
|                                                  |       |            |            |            | 46                       |           | SAND, trace non-plastic Silt (GP-GM), trace brick,        | Æ.                              |                   |
|                                                  | 32    |            |            |            | 39                       |           | moist.                                                    | ΑÄ                              |                   |
| 3                                                |       | SS-2       | 2          | 1          | 50/2"                    | 1         | Gravel - possible remaining from casing washout           | 89.7                            |                   |
| 3.5                                              |       | R-1        | 12         | 11         | 4 min                    |           | Boulders - 2 granitic pieces, 5" and 6"                   | $\frac{1}{2}$                   |                   |
|                                                  |       |            |            |            |                          |           | <b>3</b> ,,                                               | ΑM                              |                   |
|                                                  |       |            |            |            |                          |           |                                                           | Ś                               |                   |
| 5                                                |       | SS-3       | 24         | 0          | 7                        | 2         | No recovery.                                              |                                 |                   |
|                                                  | 4     |            |            |            | 3                        |           | Driller telescoped 3" casing and drove to 7 ft            | $  \ \ \  $                     |                   |
|                                                  | 2     |            |            |            | 2                        |           |                                                           |                                 |                   |
|                                                  | 3     |            |            |            | 2                        |           |                                                           |                                 | _                 |
| 7                                                |       | SS-4       | 24         | 3          | 5                        | 2         | Dense, gray fine to medium SAND, some (-) non-plastic     | _                               | -                 |
|                                                  |       |            |            |            | 17                       |           | Silt, little Gravel (SM), trace organics including        | Ν                               |                   |
|                                                  |       |            |            |            | 41                       |           | roots and organic odor.                                   | SAND                            |                   |
|                                                  |       |            |            |            | 33                       |           | Driller indicated wash appeared to be gray sand           | 0,                              |                   |
|                                                  |       |            |            |            |                          |           | Driller advanced roller bit through boulder from ~9-10 ft |                                 |                   |
|                                                  |       |            |            |            |                          |           |                                                           |                                 |                   |
| 10                                               |       | SS-5       | 24         | 11         | 10                       | 2         | Dense, gray grading to olive-brown SILT and fine SAND     |                                 |                   |
|                                                  |       |            |            |            | 20                       |           | (ML), very slight cohesion, wet.                          |                                 |                   |
|                                                  |       |            |            |            | 27                       |           |                                                           |                                 |                   |
|                                                  |       |            |            |            | 26                       |           |                                                           |                                 |                   |
|                                                  |       |            |            |            |                          |           | Boring terminated at about 12 ft.                         |                                 |                   |
|                                                  |       |            |            |            |                          |           |                                                           |                                 |                   |
|                                                  |       |            |            |            |                          |           |                                                           |                                 |                   |
|                                                  |       |            |            |            |                          |           |                                                           |                                 |                   |
| <b> </b>                                         |       |            |            |            |                          |           |                                                           |                                 |                   |
|                                                  |       |            |            |            |                          |           |                                                           |                                 |                   |
|                                                  |       |            |            |            |                          |           |                                                           |                                 |                   |
|                                                  |       |            |            |            |                          |           |                                                           |                                 |                   |
| <b> </b>                                         |       |            |            |            |                          |           |                                                           |                                 |                   |
|                                                  |       |            |            |            |                          |           |                                                           |                                 |                   |
| $\vdash \vdash \vdash$                           |       |            |            |            |                          |           |                                                           |                                 |                   |
| ╟─┼                                              |       |            |            |            |                          |           |                                                           |                                 |                   |
| $\parallel$                                      |       |            |            |            |                          |           |                                                           |                                 |                   |
| <del>   </del>                                   |       |            |            |            |                          |           |                                                           |                                 |                   |
| $\parallel$                                      |       |            |            |            |                          |           |                                                           |                                 |                   |
|                                                  |       |            |            |            |                          |           |                                                           |                                 |                   |
|                                                  |       |            |            |            |                          |           |                                                           |                                 |                   |
|                                                  |       |            |            |            |                          |           |                                                           |                                 |                   |
|                                                  |       |            |            |            |                          |           |                                                           |                                 |                   |
|                                                  |       |            |            |            |                          |           |                                                           |                                 |                   |
|                                                  |       |            |            |            |                          |           |                                                           |                                 |                   |
|                                                  |       |            |            |            |                          |           |                                                           |                                 |                   |
|                                                  |       |            |            |            |                          |           |                                                           |                                 |                   |
|                                                  |       |            |            |            |                          |           |                                                           |                                 |                   |
|                                                  |       |            |            |            |                          |           |                                                           |                                 |                   |
|                                                  |       |            |            |            |                          |           |                                                           |                                 |                   |
|                                                  |       |            |            |            |                          |           |                                                           |                                 |                   |
|                                                  |       |            |            |            |                          |           |                                                           |                                 |                   |
|                                                  |       |            |            |            |                          |           |                                                           |                                 |                   |
|                                                  |       |            |            |            |                          |           |                                                           |                                 |                   |
|                                                  |       |            |            |            |                          |           |                                                           |                                 |                   |
|                                                  |       |            |            |            |                          |           |                                                           |                                 |                   |

B-12

Variations between exploration locations and over time should be expected. See Exploration Location Plan Location:

Soil/rock strata and groundwater surface, where indicated, are approximate. Transitions may be gradual.

| _           |          |            | undwa      |            |                          |           | Project: MWRA Pipeline Project, Contract No. 6905                                        |                  | g No.               |                   |
|-------------|----------|------------|------------|------------|--------------------------|-----------|------------------------------------------------------------------------------------------|------------------|---------------------|-------------------|
| Deptl       |          | 7.5 ft.    |            |            | (+20 hr                  |           |                                                                                          | -007 <b>S</b> h  |                     | 1 o               |
| Time        |          | End of D   | Prilling   | 4/9/08     | 3 11:31                  | PM        | · · · · <u></u>                                                                          | on <b>ID</b> 1.3 |                     |                   |
|             |          |            |            |            |                          |           | Foreman: John Galvin Hammer Wt.: 140 lb                                                  | Fall:            | 30                  |                   |
| _           | NS.      | ō.         |            |            | o e                      |           | Start Date: 4/8/2008 Drill Technique: Drive&Wa Finish Date: 4/9/2008 Rig Type: Mobile Dr | ill Truck n      |                     | 4.5               |
| Depth (ft.) | Blows    | Sample No. | Pen. (in.) | Rec. (in.) | Blows/6" or<br>Core Time | PID (ppm) | SACE Staff: J. Turner Northing: 3005605.8 Ea                                             |                  | 78659               |                   |
| oth         | S.<br>El | ldu        | j.         | ). (i      | ws<br>Le                 | <u>a</u>  | Surface El.: + 63.2 ft Datum: Vert: BCB; Horiz.                                          |                  | Equip               |                   |
| Эек         | Cas      | Sar        | er.        | Sec        | 8<br>50                  | 9         | Description & Classification                                                             | Stratum          |                     |                   |
|             |          | 0,         |            | ш.         | ш О                      |           | 6" Asphalt Driller adv. Roller bit to 1ft                                                | Asphalt          | _                   | ca                |
|             | ·        |            |            |            |                          |           | Cobbles                                                                                  | , roprian        |                     |                   |
| 1           | Push     | SS-1       | 24         | 14         | 39                       | 3         | Very dense, brown, fine to coarse SAND and GRAVEL,                                       |                  | Sand                | Í   🕈             |
|             | •        |            |            |            | 57                       |           | trace silt (SP-SM), moist, possible fill                                                 | _                | Sa                  |                   |
|             | 15*      |            |            |            | 67                       |           | *Driller advanced roller bit to 3 ft. before driving casing.                             | FILL             | te C                | 3                 |
|             | 10       |            |            |            | 57                       |           |                                                                                          |                  | Bentonite Sand Sand | [   2             |
| 3           | 25       | SS-2       | 24         | 11         | 26                       | 2         | Dense, brown, fine to coarse SAND, some Gravel,                                          |                  | 3en                 | 1                 |
|             |          |            |            |            | 20<br>16                 |           | little silt (SM), wet                                                                    |                  |                     | <u> </u>          |
|             | 41       |            |            |            | 19                       |           |                                                                                          |                  | 4                   | )                 |
| 5           |          | SS-3       | 24         | 3          | 16                       | 2         | Medium dense, brown GRAVEL, some fine to coarse                                          |                  | =                   | =                 |
|             | 20       |            |            |            | 14                       |           | SAND, trace silt (GW), wet.                                                              |                  | =                   | sing              |
|             | 20       |            |            |            | 13                       |           | ,                                                                                        | $\overline{}$    | =                   | ğ   <u>=</u>      |
|             | 28       |            |            |            | 10                       |           |                                                                                          |                  | =                   | Protective Casing |
| 7           | 26       | SS-4       | 24         | 5          | 22                       | 2         | Dense, brown GRAVEL, some medium to coarse SAND                                          |                  | =                   |                   |
|             | 20       |            |            |            | 30                       |           | (GW), wet.                                                                               |                  | 9                   | [ ] H             |
|             | 37       |            |            |            | 19                       |           |                                                                                          |                  | _   5               | 3                 |
| 9           |          | SS-5       | 8          | 1          | 15<br>27                 | 5         | Very dense GRAVEL (GP) - likey remaining from                                            |                  | Kfill /             | <u> </u>          |
| 9           | 73       | JJ-5       | 0          | '          | 50/2"                    | ວ         | casing washout.                                                                          | E                | bac                 | ?                 |
|             |          |            |            |            | JUIZ                     |           | odonig washout.                                                                          | AVI              | Sand backfill       | ;                 |
|             | 111      |            |            |            |                          |           |                                                                                          | 38.              | S   #               |                   |
|             | 56       |            |            |            |                          |           |                                                                                          | SAND AND GRAVEL  |                     |                   |
|             | 50       |            |            |            |                          |           |                                                                                          | A                | #                   | 5                 |
|             | 57       |            |            |            |                          |           |                                                                                          | 9                | #04                 | =                 |
|             |          |            |            |            |                          |           |                                                                                          | Ä                | =                   | =                 |
|             | 35       |            |            |            |                          |           |                                                                                          | (,               | =                   | =                 |
| 14          | 00       | SS-6       | 24         | 7          | 16                       | 5         | Medium dense, gray-brown, medium to coarse                                               |                  |                     |                   |
|             | 20       |            |            |            | 13                       |           | SAND, some Gravel, trace fine sand (SP), wet                                             |                  | 1                   | 7                 |
|             | 27       |            |            |            | 13                       |           |                                                                                          |                  | <b>l</b>            | .,                |
|             |          |            |            |            | 12                       |           |                                                                                          |                  | 4.5<br>diam         |                   |
|             | 34       |            |            |            |                          |           |                                                                                          |                  | borel               |                   |
|             |          |            |            |            |                          |           |                                                                                          |                  |                     |                   |
|             | 58       |            |            |            |                          |           |                                                                                          |                  |                     |                   |
|             | 112      |            |            |            |                          |           |                                                                                          |                  |                     |                   |
|             | 113      |            |            |            |                          |           |                                                                                          |                  |                     |                   |
| 19          |          | SS-7       | 24         | 6          | 68                       | 5         | Very dense, gray-brown fine to coarse SAND, some                                         |                  |                     |                   |
|             |          |            |            |            | 55                       |           | Gravel, trace silt (SW), wet.                                                            |                  |                     |                   |
|             |          |            |            |            | 54<br>45                 |           |                                                                                          |                  |                     |                   |
|             |          |            |            |            | 45                       |           | Boring terminated at about 21 ft.                                                        |                  |                     |                   |
|             |          |            |            |            |                          |           | 25.mg tommictod at about 21 ft.                                                          |                  |                     |                   |
|             |          |            |            |            |                          |           |                                                                                          |                  |                     |                   |
|             | ·<br>    |            |            |            |                          |           |                                                                                          |                  |                     |                   |
|             |          |            |            |            |                          |           |                                                                                          |                  |                     |                   |
|             |          |            |            |            |                          |           |                                                                                          |                  |                     |                   |
|             |          |            |            |            |                          |           |                                                                                          |                  |                     |                   |
|             |          |            | <u> </u>   |            |                          |           |                                                                                          |                  |                     |                   |
|             |          |            |            |            |                          |           |                                                                                          |                  |                     |                   |
|             |          |            |            |            |                          |           |                                                                                          |                  |                     |                   |
|             |          |            |            |            |                          |           | Drilling technique added water to boring. Water levels may                               |                  |                     |                   |
|             |          |            |            |            |                          |           | not be indicative of natural groundwater level.                                          |                  |                     |                   |
|             |          |            |            |            |                          |           |                                                                                          |                  | <u></u>             |                   |
| emarks      | 1. Roa   | d box well | cover fit  | tightly    | in hole bo               | red in a  | asphalt.                                                                                 | Steph            | iens As             | socia             |
|             |          | hackgound  | d readin   | as 2 to    | 3 ppm for                | SS-1 t    | o SS-5, and 5 ppm for SS-5 to SS-7.                                                      |                  | Consu               | ting Er           |

| Deptl<br>Time |            | Note 2<br>End of D | rilling     | Cacir      | na remov                 | vod.      |                                                             | -007 <b>Sh</b>                  |                       |
|---------------|------------|--------------------|-------------|------------|--------------------------|-----------|-------------------------------------------------------------|---------------------------------|-----------------------|
| ııme          | •          | ⊏na of L           | חווווק<br>l | , casil    | ig remov                 | vea       |                                                             | oon ID 1.3<br>Fall:             |                       |
|               |            |                    |             |            |                          |           |                                                             | <b>Fail:</b><br>ish <b>ID</b> 4 | 30"<br>" <b>OD</b> 4. |
| •             | ٧S         | <u> </u>           |             |            | Blows/6" or<br>Core Time |           | Finish Date: 4/9/2008 Rig Type: Mobile Dr                   |                                 |                       |
| Depth (ft.)   | Cas. Blows | Sample No.         | Pen. (in.)  | Rec. (in.) | "e"                      | PID (ppm) | SACE Staff: J. Turner Northing: 3005912.0 Ea                |                                 | 786628.9              |
| ţ             | ω.         | ď                  | . (i        | <u>:</u>   | ws.                      | d)        | Ţ.                                                          |                                 |                       |
| ер            | as         | an                 | en          | ၁ဓ         | o io                     | ₽         |                                                             |                                 | Equipme               |
|               | 0          | S                  | _           | œ          | шО                       | Д         | Description & Classification                                | Stratum                         | Installe              |
|               | push       |                    |             |            |                          |           | ~6 in. Asphalt Driller adv. Roller bit to 1ft               | Asphalt                         |                       |
| 1             | •          | SS-1               | 24          | 1          | 11                       | 2         | Cobbles Dense, gray medium SAND, trace fine sand (SP), wet. |                                 |                       |
| 1             | 24         | 33-1               | 24          | I          | 11<br>46                 |           | Derise, gray medium SAND, trace line sand (SP), wet.        |                                 |                       |
|               |            |                    |             |            | 26                       |           |                                                             |                                 |                       |
|               | 21         |                    |             |            | 16                       |           | 1                                                           | FILL                            |                       |
|               |            |                    |             |            | 10                       |           | *Driller drove casing to 3 ft., and casing sank to 4        | 匝                               |                       |
|               | *          |                    |             |            |                          |           | when washing out                                            |                                 |                       |
| 4             |            | SS-2               | 24          | 2          | 15                       | 5         | Loose, brown fine to medium SAND (SP), wet.                 |                                 |                       |
|               | 4          |                    |             |            | 4                        |           | 1 '                                                         |                                 |                       |
|               | 11         |                    |             |            | 3                        |           | 1                                                           |                                 |                       |
|               | 11         |                    |             |            | 4                        |           |                                                             | _                               |                       |
| 6             | push       | SS-3               | 24          | 8          | 9                        | 2         | Medium dense, brown, fine to coarse SAND, some              | SAND                            |                       |
|               | 5          |                    |             |            | 8                        |           | Gravel (SP), wet.                                           | SA                              |                       |
|               | 24         |                    |             |            | 16                       |           |                                                             |                                 |                       |
| _             |            |                    |             |            | 19                       |           |                                                             |                                 |                       |
| 8             | 19         | SS-4               | 24          | 1          | 15                       | 1         | Piece of gravel in spoon tip                                |                                 |                       |
|               |            |                    |             |            | 11                       |           | -                                                           |                                 |                       |
|               | 21         |                    |             |            | 10<br>12                 |           | 1                                                           |                                 |                       |
| 10            |            | SS-5               | 24          | 7          | 18                       | 1         | Medium dense, red-brown fine SAND, trace                    |                                 |                       |
| 10            |            | 33-3               | 24          |            | 15                       | - 1       | silt (SP), wet.                                             |                                 |                       |
|               |            |                    |             |            | 11                       |           | 311 (Or ), wet.                                             |                                 |                       |
|               |            |                    |             |            | 8                        |           | 1                                                           |                                 |                       |
|               |            |                    |             |            |                          |           | Boring terminated at about 12 ft.                           |                                 |                       |
|               |            |                    |             |            |                          |           | 1                                                           |                                 |                       |
|               |            |                    |             |            |                          |           | 1                                                           |                                 |                       |
|               |            |                    |             |            |                          |           |                                                             |                                 |                       |
|               |            |                    |             |            |                          |           |                                                             |                                 |                       |
|               |            |                    |             |            |                          |           |                                                             |                                 |                       |
|               |            |                    |             |            |                          |           |                                                             |                                 |                       |
|               |            |                    |             |            |                          |           |                                                             |                                 |                       |
|               |            |                    |             |            |                          |           | 1                                                           |                                 |                       |
|               |            |                    |             |            |                          |           | 1                                                           |                                 |                       |
|               |            |                    |             |            |                          |           | 1                                                           |                                 |                       |
|               |            |                    |             |            |                          |           | 1                                                           |                                 |                       |
|               |            |                    |             |            |                          |           | 1                                                           |                                 |                       |
|               |            |                    | 1           |            |                          |           | 1                                                           |                                 |                       |
|               |            |                    |             |            |                          |           | 1                                                           |                                 |                       |
|               |            |                    |             |            |                          |           | ]                                                           |                                 |                       |
|               |            |                    |             |            |                          |           | ]                                                           |                                 |                       |
|               |            |                    |             |            |                          |           |                                                             |                                 |                       |
|               |            |                    |             |            |                          |           |                                                             |                                 |                       |
|               |            |                    |             |            |                          |           | -                                                           |                                 |                       |
|               |            |                    |             |            |                          |           | -                                                           |                                 |                       |
|               |            |                    |             |            |                          |           | -                                                           |                                 |                       |
|               |            |                    |             |            |                          |           | -                                                           |                                 |                       |
|               |            |                    |             |            |                          |           | 1                                                           |                                 |                       |
|               |            |                    |             |            |                          |           | 1                                                           |                                 |                       |
|               |            |                    |             |            |                          |           | 1                                                           |                                 |                       |
|               |            |                    |             |            |                          |           | Drilling technique added water to boring. Water levels may  |                                 |                       |
|               |            |                    |             |            |                          |           | not be indicative of natural groundwater level.             |                                 |                       |
|               |            |                    |             |            |                          |           | 1                                                           |                                 |                       |
|               |            |                    |             |            |                          |           |                                                             |                                 |                       |
| S             | 1. Bac     | kground PI         | D readi     | ngs 1-2    | ppm. Oth                 | ner tha   | n SS-2, sample readings at background levels.               | Stenh                           | ens Assoc             |
| Remarks       |            | •                  |             | •          | • •                      |           | d. No water measured at depth of collapse.                  |                                 | Consulting            |
| Ū             | Soil/ro    |                    |             |            |                          |           |                                                             |                                 |                       |

B-14

Location:

|             |                             | Gro                                              | undwa      | ter:       |                                                  |           | Project: MWRA Pipeline Project, Contract No. 6905             | Borin                                   | g No. B-           |
|-------------|-----------------------------|--------------------------------------------------|------------|------------|--------------------------------------------------|-----------|---------------------------------------------------------------|-----------------------------------------|--------------------|
| Dept        | h:                          | 6 ft.                                            |            |            | <b>i</b> i                                       |           |                                                               | -007 <b>Sh</b>                          |                    |
| Time        |                             | End of D                                         | Drilling   | , casir    | ng remov                                         | ved       |                                                               | on <b>ID</b> 1.3                        |                    |
|             |                             |                                                  | 3          |            |                                                  |           | Foreman: John Galvin Hammer Wt.: 140 lb                       | Fall:                                   | 30"                |
|             |                             |                                                  |            |            | _                                                |           |                                                               | sh <b>ID</b> 4                          |                    |
| <b>∵</b>    | Blows                       | 2                                                | _          | _          | o e                                              | <u>-</u>  | Finish Date: 4/8/2008 Rig Type: Mobile Dr                     |                                         |                    |
| E           | <u> </u>                    | <u>o</u>                                         | <u>:</u>   | .⊑         | 3/6<br>Tin                                       | ρu        | SACE Staff: J. Turner Northing: 3006261.4 Ea                  |                                         | 786671.3           |
| bt l        | S.                          | dμ                                               | ٠.         | ن (        | e š                                              | g)        | Surface El.: + 64.9 ft Datum: Vert: BCB; Horiz.               |                                         | Equipment          |
| Depth (ft.) | Cas.                        | Sample No.                                       | Pen. (in.) | Rec. (in.) | Blows/6" or<br>Core Time                         | PID (ppm) | Description & Classification                                  | Stratum                                 |                    |
| ┢═╴         |                             |                                                  | _          | _          |                                                  | _         | ~6 in. Asphalt Driller adv. Roller bit to 1ft                 | Asphalt                                 | motanou            |
|             | push                        |                                                  |            |            |                                                  |           | Cobbles                                                       | Cobbles                                 |                    |
| 1           |                             | SS-1                                             | 24         | 12         | 13                                               | 0         | 5" Dense, gray, medium to coarse SAND (SP), wet.              |                                         |                    |
|             | 47                          |                                                  |            |            | 27                                               |           | 7" Dense, brown fine to coarse SAND, some Gravel,             | -                                       |                    |
|             | 35                          |                                                  |            |            | 23                                               |           | trace silt (SP-SM)                                            | FILL                                    |                    |
|             | 33                          |                                                  |            |            | 20                                               |           |                                                               |                                         |                    |
| 3           | 15                          | SS-2                                             | 24         | 3          | 19                                               | 0         | Medium dense, brown, fine to medium SAND, little              |                                         |                    |
|             | 10                          |                                                  |            |            | 15                                               |           | Gravel, trace silt, (SP-SM), wet.                             |                                         |                    |
|             | 29                          |                                                  |            |            | 17                                               |           |                                                               |                                         |                    |
| ļ _         |                             | 00.0                                             | 0.4        | 7          | 17                                               | _         | Cirrilan ta CC C                                              |                                         |                    |
| 5           | 18                          | SS-3                                             | 24         | 7          | 39<br>18                                         | 0         | Similar to SS-2.                                              | $\overline{}$                           |                    |
| <b> </b>    |                             | 1                                                |            |            | 14                                               |           | 1                                                             | <u> </u>                                |                    |
| <b> </b>    | 33                          |                                                  |            |            | 25                                               |           | 1                                                             |                                         |                    |
| 7           |                             | SS-4                                             | 24         | 9          | 15                                               | 0         | Medium dense, brown, GRAVEL and fine to coarse SAND           |                                         |                    |
|             | 17                          |                                                  |            |            | 13                                               |           | (GW), wet.                                                    | 0                                       |                    |
|             | 40                          | 1                                                |            |            | 25                                               |           | 1 ' "                                                         | SAND                                    |                    |
|             | 43                          |                                                  |            |            | 33                                               |           | ]                                                             | S/S                                     |                    |
| 9           | 22                          | SS-5                                             | 24         | 3          | 30                                               | 0         | Very dense, brown, medium to coarse SAND and                  |                                         |                    |
|             |                             |                                                  |            |            | 27                                               |           | GRAVEL, little fine Sand (SP), wet                            |                                         |                    |
|             | 42                          |                                                  |            |            | 24                                               |           |                                                               |                                         |                    |
| 11          |                             | 66 E                                             | 24         | 0          | 32<br>20                                         |           | No recovery Driller indicated mostly group in week            |                                         |                    |
| 11          | 1                           | SS-6                                             | 24         | U          | 12                                               |           | No recovery. Driller indicated mostly gravel in wash          |                                         |                    |
| <b> </b>    |                             | <b> </b>                                         |            |            | 12                                               |           | 1                                                             |                                         |                    |
|             | †                           |                                                  |            |            | 22                                               |           | 1                                                             |                                         |                    |
|             |                             |                                                  |            |            |                                                  |           | Boring terminated at about 13 ft.                             |                                         |                    |
|             |                             |                                                  |            |            |                                                  |           | ]                                                             |                                         |                    |
|             | ↓                           |                                                  |            |            |                                                  |           | _                                                             |                                         |                    |
|             |                             |                                                  |            |            |                                                  |           | 1                                                             |                                         |                    |
| <u> </u>    | 1                           |                                                  |            |            |                                                  |           | 1                                                             |                                         |                    |
| <u> </u>    | <u> </u>                    | <b></b>                                          |            |            |                                                  |           | 4                                                             |                                         |                    |
| -           | 1                           | <b></b>                                          |            |            |                                                  |           | 4                                                             |                                         |                    |
| <b> </b>    |                             |                                                  |            |            | <del>                                     </del> |           | 1                                                             |                                         |                    |
|             | †                           |                                                  |            |            |                                                  |           | 1                                                             |                                         |                    |
|             |                             |                                                  |            |            |                                                  |           | 1                                                             |                                         |                    |
|             | 1                           |                                                  |            |            |                                                  |           | 1                                                             |                                         |                    |
|             |                             |                                                  |            |            |                                                  |           | ]                                                             |                                         |                    |
|             |                             |                                                  |            |            |                                                  |           | _                                                             |                                         |                    |
|             | . ↓                         | <u> </u>                                         |            |            |                                                  |           | 1                                                             |                                         |                    |
| <u> </u>    | <u> </u>                    |                                                  |            |            |                                                  |           | 4                                                             |                                         |                    |
| <u> </u>    | 1                           |                                                  |            |            |                                                  |           | -                                                             |                                         |                    |
| -           | -                           | <del>                                     </del> |            |            |                                                  |           | 4                                                             |                                         |                    |
| <b> </b>    | 1                           |                                                  |            |            |                                                  |           | 1                                                             |                                         |                    |
|             |                             |                                                  |            |            |                                                  |           | 1                                                             |                                         |                    |
|             | 1                           |                                                  |            |            |                                                  |           | 1                                                             |                                         |                    |
|             |                             | 1                                                |            |            |                                                  |           | 1                                                             |                                         |                    |
|             |                             |                                                  |            |            |                                                  |           | ]                                                             |                                         |                    |
|             | ↓                           |                                                  |            |            |                                                  |           |                                                               |                                         |                    |
|             |                             |                                                  |            |            |                                                  |           |                                                               |                                         |                    |
| <u> </u>    | 1                           |                                                  |            |            |                                                  |           | 1                                                             |                                         |                    |
| <u> </u>    |                             |                                                  |            |            |                                                  |           | 4                                                             |                                         |                    |
| -           | 1                           |                                                  |            |            |                                                  |           | 4                                                             |                                         |                    |
|             | 4 5                         | <u> </u>                                         | <u> </u>   |            |                                                  | . 144 :   |                                                               |                                         |                    |
| ķ           | 1. Drill                    | iing techniq                                     | ue adde    | ea wate    | r to boring                                      | j. Wate   | er levels may not be indicative of natural groundwater level. | Steph                                   | ens Associat       |
| emarks      |                             |                                                  |            |            |                                                  |           |                                                               | A PARTY                                 | PRESENCE OF STATES |
| en          |                             |                                                  | •          |            |                                                  |           | indicated, are approximate. Transitions may be gradual.       | Insightful,<br>saving So<br>for Buildin | lutions Goo        |
| . ~         | <ul> <li>Variati</li> </ul> | anc hotwor                                       | an ovnic   | ration     | acations a                                       | nd ove    | or time special po expected                                   |                                         | The dealers 0.1    |

| Depth                                                                             | ا و      | <b>Gro</b> u<br>4.8 ft. | undwa<br>  | ter:         |                          |           | Project:MWRA Pipeline Project, Contract No. 6905Boring No.Boring No.Location:Saugus, MAProject Number:026-08-007Sheet1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------|----------|-------------------------|------------|--------------|--------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Time:                                                                             |          | End of D                | )rillina   | . casir      | na remov                 | ved       | Contractor: GeoLogic Sampler Type: Split spoon ID 1.375" OD 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Time.                                                                             |          | LIIG OI L               | l          | , casii      | ig remov                 | veu       | Foreman: John Galvin Hammer Wt.: 140 lb Fall: 30"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                   |          |                         |            |              |                          |           | Start Date: 4/7/2008 Drill Technique: Drive&Wash ID 4" OD 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\overline{}$                                                                     | Blows    | <u>ه</u> .              |            |              | Blows/6" or<br>Core Time |           | Finish Date: 4/7/2008 Rig Type: Mobile Drill Truck-mounted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Depth (ft.)                                                                       | <u>6</u> | Sample No.              | Pen. (in.) | Rec. (in.)   | ا يا وا                  | PID (ppm) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| £                                                                                 | В.       | jdı                     | i) .       | i) .         | vs/                      | dd)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ер                                                                                | Cas.     | am                      | eu         | ec           | <u> </u>                 | Ω         | Surface El.: + 66.2 ft Datum: Vert: BCB; Horiz. NAD83 Equipmer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                   | ပ        | S                       | Д          | 8            | B                        | Ь         | Description & Classification Stratum Installed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\vdash$                                                                          |          |                         |            |              |                          |           | ~6 in. Asphalt Driller adv. Roller bit to 1ft Asphalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <u> </u>                                                                          | push     | 00.4                    | 0.4        | 4.4          |                          | _         | Cobbles Cobbles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1 '                                                                               |          | SS-1                    | 24         | 14           | 7                        | 0         | 6" Dense, gray m to c SAND, some Gravel (SP), wet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                   |          |                         |            |              | 33                       |           | 8" Very dense, brown, fine to medium SAND, little 그 드<br>Silt, little Gravel, trace brick (SM), wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\vdash$                                                                          | 2*       |                         |            |              | 70<br>48                 |           | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3                                                                                 |          | SS-2                    | 24         | 5            | 48<br>17                 | 1         | *Driller adv. Roller bit to 3', then drove casing to 3 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3                                                                                 | 12       | 33-2                    | 24         | 3            | 33                       | -         | Dense, brown, fine to coarse SAND, little Gravel, trace silt (SW), wet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>-</b>                                                                          |          |                         |            |              | 27                       |           | trace siit (SVV), wet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\vdash \vdash \vdash$                                                            | 27       |                         |            |              | 24                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5                                                                                 | _        | SS-3                    | 24         | 10           | 21                       | 0         | Medium dense, brown, fine to coarse SAND,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                   | 27       |                         |            |              | 18                       | ,         | Pulls and a later of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of |
| $\vdash$                                                                          |          |                         |            |              | 24                       |           | Ilttie gravei, trace siit (SW-SM), moist.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\vdash$                                                                          | 54       |                         |            |              | 27                       |           | ἄ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7                                                                                 | 7.0      | SS-4                    | 24         | 12           | 29                       | 0         | Very dense, brown fine to coarse SAND and GRAVEL,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                   | 73       |                         |            | <del>-</del> | 33                       |           | trace silt (SP-SM), wet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                   | 00       |                         |            |              | 41                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   | 82       |                         |            |              | 57                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 9                                                                                 | 20       | SS-5                    | 24         | 12           | 31                       | 0         | Similar to SS-4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                   | 38       |                         |            |              | 32                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   | 43       |                         |            |              | 29                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   | 43       |                         |            |              | 28                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 11                                                                                |          | SS-6                    | 24         | 8            | 18                       | 0         | Medium dense, brown, fine to coarse SAND, little                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\sqcup \bot$                                                                     |          |                         |            |              | 20                       |           | Gravel (SW), wet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                   |          |                         |            |              | 13                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\sqcup \!\!\! \perp$                                                             |          |                         |            |              | 11                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\sqcup \sqcup$                                                                   |          |                         |            |              |                          |           | Boring terminated at about 13 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\longmapsto$                                                                     |          |                         |            |              |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |          |                         |            |              |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\longmapsto$                                                                     |          |                         |            |              |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\vdash \vdash \vdash$                                                            |          |                         |            |              |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\vdash$                                                                          |          |                         |            |              |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\vdash \vdash \vdash$                                                            |          |                         |            |              |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\vdash \vdash$                                                                   |          |                         |            |              |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\vdash$                                                                          |          |                         |            |              |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <del>                                     </del>                                  |          |                         |            |              |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |          |                         |            |              |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |          |                         |            |              |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |          |                         |            |              |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |          |                         |            |              |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |          |                         |            |              |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |          |                         |            |              |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |          |                         |            |              |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\square$                                                                         |          |                         |            |              |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\sqcup \!\!\!\! \perp$                                                           |          |                         |            |              |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\sqcup$                                                                          |          |                         |            |              |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\longmapsto$                                                                     |          |                         |            |              |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\longmapsto$                                                                     |          |                         |            |              |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\vdash \vdash$                                                                   |          |                         |            |              |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\vdash$                                                                          |          |                         |            |              |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\vdash \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |          |                         |            |              |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\vdash \vdash \vdash$                                                            |          |                         |            |              |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\vdash \vdash$                                                                   |          |                         |            |              |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\vdash$                                                                          |          |                         |            |              |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |          |                         |            |              | -4-1 '                   | . \^/ -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |          | na toohnia              | الم عظظم   | atew he      | r to boring              | 1 Mate    | er levels may not be indicative of natural groundwater level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| _           |                                              |              | undwa             |            | ı                        | 1         | Project: MWRA Pipeline Project, Contract No. 6905 Boring No. B-17                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------|----------------------------------------------|--------------|-------------------|------------|--------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dept        |                                              | 10.9 ft.     |                   | 7.6 ft.    |                          | oll.      | Location: Saugus, MA Project Number: 026-08-007 Sheet 1 of                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Time        | <u>:</u>                                     | End of D     | ווווזע<br>פחוווזע | arter      | weii inst                | યા        | Contractor: GeoLogic Sampler Type: Split spoon ID 1.375" OD 2"                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             |                                              |              |                   |            |                          |           | Foreman:         John Galvin         Hammer Wt.:         140 lb         Fall:         30"           Start Date:         4/4/2008         Drill Technique:         Drive&Wash         ID         4"         OD 4.5"                                                                                                                                                                                                                                                                                   |
| (           | ۸s                                           | <u>o</u> .   |                   |            | or<br>e                  | _         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Depth (ft.) | Blows                                        | Sample No.   | n.                | n.)        | Blows/6" or<br>Core Time | PID (ppm) | Finish Date:4/7/2008Rig Type:Mobile Drill Truck-mountedSACE Staff:J. TurnerNorthing:3006805.6Easting:786781.2                                                                                                                                                                                                                                                                                                                                                                                        |
| ž           | <br>B                                        | ldu          | Pen. (in.)        | Rec. (in.) | ws,<br>e T               | ď)        | Surface El.: + 71.4 ft Datum: Vert: BCB; Horiz. NAD83   Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Эер         | Cas.                                         | san          | en                | Sec        | 3lo                      | ٩         | Description & Classification Stratum Installed                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             | 0                                            | 0,           | ш                 | ш.         | шО                       |           | 12" Asphalt Driller adv. Roller bit to 1ft Asphalt                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | βι                                           |              |                   |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1           | of casing                                    | SS-1         | 8                 | 4          | 36                       | 0         | Very dense, gray medium to coarse SAND (SP), wet. Driller advanced roller bit ahead to 3 ft., then attempted 4" casing, then 5" casing. Boring skewed. No water return. No recovery. Poulders 1.3 ft. skewed assing. Bering effect 3.8 ft.                                                                                                                                                                                                                                                           |
|             | ပ္ပိ                                         |              |                   |            | 50/2"                    |           | Very dense, gray medium to coarse SAND (SP), wet.  Driller advanced roller bit ahead to 3 ft., then attempted                                                                                                                                                                                                                                                                                                                                                                                        |
|             | 90                                           |              |                   |            |                          |           | 4" casing, then 5" casing. Boring skewed.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | ahead<br>lers                                |              |                   |            |                          |           | 4" casing, then 5" casing. Boring skewed.  No water return.  No recovery.  Paydors 1.2 th skewed assign. Paring affect 2.8 th                                                                                                                                                                                                                                                                                                                                                                        |
| 3           | ah                                           | SS-2         | 0                 | 0          | 50/0"                    |           | No recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             | bit Di                                       |              |                   |            |                          |           | Boulders 1-3 ft. skewed casing. Boring offset 2.8 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | ler<br>bo                                    |              |                   |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | lo de                                        | CC 2         | _                 | _          | E0/0"                    |           | casing to 4' & 4" casing to 5', no water return.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5<br>5.5    | nced roller bit ahe<br>through boulders      | SS-3<br>R-1  | 0<br>10           | 5          | 50/0"<br>4 min           |           | No recovery.  Boulder - very hard black Dioritic rock                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ა.၁         | 유                                            | rX-1         | 10                | 3          | 4 111111                 |           | No water return.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | dve                                          |              |                   |            |                          |           | Driller drove 3" casing to ~7.5 ft. and advanced roller                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | r<br>a                                       |              |                   |            |                          |           | Boulder - very hard black Dioritic rock  No water return.  Driller drove 3" casing to ~7.5 ft. and advanced roller bit to 8 ft. through another boulder, then sampled SS-4.                                                                                                                                                                                                                                                                                                                          |
|             | Driller advanced roller bit<br>through boulc |              |                   | 1          |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8           | ۵                                            | SS-4         | 24                | 11         | 8                        | 0         | 1" Loose fine to coarse SAND and GRAVEL (SW), wet.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                              |              |                   |            | 2                        |           | 2" Medium stiff, dark brown non-plastic SILT, little                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             | 42                                           |              |                   |            | 4                        |           | 2" Medium stiff, dark brown non-plastic SIL1, little fine Sand, trace organics (ML) - likely former topsoil.  8" Medium stiff, reddish brown non plastic SILT, some fine to medium Sand (ML), wet (sample).                                                                                                                                                                                                                                                                                          |
|             |                                              |              |                   |            | 28                       |           | 8" Medium stiff, reddish brown non plastic SILT,                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | 127                                          |              |                   |            |                          |           | Boulder - very hard black Dioritic rock  No water return.  Driller drove 3" casing to ~7.5 ft. and advanced roller bit to 8 ft. through another boulder, then sampled SS-4.  1" Loose fine to coarse SAND and GRAVEL (SW), wet.  2" Medium stiff, dark brown non-plastic SILT, little fine Sand, trace organics (ML) - likely former topsoil.  8" Medium stiff, reddish brown non plastic SILT, some fine to medium Sand (ML), wet (sample).  Driller removed 3" & 4" casing, advanced 5" roller bit |
|             |                                              |              |                   |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | 156                                          |              |                   |            |                          |           | to 9' and drove to 14'.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | 400                                          |              |                   |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | 139                                          |              |                   |            |                          |           | through boulder at ~5.5 ft., then reinserted 4" casing to 9' and drove to 14'.                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             | 87                                           |              |                   |            |                          |           | 📆    =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | 07                                           | 0.0          |                   |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 14          | 22                                           | SS-5         | 24                | 0          | 25                       |           | No Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             |                                              |              |                   |            | 26<br>25                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | 40                                           |              |                   |            | 25                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | ,                                            |              |                   |            | ۷4                       | ļ         | Change based on casing blows                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             | 108                                          |              |                   |            |                          |           | diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | 270                                          |              |                   |            |                          |           | D borehole to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             | 270                                          |              |                   |            |                          |           | borehole to  V V V V V V V V V V V V V V V V V V                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | 236                                          |              |                   |            |                          |           | diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | 200                                          | 00 -         |                   |            | 0.5                      |           | borehole to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 18          | ļ                                            | SS-6         | 24                | 12         | 30                       | 0         | very dense, brown, fine to coarse SAND, little Gravel,                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                                              |              |                   |            | 32<br>20                 |           | trace (+) silt (SW-SM), wet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             | 1                                            |              |                   |            | 30                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             |                                              |              |                   |            | 30                       |           | Boring terminated at about 21 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             | ł                                            |              |                   |            |                          |           | Bonny terminated at about 21 It.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             |                                              |              |                   |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | 1                                            |              |                   |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             |                                              |              |                   |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             |                                              |              |                   |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             |                                              |              |                   |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             |                                              |              |                   |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | 1                                            |              |                   |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             |                                              |              |                   |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | 1                                            |              |                   |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             |                                              |              |                   |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | t                                            |              |                   |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | 1. Drilli                                    | na technia   | ue adde           | ed wate    | r to boring              | ı. Wate   | r levels may not be indicative of natural groundwater level.  Stephens Associat                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Remarks     |                                              |              |                   |            |                          | ,aic      | Consulting En                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ша          | Soil/ro                                      | ck strata ar | nd arour          | ndwatei    | r surface                | where i   | ndicated, are approximate. Transitions may be gradual.                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                                              |              | n explo           |            | ,                        |           | ntdicated, are approximate. Transitions may be gradual.                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Dept        |                     | 7 ft. in ca |            | 7.0 ft.    |                                  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Borin<br>-007 Sh   | eet                 | 1                              | of                |
|-------------|---------------------|-------------|------------|------------|----------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|--------------------------------|-------------------|
| Depth (ft.) | Cas. Blows          | Sample No.  | Pen. (in.) | Rec. (in.) | Blows/6" or                      | (mdd | Contractor:         GeoLogic         Sampler Type:         Split spot           Foreman:         John Galvin         Hammer Wt.:         140 lb           Start Date:         3/30/2008         Drill Technique:         Drive&Wa           Finish Date:         3/31/2008         Rig Type:         Mobile Dr           SACE Staff:         J. Turner         Northing:         3006830.2         Ea           Surface El.:         ±         72.9         ft         Datum:         Vert:         BCB; Horiz           Description & Classification | ill Truck-n        | 7868<br><b>Eq</b> u | 30"<br><b>D</b><br>ted<br>377. | 1<br>ent          |
|             | push                | 00.4        | 0.4        | 45         |                                  | 0.0  | 6" Asphalt Driller adv. Roller bit to 1ft<br>Cobble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Asphalt<br>Cobbles | 70                  |                                | ا<br>ا            |
| 1           | 27                  | SS-1        | 24         | 15         | 20<br>33<br>18                   | 0.9  | 3" Dense, gray coarse SAND, moist. 12" Dense, brown, fine to medium SAND, some Silt (SM), little Gravel, moist                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | Sand                |                                |                   |
| 3           | 16<br>5             | SS-2        | 24         | 7          | 14<br>8<br>7                     | 0.4  | Medium dense, brown, fine to medium SAND, some Gravel, little Silt (SM), wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FILL               |                     | : Well riser                   |                   |
| 5           | 10<br>7             | SS-3        | 24         | 0.5        | 8<br>10<br>6<br>4                | 0.7  | Pieces of gravel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E                  | Bentonite Chips     | 10 ft of 2" ID PVC Well riser  | ing —             |
|             | 13                  | 00.4        | 0.4        | 7          | 2                                | 0.4  | 57W77-1777-1777-1777-1777-1777-1777-1777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\nabla$           | Bento               | 10 ft o                        | Protective Casing |
| 7           | 18<br>17            | SS-4        | 24         | 7          | 13<br>10<br>5<br>3               | 0.4  | Stiff, light brown, non-plastic SILT and fine to coarse SAND (ML), wet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | _                   |                                | Prote             |
| 9           | casing              | SS-5        | 15         | 10         | 20<br>47<br>50/3"                | 0.4  | Very dense, light brown, fine to coarse SAND, some non-plastic Silt, some Gravel (SM), wet.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | Sand backfill       | creen                          |                   |
|             | Roller bit ahead of |             |            |            |                                  |      | Driller advanced roller bit ahead of casing to 14 ft., then advanced casing to 14 ft. and sampled SS-6                                                                                                                                                                                                                                                                                                                                                                                                                                                | SILTY SAND         | Š                   | Slotted PVC Well screen        |                   |
| 14          | 왕<br>82/8"          | SS-6        | 11         | 6          | 38<br>100/5"                     | 0.4  | Very dense, light brown, fine to medium SAND,<br>little (-) non-plastic Silt (SP-SM), wet.                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IS                 |                     | 5 ft. S                        |                   |
| 16          |                     | R-1         | 42         |            | 3 min/ft<br>4 min/ft<br>4 min/ft |      | Driller indicated top of rock about 15 ft. based on action of drilling equipment. Driller advanced roller bit to about 16 ft.  Black, very hard, fresh to slightly weathered, aphanitic, meta-Dioritic rock, perhaps contact metamorphism, very closely spaced joints near horizontal, joint surface undulating, no infilling observed, minor rust staining,                                                                                                                                                                                          | ROCK               | dia                 | ▼<br>4.5"<br>amete<br>orehol   |                   |
| 19.5        |                     | R-2         | 18         |            | 3 min/6<br>6 min/1               |      | also healed joints with veins of minearal infilling. Core barrel jamed ~19.5 ft. RQD = 30/42" = 71%  Black, very hard, fresh, aphanitic, Dioritic rock, closely spaced near horizontal to low angle (~30 deg.) joints, joint surface undulating, no infilling observed, also healed joints with veins of minearal infilling.  RQD = 15"/18" = 83%                                                                                                                                                                                                     |                    |                     |                                |                   |
|             |                     |             |            |            |                                  |      | Boring terminated about 21 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                     |                                |                   |
|             |                     |             |            |            |                                  |      | Drilling technique added water to boring. Water levels may                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                     |                                |                   |

|     |             |         | Gro          | undwa      | ter:        |                                                  |            | Project: MWRA Pipeline Project, Contract No. 6905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Boring                              | <b>g No.</b> B-1 | 19                  |
|-----|-------------|---------|--------------|------------|-------------|--------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------|---------------------|
|     | Depth       | ):      | 8 ft. in c   |            |             |                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -007 <b>Sh</b>                      |                  | 1                   |
|     | Time:       |         | End of D     | Drilling   |             |                                                  |            | <u></u> · · · <u>_ · · · · · </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oon <b>ID</b> 1.3                   |                  |                     |
|     |             |         |              |            |             |                                                  |            | Foreman: John Galvin Hammer Wt.: 140 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fall:                               | 30"              |                     |
|     |             | S       | ó            |            |             | ō                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ash ID 4                            |                  |                     |
|     | ft.)        | Blows   | Sample No.   | <u>.</u>   | ·           | Blows/6" or<br>Core Time                         | Ē          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ill Truck-m                         |                  | S                   |
|     | Depth (ft.) | ă       | ble          | Pen. (in.) | Rec. (in.)  | s/€                                              | PID (ppm)  | SACE Staff: J. Turner Northing: 3007157.4 Ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     | 786938.0         | Remarks             |
|     | ept         | Cas.    | E            | Ä.         | <u>ပ</u> ွဲ | ow                                               | ) <u>a</u> | Surface El.: <u>+</u> 82.8 ft Datum: Vert: BCB; Horiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     | Equipment        | E                   |
|     | ŏ           | Ü       | Š            | P          | Ř           | шç                                               | Ы          | Description & Classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stratum                             | Installed        | Ŗ                   |
|     |             |         |              |            |             |                                                  |            | 6" Asphalt Driller adv. Roller bit to 1ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Asphalt                             |                  |                     |
|     | 4           |         | 00.4         |            |             | 0.4                                              |            | Cobbles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>Cobbles</u>                      |                  |                     |
|     | 1           |         | SS-1         | 6          | 2           | 21<br>50/1"                                      | 0.3        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                  |                     |
|     |             |         |              |            |             | 50/1                                             |            | Dense gray-brown fine to coarse SAND, trace silt, trace gravel (SW), wet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FILL                                |                  | 2                   |
|     |             |         |              |            |             |                                                  |            | Siit, trace graver (OVV), wet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                  |                     |
|     | 3           |         | SS-2         | 24         | 5           | 13                                               | 0          | Medium Dense, light brown fine to medium SAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |                  |                     |
|     |             |         |              |            |             | 13                                               |            | and GRAVEL, trace silt (SP-SM), wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>                            |                  |                     |
|     |             |         |              |            |             | 14                                               |            | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | щ ≶                                 |                  |                     |
|     |             |         |              |            |             | 16                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 멸망                                  |                  |                     |
|     | 5           |         | SS-3         | 24         | 4           | 10                                               | 0          | Medium Dense, light brown GRAVEL, some fine to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PROBABLE<br>D and GRA<br>FILL       |                  |                     |
|     |             |         |              |            |             | 9                                                |            | coarse Sand, trace silt (GW), wet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RC<br>ar                            |                  |                     |
|     | <b></b>     |         |              |            |             | 9                                                |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 요                                   |                  |                     |
|     | -           |         | CC 4         | 4.5        | 2           | 5                                                |            | Donos block CBAVEL (CB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PROBABLE<br>SAND and GRAVEL<br>FILL |                  |                     |
|     | 7           |         | SS-4         | 15         | 3           | 7                                                | 0          | Dense, black GRAVEL (GP), wet.  Driller advanced 4" casing to 8 ft. then roller bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |                  |                     |
|     |             |         | 1            |            |             | 50/3"                                            |            | Drilling water lost at 8-8.5 ft. Driller advanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                            |                  |                     |
|     |             |         |              |            |             | 00/0                                             |            | 3" casing to 8.5 ft., roller bit to 9 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <del>-</del>                        | •                |                     |
|     | 9           |         | R-1          | 36         | 12          | 9 min/3                                          | ft.        | Very hard, moderately weathered, severely fractured,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                  |                     |
| ) — |             |         |              |            |             |                                                  |            | aphanitic, Dioritic rock (Gravel). Core barrel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                  |                     |
| , — |             |         |              |            |             |                                                  |            | jammed repeatedly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                  |                     |
|     |             |         |              |            |             |                                                  |            | RQD = 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                  |                     |
|     |             |         |              |            |             |                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _ ×                                 |                  |                     |
|     |             |         |              |            |             |                                                  |            | Baring and a firm and a firm and a second and a second and a firm and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and | ROCK                                |                  |                     |
|     |             |         |              |            |             |                                                  |            | Boring collapsed after rock core barrel removed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M M                                 |                  |                     |
|     |             |         |              |            |             |                                                  |            | Prescribed boring depth reached - boring terminated at about 12 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |                  |                     |
|     |             |         |              |            |             |                                                  |            | terminated at about 12 it.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                  |                     |
|     |             |         |              |            |             |                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                  |                     |
| _   |             |         |              |            |             |                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                  |                     |
| 5 — |             |         |              |            |             |                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                  |                     |
|     |             |         |              |            |             |                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                  |                     |
|     |             |         |              |            |             |                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                  |                     |
|     |             |         |              |            |             |                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                  |                     |
|     |             |         |              |            |             |                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                  |                     |
|     |             |         |              |            |             |                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                  |                     |
|     | -           |         |              |            |             |                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                  |                     |
|     |             |         |              |            |             |                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                  |                     |
| _   |             |         |              |            |             |                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                  |                     |
| ) — |             |         |              |            |             |                                                  |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ]                                   |                  | }                   |
|     |             |         |              |            |             |                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ]                                   |                  |                     |
|     |             |         |              |            |             |                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                  |                     |
|     |             |         |              |            |             |                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                  |                     |
|     |             |         |              |            |             |                                                  |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ]                                   |                  |                     |
|     |             |         |              |            |             |                                                  |            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ]                                   |                  |                     |
|     |             |         |              |            |             | <del>                                     </del> |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ]                                   |                  |                     |
|     |             |         |              |            |             | -                                                |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |                  | ļ                   |
|     | $\vdash$    |         |              |            |             | <del>                                     </del> |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ]                                   |                  | ļ                   |
| 5 — |             |         |              |            |             | <u> </u>                                         |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ]                                   |                  | }                   |
|     |             |         |              |            |             |                                                  |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ]                                   |                  |                     |
|     |             |         |              |            |             |                                                  |            | Drilling technique added water to boring. Water levels may                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                  |                     |
|     |             |         |              |            |             |                                                  |            | not be indicative of natural groundwater level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                  |                     |
|     |             |         |              |            |             |                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                  |                     |
|     |             |         |              |            |             |                                                  |            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                  |                     |
|     | S           | 1. PID  | backgound    | d readin   | gs 0.3 t    | to 0.4 ppm                                       | for S-     | PID malfunction. S-2,3,4 read 48 hrs. later with new PID.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Steph                               | ens Associate    | es                  |
|     | Remarks     | 2. Obs  | truction at  | ~2 ft. D   | riller of   | fset ~3 ft.                                      | west a     | nd continued.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     | Consulting Eng   | 1000                |
|     | e u         | Soil/ro | ck strata ar | nd groui   | ndwate      | r surface,                                       | where i    | indicated, are approximate. Transitions may be gradual.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Insightful, 0<br>saving Solo        | utions Gente     | tructura<br>echnica |
|     | Ŗ           | Variati | ons betwee   | en explo   | ration I    | ocations a                                       | and ove    | er time should be expected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | for Building<br>Infrastructu        | as and           |                     |
|     | Boring      | No.:    |              | B-19       |             | Locatio                                          | n:         | See Exploration Location Plan 668 Main Street, Wilmingt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on, MA 018                          | 887 (978) 988    | -211                |
|     |             |         |              |            |             |                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                  |                     |

|                                                  |                                  | Gro          | undwa      | ter.       |                          |           | Project: MWRA Pipeline Project, Contract No. 6905                                     | Boring                                       | <b>No.</b> B-2                  | 20                    |
|--------------------------------------------------|----------------------------------|--------------|------------|------------|--------------------------|-----------|---------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------|-----------------------|
| Dept                                             | h:                               | 2.8 ft.      |            |            |                          |           |                                                                                       | -007 <b>Sh</b> e                             |                                 | 1                     |
| Time                                             | <b>:</b>                         | End of D     | rilling    | , casir    | ng remov                 | vec       |                                                                                       | oon <b>ID</b> 1.37                           | 75" <b>OD</b> 2"                |                       |
|                                                  |                                  |              |            |            |                          |           | Foreman: John Galvin Hammer Wt.: 140 lb                                               | Fall:                                        | 30"                             |                       |
|                                                  | Ø                                | o.           |            |            | o «                      |           |                                                                                       | ash ID 4                                     |                                 |                       |
| <b>∃</b>                                         | Blows                            | Ž            | <u>:</u>   | ÷          | 6" e                     | m)        |                                                                                       | ill Truck-m                                  |                                 | S)                    |
| <u>ج</u>                                         | <u> </u>                         | e d          | ≒          | : <u> </u> | vs/                      | dd)       | SACE Staff: J. Turner Northing: 3007201.6 Ea                                          |                                              | 786847.9                        | arl                   |
| Depth (ft.)                                      | Cas.                             | Sample No.   | Pen. (in.) | Rec. (in.) | Blows/6" or<br>Core Time | PID (ppm) | Surface El.: + 82.9 ft Datum: Vert: BCB; Horiz                                        |                                              | Equipment                       | Remarks               |
| _                                                |                                  | S            | ₾          | 8          | B C                      | Ь         | Description & Classification                                                          | Stratum                                      | Installed                       | R                     |
|                                                  | push<br>7                        |              |            |            |                          |           | 6" Asphalt Driller adv. Roller bit to 1ft<br>Gravel and Cobbles                       | Asphalt .                                    |                                 | 1                     |
| 1                                                |                                  | SS-1         | 24         | 13         | 7                        | 0         | 4" Very dense, gray medium to coarse SAND (SP), wet.                                  |                                              |                                 |                       |
| <u> </u>                                         | 81                               | 00 1         |            | 10         | 60                       | -         | 9" Very dense, brown, fine to medium SAND and                                         |                                              |                                 |                       |
|                                                  | F-7                              |              |            |            | 38                       |           | GRAVEL, little non-plastic Silt (SM), wet.                                            | $\overline{}$                                |                                 |                       |
|                                                  | 57                               |              |            |            | 28                       |           | , , , , , , , , , , , , , , , , , , , ,                                               |                                              |                                 |                       |
| 3                                                | ng                               | SS-2         | 3          | 0.5        | 50/3"                    | 0         | Very dense, gray-brown piece of GRAVEL and fine to                                    |                                              |                                 |                       |
|                                                  | asi                              |              |            |            |                          |           | coarse SAND (GP), wet.                                                                |                                              |                                 |                       |
| <u> </u>                                         | of casing                        |              |            |            |                          |           | Driller advanced roller bit to 5 ft. before driving casing                            | FILL                                         |                                 |                       |
|                                                  | bit ahead of c<br>before driving | 00.0         | 0          |            | EE                       | 0         | Driller noted boulders.                                                               | <u>\</u>                                     |                                 | ļ                     |
| 5                                                | hes<br>e d                       | SS-3         | 8          | 5          | 55<br>50/2"              | 0         | Very dense, brown fine to medium SAND, some Gravel, little non-plastic Silt (SM), wet | Щ                                            |                                 |                       |
| $\vdash$                                         | fal<br>for                       |              |            |            | JU/2                     |           | Driller advanced roller bit to 7 ft. before driving casing                            | AB 다                                         |                                 |                       |
| $\vdash$                                         | r bi                             |              |            |            |                          |           | Driller noted boulders.                                                               | OBABI<br>SAND<br>FILL                        |                                 |                       |
| 7                                                | Roller bit ahead<br>before driv  | SS-4         | 11         | 11         | 55                       | 0         | Very dense, gray-brown fine to medium SAND and                                        | PROBABLE<br>SAND<br>FILL                     |                                 |                       |
|                                                  | ∝                                |              |            |            | 100/5"                   |           | non-plastic SILT (SM), trace coarse sand, wet                                         | <u>                                     </u> |                                 |                       |
| L                                                | ↓                                |              |            |            |                          |           | Driller advanced roller bit to 8.5 ft. before driving casing                          |                                              |                                 |                       |
| 8.5                                              | 1                                | R-1          | 24         | 24         | 7 min                    |           | Very hard, fresh, gray with light pink, medium to coarse                              |                                              |                                 |                       |
| <del>                                     </del> | 4                                |              | 1          |            | 0 min                    |           | grained Granitic rock, no joints, 2 drilling fractures RQD = 100%                     |                                              |                                 |                       |
|                                                  | 1                                |              |            |            | 9 min                    |           | NQD = 100%                                                                            |                                              |                                 |                       |
| 10.5                                             | †                                | R-2          | 24         | 22         | 12 min                   |           | 14" similar to R-1.                                                                   | 는<br>동                                       |                                 |                       |
| . 5.0                                            | <u> </u>                         | .,,_         | <u> </u>   |            |                          |           | 8" Very hard, fresh, black, fine grained Dioritic rock, joints                        | ROCK                                         |                                 |                       |
|                                                  | 1                                |              |            |            | 9 min                    |           | low angle (~30 deg.), undulating, no infilling                                        | Ľ.                                           |                                 |                       |
|                                                  |                                  |              |            |            |                          |           | RQD = 20/24" = 83%                                                                    |                                              |                                 |                       |
| -                                                | 1                                |              |            |            |                          |           |                                                                                       |                                              |                                 |                       |
|                                                  | 4                                |              |            |            |                          |           | Boring terminated at about 12.5 ft.                                                   |                                              |                                 |                       |
| <del>                                     </del> | 1                                |              |            |            |                          |           |                                                                                       |                                              |                                 |                       |
| <del>                                     </del> | 1                                |              |            |            |                          |           |                                                                                       |                                              |                                 |                       |
|                                                  | +                                |              |            |            |                          |           |                                                                                       |                                              |                                 |                       |
|                                                  | †                                |              |            |            |                          |           |                                                                                       |                                              |                                 |                       |
|                                                  |                                  |              |            |            |                          |           |                                                                                       |                                              |                                 |                       |
|                                                  |                                  |              |            |            |                          |           |                                                                                       |                                              |                                 |                       |
|                                                  | 4                                |              |            |            |                          |           |                                                                                       |                                              |                                 |                       |
| <del>                                     </del> | 1                                |              | -          |            |                          |           |                                                                                       |                                              |                                 |                       |
| <b>—</b>                                         | +                                |              |            |            |                          |           |                                                                                       |                                              |                                 |                       |
|                                                  |                                  |              |            |            |                          |           |                                                                                       |                                              |                                 |                       |
|                                                  | †                                |              |            |            |                          |           |                                                                                       |                                              |                                 |                       |
|                                                  |                                  |              |            |            |                          |           |                                                                                       |                                              |                                 | <u> </u>              |
|                                                  |                                  |              |            |            |                          |           |                                                                                       |                                              |                                 |                       |
|                                                  | ↓ _                              |              |            |            |                          |           |                                                                                       |                                              |                                 |                       |
| ļ                                                |                                  |              |            |            |                          |           |                                                                                       |                                              |                                 |                       |
|                                                  | 4                                |              |            |            |                          |           |                                                                                       |                                              |                                 |                       |
| -                                                |                                  |              | -          |            |                          |           |                                                                                       |                                              |                                 |                       |
| <u> </u>                                         | †                                |              | -          |            |                          |           |                                                                                       |                                              |                                 |                       |
|                                                  | <u> </u>                         |              |            |            |                          |           |                                                                                       |                                              |                                 |                       |
|                                                  |                                  |              |            |            |                          |           |                                                                                       |                                              |                                 |                       |
|                                                  |                                  |              |            |            |                          |           |                                                                                       |                                              |                                 |                       |
|                                                  |                                  |              |            |            |                          |           |                                                                                       |                                              |                                 |                       |
| -                                                | 4                                |              |            |            |                          |           |                                                                                       |                                              |                                 |                       |
| <del>                                     </del> |                                  |              |            |            |                          |           |                                                                                       |                                              |                                 |                       |
|                                                  | +                                |              | -          |            |                          |           |                                                                                       |                                              |                                 |                       |
|                                                  | 1 Drilli                         | na technic   | الات عظم   | ad wata    | r to borina              | \/\/ata   | or levels may not be indicative of natural groundwater level                          | Ct1                                          | ana Bassatat                    |                       |
| rks                                              | ı. Drilli                        | ng techniq   | ue adde    | u wate     | i io boring              | . vvate   | er levels may not be indicative of natural groundwater level.                         | Stepho                                       | ens Associate<br>Consulting Eng | e <b>S</b><br>gineers |
| Remarks                                          | Soil/ro                          | ck strata ar | nd arou    | ndwater    | r surface v              | where     | indicated, are approximate. Transitions may be gradual.                               | Insightful, C                                | Cost- SI                        | tructural             |
| Rei                                              |                                  |              | •          |            |                          |           | r time should be expected.                                                            | saving Solutor for Buildings Infrastructure  | tions Geote                     | echnical              |
|                                                  | ng No.:                          |              | B-20       |            | Locatio                  |           | See Exploration Location Plan 668 Main Street, Wilmingt                               |                                              | 10 0000 10                      |                       |
| 2011                                             | .9 110                           |              | 20 د       |            |                          | •••       | 200 Exploration Education Flair 000 Main Offect, Williamigt                           | 211, IVIA 010                                | C. (310) 300                    | _ 1 1                 |

|             |             |           | Gro        | undwa      | ter:       |                          |           | Project: MWRA Pipeline Project, Contract No. 6905 Boring No. B-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -21  |
|-------------|-------------|-----------|------------|------------|------------|--------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| [           | Depth       | ո։        | 3.2 ft.    |            |            |                          |           | Location: Saugus, MA Project Number: 026-08-007 Sheet 1 o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | f    |
| ħ           | Time:       |           | End of d   | rilling,   | inside     | e casing                 |           | Contractor: GeoLogic Sampler Type: Split spoon ID 1.375" OD 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | "    |
|             |             |           |            |            |            |                          |           | Foreman: John Galvin Hammer Wt.: 140 lb Fall: 30"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|             |             |           |            |            |            | <u>_</u>                 |           | Start Date: 4/24/2008 Drill Technique: Drive&Wash ID 4" OD 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,"   |
|             | £           | Blows     | Sample No. | _          | _          | Blows/6" or<br>Core Time | <u>-</u>  | Finish Date: 4/24/2008 Rig Type: Mobile Drill Truck-mounted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1    |
|             | Depth (ft.) | 읆         | ole        | Pen. (in.) | Rec. (in.) | s/6                      | PID (ppm) | SACE Staff: J. Turner Northing: 3007447.7 Easting: 786895.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ıt   |
|             | pt          | S.        | ш          | <u>.</u>   | S          | e Š                      | 3         | Surface El.: + 83.9 ft Datum: Vert: BCB; Horiz. NAD83 Equipmen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t    |
|             | De          | Cas.      | Sa         | Pe         | Re         | ဗိ ဗိ                    | 뭅         | Description & Classification Stratum Installed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| ╁           |             |           |            |            |            |                          |           | 7" Asphalt Driller adv. Roller bit to 1ft Asphalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T    |
|             |             | push      |            |            |            |                          | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ī    |
|             | 1           | 7*        | SS-1       | 7          | 7          | 51                       | 0.9       | 3" Very dense, black and gray, medium to coarse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|             |             |           |            |            |            | 50/1"                    |           | SAND (SP), wet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L    |
| L           |             | 6*        |            |            |            |                          |           | 4" Very dense, brown fine to medium SAND, trace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ŀ    |
|             | 2           |           | SS-2       | 24         | 7          | 43                       | 0         | silt, SP), wet.  Dense, gray-brown, fine to medium SAND, some Silt,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H    |
| ⊩           | 3           | 42        | 33-2       | 24         |            | 29                       | U         | little Gravel (SM), wet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ŀ    |
| ┢           |             |           |            |            |            | 17                       |           | ilitile Graver (GM), wet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ŀ    |
| ┢           |             | 31        |            |            |            | 14                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ŀ    |
| ╫           | 5           | 0.4       | SS-3       | 24         | 8          | 19                       | 0         | 6" Similar to S-2 - corrosion sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ŀ    |
| ╟           |             | 81        |            |            |            | 36                       |           | 2" Very stiff, dark brown SILT, some fine Sand, trace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T    |
|             |             | 41        |            |            |            | 19                       |           | organics, (ML), likely former topsoil, wet - geo sample. ㅁ _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|             |             | 71        |            |            |            | 12                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|             | 7           | 16        | SS-4       | 24         | 7          | 17                       | 0         | Very dense, gray fine to medium SAND and GRAVEL,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ļ    |
| $\Vdash$    |             |           |            |            |            | 24                       |           | organics, (ML), likely former topsoil, wet - geo sample.  Very dense, gray fine to medium SAND and GRAVEL,  little (-) Silt (SM), wet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -    |
| ╟           |             | 87        |            |            |            | 46<br>30                 |           | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | }    |
| ╟           | 9           |           | SS-5       | 3          | 1          | 50/3"                    | 0         | Very dense, gray and black, fine to coarse SAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +    |
| ╟           | 9.5         |           | R-1        | 12         | 12         | 6 min/ft                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 上    |
| ╫           |             |           |            |            |            | 2,70                     |           | and GRAVEL (SW), piece of gravel in spoon tip, wet.  R-1 Very hard, black, fresh, fine to medium grained  Dioritic rock, joints near horiz, to near vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ŀ    |
|             | R-2         |           | R-2        | 24         | 19         | 6 min/ft                 |           | Dioritic rock, joints near horiz. to near vertical,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Γ    |
|             |             |           |            |            |            |                          |           | also healed joints with veins of minearal infilling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|             |             |           |            |            |            | 6 min/ft                 |           | Core barrel jammed. RQD = 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L    |
|             |             |           |            |            |            |                          |           | R-2 Very hard, black, fresh, fine grained Dioritic rock with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L    |
| L           |             |           |            |            |            |                          |           | white veins of minear infilling in healed joints, joints                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L    |
| F           |             |           |            |            |            |                          |           | near horiz. to ~45 deg., spaced about 1-4 in.<br>RQD = 4/24" = 17%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -    |
| ⊩           |             |           |            |            |            |                          |           | Boring terminated at about 12.5 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| ┢           |             |           |            |            |            |                          |           | Bonng terminated at about 12.0 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -    |
| ┪           |             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|             |             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -    |
|             |             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|             |             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L    |
| L           |             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ŀ    |
| F           |             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ŀ    |
| ╟           |             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F    |
| ╟           |             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -    |
| ╟           |             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| ╁           |             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ľ    |
|             |             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ī    |
| L           |             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L    |
| L           |             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L    |
| ╟           |             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L    |
| ╟           |             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -    |
| ╟           |             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | }    |
| ╟           |             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ╁    |
| ╟           |             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ŀ    |
| ╁           |             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ľ    |
| ╟           |             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | j    |
|             |             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|             |             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L    |
| $\parallel$ |             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L    |
| F           |             |           |            | <u> </u>   | <u> </u>   |                          |           | ■ ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|             | ķ           | 1. Drilli | ng techniq | ue adde    | ed wate    | r to boring              | . Wate    | or levels may not be indicative of natural groundwater level.  Stephens Associa Consulting E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tes  |
|             | emarks      | _         | _          |            |            |                          |           | Processor Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of |      |
|             | en          |           |            | •          |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stru |
| L           | <u>~</u>    |           | ons betwee |            | ration I   |                          |           | r time should be expected. Hydrology &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 200  |
| _           |             | g No.:    |            | B-21       |            | Locatio                  | n:        | See Exploration Location Plan 668 Main Street, Wilmington, MA 01887 (978) 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8-2  |

|      |             |           | Gro          | undwa                                            | iter:      |                          |           | Project: MWRA Pipeline Project, Contract No. 6905                                                 | Boring                              | <b>g No.</b> B-2 | 22                    |
|------|-------------|-----------|--------------|--------------------------------------------------|------------|--------------------------|-----------|---------------------------------------------------------------------------------------------------|-------------------------------------|------------------|-----------------------|
|      | Dept        | h:        | 3.1 ft.      |                                                  |            |                          |           | Location: Saugus, MA Project Number: 026-08                                                       | 8-007 <b>Sh</b>                     | eet 1 of         | 1                     |
|      | Time        | :         | End of d     | Irilling,                                        | , inside   | e casing                 |           |                                                                                                   | oon <b>ID</b> 1.3                   | 75" <b>OD</b> 2" |                       |
|      |             |           |              |                                                  |            |                          |           | Foreman: John Galvin Hammer Wt.: 140 lb                                                           | Fall:                               | 30"              |                       |
|      |             | ဖွ        | ö            |                                                  |            | ٠ a                      |           |                                                                                                   | ash ID 4                            |                  |                       |
|      | ft.)        | Blows     | Ž            | ·                                                | <u>.</u>   | 3" (                     | Œ         |                                                                                                   | rill Truck-m                        |                  | S)                    |
|      | )<br>       | 8         | ble          | Ē                                                | Ë          | /s/                      | ldd       | SACE Staff: J. Turner Northing: 3007507.7 E                                                       |                                     | 786995.3         | ar                    |
|      | Depth (ft.) | Cas.      | Sample No.   | Pen. (in.)                                       | Rec. (in.) | Blows/6" or<br>Core Time | PID (ppm) | Surface El.: + 85.3 ft Datum: Vert: BCB; Horiz                                                    |                                     | Equipment        | Remarks               |
| 0 —  | ۵           | Ö         | ΐ            | ď                                                | Ř          | шÖ                       |           | Description & Classification                                                                      | Stratum                             | Installed        | Ř                     |
| _    |             | push      |              |                                                  |            |                          |           | 7" Asphalt Driller adv. Roller bit to 1ft                                                         | Asphalt                             |                  | 4                     |
|      | 1           |           | SS-1         | 24                                               | 16         | 12                       |           | 5" Concrete<br>5" Dense, gray, medium SAND (SP), wet.                                             | Concrete                            |                  | 1                     |
|      | -           | 49        | 33-1         | 24                                               | 10         | 37                       |           | 11" Very dense, brown fine to medium SAND, some                                                   |                                     |                  |                       |
|      |             |           |              |                                                  |            | 46                       |           | Gravel, little Silt (SM), moist                                                                   |                                     |                  |                       |
|      |             | 71        |              |                                                  |            | 42                       |           |                                                                                                   | $\nabla$                            |                  |                       |
|      | 3           | 33        | SS-2         | 24                                               | 14         | 33                       |           | Very dense, brown fine to medium SAND, trace gravel,                                              |                                     |                  |                       |
|      |             | 55        |              |                                                  |            | 41                       |           | trace silt (SP), moist.                                                                           |                                     |                  |                       |
|      |             | 81        |              |                                                  |            | 39                       |           |                                                                                                   | اب ـا                               |                  |                       |
| 5 —  | 5           |           | SS-3         | 24                                               | 9          | 40<br>33                 |           | Very dense, gray brown fine to coarse SAND and                                                    | 밀모                                  |                  |                       |
|      |             | 74        | 33-3         | 24                                               | 9          | 30                       |           | GRAVEL, little Silt (SM), rust staining over ~2"                                                  | PROBABLE<br>SAND AND<br>RAVEL FILI  |                  |                       |
|      |             | 400       |              |                                                  |            | 47                       |           | length near middle of sample, wet.                                                                | Ş Ž Ş                               |                  |                       |
|      |             | 103       |              |                                                  |            | 44                       |           |                                                                                                   | PROBABLE<br>SAND AND<br>GRAVEL FILL |                  |                       |
|      | 7           |           | SS-4         | 3                                                | 0          | 50/3"                    |           | No recovery.                                                                                      | .                                   |                  |                       |
|      | _           |           | D 1          | 40                                               | 47         | E                        |           | Vanchard blook front fire maked District                                                          |                                     |                  |                       |
|      | 8           | <u> </u>  | R-1          | 48                                               | 47         | 5 min/ft                 |           | Very hard, black, fresh, fine grained Dioritic rock, fractures spaced 15-32 in., dipping ~30 deg. |                                     |                  | $\  \cdot \ $         |
|      | -           |           |              | <del>                                     </del> |            | 6 min/ft                 |           | RQD = 47/48" = 98%                                                                                |                                     |                  |                       |
| 40   |             |           |              |                                                  |            | 0 11111 1/10             |           | 1145 = 11710 = 5576                                                                               |                                     |                  |                       |
| 10 — |             |           |              |                                                  |            | 5 min/ft                 |           |                                                                                                   |                                     |                  |                       |
|      |             |           |              |                                                  |            |                          |           |                                                                                                   | ROCK                                |                  |                       |
|      |             | <br>      |              |                                                  |            | 5 min/ft                 |           | Desire two installed about 40 ft                                                                  | RO                                  |                  |                       |
|      |             |           |              |                                                  |            |                          |           | Boring terminated at about 12 ft.                                                                 |                                     |                  |                       |
|      |             |           |              |                                                  |            |                          |           |                                                                                                   |                                     |                  |                       |
|      |             |           |              |                                                  |            |                          |           |                                                                                                   |                                     |                  |                       |
|      |             | ļ         |              |                                                  |            |                          |           |                                                                                                   |                                     |                  | (                     |
|      |             |           |              |                                                  |            |                          |           |                                                                                                   |                                     |                  |                       |
| 15 — |             |           |              |                                                  |            |                          |           |                                                                                                   |                                     |                  |                       |
|      |             | <u> </u>  |              |                                                  |            |                          |           |                                                                                                   |                                     |                  | (nennennennenne       |
|      |             |           |              |                                                  |            |                          |           |                                                                                                   |                                     |                  |                       |
|      |             | Ì         |              |                                                  |            |                          |           |                                                                                                   |                                     |                  |                       |
|      |             |           |              |                                                  |            |                          |           |                                                                                                   |                                     |                  |                       |
|      |             |           |              |                                                  |            |                          |           |                                                                                                   |                                     |                  |                       |
|      |             |           |              |                                                  |            |                          |           |                                                                                                   |                                     |                  |                       |
|      |             |           |              |                                                  |            |                          |           |                                                                                                   |                                     |                  |                       |
|      |             | <br>      |              |                                                  |            |                          |           |                                                                                                   |                                     |                  |                       |
| 20 — |             |           |              |                                                  |            |                          |           |                                                                                                   |                                     |                  | <b>├</b> ╢            |
|      | L           | <u></u>   |              |                                                  |            |                          |           |                                                                                                   |                                     |                  |                       |
|      |             |           |              |                                                  |            |                          |           |                                                                                                   |                                     |                  |                       |
|      |             |           |              |                                                  |            |                          |           |                                                                                                   |                                     |                  |                       |
|      | <b> </b>    |           |              | <u> </u>                                         |            |                          |           |                                                                                                   |                                     |                  |                       |
|      |             |           |              | <del>                                     </del> |            |                          |           |                                                                                                   |                                     |                  |                       |
|      |             | †         |              |                                                  |            |                          |           |                                                                                                   |                                     |                  |                       |
|      |             |           |              |                                                  |            |                          |           |                                                                                                   |                                     |                  |                       |
| 25 — |             |           |              |                                                  |            |                          |           |                                                                                                   |                                     |                  |                       |
| 20   |             | ļ         |              |                                                  |            |                          |           |                                                                                                   |                                     |                  |                       |
|      | <b> </b>    |           |              | <u> </u>                                         |            |                          |           |                                                                                                   |                                     |                  |                       |
|      | -           |           |              | <del>                                     </del> |            |                          |           |                                                                                                   |                                     |                  |                       |
|      |             |           |              |                                                  |            |                          |           |                                                                                                   |                                     |                  |                       |
|      |             |           |              |                                                  |            |                          |           |                                                                                                   |                                     |                  |                       |
|      | S           | 1. Drilli | ing techniq  | ue adde                                          | ed wate    | r to boring              | Wate      | er levels may not be indicative of natural groundwater level.                                     | Steph                               | ens Associate    | es                    |
|      | Remarks     |           |              |                                                  |            |                          |           |                                                                                                   |                                     | Consulting Eng   | ineers                |
|      | ) iii       | Soil/ro   | ck strata ar | nd groui                                         | ndwatei    | surface,                 | where     | ndicated, are approximate. Transitions may be gradual.                                            | Insightful, (<br>saving Sol         | utions Gent      | tructural<br>echnical |
|      | Ä           | Variati   | ons betwee   | en explo                                         | ration I   | ocations a               | ind ove   | r time should be expected.                                                                        | for Building<br>Infrastructu        | as and           |                       |
|      | Borin       | g No.:    |              | B-22                                             |            | Locatio                  | n:        | See Exploration Location Plan 668 Main Street, Wilming                                            | ton, MA 018                         | 887 (978) 988    | -2115                 |
|      |             |           |              |                                                  |            |                          |           |                                                                                                   |                                     |                  |                       |

| Depti       | 1:        | Gro        | undwa      |            |                          |           | Project:MWRA Pipeline Project, Contract No. 6905Location:Saugus, MAProject Number:026-08-06                                                                                                                                                                                                                                                                                                                 | Boring<br>07 She              |                                             |
|-------------|-----------|------------|------------|------------|--------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------|
| Depth (ft.) | Blows     | Sample No. | Pen. (in.) | Rec. (in.) | Blows/6" or<br>Core Time | PID (ppm) | Contractor:         GeoLogic         Sampler Type:         Split spool           Foreman:         John Galvin         Hammer Wt.:         140 lb           Start Date:         4/2/2008         Drill Technique:         Drive&Wash           Finish Date:         4/3/2008         Rig Type:         Mobile Drill           SACE Staff:         J. Turner         Northing:         3007625.9         East | Fall: 1 ID 4" Truck-moting: 7 | 30"<br><b>OD</b> 4.5"<br>ounted<br>'86929.9 |
| Dep         | push Cas. | Sam        | Pen        | Rec        | Blo                      | PID       | ·                                                                                                                                                                                                                                                                                                                                                                                                           | Stratum<br>Asphalt            | Equipment<br>Installed                      |
| 1           |           | SS-1       | 14         | 6          | 7                        | 0         | 3" Dense gray medium SAND (SP), wet.                                                                                                                                                                                                                                                                                                                                                                        | _                             |                                             |
|             | 30<br>69  |            |            |            | 53<br>50/2"              |           | 3" Dense, brown medium SAND, trace fine sand,<br>trace gravel (SP), wet.                                                                                                                                                                                                                                                                                                                                    | 립                             |                                             |
| 3           | 62        | SS-2       | 14         | 7          | 83                       | 0         | Very dense, gray-brown fine to medium SAND,                                                                                                                                                                                                                                                                                                                                                                 | AVE                           |                                             |
|             |           |            |            |            | 72<br>50/2"              |           | some Gravel, little Silt (SP-SM), wet.                                                                                                                                                                                                                                                                                                                                                                      | 3/GR                          |                                             |
| 5           | 90        | SS-3       | 4          | 2          | 100/4"                   | 0         | Very dense, black, brown and gray GRAVEL, some                                                                                                                                                                                                                                                                                                                                                              | LDEF                          |                                             |
|             | 153<br>63 |            |            |            | 100/4                    |           | coarse Sand (GP), wet - Fill.  Driller noted boulders that skewed and bent casing                                                                                                                                                                                                                                                                                                                           | BOULDER/GRAVEL FILL           |                                             |
| 7           |           | SS-4       | 24         | 8          | 28                       | 0         | 2" Dense, dark brown non-plastic SILT and fine SAND,                                                                                                                                                                                                                                                                                                                                                        |                               |                                             |
|             |           |            |            |            | 7<br>64                  |           | trace organics (ML) - former topsoil. 6" Very dense, light brown non-plastic SILT, some                                                                                                                                                                                                                                                                                                                     | PROBABLE SAND<br>AND GRAVEL   |                                             |
|             |           |            |            |            | 39                       |           | fine to medium SAND, little Gravel (ML), wet. Driller advanced roller bit ahead of casing to 9 ft.                                                                                                                                                                                                                                                                                                          | ABLE<br>GR/                   |                                             |
|             |           |            |            |            |                          |           | Casing broke with driving from 7 to 9 ft. Driller removed casing, abandoned boring, offset and                                                                                                                                                                                                                                                                                                              | 3OB,<br>AND                   |                                             |
|             |           |            |            |            |                          |           | advanced boring B-23A about 2 ft. south.                                                                                                                                                                                                                                                                                                                                                                    | <u>a</u>                      |                                             |
|             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                             |
|             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                             |
|             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                             |
|             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                             |
| -           |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                             |
|             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                             |
|             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                             |
|             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                             |
| -           |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                             |
|             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                             |
|             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                             |
|             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                             |
|             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                             |
|             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                             |
|             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                             |
|             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                             |
|             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                             |
|             |           |            |            |            |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                             |
| emarks      |           |            |            |            |                          |           | er levels may not be indicative of natural groundwater level.  Indicated, are approximate. Transitions may be gradual.                                                                                                                                                                                                                                                                                      | Stephe<br>Insightful, Co      | ns Associate<br>Consulting Eng              |

|                                                  | Gro             | undwa      | iter:      |                          |           | Project: MWRA Pipeline Project, Contract No. 6905                                                                 | <u>Bo</u> rin               | g No. B      |
|--------------------------------------------------|-----------------|------------|------------|--------------------------|-----------|-------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------|
| Depth:                                           | 7 ft.           |            |            |                          |           |                                                                                                                   | -007 <b>Sh</b>              |              |
| Time:                                            | End of D        | Drilling   |            |                          |           |                                                                                                                   | oon <b>ID</b> 1.3           |              |
|                                                  |                 |            |            |                          |           | Foreman: John Galvin Hammer Wt.: 140 lb                                                                           | Fall:                       | 30"          |
| _ ×                                              | ું              |            |            | o e                      | •         | Start Date: 4/3/2008 Drill Technique: Drive&Wa Finish Date: 4/3/2008 Rig Type: Mobile Dr                          | ash ID 4                    |              |
| Depth (ft.)                                      | Sample No.      | Pen. (in.) | Rec. (in.) | Blows/6" or<br>Core Time | PID (ppm) | SACE Staff: J. Turner Northing: 3007625.9 Ea                                                                      |                             | 786929.9     |
| at l                                             | l m             | <u>ا</u>   | c. (       | ws<br>re                 | d) (      | Surface El.: + 88.5 ft Datum: Vert: BCB; Horiz                                                                    |                             | Equipme      |
| Deptl                                            | Sa              | Pe         | Re         | ခြဲ ပိ                   | ЫC        | Description & Classification                                                                                      | Stratum                     |              |
|                                                  |                 |            |            |                          |           |                                                                                                                   |                             |              |
|                                                  |                 |            |            |                          |           |                                                                                                                   |                             |              |
|                                                  |                 |            |            |                          |           |                                                                                                                   | <u> </u>                    |              |
|                                                  |                 |            |            |                          |           |                                                                                                                   | Α                           |              |
|                                                  |                 |            |            |                          |           |                                                                                                                   | GR                          |              |
|                                                  |                 |            |            |                          |           | Refer to log of boring B-23 for upper 9 ft.                                                                       | <u> </u>                    |              |
|                                                  |                 |            |            |                          |           |                                                                                                                   | BOULDER/GRAVEL FILI         |              |
|                                                  |                 |            |            |                          |           |                                                                                                                   | INC                         |              |
|                                                  |                 |            |            |                          |           | Driller advanced rollerbit to 4 ft., 4" casing to 4',                                                             | ĕ                           |              |
|                                                  |                 |            | -          |                          |           | roller bit to 9 ft., 3" casing to 9 ft. Driller encountered                                                       |                             |              |
| $\vdash$                                         |                 |            | -          |                          |           | numerous boulders - difficult drilling.                                                                           | $\nabla$                    |              |
|                                                  |                 |            |            |                          |           | Change indicated based on boring B-23                                                                             |                             |              |
|                                                  |                 |            |            |                          |           | •                                                                                                                 |                             |              |
| $\Vdash$                                         |                 | -          |            |                          |           |                                                                                                                   | PROBABLE SAND<br>AND GRAVEL |              |
| 9                                                | S-5             | 16         | 0.5        | 34                       |           | Piece of gravel in spoon tip.                                                                                     | S/S                         |              |
|                                                  |                 |            | 0.0        | 64                       |           | r loos of graver in opeon up.                                                                                     | SLE<br>3R/                  |              |
|                                                  |                 |            |            | 50/4"                    |           |                                                                                                                   | ROBABLE SAN<br>AND GRAVEL   |              |
|                                                  |                 |            |            |                          |           | Driller advanced roller bit to 12.5 ft. then casing.                                                              | RO<br>A<br>A                |              |
|                                                  |                 |            |            |                          |           | Driller indicated top of rock at about 12 ft. based                                                               | Ф                           |              |
|                                                  |                 |            |            |                          |           | on roller bit action                                                                                              |                             |              |
| 12.5                                             | R-1             | 60         | 53         | 1 min                    |           | Very hard, fresh to slightly weathered, black, fine                                                               |                             |              |
|                                                  |                 |            |            | 5 min                    |           | grained Dioritic rock, closely spaced joints (~2-10"), slight rust staining, joints near horizontal to low angle  |                             |              |
|                                                  |                 |            |            | 3 111111                 |           | dipping up to ~30 degrees, undulating, no infilling                                                               |                             |              |
|                                                  |                 |            |            | 4 min                    |           | observed, also healed joints with veins of minearal                                                               |                             |              |
|                                                  |                 |            |            | E min                    |           | infilling. Fracture zone of gravel ~4 in. long near middle of core.                                               |                             |              |
|                                                  |                 |            |            | 5 min                    |           | RQD = 35/60" = 58%                                                                                                |                             |              |
|                                                  |                 |            |            | 4 min                    |           |                                                                                                                   | ~                           |              |
| 47.5                                             | D.0             | 00         | 0.4        | 0                        |           | Manufacial foods blood for analysis Bloods and subtra                                                             | ROCK                        |              |
| 17.5                                             | R-2             | 36         | 31         | 3 min                    |           | Very hard, fresh, black, fine grained Dioritic rock, white pegmatitic seam near bottom of run with joint at seam. | R                           |              |
|                                                  |                 |            |            | 2 min                    |           | Healed joints with veins of mineral infilling. No other                                                           |                             |              |
|                                                  |                 |            |            |                          |           | joints in run. Joints dip at ~10-30 deg., no infilling                                                            |                             |              |
| <del>                                     </del> |                 | -          |            | 3 min                    |           | observed.<br>RQD = 30/36" = 83%                                                                                   |                             |              |
|                                                  |                 |            |            |                          |           | 1/4D - 30/30 - 03/8                                                                                               |                             |              |
|                                                  |                 |            |            |                          |           | Boring terminated at about 20.5 ft.                                                                               |                             |              |
|                                                  |                 |            |            |                          |           |                                                                                                                   |                             |              |
| $\parallel$                                      |                 |            | -          |                          |           |                                                                                                                   |                             |              |
| <del>                                     </del> |                 |            |            |                          |           |                                                                                                                   |                             |              |
|                                                  |                 |            |            |                          |           |                                                                                                                   |                             |              |
|                                                  |                 |            | -          |                          |           |                                                                                                                   |                             |              |
| <del>                                     </del> |                 |            |            |                          |           |                                                                                                                   |                             |              |
|                                                  |                 |            |            |                          |           |                                                                                                                   |                             |              |
|                                                  |                 |            |            |                          |           |                                                                                                                   |                             |              |
| <del>                                     </del> |                 |            |            |                          |           |                                                                                                                   |                             |              |
|                                                  |                 |            |            |                          |           |                                                                                                                   |                             |              |
| <b>y</b> 1. C                                    | rilling technia | ue adde    | ed wate    | er to boring             | ı. Wate   | er levels may not be indicative of natural groundwater level.                                                     | Stenh                       | ens Associa  |
| emarks                                           | •               |            |            | J                        |           | · ·                                                                                                               | - Copin                     | Consulting E |

|               |              |            | 0          |            |            |                                                  |           | Duniants MANDA Displies Duriant Contract No. COOF                                                       | Davis             | - Na D 0       |           |
|---------------|--------------|------------|------------|------------|------------|--------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------|-------------------|----------------|-----------|
|               | Dani         | <b>L</b> . |            | undwa<br>' | iter:      | 1 1                                              |           | Project: MWRA Pipeline Project, Contract No. 6905                                                       | Boring            |                | :4        |
|               | Depti        |            | Note 1     |            |            |                                                  |           | Location: Saugus, MA Project Number: 026-08                                                             |                   | eet 1 of       | 1         |
|               | Time         | :          |            |            |            |                                                  |           | <u> </u>                                                                                                | oon <b>ID</b> 1.3 |                |           |
|               |              |            |            |            |            |                                                  |           | Foreman: John Galvin Hammer Wt.: 140 lb                                                                 | Fall:             | 30"            |           |
|               |              | S          | ö          |            |            | ה ה                                              |           |                                                                                                         | ash ID 4          |                |           |
|               | £            | Blows      | Sample No. | ·          | ·          | Blows/6" or<br>Core Time                         | Ē         |                                                                                                         | ill Truck-m       | nounted        | S         |
|               | Depth (ft.)  | ĕ          | <u>e</u>   | Pen. (in.) | Rec. (in.) | s/6                                              | PID (ppm) | SACE Staff: J. Turner Northing: 3007775.0 Ea                                                            | sting:            | 787037.5       | Remarks   |
|               | 효            | S.         | Ĕ          | -          | ن          | e Š                                              | <u> </u>  | Surface El.: + 96.6 ft Datum: Vert: BCB; Horiz                                                          | NAD83             | Equipment      | ms        |
|               | <b>De</b>    | Cas.       | Sal        | Pe         | Re         | မ္က                                              | 吕         | Description & Classification                                                                            | Stratum           | Installed      | Re        |
| 0 —           |              |            |            | _          | _          |                                                  | _         | 6" Asphalt Driller adv. Roller bit to 1ft                                                               | Asphalt           | motanoa        | _         |
|               |              | Push       |            |            |            |                                                  |           | Cobbles                                                                                                 | Cobbles           |                | 1         |
|               | 1            |            | SS-1       | 14         | 8          | 3                                                | 0         | 4" Medium dense, gray medium SAND (SP).                                                                 | Copples           |                |           |
|               | <u>'</u>     | 30         | - 00 1     | 17         | -          | 20                                               |           | 4" Dense, brown fine to medium SAND, little Gravel,                                                     |                   |                |           |
|               |              |            |            |            |            | 50/2"                                            |           | trace silt (SP), wet.                                                                                   |                   |                |           |
|               |              | 38         |            |            |            | 30/2                                             |           | trace siit (or ), wet.                                                                                  |                   |                |           |
|               | 3            |            | SS-2       | 4          | 2          | 50/4"                                            | 0         | Very dense, light brown, fine to coarse SAND, little                                                    |                   |                |           |
|               |              | 23         | 00-2       |            |            | 30/4                                             | - 0       | non-plastic Silt, little Gravel (SM), wet                                                               |                   |                |           |
|               |              |            |            |            |            |                                                  |           | non-plastic ont, little oraver (ow), wet                                                                | ╛                 |                |           |
|               |              | 118        |            |            |            |                                                  |           | 1                                                                                                       | ᇤ                 |                |           |
| 5 —           | 5            |            | SS-3       | 20         | 8          | 40                                               | 0         | Very dense, light brown, fine to medium SAND and                                                        | Щ                 |                | ├         |
|               |              | 41         | 33-3       | 20         | 0          | 46                                               | U         | non-plastic SILT, (SM), wet                                                                             | BI                |                |           |
|               | -            |            |            |            |            | 83                                               |           |                                                                                                         | ďβ                |                |           |
|               | <b> </b>     | 105        |            |            |            | 50/2"                                            |           | Driller advanced roller bit ahead of casing from 5-7'                                                   | PROBABLE FILL     |                |           |
|               | 7            |            | SS-4       | 2          | 2          | 50/2"                                            | 0         | Similar to S.2. expent land! Croup!                                                                     | 급                 |                |           |
|               |              |            | 33-4       |            |            | 50/2                                             | U         | Similar to S-3, except 'and' Gravel                                                                     |                   |                |           |
|               | <b> </b>     |            |            |            |            |                                                  |           | Driller advanced roller bit ahead of casing ~6 in. and lost water, then advanced casing to ~7.5 ft. and | <b>∤</b> -        |                |           |
|               |              | 1          |            |            |            | -                                                |           | end for night. Pull casing to ~7.5 ft. and cap                                                          |                   |                |           |
|               | 9            |            | R-1        | 48         | 38         | 5 min                                            |           |                                                                                                         |                   |                |           |
|               | 9            |            | K-1        | 40         | 30         | 3 111111                                         |           | Driller advanced roller bit to 9 ft. and set 3" casing                                                  |                   |                |           |
| 10 —          |              |            |            |            |            | 4 min                                            |           | Driller indicated top of weathered rock ~8 ft                                                           |                   |                |           |
|               |              |            |            |            |            | 4 min                                            |           | 26" Very hard, fresh to slightly weathered, black,                                                      |                   |                |           |
|               |              |            |            |            |            | 4 min                                            |           | fine grained Dioritic rock, no joints or fractures                                                      |                   |                |           |
|               |              |            |            |            |            | 4 min                                            |           | 12" Very hard, moderately weathered, pink and gray,                                                     |                   |                |           |
|               |              |            |            |            |            | 2 min                                            |           | medium grained Granitic rock, highly fractured (gravel),                                                |                   |                |           |
|               |              |            |            |            |            | 3 min                                            |           | some rust staining. RQD = 54%                                                                           | ROCK              |                |           |
|               | 12           |            | D 0        | 24         | 0          | 2 min/2                                          | ££        | core barrel jammed at about 13 ft.                                                                      | Õ                 |                |           |
|               | 13           |            | R-2        | 24         | 8          | 3 min/2                                          | II.       | Very hard, moderately weathered, medium grained                                                         | <u> </u>          |                |           |
|               |              |            |            |            |            |                                                  |           | orange and pink Granitic rock (gravel), some Dioritic                                                   |                   |                |           |
|               |              |            |            |            |            |                                                  |           | fragments, highly fractured. RQD = 0%                                                                   |                   |                |           |
| 15 —          | 15           |            | D 2        | 26         | 20         |                                                  |           | Core barrel jammed about 15 ft.                                                                         |                   |                |           |
|               | 15           |            | R-3        | 36         | 20         |                                                  |           | 8" Gravel 12" Very hard, moderately weathered, medium grained                                           |                   |                |           |
|               |              |            |            |            |            |                                                  |           |                                                                                                         |                   |                |           |
|               |              |            |            |            |            |                                                  |           | orange and pink Granitic rock, highly fractured, some                                                   |                   |                |           |
|               |              |            |            |            |            | -                                                |           | rust staining in joints RQD = 0%                                                                        |                   |                |           |
|               |              | 1          |            |            |            | -                                                |           | NQD = 0 /0                                                                                              |                   |                |           |
|               | <b> </b>     | <u> </u>   |            | -          | <u> </u>   | <del>                                     </del> |           | Roring terminated shout 19 ft                                                                           |                   |                |           |
|               | <b> </b>     | 1          |            |            |            |                                                  |           | Boring terminated about 18 ft.                                                                          |                   |                |           |
|               | <b> </b>     |            |            |            |            |                                                  |           | 1                                                                                                       |                   |                |           |
|               | <b> </b>     | 1          |            |            |            |                                                  |           | 1                                                                                                       |                   |                |           |
| 20 —          |              |            |            |            |            |                                                  |           | 1                                                                                                       |                   |                | <b></b> - |
|               | -            | 1          |            |            |            | 1                                                |           | 1                                                                                                       |                   |                |           |
|               | -            |            |            |            |            |                                                  |           | 1                                                                                                       |                   |                |           |
|               |              | +          |            | 1          |            | <del>                                     </del> |           | 1                                                                                                       |                   |                |           |
|               | <b> </b>     |            |            |            |            |                                                  |           | 1                                                                                                       |                   |                |           |
|               | <b> </b>     | 1          |            |            |            |                                                  |           | 1                                                                                                       |                   |                |           |
|               | <b> </b>     |            |            |            |            |                                                  |           | 1                                                                                                       |                   |                |           |
|               | <b> </b>     | 1          |            |            |            |                                                  |           | 1                                                                                                       |                   |                |           |
|               |              |            |            |            |            |                                                  |           | 1                                                                                                       |                   |                |           |
|               | <b> </b>     | 1          |            |            |            |                                                  |           | 1                                                                                                       |                   |                |           |
| <u> 2</u> 5 — | -            |            |            |            |            | 1                                                |           | 1                                                                                                       |                   |                | <b></b>   |
|               | <b> </b>     | ł          |            | -          | <u> </u>   | <del>                                     </del> |           | 1                                                                                                       |                   |                |           |
|               | <b> </b>     |            |            |            |            |                                                  |           | 1                                                                                                       |                   |                |           |
|               | <b> </b>     | 1          |            |            |            |                                                  |           | 1                                                                                                       |                   |                |           |
|               | <b> </b>     |            |            |            |            |                                                  |           | 1                                                                                                       |                   |                |           |
|               | <b> </b>     | 1          |            |            |            |                                                  |           | 1                                                                                                       |                   |                |           |
|               | <del> </del> |            | <u> </u>   | <u> </u>   | <u> </u>   | <u> </u>                                         |           | <u> </u>                                                                                                | Description 1990  | 2000           |           |
|               | ırks         |            | •          |            |            | er to boring                                     | . Wate    | er levels may not be indicative of natural groundwater level.                                           | Steph             | ens Associate  | es        |
|               | ī            | at 5 ft.   | - no water | present    | t.         |                                                  |           |                                                                                                         |                   | Consulting Eng | meers     |

Soil/rock strata and groundwater surface, where indicated, are approximate. Transitions may be gradual. Variations between exploration locations and over time should be expected.

Structural Geotechnical Hydrology & Hydraulics

| cas. Blows     | Samble No.                                                                                         |                                                                | insid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e casing                                                                                       |                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | oon <b>ID</b> 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75" <b>OD</b> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cas.           |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 0009                                                                                         | •                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Cas.           | nple No.                                                                                           |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                | Foreman: John Galvin Hammer Wt.: 140 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Eall:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Cas.           | nple No.                                                                                           |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fall:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Cas.           | n ble N                                                                                            |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Blows/6" or<br>Core Time                                                                       |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Cas.           | əldu                                                                                               | _ ` <b>_</b> `                                                 | <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ę, Ĕ                                                                                           | PID (ppm)                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rill Truck-m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Cas.           | _                                                                                                  | Pen. (in.)                                                     | Rec. (in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s⁄.                                                                                            | do                                                                                                                                                                                                                                             | SACE Staff: J. Turner Northing: 3008011.5 Ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 786969.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | u                                                                                                  | Ŀ.                                                             | ن                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S e                                                                                            | )                                                                                                                                                                                                                                              | Surface El.: + 108.5 ft Datum: Vert: BCB; Horiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . NAD83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Equipmen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | Sa                                                                                                 | ) e                                                            | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | i<br>∺ လ                                                                                       | ;                                                                                                                                                                                                                                              | Description & Classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stratum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Installed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| push           | •                                                                                                  |                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                | _                                                                                                                                                                                                                                              | 6" Asphalt Driller adv. Roller bit to 1ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Asphalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| push           |                                                                                                    |                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                |                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | 00.4                                                                                               | 00                                                             | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00                                                                                             | _                                                                                                                                                                                                                                              | All Dance areas and district to account CAND (CD) such                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | SS-1                                                                                               | 20                                                             | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                                                                                             | 0                                                                                                                                                                                                                                              | 4" Dense, gray medium to coarse SAND (SP), wet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ᇢ핂                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 65                                                                                             |                                                                                                                                                                                                                                                | 11" Very dense, brown fine to coarse SAND,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\exists$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 62*            |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 66                                                                                             |                                                                                                                                                                                                                                                | little Gravel, little Silt, (SW-SM), moist.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s:. ⊃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50/2"                                                                                          |                                                                                                                                                                                                                                                | * Driller advanced rollerbit to 3 ft. then drove casing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| _ 0            | SS-2                                                                                               | 0                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50/0"                                                                                          |                                                                                                                                                                                                                                                | No recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ₽,' E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| un             | R-1                                                                                                | 12                                                             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 min/ft                                                                                       |                                                                                                                                                                                                                                                | Granitic boulder.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| spun<br>casing |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                | RQD=0%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0              |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PROBABLE SAND,<br>GRAVEL, BOULDER<br>FILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 137            | SS-3                                                                                               | 24                                                             | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27                                                                                             | 49                                                                                                                                                                                                                                             | To very defise, drange-blown, medium to coarse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 131            | -                                                                                                  |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 57                                                                                             |                                                                                                                                                                                                                                                | SAND and GRAVEL (SP), wet. Note 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\overline{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 200            |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34                                                                                             |                                                                                                                                                                                                                                                | 4" Very dense, brown fine to coarse SAND, little Gravel,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ∠96            |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 47                                                                                             |                                                                                                                                                                                                                                                | some non-plastic Silt (SM), wet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | SS-4                                                                                               | 5                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                | 2.7                                                                                                                                                                                                                                            | Very dense, brown and black medium to coarse SAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , -                                                                                            |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | R-2                                                                                                | 48                                                             | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 min/ft                                                                                       | <u> </u>                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    | Ī                                                              | Ī                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                              |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 min/ft                                                                                       |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 min/ft                                                                                       |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 111111/10                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 min/ft                                                                                       |                                                                                                                                                                                                                                                | NQD = 20/40 = 42/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ∝                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 111111/10                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                | Paring terminated at about 12 F ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                | Boning terminated at about 12.5 it.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | -                                                                                                  |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                              |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                | Drilling technique added water to boring. Water levels mov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                | not be mulcative of natural groundwater level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                    | <del></del>                                                    | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                |                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1201 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2-11-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                |                                                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                | samples from top 10", geotech sample from bottom 4",                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Steph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ens Associa<br>Consulting E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| corrosi        | on sample                                                                                          | from bo                                                        | oth top                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and bottor                                                                                     | n.                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Soil/ro        | ck strata ar                                                                                       | nd groui                                                       | ndwate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r surface,                                                                                     | where i                                                                                                                                                                                                                                        | indicated, are approximate. Transitions may be gradual.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | saving Sol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | itions Go                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| √ariatio       | ons betwee                                                                                         | en explo                                                       | ration I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ocations a                                                                                     | nd ove                                                                                                                                                                                                                                         | r time should be expected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | for Building<br>Infrastructo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | is and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 128            | 296  296  201  201  202  203  203  204  204  204  205  205  206  207  207  207  207  207  207  207 | R-2  R-2  I. Sample SS-3, corrosion sample Soil/rock strata al | SS-4 5  R-2 48  R-2 48  I. Sample SS-3, environe corrosion sample from both social from the corrosion sample from both social from the corrosion sample from both social from the corrosion sample from both social from the corrosion sample from both social from the corrosion sample from both social from the corrosion sample from both social from the corrosion sample from both social from the corrosion sample from both social from the corrosion sample from both social from the corrosion sample from both social from the corrosion sample from both social from the corrosion sample from both social from the corrosion sample from both social from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample from the corrosion sample | SS-4 5 1  R-2 48 26  R-2 48 26  R-3 48 26  R-4 8 26  R-5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 296  SS-4 5 1 100/5"  R-2 48 26 5 min/ft  1 min/ft  1 min/ft  1 min/ft  1 sample SS-3, environmental jar and VC corrosion sample from both top and bottor soil/rock strata and groundwater surface, /ariations between exploration locations a | 296  SS-4 5 1 100/5" 2.7  R-2 48 26 5 min/ft.  4 min/ft.  1 min/ft.  1 min/ft.  1 min/ft.  1 sample SS-3, environmental jar and VOA vial corrosion sample from both top and bottom.  Soil/rock strata and groundwater surface, where invariations between exploration locations and over the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to the corresponding to t | 296 34 4" Very dense, brown fine to coarse SAND, little Gravel, some non-plastic Silt (SM), wet.  SS-4 5 1 100/5" 2.7 Very dense, brown and black medium to coarse SAND and GRAVEL (SP/GP) - likely wash material.  R-2 48 26 5 min/ft.  Very hard, black, fresh to slightly weathered, fine grained Dioritic rock, upper 20" one joint dipping -30 deg., lower 28 in. little recovery, fragments <2 in., core barrel advanced rapidly, likely sand seam or highly weathered rock.  RQD = 20/48" = 42%  Boring terminated at about 12.5 ft.  Drilling technique added water to boring. Water levels may not be indicative of natural groundwater level.  Sample SS-3, environmental jar and VOA vial samples from top 10", geotech sample from bottom 4", corrosion sample from both top and bottom.  Solirock strata and groundwater surface, where indicated, are approximate. Transitions may be gradual. | 296 34 4" Very dense, brown fine to coarse SAND, little Gravel, some non-plastic Silt (SM), wet.  SS-4 5 1 100/5" 2.7 Very dense, brown and black medium to coarse SAND and GRAVEL (SP/GP) - likely wash material.  Driller advanced rapidly, likely sand seam or highly weathered, fine grained Dioritic rock, upper 20" one joint dipping -30 deg, lower 28 in, little recovery, fragments <2 in, core barrel advanced rapidly, likely sand seam or highly weathered rock.  RQD = 20/48" = 42%  Boring terminated at about 12.5 ft.  Drilling technique added water to boring. Water levels may not be indicative of natural groundwater level.  Sanple SS-3, environmental jar and VOA vial samples from top 10", geotech sample from bottom 4", corcusson sample from bott top and bottom.  Sanple SS-3, environmental jar and VOA vial samples from top 10", geotech sample from bottom 4", corcusson sample from bott top and bottom.  Scelincos strata and groundwater surface, where indicated, are approximate. Transitions may be gradual. |

| Dept        | h:       | 9.5 ft.      | undwa<br>  |            |                          |           | Project: MWRA Pipeline Project, Contract No. 6905<br>Location: Saugus, MA Project Number: 026-08                | <u>Bo</u> rin<br>3-007 <b>Sh</b>           |                                       |
|-------------|----------|--------------|------------|------------|--------------------------|-----------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------|
| Time        | ):       | End of d     | Irilling,  | insid      | e casing                 |           | Contractor: GeoLogic Sampler Type: Split sp                                                                     | oon <b>ID</b> 1.3                          | 75" <b>OD</b> 2                       |
|             |          |              |            |            |                          |           | Foreman: John Galvin Hammer Wt.: 140 lb                                                                         | Fall:                                      | 30"                                   |
|             | S        | i i          |            |            | 5                        |           | Start Date: 4/21/2008 Drill Technique: Drive&W                                                                  | ash <b>ID</b> 4                            | " OD 4.5                              |
| ff.)        | Blows    | Sample No.   | ·          | ·          | Blows/6" or<br>Core Time | Ē         |                                                                                                                 | ill Truck-m                                |                                       |
| Depth (ft.) | B        | <u>e</u>     | Pen. (in.) | Rec. (in.) | s/e                      | PID (ppm) | SACE Staff: J. Turner Northing: 3008057.5 Ea                                                                    |                                            | 787080.0                              |
| pt          | vi.      | Ē            | Ġ.         | ပ္ပဲ       | o e                      | _         | Surface El.: + 111.1 ft Datum: Vert: BCB; Horiz                                                                 | . NAD83                                    | Equipme                               |
| De          | Ca       | Sa           | Pe         | Re         | m S                      | ੂ         | Description & Classification                                                                                    | Stratum                                    | Installed                             |
|             |          |              |            |            |                          |           | 6" Asphalt Driller adv. Roller bit to ~1.2ft                                                                    | Asphalt                                    |                                       |
|             | push     |              |            |            |                          |           | 8" Concrete                                                                                                     | Concrete                                   |                                       |
| 1.2         | pusii    | SS-1         | 7          | 3          | 32                       | 0         | 2" Dense, gray medium SAND (SP), wet.                                                                           |                                            |                                       |
|             |          |              |            |            | 50/1"                    |           | 1" Very dense, brown GRAVEL and fine to coarse                                                                  |                                            |                                       |
|             | 63*      |              |            |            |                          |           | SAND (GW), wet.                                                                                                 | <b>뿔</b> 없                                 |                                       |
|             |          | 00.0         | _          | _          | E0/0#                    |           | *Driller adv. roller bit through boulder to 3 ft., then casing.                                                 | B ∃ ⊣                                      |                                       |
| 3           | 1        | SS-2         | 3          | 0          | 50/3"                    |           | No recovery.                                                                                                    | OBAE<br>JULD<br>FILL                       |                                       |
|             |          |              |            |            |                          |           | Driller advanced roller bit and casing incrementally                                                            | PROBABLE<br>BOULDER<br>FILL                |                                       |
|             | Ŧ        |              |            |            |                          |           | through boulders from about 3 to 7 ft.                                                                          | _                                          |                                       |
|             | 1        |              | 1          | 1          |                          |           | No return on drilling water                                                                                     |                                            |                                       |
|             | 1        |              |            |            |                          |           | ]                                                                                                               |                                            |                                       |
|             |          |              |            |            |                          |           |                                                                                                                 |                                            |                                       |
| <u> </u>    |          | <b>.</b>     | 00         |            | 0                        |           | <br>                                                                                                            |                                            |                                       |
| 7           | 4        | R-1          | 36         | 33         | 6 min/ft                 |           | Very hard, gray, white and black, slightly weathered to                                                         |                                            |                                       |
|             | 1        |              |            |            | 4 min/ft                 |           | fresh, coarse grained Granitic rock, staining in joints, joints spaced 0.5 to 8 in., near horizontal to ~20 deg |                                            |                                       |
|             | †        |              |            |            | <del>  +</del> 111111/1L |           | No water return during coring                                                                                   |                                            |                                       |
|             | 1        |              |            |            | 7 min/ft                 |           | RQD = 18/36" = 50%                                                                                              |                                            |                                       |
|             | 1        |              |            |            |                          |           | 1                                                                                                               |                                            |                                       |
| 10          |          | R-2          | 24         | 24         | 7 min/ft                 |           | Similar to R-1.                                                                                                 | ROCK                                       |                                       |
|             |          |              |            |            |                          |           | RQD=13/24" = 54%                                                                                                | Ď                                          |                                       |
|             | 1        |              |            |            | 5 min/ft                 |           |                                                                                                                 | RC                                         |                                       |
|             |          |              |            |            |                          |           | Barlan tannila stad at abaad 40 ft                                                                              |                                            |                                       |
|             | 4        |              |            |            |                          |           | Boring terminated at about 12 ft.                                                                               |                                            |                                       |
|             |          |              |            |            |                          |           |                                                                                                                 |                                            |                                       |
|             | †        |              |            |            |                          |           |                                                                                                                 |                                            |                                       |
|             |          |              |            |            |                          |           |                                                                                                                 |                                            |                                       |
|             | 1        |              |            |            |                          |           |                                                                                                                 |                                            |                                       |
|             |          |              |            |            |                          |           |                                                                                                                 |                                            |                                       |
|             |          |              |            |            |                          |           |                                                                                                                 |                                            |                                       |
|             | 4        |              |            |            |                          |           |                                                                                                                 |                                            |                                       |
|             |          |              |            |            |                          |           |                                                                                                                 |                                            |                                       |
|             | +        |              |            |            |                          |           |                                                                                                                 |                                            |                                       |
|             |          |              |            |            |                          |           |                                                                                                                 |                                            |                                       |
|             | 1        |              |            |            |                          |           |                                                                                                                 |                                            |                                       |
|             |          |              |            |            |                          |           |                                                                                                                 |                                            |                                       |
|             |          |              |            |            |                          |           |                                                                                                                 |                                            |                                       |
|             | 1        |              |            |            |                          |           |                                                                                                                 |                                            |                                       |
|             | 1        |              |            |            |                          |           | 1                                                                                                               |                                            |                                       |
| <b> </b>    | +        |              |            |            |                          |           | 1                                                                                                               |                                            |                                       |
|             | +        |              |            |            |                          |           | 1                                                                                                               |                                            |                                       |
|             | †        |              |            |            |                          |           |                                                                                                                 |                                            |                                       |
|             | 1        |              |            |            |                          |           |                                                                                                                 |                                            |                                       |
|             |          |              |            |            |                          |           |                                                                                                                 |                                            |                                       |
|             | ↓ ¯      |              |            |            |                          |           |                                                                                                                 |                                            |                                       |
| -           | 1        |              |            |            |                          |           |                                                                                                                 |                                            |                                       |
| -           | +        |              |            |            |                          |           | 1                                                                                                               |                                            |                                       |
|             | +        |              |            |            |                          |           | 1                                                                                                               |                                            |                                       |
| -           | †        |              |            |            |                          |           | 1                                                                                                               |                                            |                                       |
|             |          |              |            |            |                          |           | 1                                                                                                               |                                            |                                       |
|             | 1        |              |            |            | <u> </u>                 |           |                                                                                                                 |                                            |                                       |
| S           | 1. Drill | ing techniq  | ue adde    | ed wate    | r to boring              | Wate      | er levels may not be indicative of natural groundwater level.                                                   | Stenh                                      | ens Associ                            |
| Remarks     | 1        | ~ ¬          |            |            | 9                        |           | , , , , , , , , , , , , , , , , , , , ,                                                                         | Otepin                                     | Consulting I                          |
| Ę           | Soil/ro  | ck strata ar | nd groui   | ndwate     | r surface, v             | where i   | indicated, are approximate. Transitions may be gradual.                                                         | Insightful, saving Sol                     | Cost-<br>utions                       |
| a)          |          |              | •          |            |                          |           | er time should be expected.                                                                                     | saving Sol<br>for Building<br>Infrastructi | utions G<br>as and<br>are Hydrology & |

| L            |                |              | undwa      | ter:       | i                                                | 1         | Project: MWRA Pipeline Project, Contract No. 6905            | Boring                                |                           |          |
|--------------|----------------|--------------|------------|------------|--------------------------------------------------|-----------|--------------------------------------------------------------|---------------------------------------|---------------------------|----------|
| Deptl        |                | 10.9 ft.     |            | <u> </u>   | L.,                                              |           | Location: Saugus, MA Project Number: 026-08                  |                                       |                           |          |
| Time         | :              | End of d     | Irilling,  | insid      | e casing                                         |           |                                                              | oon <b>ID</b> 1.3                     |                           | 1        |
|              |                |              |            |            |                                                  |           | Foreman: John Galvin Hammer Wt.: 140 lb                      | Fall:                                 | 30"                       | 1        |
|              | S              | ċ            |            |            | <b>=</b>                                         |           | Start Date: 4/22/2008 Drill Technique: Drive&Wa              | ash <b>ID</b> 4                       | " <b>OD</b> 4.5"          | 1        |
| E.           | Blows          | 2            | _          | _          | l e                                              | <u>-</u>  | Finish Date: 4/22/2008 Rig Type: Mobile Dr                   | ill Truck-m                           | ounted                    | 1        |
| <b>±</b>     | 36             | <u>o</u>     | .⊑         | .⊑         | ı;e                                              | ρπ        | SACE Staff: J. Turner Northing: 3008360.7 Ea                 |                                       | 787032.6                  | t        |
| <del>ই</del> | <br>           | du           | · ·        | · ;        | (8 €                                             | g)        | Surface El.: + 113.6 ft Datum: Vert: BCB; Horiz.             |                                       | Equipment                 | đ        |
| Depth (ft.)  | Cas.           | Sample No.   | Pen. (in.) | Rec. (in.) | Blows/6" or<br>Core Time                         | PID (ppm) | Description & Classification                                 | Stratum                               | Installed                 | 1        |
|              | 0              | 0)           | <u> </u>   | <u> </u>   | шО                                               | 1         |                                                              |                                       | installed                 | +        |
|              |                |              |            |            |                                                  |           |                                                              | Asphalt                               |                           | ŀ        |
|              | push           | 00.4         | 0.1        |            |                                                  | _         | 3" Concrete                                                  | Concrete                              |                           | -        |
| 1            | F              | SS-1         | 24         | 1          | 31                                               | 0         | Very dense, fine to medium SAND and GRAVEL (SP),             |                                       |                           | L        |
|              |                |              |            |            | 27                                               |           | wet - gravel in spoon tip                                    |                                       |                           | L        |
|              | 56*            |              |            |            | 26                                               |           | *Driller adv. roller bit to 3 ft. then drove casing. Casing  | '' ''                                 |                           | L        |
|              | -              |              |            |            | 61                                               |           | skewed. Driller removed and spun casing to 3 ft.             | PROBABLE<br>BOULDER<br>FILL           |                           |          |
| 3            | _ 0            | SS-2         | 3          | 0          | 50/3"                                            |           | No recovery.                                                 | OBAE<br>ULD<br>FILL                   |                           | L        |
|              | spun<br>asing  |              |            |            |                                                  |           |                                                              | 5 5 7                                 |                           | L        |
|              | spun<br>casing |              |            |            |                                                  |           | Driller adv. Roller bit through boulders to 5 ft., then      | ᇟᅃ                                    |                           | L        |
|              | )              |              |            |            |                                                  |           | spun casing to 5 ft.                                         | l                                     |                           | L        |
| 5            |                | R-1          | 60         | 60         | 6 min/ft                                         |           | Very hard, brown, gray and black, slightly to moderately     |                                       |                           | Γ        |
|              |                |              |            |            |                                                  |           | weathered, medium to coarse grained Granitic rock,           | [                                     |                           | ľ        |
|              |                |              |            |            | 4 min/ft                                         |           | staining in joints, joints spaced 0-10 in., near             | [                                     |                           | ľ        |
|              |                |              |            |            |                                                  |           | horizontal to near vertical with most joints dipping         | ]                                     |                           | ľ        |
|              |                |              |            |            | 5 min/ft                                         |           | ~30-45 degrees.                                              | ]                                     |                           | r        |
|              |                |              |            |            |                                                  | -         | RQD = 18/60" = 30%                                           |                                       |                           | t        |
|              |                |              |            |            | 6 min/ft                                         |           | No water return when coring                                  |                                       |                           | t        |
|              |                |              |            |            | J                                                | -         |                                                              | ¥                                     |                           | t        |
|              |                |              |            |            | 7 min/ft                                         |           |                                                              | ROCK                                  |                           | ŀ        |
|              |                |              |            |            | /10                                              |           |                                                              | RC                                    |                           | ŀ        |
| 10           |                | R-2          | 24         | 24         | 5 min/2                                          | ft        | Similar to R-1, except moderately weathered, highly          |                                       |                           | ŀ        |
| 10           |                | 11-2         | 24         | <u> </u>   | J 111111/2                                       | 11.       | fractured, joint spacing <4".                                | $\nabla$                              |                           | ŀ        |
| <b>-</b>     |                |              |            |            | <del>                                     </del> |           |                                                              | <u> </u>                              |                           | ŀ        |
| ļ            |                |              | 1          |            | <del>                                     </del> |           | RQD = 0%                                                     | -                                     |                           | ŀ        |
| <u> </u>     |                |              |            |            |                                                  |           | Paring terminated at about 42 ft                             |                                       |                           | ŀ        |
|              |                |              |            |            |                                                  |           | Boring terminated at about 12 ft.                            |                                       |                           | ŀ        |
| <u> </u>     |                |              |            |            |                                                  |           |                                                              |                                       |                           | ļ        |
| <u> </u>     |                |              |            |            |                                                  |           |                                                              | ]                                     |                           | ļ        |
| <u> </u>     |                |              |            |            |                                                  |           |                                                              | ]                                     |                           | L        |
|              |                |              |            |            |                                                  |           |                                                              | ]                                     |                           | L        |
|              |                |              |            |            |                                                  |           |                                                              | ]                                     |                           | L        |
|              |                |              |            |            |                                                  |           |                                                              | ]                                     |                           |          |
|              |                |              |            |            |                                                  |           |                                                              | ]                                     |                           | I        |
|              |                |              |            |            |                                                  |           |                                                              | ]                                     |                           | L        |
|              |                |              |            |            |                                                  |           |                                                              | ]                                     |                           |          |
|              |                |              |            |            |                                                  |           |                                                              | ]                                     |                           | I        |
|              |                |              |            |            |                                                  |           |                                                              | ]                                     |                           | ſ        |
|              |                |              |            |            |                                                  |           |                                                              | [                                     |                           | ſ        |
|              |                |              |            |            |                                                  |           |                                                              | [                                     |                           | ľ        |
|              |                |              |            |            |                                                  |           |                                                              | [                                     |                           | ľ        |
|              |                |              |            |            |                                                  |           |                                                              |                                       |                           | ľ        |
|              |                |              |            |            | İ                                                |           |                                                              |                                       |                           | f        |
|              |                |              |            |            |                                                  |           |                                                              |                                       |                           | t        |
|              |                |              |            |            |                                                  |           |                                                              |                                       |                           | t        |
|              |                |              |            |            |                                                  |           |                                                              |                                       |                           | ŀ        |
|              |                |              |            |            | <b>†</b>                                         |           |                                                              |                                       |                           | ŀ        |
| -            |                |              |            |            | <del>                                     </del> |           |                                                              |                                       |                           | ŀ        |
| 1            |                |              |            |            | <del>                                     </del> |           |                                                              | ]                                     |                           | ŀ        |
| <u> </u>     |                |              |            |            |                                                  |           |                                                              | ]                                     |                           | ŀ        |
| <b>-</b>     |                |              |            |            | <del>                                     </del> |           |                                                              | ]                                     |                           | ŀ        |
| <u> </u>     |                |              | 1          |            | <del>                                     </del> |           |                                                              | ]                                     |                           | 1        |
| <b>├</b> ──  |                |              | 1          |            | <del>                                     </del> |           |                                                              | ]                                     |                           | ŀ        |
| <u> </u>     |                |              | 1          |            | <del>                                     </del> |           |                                                              | ]                                     |                           | 1        |
| <u> </u>     |                |              |            |            |                                                  |           |                                                              | ]                                     |                           | ŀ        |
| <u> </u>     |                |              |            |            | <u> </u>                                         |           |                                                              | ]                                     |                           | ŀ        |
| <u> </u>     |                |              |            |            | ļ                                                |           |                                                              | ]                                     |                           | l        |
| <u> </u>     |                |              |            |            | ļ                                                |           |                                                              |                                       |                           | ŀ        |
| Щ            |                |              |            |            | <u> </u>                                         |           |                                                              |                                       | 31                        | <u>1</u> |
| S            | 1. Drilli      | ng techniq   | ue adde    | ed wate    | r to boring                                      | j. Wate   | r levels may not be indicative of natural groundwater level. | Steph                                 | ens Associat              | e        |
| Remarks      |                |              |            |            |                                                  |           |                                                              |                                       | Consulting Eng            | giı      |
| Ĕ            | Soil/roo       | ck strata ar | nd groui   | ndwate     | r surface,                                       | where i   | ndicated, are approximate. Transitions may be gradual.       | Insightful, 0<br>saving Sok           | Cost- S<br>utions Geol    | Str      |
|              | 1/0=:04:       | ons betwee   | en explo   | ration I   | ocations a                                       | nd ove    | r time should be expected.                                   | saving Solution Building Infrastructu | s and<br>re Hydrology & H |          |
| Re           | variatio       |              |            |            |                                                  |           |                                                              |                                       |                           |          |

|                            |                                     | В                       | ORII                                      | NG LO                                                                            | •                                                                                |               |                       | <b>∑B</b> 1                                                                                                                   |                                                          | Pag                                | ge 1 of 1                                                    |
|----------------------------|-------------------------------------|-------------------------|-------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------|--------------------------------------------------------------|
| Client                     | :                                   |                         | Gree                                      | n International                                                                  | Affiliates, Inc.                                                                 |               | Boring Location       | on: See Fig. 2                                                                                                                | Boring Method:                                           | Drive & V                          | Vash                                                         |
| Contr                      | actor:                              |                         | New                                       | Hampshire Bor                                                                    | ing                                                                              |               |                       |                                                                                                                               | Core Barrel:                                             | 2-inch ID                          | NX                                                           |
| Эрега                      | tor:                                |                         | S. Bo                                     |                                                                                  |                                                                                  |               | Ground Elevat         |                                                                                                                               | Casing ID:                                               | 4-inch ID                          | ····                                                         |
|                            | ed By:                              |                         |                                           | heeler                                                                           |                                                                                  |               | Total Depth (ft       |                                                                                                                               | Sampler:                                                 |                                    | split spoon                                                  |
|                            |                                     | Finish:                 | plit Spoon                                | 6 - 6/7/06                                                                       | Part B. Mari                                                                     | لِب           | Groundwater I         |                                                                                                                               |                                                          |                                    | 0-inch                                                       |
| Abbre                      | vi≢tlon:                            | DP=<br>U=⊔              | Direct Push                               | n Sample<br>Tube Sample<br>ample                                                 | Pen. = Penetration Rec. = Recovery L WOR = Weight Of WOH = Weight Of Information | engih<br>Rods | OVM = Or<br>NA,NM ≈ I |                                                                                                                               | y = Pocket Torvane Shear S<br>p = Pocket Penetrometer Ur | _                                  | essive Strength                                              |
| Elevation (ft)             | Depth (ft)                          | Sample<br>No.           | Pen./Rec.<br>(inches)                     | Sample<br>Depth<br>[Sample<br>Elev.] (ft)                                        | Blows<br>per 6 in.<br>or<br>RQD (%)                                              | OVM (ppm)     | Layer                 | . De                                                                                                                          | scriptions                                               |                                    | Remarks                                                      |
| 8                          |                                     | S S                     | G E                                       | S S S                                                                            | 2 5 G                                                                            | 18            |                       |                                                                                                                               |                                                          |                                    |                                                              |
|                            |                                     | S1                      | 24/8                                      | 0.4 to 2.4                                                                       | 5-17-20-22                                                                       | 0.7           | SAND                  | 5" of aspiralt<br>S1 - WIDELY GRADED SA<br>coarse sand, ≋10 nonplasti<br>gravel (max size ≘1/2"), br                          | c fines, ≝10% fine sub                                   | SP), fine to rounded               | Env. Sample<br>at 9:50 am.                                   |
| F                          | -                                   |                         |                                           |                                                                                  |                                                                                  | •             |                       |                                                                                                                               |                                                          |                                    |                                                              |
| -                          |                                     | S2                      | 3/0                                       | 4,0 to 4.3                                                                       | 100/3                                                                            | <u> </u>      | L                     | S2 - No Recovery                                                                                                              |                                                          |                                    | Spoon                                                        |
| L                          | <b>-</b> 5                          | 13                      | 1 3,0                                     | 7,0104.3                                                                         | COURT                                                                            | 广             | BEDROCK               | \ Bi                                                                                                                          | DROCK                                                    |                                    | bouncing at                                                  |
|                            |                                     | - C1                    | 60/50                                     | 5.0 to 10.0                                                                      | RQD = 78%                                                                        | -             | BEDROCK               | C1 - GRANITE, hard, fine to<br>sound, slightly weathered to<br>21* spacing, staining on joil<br>Core time (min/ft): 4.5-7-4.8 | o fresh, low to high and<br>hts, light gray              | hyritic texture<br>de joints at 4- | 4.3 feet. Roller bit to feet. Losing wate from ≅7 to 1 feet. |
| ļ                          | - 10                                | <b>_</b>                | <b> </b>                                  |                                                                                  | · · · · · · · · · · · · · · · · · · ·                                            | _             | ļ                     | POTTOM OF PODEUOLE                                                                                                            | 10.0 FEET                                                |                                    |                                                              |
| ļ                          |                                     |                         |                                           |                                                                                  |                                                                                  |               | į                     | BOTTOM OF BOREHOLE,                                                                                                           | D.O FEET                                                 |                                    |                                                              |
| į                          |                                     |                         |                                           |                                                                                  |                                                                                  |               |                       |                                                                                                                               |                                                          | 4                                  |                                                              |
|                            |                                     |                         |                                           |                                                                                  |                                                                                  |               | · ·                   |                                                                                                                               |                                                          |                                    |                                                              |
| Ī                          |                                     |                         |                                           |                                                                                  |                                                                                  | 1             | ļ                     | ·                                                                                                                             |                                                          |                                    |                                                              |
|                            |                                     |                         |                                           |                                                                                  |                                                                                  | l             |                       |                                                                                                                               |                                                          |                                    |                                                              |
| Ì                          | - 15                                |                         |                                           |                                                                                  |                                                                                  | 1             |                       |                                                                                                                               |                                                          |                                    |                                                              |
| ŀ                          |                                     |                         |                                           |                                                                                  | ı                                                                                | }             |                       |                                                                                                                               |                                                          |                                    |                                                              |
| ŀ                          |                                     |                         |                                           |                                                                                  |                                                                                  | 1             |                       |                                                                                                                               |                                                          |                                    |                                                              |
| ŀ                          |                                     |                         |                                           |                                                                                  |                                                                                  | ]             |                       |                                                                                                                               |                                                          |                                    |                                                              |
| ŀ                          |                                     |                         |                                           |                                                                                  |                                                                                  | İ             |                       |                                                                                                                               |                                                          |                                    |                                                              |
| ŀ                          | - 20                                |                         |                                           |                                                                                  |                                                                                  | 1             |                       |                                                                                                                               |                                                          |                                    |                                                              |
| ļ                          |                                     |                         |                                           |                                                                                  |                                                                                  |               |                       | •                                                                                                                             |                                                          |                                    |                                                              |
| Į                          |                                     |                         |                                           |                                                                                  |                                                                                  |               | ] .                   |                                                                                                                               |                                                          |                                    |                                                              |
|                            |                                     |                         | ]                                         |                                                                                  |                                                                                  |               |                       |                                                                                                                               |                                                          |                                    |                                                              |
|                            |                                     |                         |                                           |                                                                                  |                                                                                  |               |                       |                                                                                                                               |                                                          | •                                  | {                                                            |
| ſ                          | - 25                                |                         |                                           |                                                                                  |                                                                                  |               | 1                     |                                                                                                                               |                                                          |                                    | ĺ                                                            |
| Ī                          | <b>-</b> 25                         |                         |                                           |                                                                                  |                                                                                  |               |                       |                                                                                                                               |                                                          |                                    | [                                                            |
| Ī                          | •                                   |                         |                                           |                                                                                  |                                                                                  |               |                       |                                                                                                                               |                                                          |                                    | 1                                                            |
| f                          | •                                   |                         |                                           |                                                                                  | Į                                                                                |               |                       |                                                                                                                               |                                                          |                                    |                                                              |
| Ì                          | •                                   |                         |                                           | ĺ                                                                                | {                                                                                |               |                       | 1                                                                                                                             |                                                          |                                    | İ                                                            |
| 1                          | •                                   |                         |                                           |                                                                                  |                                                                                  | <b> </b> .    |                       | 1                                                                                                                             |                                                          |                                    |                                                              |
| iotes                      | _30<br><u>:</u> 1.                  | L<br>Borehole           | backlille                                 | d with soil cutting                                                              | gs and clean s                                                                   | and a         | I<br>and topped with  | cold patch upon completion.                                                                                                   |                                                          |                                    | <u> </u>                                                     |
| Groun<br>prese<br>tratific | ndwater<br>ont at the<br>callon iir | flubtuation<br>time mea | s may occu<br>surements :<br>int approxin | e at times and under<br>or due to conditions<br>were made.<br>nate boundaries be |                                                                                  |               |                       | WRA Water Main<br>bute 1<br>32280                                                                                             | GEL                                                      | 1021 Mai                           | sultants, inc<br>in Street<br>ter, MA 018                    |

|                          |                                                                                                                                                                                                 |   | В             | ORII                 | NG LO                                     | 3                                                         |               |                              | ∑ <b>B2</b>                                                                                  |                                                                                     | Pag                 | ge 1 of 1                                 |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------|----------------------|-------------------------------------------|-----------------------------------------------------------|---------------|------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------|-------------------------------------------|
| Clie                     | nt:                                                                                                                                                                                             |   |               | Gree                 | n International                           | Affiliates, Inc.                                          |               | Boring Locati                | on: See Fig. 2                                                                               | Boring Method:                                                                      | Drive & W           | /ash                                      |
|                          | tracto                                                                                                                                                                                          |   |               |                      | Hampshire Bor                             | ring                                                      |               |                              |                                                                                              | Core Barrel:                                                                        | 2-inch ID           | NX                                        |
|                          | rator                                                                                                                                                                                           |   |               |                      | olduc                                     |                                                           |               | Ground Eleva                 |                                                                                              | Casing ID:                                                                          | 4-inch ID           | **                                        |
|                          | ged B                                                                                                                                                                                           |   | Finish        |                      | /heeler<br>06 - 8/7/06                    |                                                           | -4            | Total Depth (f               | <u> </u>                                                                                     | Sampler:<br>Hammer Wt./Fall:                                                        |                     | split spoon                               |
|                          | eviati                                                                                                                                                                                          |   |               | plit Spoon           |                                           | Pen. » Penetration                                        | lenat         | Groundwater                  |                                                                                              | Pocket Torvane Shear Street                                                         | 140-16 / 31<br>ngth | J-INGR                                    |
| 2304                     | 1                                                                                                                                                                                               |   | DP =<br>U = L | Direct Pust          | h Sample<br>  Tube Sample<br> Sample      | Rac. ≈ Recovery Low<br>WOR = Weight Of<br>WOH = Weight Of | engih<br>Rods | OVM = OI<br>NA,NM =          |                                                                                              | Pocket Penetrometer Uncor                                                           |                     | essive Strength                           |
| €                        |                                                                                                                                                                                                 | t |               | T                    | 1                                         |                                                           | =             | <u> </u>                     |                                                                                              |                                                                                     |                     |                                           |
| Elevation (ft)           | Depth (ft)                                                                                                                                                                                      |   | Sample<br>No. | Pen/Rec.<br>(inches) | Sample<br>Depth<br>(Sample<br>Elev.] (ft) | Blows<br>per 6 in.<br>or<br>RQD (%)                       | OVM (ppm)     | Layer                        |                                                                                              | criptions                                                                           |                     | Remarks                                   |
|                          | °                                                                                                                                                                                               |   | S1            | 24/4                 | 0.5 to 2.5                                | 22-19-20-22                                               | 0             | SAND                         | 6" of ashalt S1 - WIDELY GRADED SAN coarse sand, ≈10% nonplast gravet (max size ±1/2"), brov | c fines, ≝5% fine subro                                                             |                     |                                           |
|                          | ŀ                                                                                                                                                                                               | 1 |               |                      |                                           | ļ                                                         |               |                              |                                                                                              | •                                                                                   |                     |                                           |
|                          | t                                                                                                                                                                                               |   | S2            | 11/3                 | 4.0 to 4.9                                | 45-100/5*                                                 | 0             | 1                            | S2 - WIDELY GRADED SAN                                                                       |                                                                                     |                     | -                                         |
|                          | -5                                                                                                                                                                                              | F |               |                      |                                           |                                                           | Ť             |                              | coarse sand, ≘10% nonplasti<br>∖gravel (max size ≘1/4"), brow                                | n                                                                                   | unded               |                                           |
|                          |                                                                                                                                                                                                 |   | C1            | 60/50                | 5.0 to 10.0                               | RQD = 68%                                                 | -             | BEDROCK                      | BEC                                                                                          | PROCK FEET coarse grained, porphyr from 12-16*, moderately joints at 1-15* spacing, | to slightly         |                                           |
| ĺ                        | -10                                                                                                                                                                                             | L | <u> </u>      |                      |                                           |                                                           |               |                              |                                                                                              |                                                                                     |                     |                                           |
|                          |                                                                                                                                                                                                 |   |               |                      |                                           |                                                           |               |                              | BOTTOM OF BOREHOLE, 10                                                                       | O FEET                                                                              |                     |                                           |
|                          | - 15                                                                                                                                                                                            |   |               |                      |                                           |                                                           |               |                              |                                                                                              |                                                                                     |                     |                                           |
|                          |                                                                                                                                                                                                 |   |               |                      |                                           |                                                           |               |                              |                                                                                              |                                                                                     |                     |                                           |
| !                        | - 20                                                                                                                                                                                            |   |               |                      | -                                         |                                                           |               |                              |                                                                                              |                                                                                     |                     |                                           |
|                          | -25                                                                                                                                                                                             |   |               |                      |                                           |                                                           |               |                              |                                                                                              |                                                                                     |                     |                                           |
|                          |                                                                                                                                                                                                 |   |               |                      |                                           | ·                                                         |               |                              |                                                                                              |                                                                                     |                     | ·                                         |
| <del>منتا</del>          | 30                                                                                                                                                                                              | Ţ | 1             |                      |                                           |                                                           |               | <u> </u>                     | ·                                                                                            |                                                                                     |                     |                                           |
| Note                     |                                                                                                                                                                                                 |   |               |                      |                                           |                                                           |               |                              | old patch upon completion.                                                                   |                                                                                     |                     |                                           |
| Grou<br>prea<br>Strattii | Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.  Strattlication lines represent approximate boundaries between soil types: GE |   |               |                      |                                           |                                                           |               | Ro<br>B <b>Prol. No.:</b> 06 | WRA Water Main<br>oute 1<br>2280<br>nnfield/Saugus, MA                                       | GEI CONSUSTANTE                                                                     | 1021 Mair           | ultants, inc.<br>1 Street<br>er, MA 01890 |

REPORT OF BORING No. BB-1A SHEET 1 DF 3 FILE Mg. 15400,41 CHKD. BY PROJECT GZA DRILLING, INC. Walnut St and RTE 1 Interchange Saugus, MA Bridge S-5-16 1215 W. CHESTMUT ST., BROCKTON, MA 02401 (A DIVISION OF GZA GEOENVIRONMENTAL, INC.) BORING LOCATION M3003666,33 E786329.04
GROUND SURFACE ELEVATION 64.80 DATUM
DATE START 7-10-97(9:00AM)DATE END 7-15-97(8:30am)\* P. Wordell J. Forde FOREMAN: CLASSIFIED BY: INSPECTOR: G. French READINGS GROLMOWATER UNLESS OTHERWISE MOTED. SAMPLER CONSISTS OF A 2" SPLIT SPOOM DRIVEN USING A 140 Lb. HAMMER FALLING 30 lb. SAMPLER: CASING STABILIZATION TIME MATER DATE TIME UNLESS OTHERWISE MOTED, CASING DRIVEN USING A 300 Lb. NAMMER FALLING 24 In. CASING: 251 Completion 7-15-97 4" & 3" CASING SIZE: SAMPLE SAMPLE DESCRIPTION STRATUM DESCRIPTION PEN./ REC DEPTH (Ft.) BLOUS/6" Mo. OFBN 0 29-19-24 ASPHALT n **S-1** 18/12 64-21 Dry, dense, brown, fIME TO COARSE SAMD, some fine Gravel, some inorganic Silt. 1. Dry, very dense, brown, FIME TO COARSE SAMD, some fine Gravel, trace Cobbles, trace inorganic Silt. S-2 18/11 5-6'6" 29-31-24 Dry, very dense, brown, FINE TO COARSE SAND, some fine Gravel, trace inorganic Sand, trace Asphalt. 5-3 18/18 10-11/6" 48-46-56 Dry, very dense, black-brown, FINE TO COARSE SAND AND GRAVEL, trace Asphalt, trace Inorganic Silt. **S-4** 18/7 15-16/6 19-9-57 20.0' 20 Dry, medium dense, yellow-brown, FINE TO CDARSE SAND AND GRAVEL, trace fine Gravel, trace inorganic Silt, trace Topsoil. 22.0 20-21/6\* 15-12-11 5-5 18/18 25 Wet, medium dense, brown, FINE TO COARSE SAMD, some fine Gravel, trace inorganic Sflt. 15-14-8 18/13 25-26'6" 5-6 28.0 Wet, dense, gray, FIME SAMD, trace Organic Silt. 30 30-31'6" 21-15-16 18/14 **1-7** 35.0' 2. Wet, medium dense, gray-brown, FINE SAMD, some coarse Sand, trace fine Gravel, trace inorganic Sitt. 35 13-14-14 35-36/6" 18/9 5-8 40.0 Wet, medium dense, yellow-brown, INORGANIC SILI, some fine Sand. 12-10-15 40-41'6"

|             | 13-10                                            | 18/12               | 45-46'6"                   | 12-13-15                                         | Wet, medium dense, brown, FINE TO COARSE<br>SAND, some fine Gravel, trace inorganic<br>Silt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------|--------------------------------------------------|---------------------|----------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | <del>                                     </del> | 1                   |                            | <del> </del>                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | <del>                                     </del> | <b>†</b>            |                            | †                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | <b>—</b>                                         |                     |                            | <del>                                     </del> | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 50          | \$-11                                            | 18/10               | 50-51/6"                   | 13-16-15                                         | Wet, dense,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | +                                                |                     |                            | <del> </del>                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b> </b>    | +                                                |                     |                            | <del> </del>                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | <del>                                     </del> |                     |                            | <del> </del>                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | 1                                                |                     | <del></del>                | <del> </del>                                     | <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 55          | 5-12                                             | 18/10               | 55-56'6"                   | 14-12-10                                         | list medium dense brown FIME TO COASES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -           | +                                                |                     |                            |                                                  | Wet, medium dense, brown, FINE TO COARSE<br>— SAMB, trace fine Gravet, trace inormanic<br>Silt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -           | <del> </del>                                     |                     |                            | <del> </del>                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -           | <del> </del>                                     |                     |                            |                                                  | 58.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -           | <del> </del>                                     | <del></del>         |                            |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 50          | s-13                                             | 18/16               | 10 1111                    | 77 /7 60                                         | <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -           | 3-13                                             | 10/10               | 60-61/6*                   | 77-47-52                                         | Wet, very dense, brown, FINE TO COARSE SAND AND GRAVEL, trace inorganic Silt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -           |                                                  |                     |                            |                                                  | <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -           | <del>  </del>                                    |                     | <del></del>                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -           |                                                  |                     |                            |                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5           |                                                  |                     |                            |                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | S-14                                             | 0/0                 | 65-65                      | 140/0"                                           | 66.0′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <u> </u>    | C-1                                              | 60/3                | 66-71                      | 4                                                | Gray-black GRANITE, RECOVERY = 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             |                                                  |                     |                            | 5                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                                                  |                     |                            | 5                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0           |                                                  |                     |                            | 5                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                                                  |                     |                            | 6                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | C-2                                              | 60/12               | 71-76                      | 4                                                | Wenthered, gray-black GRANITE with Quartz seams/joints throughout. RECOVERY = 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             |                                                  |                     | · ·                        | 6                                                | - seame/joints throughout. RECOVERY = 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             |                                                  | T                   |                            | 6                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                                                  |                     | 1                          | 5                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             |                                                  |                     |                            | 5                                                | proplet trademon to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             | C-3                                              | 48/0                | 76-BO                      | 4                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                                                  |                     |                            | 5                                                | RECOVERY A OX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             |                                                  |                     |                            | 6                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                                                  |                     |                            | 4                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | t-4                                              | 60/22               | 80-85                      | 6                                                | RECOVERY • 33%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                  |                     |                            | 7                                                | Weathered, pink-gray GRANITE,<br>numerous seams/joints throughout,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                  |                     | -                          | 7                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                                                  |                     |                            | 8                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                                                  |                     |                            | 5                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | C-5 (                                            | 50/36               | 65-90                      | 6                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | _                                                |                     |                            | 6                                                | RECOVERY = 60X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                  | $\neg +$            |                            | 7                                                | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\vdash$    | $\overline{}$                                    |                     |                            |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1           |                                                  |                     |                            | 5                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -           |                                                  |                     |                            |                                                  | Detter of business of Mil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LAMEN A     | SOIL                                             |                     | Project                    | CIVE com                                         | Bottom of boring at 90'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| me/ft       | Deneil                                           | у                   | Blows/FI                   | SIVE SOILS<br>Density                            | manage of the second section of the parties of the parties of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the |
| - 4<br>-10  | ٧.                                               | LOOSE               | , < 2                      | V. SOFT                                          | 2. Installed 2º PVC well at 35' depth, utilized 5' screen and 30' riser pipe.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 10-30       | M.                                               | LOOSE<br>DENSE      | 2- 4<br>4- 8               | SOFT<br>M. STIFF                                 | 3. Losing water coring rock from 72/ death                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 50-50<br>50 | ٧.                                               | DENSE<br>DENSE      | 8-15<br>15-30              | V. STIFF                                         | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             |                                                  |                     | > 30                       | HARD                                             | Crair th = Ci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             |                                                  |                     |                            |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| s:          | 1) STI                                           | RATIFIC<br>IER LEVI | ATION LINES<br>EL READINGS | REPRESENT A                                      | APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL. HADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| -  |            |                     | 1215 W                                           |               | ZA DRILLING,<br>INUT ST., BR<br>F GZA GOENV | INC.<br>OCKTON, NA 02<br>IRONMENTAL, I | 2401<br>INC.)           | PROJECT REPORT OF BORING No. BS-2 SHEET 1 DF-2 SHEET 1 DF-2 FILE No. 1540041 CHKD. BY |                                    |                        |        |      |          |          |         |            |          |
|----|------------|---------------------|--------------------------------------------------|---------------|---------------------------------------------|----------------------------------------|-------------------------|---------------------------------------------------------------------------------------|------------------------------------|------------------------|--------|------|----------|----------|---------|------------|----------|
| 10 | LAS        | MAN:                | ED BY:                                           | Bi<br>Jo      | erry Wordell<br>Shn Forde<br>French         |                                        |                         |                                                                                       | NG LOCATI<br>NO SURFAC<br>START 8- | 04<br>E ELEV<br>6-97(9 |        |      |          |          |         |            |          |
| 3  | AMP        | LER:                | UNI                                              | ESS OT        | HERWISE NOTE                                | D. SAMPLER CO                          | DNSISTS OF A            | 2" SPLIT<br>0 In.                                                                     |                                    |                        |        |      |          | READI    |         |            | _        |
| 1. | 467        | NG:                 |                                                  |               |                                             |                                        |                         |                                                                                       | }                                  | DATE                   | TIME   | WAT  |          | CASING   |         | ZATION TIM | -        |
| 1  | ,73 i      | 441                 | HAP                                              | MER FAI       | LING 24 In.                                 | D, CASING DRI                          |                         |                                                                                       | -                                  | -8-97                  | ļ      | 9.7  | <u>"</u> |          | Complet | 1011       |          |
| 9  | _          | ING SIZE: 4" OTHER: |                                                  |               |                                             |                                        |                         |                                                                                       |                                    |                        | L      | L    |          |          |         |            | $\dashv$ |
|    | E          | CAL                 |                                                  |               | SAMPLE                                      |                                        | -                       | SAMPLE DESC                                                                           | RIPTION                            |                        |        |      | KEN      | STRA     | TUN DES | CRIPTION   |          |
| 1  | Ŧ          | G S                 | No.                                              | PEN./<br>REC  | DEPTH<br>(ft.)                              | BLOWS/6"                               |                         |                                                                                       |                                    |                        |        |      | •        |          |         |            | _        |
| T  | 0          |                     | 5-1                                              | 18/9          | 64-5,04                                     | 41-29-22                               | ASPHALT                 | ense brown.                                                                           | FINE TO                            | COARSE                 |        | /6#. | İ        | 01       |         |            |          |
|    | 4          | -                   |                                                  |               |                                             |                                        | SAMO, some              | iense, brown,<br>fine Gravel,                                                         | trace in                           | organi                 | C      |      |          |          |         |            |          |
|    |            |                     |                                                  |               |                                             |                                        | ]                       |                                                                                       |                                    |                        |        | - 1  |          |          |         |            |          |
|    | İ          |                     |                                                  |               |                                             |                                        | <u> </u>                |                                                                                       |                                    |                        |        | -  - |          | -        |         |            |          |
|    | 5          |                     |                                                  |               |                                             |                                        | 1                       |                                                                                       | _ 1_                               |                        |        |      | į        |          |         |            | - 1      |
|    |            |                     | s-2                                              | 18/9          | 5-6'6"                                      | 6-9-11                                 | Dry, medium             | dense, brown<br>trace coarditt.                                                       | n, FINE S<br>se Sand,              | IAMD, t<br>trace       | FRCO   |      |          |          |         |            |          |
| 1  | 5 d        |                     |                                                  |               |                                             |                                        | inorganic S             | iit.                                                                                  | ·                                  |                        |        |      |          |          |         |            |          |
|    |            |                     |                                                  |               |                                             |                                        | 4                       |                                                                                       |                                    |                        | _      |      | į        |          |         |            |          |
|    |            |                     |                                                  |               |                                             |                                        | <b></b>                 |                                                                                       |                                    |                        |        | .0,  |          |          |         |            | ı        |
| 1  | 10         |                     |                                                  | <b>\</b>      |                                             |                                        | <u> </u>                |                                                                                       |                                    |                        | eE     | Ŧ    |          |          |         |            | - 1      |
|    |            | $\Box$              | \$-3                                             | 18/8          | 10-11/6*                                    | 5-5-7                                  | SAMO, some              | dense, brown<br>fine Gravel,                                                          | trace in                           | organi                 | e<br>e |      |          | -        |         |            | ı        |
|    | 4          |                     | 1                                                | 1             | <u>L</u>                                    |                                        | Bile:                   |                                                                                       |                                    |                        |        | -    |          |          |         |            | -        |
|    |            |                     | ļ                                                | matc          |                                             |                                        | 4                       |                                                                                       |                                    |                        |        |      |          |          |         |            | ĺ        |
| 1  |            |                     | ļ                                                | to            | nex TIS                                     |                                        | 4                       |                                                                                       | •                                  |                        |        |      |          |          | •       |            | ļ        |
| `. | 15         | ļ¦                  | <u> </u>                                         | 1874          | 4E. 14/4=                                   | 10-6-5                                 | <br>                    | dense bros                                                                            | n GRAVEI                           | trace                  |        | 1    |          |          |         |            | ļ        |
| 1. | b          |                     | 5-4                                              | 18/1          | 15-16/6*                                    | 10-0-3                                 | Cobbles, tr             | dense, brow<br>race inorgani                                                          | c Silt.                            | ,                      |        | - }  |          |          |         |            |          |
| 1  | T.         |                     | <u> </u>                                         |               |                                             |                                        | 1                       |                                                                                       |                                    |                        |        |      |          |          |         |            | j        |
|    |            |                     | <b> </b> -                                       |               |                                             |                                        | 4                       |                                                                                       |                                    |                        |        |      |          |          | •       |            | ]        |
|    |            |                     | <del> </del>                                     |               |                                             |                                        | 1                       |                                                                                       |                                    |                        | 20     | .0/  |          |          |         |            | ļ        |
|    | 20         |                     | S-5                                              | 18/8          | 20-21/6"                                    | 7-7-8                                  | Wet. medium             | dense, brow                                                                           | n, FINE S                          | AND, t                 |        | 7    |          |          |         |            | 1        |
|    |            |                     | <del>                                     </del> |               |                                             |                                        | inorganic               | dense, brow<br>trace fine                                                             | Gravel,                            | traće                  |        | 1    |          |          |         |            | l        |
|    |            |                     | <del>                                     </del> |               |                                             |                                        | 1                       |                                                                                       |                                    |                        |        | 1    | .        |          |         |            |          |
|    |            | <u> </u>            | <del>                                     </del> | <u> </u>      |                                             |                                        | 1                       |                                                                                       |                                    |                        |        | 1    |          |          |         |            | -        |
|    |            |                     | <b> </b>                                         | <b></b>       |                                             | ~                                      | 1                       |                                                                                       |                                    |                        |        | 1    |          |          |         |            |          |
| 1  | 25         |                     | S-6                                              | 18/0          | 25-26'6#                                    | 10-12-12                               | NO RECOVERY             | ۲.                                                                                    |                                    |                        |        | 1    |          |          |         |            |          |
|    |            | -                   |                                                  |               |                                             |                                        | ]                       |                                                                                       |                                    |                        |        |      | İ        |          |         |            | İ        |
| ١  |            |                     |                                                  |               |                                             |                                        | ]                       |                                                                                       |                                    |                        |        | -    |          |          | *       |            | - [      |
| ١  |            |                     |                                                  |               |                                             |                                        | ]                       |                                                                                       |                                    |                        |        |      | ļ        |          |         |            | - [      |
|    | 30         |                     |                                                  |               |                                             |                                        | J                       |                                                                                       |                                    |                        |        |      |          |          |         |            |          |
|    | <b>5</b> 0 |                     | 5-7                                              | 18/10         | 30-31/6*                                    | 8-19-17                                | 1                       |                                                                                       |                                    |                        |        |      |          |          |         |            | J        |
|    |            |                     |                                                  |               |                                             | 1.                                     | 1                       |                                                                                       | -                                  |                        |        |      |          | 1        |         |            |          |
|    |            |                     | <u> </u>                                         | <u> </u>      |                                             |                                        | <b></b>                 | **** *                                                                                |                                    |                        |        |      | <b>.</b> | <b>.</b> |         |            |          |
|    |            |                     | <del> </del>                                     |               |                                             |                                        | 4                       |                                                                                       |                                    |                        |        |      |          |          |         |            |          |
|    | 35         | <u></u>             | <u> </u>                                         | <u> </u>      |                                             |                                        | 4                       |                                                                                       |                                    |                        |        |      |          |          |         |            |          |
| _  |            | <u></u>             | 5-8                                              | 18/10         | 35-36'6"                                    | 7-8-11                                 | Wet, mediu<br>inorganic | m dense, brow<br>Silt.                                                                | m, FINE                            | SAND, 1                | rece   | 1    |          |          |         |            |          |
| *. |            | -                   | 1                                                | <b> </b>      | <b> </b>                                    | ļ                                      | 4                       |                                                                                       |                                    |                        |        |      |          |          |         |            |          |
| 1  |            | -                   | <del> </del>                                     | <del>  </del> | <del> </del>                                |                                        | 4                       |                                                                                       |                                    |                        |        |      |          |          |         |            |          |
|    |            | -                   | <del> </del>                                     | <del> </del>  | <del> </del>                                | <u> </u>                               |                         |                                                                                       |                                    |                        | 11     | 0.0  |          |          |         |            |          |
| -  | 40         | -                   | <del> </del>                                     | 1.5.55        | 10.11                                       |                                        | 1400                    |                                                                                       | Elle ca                            | MD                     |        |      |          |          |         |            |          |
|    |            | -                   | S-9                                              | 12/12         | 40-41'                                      | 15-37                                  | inorganic               | dense, brown,<br>Silt.                                                                | , FIME SA                          |                        | 4      | 1.01 |          | 1        |         |            |          |

|     | _              | _           | _              |             | •                                     | , <b>¥</b> i l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----|----------------|-------------|----------------|-------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10  | · <del> </del> | 5-3         | 18/8           | 10-11'6"    | 5-5-7                                 | Wet, medium dense, brown, FINE TO COARSE<br>SAMO, some fine Gravel, trace inorganic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     |                |             |                |             |                                       | Silt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |                |             |                |             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                |             |                |             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15  |                |             |                |             | 40 4 8                                | tra matter dance home POSINES trans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     |                | 5-4         | 18/1           | 15-16/6     | 10-6-5                                | Wet, medium dense, brown GRAVEL, trace<br>Cobbles, trace inorganic Silt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | -              |             |                |             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | -              |             |                |             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1   | $\vdash$       |             |                |             |                                       | 20.0′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 20  | -              | s-5         | 18/8           | 20-21/6"    | 7-7-8                                 | Wet, medium dense, brown, FINE SAND, trace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | $\vdash$       |             |                |             |                                       | Wet, medium dense, brown, FINE SAND, trace<br>coarse Sand, trace fine Gravel, trace<br>inorganic Silt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1   |                |             |                |             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                |             |                |             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25  |                |             |                |             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| "   |                | \$-6        | 18/0           | 25-26'6"    | 10-12-12                              | NO RECOVERY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     |                |             |                |             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                |             |                |             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                |             |                |             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30  |                | <b>s-7</b>  | 18/10          | 30-31/6*    | 8-10-17                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                | 8-7         | 10/10          | 30-31-6-    | 0-10-11                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | $\vdash$       |             |                |             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                |             |                |             | · · · · · · · · · · · · · · · · · · · | And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |
|     |                |             |                |             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 35  |                | 5-8         | 18/10          | 35-36/6"    | 7-8-11                                | Wet, medium dense, brown, FINE SAND, trace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |                |             |                |             |                                       | inorganic Silt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| }   |                |             |                |             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                |             |                |             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40  |                |             |                |             |                                       | 40.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | $\vdash$       | 5-9<br>5-9A | 12/12          | 40-41'      | 15-37<br>23                           | Wet, very dense, brown, FINE SAMD, some inorganic Sitt. 41.0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     |                | 5.74        | 6/4            | #1-41-0-    |                                       | Wet, very dense, brown, FIME TO COARSE<br>SAMO, some fine Gravel, some inorganic<br>Sitt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |                |             |                |             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1   | -              |             |                |             | MIM/FT                                | 45.0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 45  |                | C-1         | 60/42          | 45-50       | 2:33                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                |             |                |             | 3:42                                  | Pink-gray mottled black GRANITE with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                |             |                |             | 5:29                                  | Quertž, numerous seems/joints throughout.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |                |             |                |             | 8:48                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50  |                |             |                |             | 10:21                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                | C-S         | 60/32          | 50-55       | 8:40                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                | ·           |                |             | 8:41                                  | RECOVERY = 53%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | -              |             |                |             | 9:23                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | -              |             |                |             | 10:15                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 55  | -              |             |                |             | 14270                                 | Sottom of boring at 55'.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| G   | PANUL          | UR SOI      | L\$            | CO          | ESIVE SOILS                           | REMARKS: * Total hours worked on boring 13 hours 30 minutes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -   | ous/F          | t Dene      | LOOSE          |             | Ft Density                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4   | -10<br>10-30   |             | LOOSE          | 2- 4        | V. SOFT<br>SOFT<br>M. STIFF           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 3 | 50-50<br>50    |             | DENSE<br>DENSE | 8-15        | \$11FF<br>V. \$11FF                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                |             |                | > 30        | HARD                                  | SCALE 1" = 5"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| NOT | ES:            | 1)          | TRATIF         | ICATION LIN | S REPRESENT                           | APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

## APPENDIX C GEOTECHNICAL LABORATORY TEST RESULTS

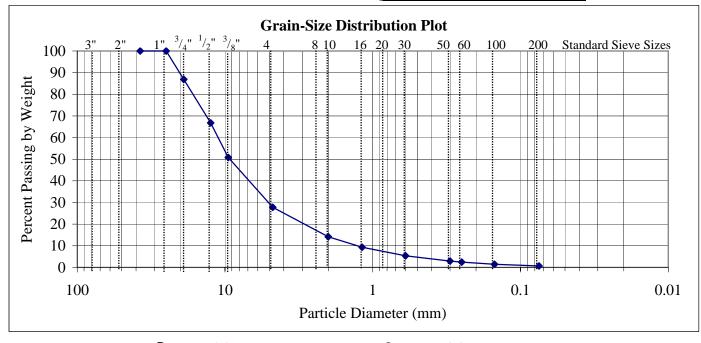


Project: Number: 026-08-007 Sheet 1 of Name: MWRA Contract No. 6905, Pipeline

Original Work:

Ву:

R. Kline June 9, 2008 Date: Subject: Checked By: J. Turner Date: June 13, 2008


**Laboratory Testing** Grain Size Distribution

Rte. 1, Saugus, MA

Boring Number: Sample Depth: 1-3' Top 10" B-1 Sample Number: S-1

Sample Description: Black GRAVEL, some medium to coarse Sand

| Sieve De | signation | Nominal Sie | eve Opening | Tare Weight | Sieve+Soil Wt.   | Soil Weight (g) | Percent  |
|----------|-----------|-------------|-------------|-------------|------------------|-----------------|----------|
| Standard | Alternate | mm          | inches      | (g)         | (g)              | Con Weight (g)  | Passing  |
| 37.5 mm  | 1-1/2"    | 37.5        | 1.476"      | 501.6       | 501.6            | 0.0             | 100.0    |
| 25.0 mm  | 1"        | 25          | 0.984"      | 502.7       | 502.7            | 0.0             | 100.0    |
| 19.0 mm  | 3/4"      | 19          | 0.748"      | 596         | 621.2            | 25.2            | 86.9     |
| 12.5 mm  | 1/2"      | 12.5        | 0.492"      | 607.2       | 645.8            | 38.6            | 66.8     |
| 9.5      | 3/8"      | 9.5         | 0.374"      | 565.2       | 595.8            | 30.6            | 50.8     |
| 4.75 mm  | No. 4     | 4.75        | 0.187"      | 527.7       | 571.9            | 44.2            | 27.8     |
| 2.00 mm  | No. 10    | 2           | 0.078"      | 450.8       | 476.9            | 26.1            | 14.2     |
| 1.18 mm  | No. 16    | 1.18        | 0.0464"     | 401.2       | 410.5            | 9.3             | 9.3      |
| 600 µm   | No. 30    | 0.6         | 0.0236"     | 410.5       | 418.1            | 7.6             | 5.4      |
| 300 µm   | No. 50    | 0.3         | .0118"      | 416.8       | 421.5            | 4.7             | 2.9      |
| 250 µm   | No. 60    | 0.25        | 0.0098"     | 339.9       | 340.8            | 0.9             | 2.4      |
| 150 µm   | No. 100   | 0.15        | 0.0059"     | 303.7       | 305.6            | 1.9             | 1.5      |
| 75 µm    | No. 200   | 0.075       | 0.0029"     | 301.6       | 303.1            | 1.5             | 0.7      |
| Pan      |           |             |             | 340.4       | 341.7            | 1.3             | 0.0      |
|          |           |             |             |             |                  |                 |          |
|          |           |             |             | Sc          | oil Wt. Sum (g): | 191.9           | <u> </u> |



 $D_{10} =$ 1.25 mm Cu = 9.6  $D_{30} =$ 5 mm Cc = 1.7  $D_{60} =$ 12 USCS Classification = **GW** mm

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:

By: Date: Date: By:



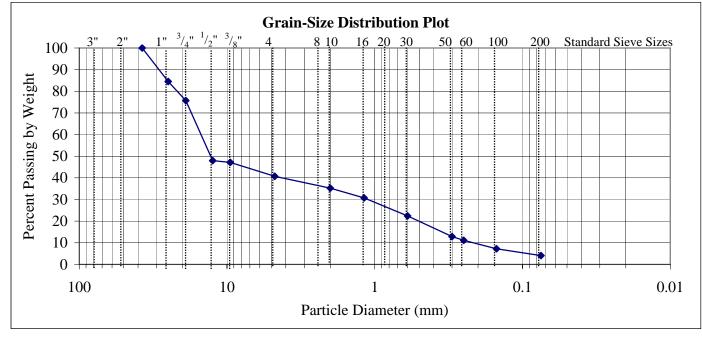
Project: Number: 026-08-007 Sheet 1 of Name: MWRA Contract No. 6905, Pipeline

Original Work:

Ву:

R. Kline June 2, 2008 Date: Subject: Checked By: J. Turner Date: June 13, 2008

**Laboratory Testing** Grain Size Distribution


Rte. 1, Saugus, MA

Boring Number: Sample Depth: 9-11' B-1 Sample Number: S-4

Sample Description: Brown GRAVEL and fine to medium SAND

| Sieve De | signation | Nominal Signature | eve Opening | Tare Weight | Sieve+Soil Wt. | Soil Weight (g) | Percent |
|----------|-----------|-------------------|-------------|-------------|----------------|-----------------|---------|
| Standard | Alternate | mm                | inches      | (g)         | (g)            | 30 113.g. (g)   | Passing |
| 37.5 mm  | 1-1/2"    | 37.5              | 1.476"      | 501.4       | 501.4          | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25                | 0.984"      | 502.6       | 529.2          | 26.6            | 84.5    |
| 19.0 mm  | 3/4"      | 19                | 0.748"      | 595.9       | 611            | 15.1            | 75.7    |
| 12.5 mm  | 1/2"      | 12.5              | 0.492"      | 607.6       | 655.3          | 47.7            | 48.0    |
| 9.5      | 3/8"      | 9.5               | 0.374"      | 565.3       | 566.7          | 1.4             | 47.1    |
| 4.75 mm  | No. 4     | 4.75              | 0.187"      | 527.7       | 538.8          | 11.1            | 40.7    |
| 2.00 mm  | No. 10    | 2                 | 0.078"      | 450.7       | 460.1          | 9.4             | 35.2    |
| 1.18 mm  | No. 16    | 1.18              | 0.0464"     | 401.1       | 408.8          | 7.7             | 30.7    |
| 600 µm   | No. 30    | 0.6               | 0.0236"     | 410.1       | 424.4          | 14.3            | 22.4    |
| 300 µm   | No. 50    | 0.3               | .0118"      | 416.2       | 432.6          | 16.4            | 12.9    |
| 250 µm   | No. 60    | 0.25              | 0.0098"     | 339.9       | 342.9          | 3.0             | 11.1    |
| 150 µm   | No. 100   | 0.15              | 0.0059"     | 303.5       | 310.2          | 6.7             | 7.2     |
| 75 µm    | No. 200   | 0.075             | 0.0029"     | 301.4       | 306.8          | 5.4             | 4.1     |
| Pan      |           |                   |             | 340.3       | 347.3          | 7.0             | 0.0     |
|          |           |                   |             | 90          | il Wt Sum (a): | 171.8           |         |

Soil Wt. Sum (g): 1/1.8



 $D_{10} =$ 0.225 mm Cu = 71.1  $D_{30} =$ Cc = 0.4 1.2 mm

 $D_{60} =$ 16 USCS Classification = mm GP

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:

By: Date: Date:



Project: Number: 026-08-007 Sheet MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA June 2, 2008 Permeability Estimate by R. Kline Date: Subject: Checked By: J. Turner Date: June 13, 2008 Kozeny-Carman Formula

Boring Number: **B-1** Sample Number: **S-4** Sample Depth: **9-11'** 

According to References 1 and 3, (Note: Reference List at end of data sheets) Permeability may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})(1/S^2)[e^3/(1+e)]$ 

 $\gamma$  = assumed unit weight of water in situ, lb/ft<sup>3</sup> = 62.4 = 9800 N/m<sup>3</sup>  $\mu$  = viscosity of water, Ns/m<sup>2</sup> = 0.00131 at 10 °C

 $C_{K-C}$  = Kozeny-Carman empirical coefficient; reported as 4.8±0.3, usually taken as 5, =

S = specific surface area per unit volume of particles =  $SF^*\Sigma((P_{No D}-P_{No d})/d)$ 

 $P_{No D}$  = percentage by weight smaller than size D

 $P_{Nod}$  = percentage by weight larger than the next size d

 $D_{eq}$  = equivalent grain size for particles smaller than  $D_{min}$  of gradation =  $D_{min}/3^{0.5}$ 

SF = Shape Factor for particle angularity = 7.5

SF = 6.6 for rounded particles; 7.5 for medium angularity; 8.4 for angular (after Loudon, presented in Ref. 1)

thus, Permeability, may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})\{1/\Sigma[(P_{N_0} - P_{N_0} d)/d]\}^2(1/SF^2)[e^3/(1+e)]$ , Table 1 below

Further, according Ref. 2, measured permeability typically varies from 1/3 to 3 times the estimated permeability. The references also note that this method may overpredict permeability when soil is gravel, and the results present an upper bound. The formula is not suitable for plastic soils.

|          | TABL      | E 1 - SUM OF (P | No D - P <sub>No d</sub> )/d |                                          |
|----------|-----------|-----------------|------------------------------|------------------------------------------|
| Sieve De | signation | Nominal Sieve   | Percent                      | (P <sub>NoD</sub> -P <sub>Nod</sub> )/ d |
| Standard | Alternate | Opening (cm)    | Passing                      | (1/cm)                                   |
| 37.5 mm  | 1-1/2"    | 3.750           | 100.0                        |                                          |
| 25.0 mm  | 1"        | 2.500           | 84.5                         | 6.2                                      |
| 19.0 mm  | 3/4"      | 1.900           | 75.7                         | 4.6                                      |
| 12.5 mm  | 1/2"      | 1.250           | 48.0                         | 22.2                                     |
| 9.5      | 3/8"      | 0.950           | 47.1                         | 0.9                                      |
| 4.75 mm  | No. 4     | 0.475           | 40.7                         | 13.6                                     |
| 2.00 mm  | No. 10    | 0.200           | 35.2                         | 27.4                                     |
| 1.18 mm  | No. 16    | 0.118           | 30.7                         | 38.0                                     |
| 600 µm   | No. 30    | 0.060           | 22.4                         | 138.7                                    |
| 300 µm   | No. 50    | 0.030           | 12.9                         | 318.2                                    |
| 250 µm   | No. 60    | 0.025           | 11.1                         | 69.8                                     |
| 150 µm   | No. 100   | 0.015           | 7.2                          | 260.0                                    |
| 75 µm    | No. 200   | 0.008           | 4.1                          | 415.7                                    |
| $D_{eq}$ |           | 0.004           | 0.0                          | 946.9                                    |
| •        |           |                 |                              |                                          |
|          |           |                 |                              |                                          |
|          |           |                 |                              |                                          |
|          |           |                 |                              |                                          |
|          |           | •               | Sum:                         | 2262 1                                   |

Estimate Void Ratio (e) from Relative Density (Ref. 4)

 $D_r^2 = (N_1)60/C_P C_A C_{OCR}$ 

 $(N_1)60=$  69  $C_P=60+25logD_{50}=$  87.8  $D_{50}=$  13 mm  $C_A=1.2+0.05log(t/100)=$  1.19 t(yr)= 70  $C_{OCR}=OCR^{U.18}=$  1  $D_r=$  0.81166

 $e_{max} = 0.85$   $e = e_{max} - (D_r)(e_{max} - e_{min})$   $e_{min} = 0.14$ e = 0.27372

thus, range of permeability is estimated as:

| Estimated range of k (cm/s) |                    |          |  |  |  |  |  |
|-----------------------------|--------------------|----------|--|--|--|--|--|
| Probable                    |                    | Probable |  |  |  |  |  |
| measured                    | Calculated         | measured |  |  |  |  |  |
| lower bnd                   | lower bnd Estimate |          |  |  |  |  |  |
| 2.8E-03                     | 8.4E-03            | 2.5E-02  |  |  |  |  |  |

Copyright © 2008 Stephens Associates Consulting Engineers LLC Revisions:

By: Date:

\_\_\_\_\_\_Bate:



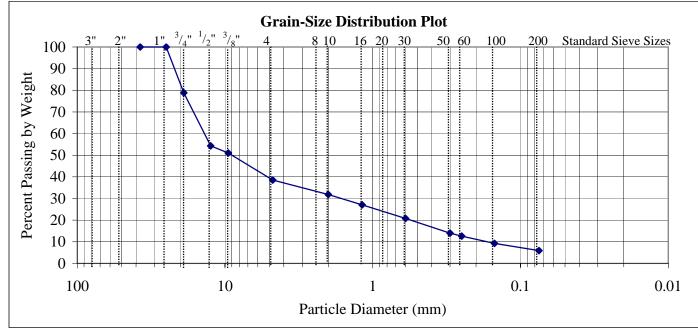
Project: Number: 026-08-007 Sheet 1 of Name: MWRA Contract No. 6905, Pipeline

Original Work:

R. Kline June 2, 2008 By: Date: Subject: Checked By: J. Turner Date: June 13, 2008

**Laboratory Testing** 

Grain Size Distribution


Rte. 1, Saugus, MA

Boring Number: Sample Number: S-1 Sample Depth: 1-3' Bottom 7" B-2

Sample Description: Gray GRAVEL and fine to medium SAND, trace silt

| Sieve De | signation | Nominal Sie | eve Opening | Tare Weight | Sieve+Soil Wt.   | Soil Weight (g) | Percent |
|----------|-----------|-------------|-------------|-------------|------------------|-----------------|---------|
| Standard | Alternate | mm          | inches      | (g)         | (g)              | Son Weight (g)  | Passing |
| 37.5 mm  | 1-1/2"    | 37.5        | 1.476"      | 501.4       | 501.4            | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25          | 0.984"      | 502.6       | 502.6            | 0.0             | 100.0   |
| 19.0 mm  | 3/4"      | 19          | 0.748"      | 595.9       | 627.7            | 31.8            | 78.8    |
| 12.5 mm  | 1/2"      | 12.5        | 0.492"      | 607.6       | 644.4            | 36.8            | 54.3    |
| 9.5      | 3/8"      | 9.5         | 0.374"      | 565.3       | 570.2            | 4.9             | 51.0    |
| 4.75 mm  | No. 4     | 4.75        | 0.187"      | 527.7       | 546.5            | 18.8            | 38.5    |
| 2.00 mm  | No. 10    | 2           | 0.078"      | 450.7       | 460.7            | 10.0            | 31.8    |
| 1.18 mm  | No. 16    | 1.18        | 0.0464"     | 401.1       | 408.3            | 7.2             | 27.0    |
| 600 µm   | No. 30    | 0.6         | 0.0236"     | 410.1       | 419.5            | 9.4             | 20.8    |
| 300 µm   | No. 50    | 0.3         | .0118"      | 416.2       | 426.4            | 10.2            | 14.0    |
| 250 µm   | No. 60    | 0.25        | 0.0098"     | 339.9       | 342.0            | 2.1             | 12.6    |
| 150 µm   | No. 100   | 0.15        | 0.0059"     | 303.5       | 308.5            | 5.0             | 9.3     |
| 75 µm    | No. 200   | 0.075       | 0.0029"     | 301.4       | 306.4            | 5.0             | 5.9     |
| Pan      |           |             |             | 340.3       | 349.2            | 8.9             | 0.0     |
|          |           |             |             | 10          | bil Wt. Sum (a): | 150.1           |         |

Soil VVt. Sum (g):



 $D_{10} =$ 0.165 mm Cu = 90.9  $D_{30} =$ 1.75 mm Cc = 1.2

 $D_{60} =$ 15 USCS Classification = mm

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:

By: Date: Date:



**GW** 

 Project:
 Number:
 026-08-007
 Sheet
 1
 of
 1

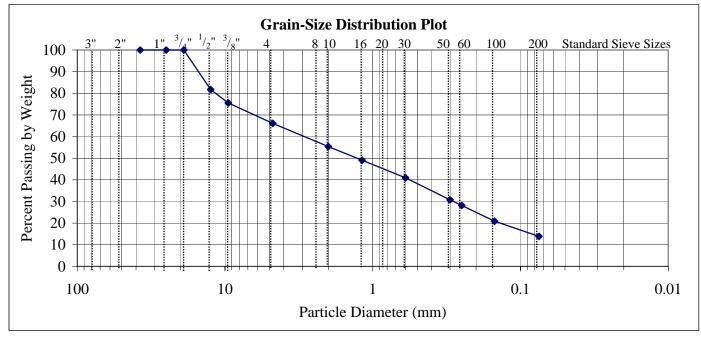
 Name:
 MWRA Contract No. 6905, Pipeline

Original Work:

By: R. Kline Date: June 2, 2008 Subject: Checked By: J. Turner Date: June 13, 2008

Laboratory Testing

Rte. 1, Saugus, MA


Grain Size Distribution

Boring Number: B-2 Sample Number: S-2 Sample Depth: 3-5'

Sample Description: Brown fine to coarse SAND, some Gravel, little Silt

|          | signation |       | eve Opening | Tare Weight | Sieve+Soil Wt.   | Soil Weight (g) | Percent |
|----------|-----------|-------|-------------|-------------|------------------|-----------------|---------|
| Standard | Alternate | mm    | inches      | (g)         | (g)              | 0 (0/           | Passing |
| 37.5 mm  | 1-1/2"    | 37.5  | 1.476"      | 501.3       | 501.3            | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25    | 0.984"      | 502.5       | 502.5            | 0.0             | 100.0   |
| 19.0 mm  | 3/4"      | 19    | 0.748"      | 595.7       | 595.7            | 0.0             | 100.0   |
| 12.5 mm  | 1/2"      | 12.5  | 0.492"      | 607.5       | 620.3            | 12.8            | 81.7    |
| 9.5      | 3/8"      | 9.5   | 0.374"      | 565.2       | 569.5            | 4.3             | 75.5    |
| 4.75 mm  | No. 4     | 4.75  | 0.187"      | 527.7       | 534.3            | 6.6             | 66.1    |
| 2.00 mm  | No. 10    | 2     | 0.078"      | 450.9       | 458.4            | 7.5             | 55.4    |
| 1.18 mm  | No. 16    | 1.18  | 0.0464"     | 401.3       | 405.7            | 4.4             | 49.1    |
| 600 µm   | No. 30    | 0.6   | 0.0236"     | 410.4       | 416.1            | 5.7             | 40.9    |
| 300 µm   | No. 50    | 0.3   | .0118"      | 416.6       | 423.7            | 7.1             | 30.8    |
| 250 µm   | No. 60    | 0.25  | 0.0098"     | 340.0       | 341.8            | 1.8             | 28.2    |
| 150 µm   | No. 100   | 0.15  | 0.0059"     | 303.8       | 308.9            | 5.1             | 20.9    |
| 75 µm    | No. 200   | 0.075 | 0.0029"     | 301.8       | 306.7            | 4.9             | 13.9    |
| Pan      |           |       |             | 340.5       | 350.2            | 9.7             | 0.0     |
|          |           |       |             |             |                  |                 |         |
|          |           |       |             | So          | oil Wt. Sum (a): | 69.9            |         |

Soil Wt. Sum (g): 69.9



 $D_{10} = N/A$  mm Cu = N/A  $D_{30} = 0.275$  mm Cc = N/A

 $D_{60} = 3.25$  mm USCS Classification = SM

Copyright  $\hbox{@}$  2008 Stephens Associates Consulting Engineers LLC

Revisions:

By: Date: Date:



Project: Number: 026-08-007 Sheet MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA R. Kline Permeability Estimate by Date: June 2, 2008 Subject: Checked By: J. Turner Date: June 13, 2008 Kozeny-Carman Formula

Boring Number: B-2 Sample Number: S-2 Sample Depth: 3-5'

According to References 1 and 3, (Note: Reference List at end of data sheets) Permeability may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})(1/S^2)[e^3/(1+e)]$ 

 $\gamma$  = assumed unit weight of water in situ, lb/ft<sup>3</sup> = 62.4 = 9800 N/m<sup>3</sup>  $\mu$  = viscosity of water, Ns/m<sup>2</sup> = 0.00131 at 10 °C

 $C_{K-C}$  = Kozeny-Carman empirical coefficient; reported as 4.8±0.3, usually taken as 5, =

S = specific surface area per unit volume of particles =  $SF^*\Sigma((P_{No D}-P_{No d})/d)$ 

 $P_{No D}$  = percentage by weight smaller than size D

 $P_{Nod}$  = percentage by weight larger than the next size d

 $D_{eq}$  = equivalent grain size for particles smaller than  $D_{min}$  of gradation =  $D_{min}/3^{0.5}$ 

SF = Shape Factor for particle angularity = 7.5

SF = 6.6 for rounded particles; 7.5 for medium angularity; 8.4 for angular (after Loudon, presented in Ref. 1)

thus, Permeability, may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})\{1/\Sigma[(P_{N_0,D}-P_{N_0,d})/d]\}^2(1/SF^2)[e^3/(1+e)]$ , Table 1 below

Further, according Ref. 2, measured permeability typically varies from 1/3 to 3 times the estimated permeability. The references also note that this method may overpredict permeability when soil is gravel, and the results present an upper bound. The formula is not suitable for plastic soils.

|          | TABL      | E 1 - SUM OF (P | No D - P <sub>No d</sub> )/d |                                          |
|----------|-----------|-----------------|------------------------------|------------------------------------------|
| Sieve De | signation | Nominal Sieve   | Percent                      | (P <sub>NoD</sub> -P <sub>Nod</sub> )/ d |
| Standard | Alternate | Opening (cm)    | Passing                      | (1/cm)                                   |
| 37.5 mm  | 1-1/2"    | 3.750           | 100.0                        |                                          |
| 25.0 mm  | 1"        | 2.500           | 100.0                        | 0.0                                      |
| 19.0 mm  | 3/4"      | 1.900           | 100.0                        | 0.0                                      |
| 12.5 mm  | 1/2"      | 1.250           | 81.7                         | 14.6                                     |
| 9.5      | 3/8"      | 0.950           | 75.5                         | 6.5                                      |
| 4.75 mm  | No. 4     | 0.475           | 66.1                         | 19.9                                     |
| 2.00 mm  | No. 10    | 0.200           | 55.4                         | 53.6                                     |
| 1.18 mm  | No. 16    | 0.118           | 49.1                         | 53.3                                     |
| 600 µm   | No. 30    | 0.060           | 40.9                         | 135.9                                    |
| 300 µm   | No. 50    | 0.030           | 30.8                         | 338.6                                    |
| 250 µm   | No. 60    | 0.025           | 28.2                         | 103.0                                    |
| 150 µm   | No. 100   | 0.015           | 20.9                         | 486.4                                    |
| 75 µm    | No. 200   | 0.008           | 13.9                         | 931.6                                    |
| $D_{eq}$ |           | 0.004           | 0.0                          | 3210.1                                   |
|          |           |                 |                              |                                          |
|          |           |                 |                              |                                          |
|          |           |                 |                              |                                          |
|          |           |                 |                              |                                          |
|          |           |                 | Sum:                         | 5353.6                                   |

Estimate Void Ratio (e) from Relative Density (Ref. 4)

 $D_r^2 = (N_1)60/C_P C_A C_{OCR}$ 

 $(N_1)60=$  47  $C_P=60+25logD_{50}=$  62.8  $D_{50}=$  1.3 mm  $C_A=1.2+0.05log(t/100)=$  1.19 t(yr)= 70  $C_{OCR}=OCR^{0.18}=$  1  $D_r=$  0.79198

 $e_{max} = 0.85$   $e = e_{max} - (D_r)(e_{max} - e_{min})$   $e_{min} = 0.14$ e = 0.28769

thus, range of permeability is estimated as:

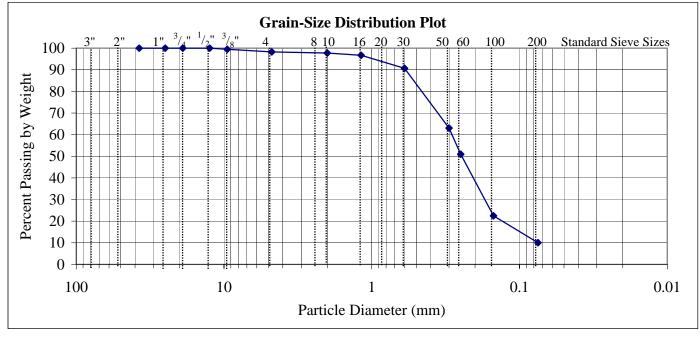
| Estimated range of k (cm/s) |            |           |  |  |  |  |  |
|-----------------------------|------------|-----------|--|--|--|--|--|
| Probable                    | Probable   |           |  |  |  |  |  |
| measured                    | Calculated | measured  |  |  |  |  |  |
| lower bnd                   | Estimate   | upper bnd |  |  |  |  |  |
| 5.7E-04                     | 1.7E-03    | 5.1E-03   |  |  |  |  |  |

| Copyright © 2008 Stephens Associates Consulting Engineers LL0 | С |
|---------------------------------------------------------------|---|
| Revisions:                                                    |   |



Original Work:

Ву: R. Kline June 2, 2008 Date: Subject: **Laboratory Testing** 


Rte. 1, Saugus, MA

Checked By: J. Turner Date: June 13, 2008 Grain Size Distribution

Boring Number: Sample Number: S-4 Sample Depth: 7-9' B-2

Sample Description: Gray fine to medium SAND, trace silt

| Sieve De | signation | Nominal Sie | eve Opening | Tare Weight | Sieve+Soil Wt.   | Soil Weight (g) | Percent |
|----------|-----------|-------------|-------------|-------------|------------------|-----------------|---------|
| Standard | Alternate | mm          | inches      | (g)         | (g)              | Oon Weight (g)  | Passing |
| 37.5 mm  | 1-1/2"    | 37.5        | 1.476"      | 501.3       | 501.3            | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25          | 0.984"      | 502.5       | 502.5            | 0.0             | 100.0   |
| 19.0 mm  | 3/4"      | 19          | 0.748"      | 595.8       | 595.8            | 0.0             | 100.0   |
| 12.5 mm  | 1/2"      | 12.5        | 0.492"      | 607.6       | 607.6            | 0.0             | 100.0   |
| 9.5      | 3/8"      | 9.5         | 0.374"      | 565.2       | 565.5            | 0.3             | 99.5    |
| 4.75 mm  | No. 4     | 4.75        | 0.187"      | 527.7       | 528.4            | 0.7             | 98.3    |
| 2.00 mm  | No. 10    | 2           | 0.078"      | 450.6       | 450.9            | 0.3             | 97.8    |
| 1.18 mm  | No. 16    | 1.18        | 0.0464"     | 401.2       | 401.8            | 0.6             | 96.7    |
| 600 µm   | No. 30    | 0.6         | 0.0236"     | 410.3       | 413.8            | 3.5             | 90.7    |
| 300 µm   | No. 50    | 0.3         | .0118"      | 416.4       | 432.4            | 16.0            | 63.0    |
| 250 µm   | No. 60    | 0.25        | 0.0098"     | 340.0       | 347.0            | 7.0             | 50.9    |
| 150 µm   | No. 100   | 0.15        | 0.0059"     | 303.6       | 320.1            | 16.5            | 22.5    |
| 75 µm    | No. 200   | 0.075       | 0.0029"     | 301.6       | 308.8            | 7.2             | 10.0    |
| Pan      |           |             |             | 340.5       | 346.3            | 5.8             | 0.0     |
|          |           |             |             |             |                  |                 |         |
|          |           |             |             | Sc          | oil Wt. Sum (g): | 57.9            |         |



 $D_{10} =$ 0.075 mm Cu = 3.7  $D_{30} =$ Cc = 0.175 mm 1.5

 $D_{60} =$ 0.28 USCS Classification = SP-SM mm

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:

By: Date: Date: By:



Project: Number: 026-08-007 Sheet MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA R. Kline Permeability Estimate by Date: June 2, 2008 Subject: Checked By: J. Turner Date: June 13, 2008 Kozeny-Carman Formula

Boring Number: Sample Number: S-4 Sample Depth: 7-9'

According to References 1 and 3, (Note: Reference List at end of data sheets) Permeability may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})(1/S^2)[e^3/(1+e)]$ 

9800  $\gamma$  = assumed unit weight of water in situ, lb/ft<sup>3</sup>  $N/m^3$ 0.00131 at 10 °C

 $\mu$  = viscosity of water, Ns/m<sup>2</sup> C<sub>K-C</sub> = Kozeny-Carman empirical coefficient; reported as 4.8±0.3, usually taken as 5, =

S = specific surface area per unit volume of particles =  $SF^*\Sigma((P_{No D}-P_{No d})/d)$ 

=

 $P_{N_0 D}$  = percentage by weight smaller than size D

P<sub>No d</sub> = percentage by weight larger than the next size d

 $D_{eq}$  = equivalent grain size for particles smaller than  $D_{min}$  of gradation =  $D_{min}/3^{0.5}$ 

SF = Shape Factor for particle angularity =

SF = 6.6 for rounded particles; 7.5 for medium angularity; 8.4 for angular (after Loudon, presented in Ref. 1)

thus, Permeability, may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})\{1/\Sigma[(P_{N_0} - P_{N_0} d)/d]\}^2(1/SF^2)[e^3/(1+e)]$ , Table 1 below

Further, according Ref. 2, measured permeability typically varies from 1/3 to 3 times the estimated permeability. The references also note that this method may overpredict permeability when soil is gravel, and the results present an upper bound. The formula is not suitable for plastic soils.

|          | TABL      | E 1 - SUM OF (P | No D - P <sub>No d</sub> )/d |                                          |
|----------|-----------|-----------------|------------------------------|------------------------------------------|
| Sieve De | signation | Nominal Sieve   | Percent                      | (P <sub>NoD</sub> -P <sub>Nod</sub> )/ d |
| Standard | Alternate | Opening (cm)    | Passing                      | (1/cm)                                   |
| 37.5 mm  | 1-1/2"    | 3.750           | 100.0                        |                                          |
| 25.0 mm  | 1"        | 2.500           | 100.0                        | 0.0                                      |
| 19.0 mm  | 3/4"      | 1.900           | 100.0                        | 0.0                                      |
| 12.5 mm  | 1/2"      | 1.250           | 100.0                        | 0.0                                      |
| 9.5      | 3/8"      | 0.950           | 99.5                         | 0.5                                      |
| 4.75 mm  | No. 4     | 0.475           | 98.3                         | 2.5                                      |
| 2.00 mm  | No. 10    | 0.200           | 97.8                         | 2.6                                      |
| 1.18 mm  | No. 16    | 0.118           | 96.7                         | 8.8                                      |
| 600 µm   | No. 30    | 0.060           | 90.7                         | 100.7                                    |
| 300 µm   | No. 50    | 0.030           | 63.0                         | 921.1                                    |
| 250 µm   | No. 60    | 0.025           | 50.9                         | 483.6                                    |
| 150 µm   | No. 100   | 0.015           | 22.5                         | 1899.8                                   |
| 75 µm    | No. 200   | 0.008           | 10.0                         | 1658.0                                   |
| $D_{eq}$ |           | 0.004           | 0.0                          | 2313.4                                   |
| •        |           |                 |                              |                                          |
|          |           |                 |                              |                                          |
|          |           |                 |                              |                                          |
|          |           |                 |                              |                                          |
|          |           |                 | Sum:                         | 7391 2                                   |

Estimate Void Ratio (e) from Relative Density (Ref. 4)

 $D_r^2 = (N_1)60/C_P C_A C_{OCR}$ 

(N₁)60=  $C_P = 60 + 25 \log D_{50} = 44.9$  $D_{50} = 0.25 \text{ mm}$  $C_A=1.2+0.05\log(t/100)=$  1.19 t(yr) = 70 $C_{OCR} = OCR^{0.18} =$  $D_r = 0.94641$ 

 $e_{max} = 0.95$  $e=e_{max}-(D_r)(e_{max}-e_{min})$ e<sub>min</sub>= e= 0.24019

thus, range of permeability is estimated as:

| Estimated range of k (cm/s)  |          |         |  |  |  |
|------------------------------|----------|---------|--|--|--|
| Probable Probable            |          |         |  |  |  |
| measured                     | measured |         |  |  |  |
| lower bnd Estimate upper bnd |          |         |  |  |  |
| 1.8E-04                      | 5.4E-04  | 1.6E-03 |  |  |  |

| Copyright © 2008 Stephens Associates Consulting Engineers LL |
|--------------------------------------------------------------|
| Revisions:                                                   |

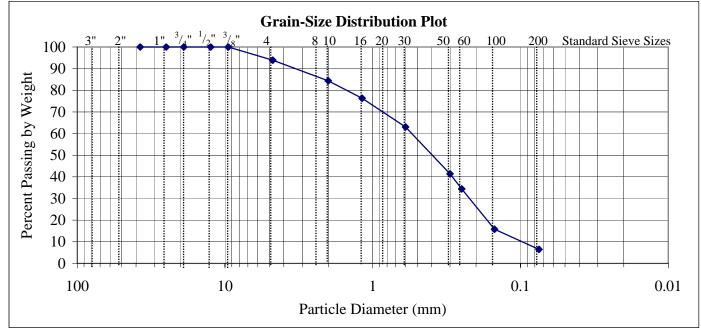
By: Date: Date:



Original Work:

Ву: R. Kline June 2, 2008 Date: Subject: Checked By: J. Turner Date: June 13, 2008

**Laboratory Testing** 


Grain Size Distribution

Rte. 1, Saugus, MA

Boring Number: Sample Number: S-5 Sample Depth: 9-11' B-2

Sample Description: Gray fine to medium SAND, trace silt

| Sieve De | signation | Nominal Sign | eve Opening | Tare Weight | Sieve+Soil Wt.               | Soil Weight (g) | Percent |
|----------|-----------|--------------|-------------|-------------|------------------------------|-----------------|---------|
| Standard | Alternate | mm           | inches      | (g)         | (g)                          | Son Weight (g)  | Passing |
| 37.5 mm  | 1-1/2"    | 37.5         | 1.476"      | 501.3       | 501.3                        | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25           | 0.984"      | 502.5       | 502.5                        | 0.0             | 100.0   |
| 19.0 mm  | 3/4"      | 19           | 0.748"      | 595.8       | 595.8                        | 0.0             | 100.0   |
| 12.5 mm  | 1/2"      | 12.5         | 0.492"      | 607.8       | 607.8                        | 0.0             | 100.0   |
| 9.5      | 3/8"      | 9.5          | 0.374"      | 565.4       | 565.4                        | 0.0             | 100.0   |
| 4.75 mm  | No. 4     | 4.75         | 0.187"      | 527.9       | 536.1                        | 8.2             | 93.9    |
| 2.00 mm  | No. 10    | 2            | 0.078"      | 450.8       | 463.6                        | 12.8            | 84.4    |
| 1.18 mm  | No. 16    | 1.18         | 0.0464"     | 401.3       | 412.1                        | 10.8            | 76.3    |
| 600 µm   | No. 30    | 0.6          | 0.0236"     | 410.4       | 428.2                        | 17.8            | 63.0    |
| 300 µm   | No. 50    | 0.3          | .0118"      | 416.6       | 445.7                        | 29.1            | 41.4    |
| 250 µm   | No. 60    | 0.25         | 0.0098"     | 340.1       | 349.4                        | 9.3             | 34.4    |
| 150 µm   | No. 100   | 0.15         | 0.0059"     | 303.8       | 328.8                        | 25.0            | 15.8    |
| 75 µm    | No. 200   | 0.075        | 0.0029"     | 301.8       | 314.3                        | 12.5            | 6.5     |
| Pan      |           |              |             | 340.6       | 349.3                        | 8.7             | 0.0     |
|          |           |              |             | Sc          | <u>l</u><br>oil Wt. Sum (g): | 134.2           |         |



 $D_{10} =$ 0.095 mm Cu = 5.8  $D_{30} =$ Cc = 0.225 mm 1.0

 $D_{60} =$ 0.55 USCS Classification = SP-SM  $\mathsf{mm}$ 

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:

By: Date: Date: By:



Project: Number: 026-08-007 Sheet MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA R. Kline Permeability Estimate by Date: June 2, 2008 Subject: Checked By: J. Turner Date: June 13, 2008 Kozeny-Carman Formula

Boring Number: **B-2** Sample Number: **S-5** Sample Depth: **9-11'** 

According to References 1 and 3, (Note: Reference List at end of data sheets) Permeability may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})(1/S^2)[e^3/(1+e)]$ 

 $\gamma$  = assumed unit weight of water in situ, lb/ft<sup>3</sup> = 62.4 = 9800 N/m<sup>3</sup>  $\mu$  = viscosity of water, Ns/m<sup>2</sup> = 0.00131 at 10 °C

 $C_{K-C}$  = Kozeny-Carman empirical coefficient; reported as 4.8±0.3, usually taken as 5, =

S = specific surface area per unit volume of particles =  $SF^*\Sigma((P_{No D}-P_{No d})/d)$ 

 $P_{No D}$  = percentage by weight smaller than size D

 $P_{Nod}$  = percentage by weight larger than the next size d

 $D_{eq}$  = equivalent grain size for particles smaller than  $D_{min}$  of gradation =  $D_{min}/3^{0.5}$ 

SF = Shape Factor for particle angularity = 7.5

SF = 6.6 for rounded particles; 7.5 for medium angularity; 8.4 for angular (after Loudon, presented in Ref. 1)

thus, Permeability, may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})\{1/\Sigma[(P_{N_0,D}-P_{N_0,d})/d]\}^2(1/SF^2)[e^3/(1+e)]$ , Table 1 below

Further, according Ref. 2, measured permeability typically varies from 1/3 to 3 times the estimated permeability. The references also note that this method may overpredict permeability when soil is gravel, and the results present an upper bound. The formula is not suitable for plastic soils.

|          | TABL      | E 1 - SUM OF (P | No D - P <sub>No d</sub> )/d |                                          |
|----------|-----------|-----------------|------------------------------|------------------------------------------|
| Sieve De | signation | Nominal Sieve   | Percent                      | (P <sub>NoD</sub> -P <sub>Nod</sub> )/ d |
| Standard | Alternate | Opening (cm)    | Passing                      | (1/cm)                                   |
| 37.5 mm  | 1-1/2"    | 3.750           | 100.0                        |                                          |
| 25.0 mm  | 1"        | 2.500           | 100.0                        | 0.0                                      |
| 19.0 mm  | 3/4"      | 1.900           | 100.0                        | 0.0                                      |
| 12.5 mm  | 1/2"      | 1.250           | 100.0                        | 0.0                                      |
| 9.5      | 3/8"      | 0.950           | 100.0                        | 0.0                                      |
| 4.75 mm  | No. 4     | 0.475           | 93.9                         | 12.9                                     |
| 2.00 mm  | No. 10    | 0.200           | 84.4                         | 47.7                                     |
| 1.18 mm  | No. 16    | 0.118           | 76.3                         | 68.2                                     |
| 600 µm   | No. 30    | 0.060           | 63.0                         | 221.1                                    |
| 300 µm   | No. 50    | 0.030           | 41.4                         | 722.8                                    |
| 250 µm   | No. 60    | 0.025           | 34.4                         | 277.2                                    |
| 150 µm   | No. 100   | 0.015           | 15.8                         | 1241.9                                   |
| 75 µm    | No. 200   | 0.008           | 6.5                          | 1241.9                                   |
| $D_{eq}$ |           | 0.004           | 0.0                          | 1497.2                                   |
|          |           |                 |                              |                                          |
|          |           |                 |                              |                                          |
|          |           |                 |                              |                                          |
|          |           |                 |                              |                                          |
|          |           |                 | Sum:                         | 5330.8                                   |

Estimate Void Ratio (e) from Relative Density (Ref. 4)

 $D_r^2 = (N_1)60/C_P C_A C_{OCR}$ 

 $\begin{array}{llll} (N_1)60=&33\\ C_P=60+25logD_{50}=&50.1\\ D_{50}=&0.4&mm\\ C_A=1.2+0.05log(t/100)=&1.19\\ t(yr)=&70\\ C_{OCR}=OCR^{0.18}=&1\\ D_r=&0.74364 \end{array}$ 

 $e_{max} = 0.95$   $e = e_{max} - (D_r)(e_{max} - e_{min})$   $e_{min} = 0.2$  e = 0.39227

thus, range of permeability is estimated as:

| Estimated range of k (cm/s) |                     |           |  |  |  |
|-----------------------------|---------------------|-----------|--|--|--|
| Probable Probable           |                     |           |  |  |  |
| measured                    | measured Calculated |           |  |  |  |
| lower bnd                   | Estimate            | upper bnd |  |  |  |
| 1.4E-03                     | 4.1E-03             | 1.2E-02   |  |  |  |

Revisions:

By: Date: \_\_\_\_\_\_ Date: \_\_\_\_\_



Original Work:

R. Kline June 2, 2008 By: Date: Subject: Checked By: J. Turner Date: June 13, 2008

**Laboratory Testing** 

Grain Size Distribution

Rte. 1, Saugus, MA

Boring Number: Sample Number: S-6 B-2 Sample Depth: 11-13'

Sample Description: Gray fine to medium SAND, some Silt

| Sieve De<br>Standard | signation<br>Alternate |       | eve Opening inches | Tare Weight<br>(g) | Sieve+Soil Wt.<br>(g) | Soil Weight (g) | Percent<br>Passing |
|----------------------|------------------------|-------|--------------------|--------------------|-----------------------|-----------------|--------------------|
|                      |                        | mm    |                    |                    |                       |                 |                    |
| 37.5 mm              | 1-1/2"                 | 37.5  | 1.476"             | 501.3              | 501.3                 | 0.0             | 100.0              |
| 25.0 mm              | 1"                     | 25    | 0.984"             | 502.5              | 502.5                 | 0.0             | 100.0              |
| 19.0 mm              | 3/4"                   | 19    | 0.748"             | 595.8              | 595.8                 | 0.0             | 100.0              |
| 12.5 mm              | 1/2"                   | 12.5  | 0.492"             | 607.6              | 607.6                 | 0.0             | 100.0              |
| 9.5                  | 3/8"                   | 9.5   | 0.374"             | 565.2              | 565.2                 | 0.0             | 100.0              |
| 4.75 mm              | No. 4                  | 4.75  | 0.187"             | 527.7              | 527.7                 | 0.0             | 100.0              |
| 2.00 mm              | No. 10                 | 2     | 0.078"             | 450.6              | 450.8                 | 0.2             | 99.9               |
| 1.18 mm              | No. 16                 | 1.18  | 0.0464"            | 401.2              | 401.6                 | 0.4             | 99.6               |
| 600 µm               | No. 30                 | 0.6   | 0.0236"            | 410.3              | 413.4                 | 3.1             | 97.8               |
| 300 µm               | No. 50                 | 0.3   | .0118"             | 416.4              | 450.3                 | 33.9            | 78.0               |
| 250 µm               | No. 60                 | 0.25  | 0.0098"            | 340.0              | 354.9                 | 14.9            | 69.3               |
| 150 µm               | No. 100                | 0.15  | 0.0059"            | 303.6              | 340.8                 | 37.2            | 47.5               |
| 75 µm                | No. 200                | 0.075 | 0.0029"            | 301.6              | 333.0                 | 31.4            | 29.1               |
| Pan                  |                        |       |                    | 340.5              | 390.2                 | 49.7            | 0.0                |
|                      |                        |       |                    |                    |                       |                 |                    |
|                      |                        |       |                    | Sc                 | oil Wt. Sum (a):      | 170.8           |                    |

Soil Wt. Sum (g): **Grain-Size Distribution Plot** 50 60 100 200 Standard Sieve Sizes 100 90 Percent Passing by Weight 80 70 60 50 40 30 20 10 0 0.1 100 10 1 0.01 Particle Diameter (mm)

 $D_{10} =$ N/A mm Cu = N/A  $D_{30} =$ 0.076 mm Cc = N/A

 $D_{60} =$ USCS Classification = 0.2 mm SM

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:

By: Date: Date: Ву<u>:</u>



Project: Number: 026-08-007 Sheet MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA R. Kline June 2, 2008 Permeability Estimate by Date: Subject: Checked By: J. Turner Date: June 13, 2008 Kozeny-Carman Formula

Boring Number: B-2 Sample Number: S-6 Sample Depth: 11-13'

According to References 1 and 3, (Note: Reference List at end of data sheets) Permeability may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})(1/S^2)[e^3/(1+e)]$ 

 $\gamma$  = assumed unit weight of water in situ, lb/ft<sup>3</sup> = 62.4 = 9800 N/m<sup>3</sup>  $\mu$  = viscosity of water, Ns/m<sup>2</sup> = 0.00131 at 10 °C

 $C_{K-C}$  = Kozeny-Carman empirical coefficient; reported as 4.8±0.3, usually taken as 5, =

S = specific surface area per unit volume of particles =  $SF^*\Sigma((P_{No D}-P_{No d})/d)$ 

 $P_{No D}$  = percentage by weight smaller than size D

 $P_{Nod}$  = percentage by weight larger than the next size d

 $D_{eq}$  = equivalent grain size for particles smaller than  $D_{min}$  of gradation =  $D_{min}/3^{0.5}$ 

SF = Shape Factor for particle angularity = 7.5

SF = 6.6 for rounded particles; 7.5 for medium angularity; 8.4 for angular (after Loudon, presented in Ref. 1)

thus, Permeability, may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})\{1/\Sigma[(P_{N_0} - P_{N_0} d)/d]\}^2(1/SF^2)[e^3/(1+e)]$ , Table 1 below

Further, according Ref. 2, measured permeability typically varies from 1/3 to 3 times the estimated permeability. The references also note that this method may overpredict permeability when soil is gravel, and the results present an upper bound. The formula is not suitable for plastic soils.

| TABLE 1 - SUM OF (P <sub>No D</sub> - P <sub>No d</sub> )/d |           |               |         |                                          |  |  |  |
|-------------------------------------------------------------|-----------|---------------|---------|------------------------------------------|--|--|--|
| Sieve De                                                    | signation | Nominal Sieve | Percent | (P <sub>NoD</sub> -P <sub>Nod</sub> )/ d |  |  |  |
| Standard                                                    | Alternate | Opening (cm)  | Passing | (1/cm)                                   |  |  |  |
| 37.5 mm                                                     | 1-1/2"    | 3.750         | 100.0   |                                          |  |  |  |
| 25.0 mm                                                     | 1"        | 2.500         | 100.0   | 0.0                                      |  |  |  |
| 19.0 mm                                                     | 3/4"      | 1.900         | 100.0   | 0.0                                      |  |  |  |
| 12.5 mm                                                     | 1/2"      | 1.250         | 100.0   | 0.0                                      |  |  |  |
| 9.5                                                         | 3/8"      | 0.950         | 100.0   | 0.0                                      |  |  |  |
| 4.75 mm                                                     | No. 4     | 0.475         | 100.0   | 0.0                                      |  |  |  |
| 2.00 mm                                                     | No. 10    | 0.200         | 99.9    | 0.6                                      |  |  |  |
| 1.18 mm                                                     | No. 16    | 0.118         | 99.6    | 2.0                                      |  |  |  |
| 600 µm                                                      | No. 30    | 0.060         | 97.8    | 30.2                                     |  |  |  |
| 300 µm                                                      | No. 50    | 0.030         | 78.0    | 661.6                                    |  |  |  |
| 250 µm                                                      | No. 60    | 0.025         | 69.3    | 348.9                                    |  |  |  |
| 150 µm                                                      | No. 100   | 0.015         | 47.5    | 1452.0                                   |  |  |  |
| 75 µm                                                       | No. 200   | 0.008         | 29.1    | 2451.2                                   |  |  |  |
| $D_{eq}$                                                    |           | 0.004         | 0.0     | 6720.0                                   |  |  |  |
|                                                             |           |               |         |                                          |  |  |  |
|                                                             |           |               |         |                                          |  |  |  |
|                                                             |           |               |         |                                          |  |  |  |
|                                                             |           |               |         |                                          |  |  |  |
|                                                             |           |               | Sum:    | 11666.5                                  |  |  |  |

Estimate Void Ratio (e) from Relative Density (Ref. 4)

 $D_r^2 = (N_1)60/C_P C_A C_{OCR}$ 

 $\begin{array}{lll} (N_1)60=&15\\ C_P=60+25logD_{50}=&41.1\\ D_{50}=&0.18\ mm\\ C_A=1.2+0.05log(t/100)=&1.19\\ t(yr)=&70\\ C_{OCR}=OCR^{0.18}=&1\\ D_r=&0.55344 \end{array}$ 

 $e_{max} = 0.9$   $e = e_{max} - (D_r)(e_{max} - e_{min})$   $e_{min} = 0.3$  e = 0.56794

thus, range of permeability is estimated as:

| Estimated range of k (cm/s) |                     |         |  |  |  |
|-----------------------------|---------------------|---------|--|--|--|
| Probable Probable           |                     |         |  |  |  |
| measured                    | measured Calculated |         |  |  |  |
| lower bnd                   | lower bnd Estimate  |         |  |  |  |
| 7.6E-04                     | 2.3E-03             | 6.8E-03 |  |  |  |

Copyright © 2008 Stephens Associates Consulting Engineers LLC Revisions:

Stephens Associates
Consulting Engineers
Insightful Costsaving Solutions
for Buildings and
Infrastructure
Hydrology & Hydraulics

 Project:
 Number:
 026-08-007
 Sheet
 1
 of
 1

 Name:
 MWRA Contract No. 6905, Pipeline

Nan

Rte. 1, Saugus, MA

Laboratory Testing

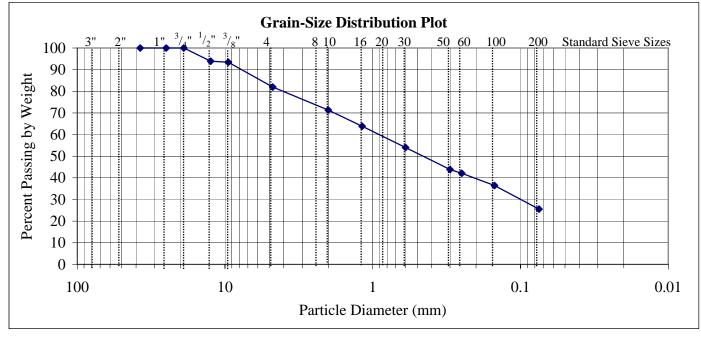
By: R. Kline Date: June 2, 2008 Subject: Checked By: J. Turner Date: June 13, 2008

B-4

Original Work:

Boring Number:

Grain Size Distribution


Sample Depth: 1-3' Bottom 9"

Sample Number: S-1

Sample Description: Gray and black fine to coarse SAND, some Silt, little Gravel

| Sieve De | signation | Nominal Signal | eve Opening | Tare Weight | Sieve+Soil Wt.   | Soil Weight (g) | Percent |
|----------|-----------|----------------|-------------|-------------|------------------|-----------------|---------|
| Standard | Alternate | mm             | inches      | (g)         | (g)              | Con Woight (g)  | Passing |
| 37.5 mm  | 1-1/2"    | 37.5           | 1.476"      | 501.4       | 501.4            | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25             | 0.984"      | 502.6       | 502.6            | 0.0             | 100.0   |
| 19.0 mm  | 3/4"      | 19             | 0.748"      | 595.9       | 595.9            | 0.0             | 100.0   |
| 12.5 mm  | 1/2"      | 12.5           | 0.492"      | 607.6       | 614.2            | 6.6             | 93.9    |
| 9.5      | 3/8"      | 9.5            | 0.374"      | 565.3       | 565.8            | 0.5             | 93.4    |
| 4.75 mm  | No. 4     | 4.75           | 0.187"      | 527.7       | 540.1            | 12.4            | 82.0    |
| 2.00 mm  | No. 10    | 2              | 0.078"      | 450.7       | 462.2            | 11.5            | 71.3    |
| 1.18 mm  | No. 16    | 1.18           | 0.0464"     | 401.1       | 409.2            | 8.1             | 63.8    |
| 600 µm   | No. 30    | 0.6            | 0.0236"     | 410.1       | 420.7            | 10.6            | 54.0    |
| 300 µm   | No. 50    | 0.3            | .0118"      | 416.2       | 427.2            | 11.0            | 43.8    |
| 250 µm   | No. 60    | 0.25           | 0.0098"     | 339.9       | 341.8            | 1.9             | 42.1    |
| 150 µm   | No. 100   | 0.15           | 0.0059"     | 303.5       | 309.6            | 6.1             | 36.4    |
| 75 µm    | No. 200   | 0.075          | 0.0029"     | 301.4       | 313.2            | 11.8            | 25.5    |
| Pan      |           |                |             | 340.3       | 367.9            | 27.6            | 0.0     |
|          |           |                |             |             |                  |                 |         |
|          |           |                |             |             | sil M/+ Cum (a). | 100.1           |         |

Soil Wt. Sum (g): 108.1



 $D_{10} = N/A$  mm Cu = N/A  $D_{30} = 0.1$  mm Cc = N/A

 $D_{60} = 0.9$  mm USCS Classification = SM

 ${\it Copyright} @ 2008 {\it Stephens Associates Consulting Engineers LLC}\\$ 

Revisions:

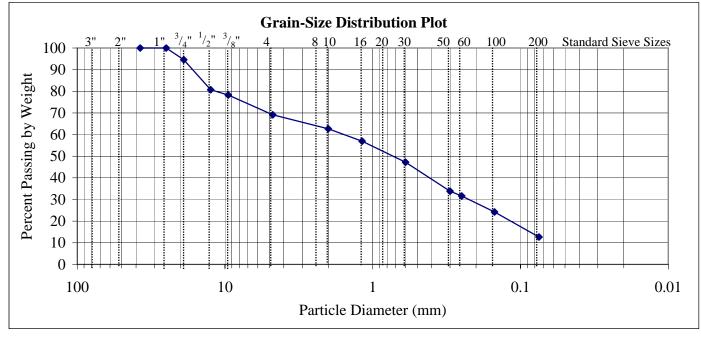
By: \_\_\_\_\_ Date: \_\_\_\_\_ Date: \_\_\_\_\_



Original Work:

Ву: R. Kline June 2, 2008 Date: Subject: **Laboratory Testing** 

Rte. 1, Saugus, MA


Checked By: J. Turner Date: June 13, 2008 Grain Size Distribution

Boring Number: B-4 Sample Number: S-4 Sample Depth: 7-9'

Sample Description: Gray fine to medium SAND, some Gravel, little Silt

|          | signation | Nominal Sie | eve Opening | Tare Weight | Sieve+Soil Wt.   | Soil Weight (g) | Percent |
|----------|-----------|-------------|-------------|-------------|------------------|-----------------|---------|
| Standard | Alternate | mm          | inches      | (g)         | (g)              | Son Weight (g)  | Passing |
| 37.5 mm  | 1-1/2"    | 37.5        | 1.476"      | 501.3       | 501.3            | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25          | 0.984"      | 502.6       | 502.6            | 0.0             | 100.0   |
| 19.0 mm  | 3/4"      | 19          | 0.748"      | 595.9       | 601.8            | 5.9             | 94.5    |
| 12.5 mm  | 1/2"      | 12.5        | 0.492"      | 607.7       | 622.7            | 15.0            | 80.7    |
| 9.5      | 3/8"      | 9.5         | 0.374"      | 565.4       | 568.0            | 2.6             | 78.3    |
| 4.75 mm  | No. 4     | 4.75        | 0.187"      | 527.9       | 537.8            | 9.9             | 69.1    |
| 2.00 mm  | No. 10    | 2           | 0.078"      | 451.1       | 458.1            | 7.0             | 62.7    |
| 1.18 mm  | No. 16    | 1.18        | 0.0464"     | 401.3       | 407.5            | 6.2             | 56.9    |
| 600 µm   | No. 30    | 0.6         | 0.0236"     | 410.4       | 420.9            | 10.5            | 47.2    |
| 300 µm   | No. 50    | 0.3         | .0118"      | 416.6       | 431.1            | 14.5            | 33.8    |
| 250 µm   | No. 60    | 0.25        | 0.0098"     | 340.0       | 342.4            | 2.4             | 31.6    |
| 150 µm   | No. 100   | 0.15        | 0.0059"     | 303.7       | 311.7            | 8.0             | 24.2    |
| 75 µm    | No. 200   | 0.075       | 0.0029"     | 301.6       | 314.1            | 12.5            | 12.7    |
| Pan      |           |             |             | 340.4       | 354.1            | 13.7            | 0.0     |
|          |           |             |             |             | bil Wt. Sum (a): | 108.2           |         |

Soil VVt. Sum (g):



 $D_{10} =$ N/A mm Cu = N/A  $D_{30} =$ 0.225 mm Cc = N/A

 $D_{60} =$ USCS Classification = 1.65 mm SM

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:

By: Date: Date:



Project: Number: 026-08-007 Sheet MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA R. Kline Permeability Estimate by Date: June 2, 2008 Subject: Checked By: J. Turner Date: June 13, 2008 Kozeny-Carman Formula

Boring Number: **B-4** Sample Number: **S-4** Sample Depth: **7-9'** 

According to References 1 and 3, (Note: Reference List at end of data sheets) Permeability may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})(1/S^2)[e^3/(1+e)]$ 

 $\gamma$  = assumed unit weight of water in situ, lb/ft<sup>3</sup> = 62.4 = 9800 N/m<sup>3</sup>  $\mu$  = viscosity of water, Ns/m<sup>2</sup> = 0.00131 at 10 °C

 $C_{K-C}$  = Kozeny-Carman empirical coefficient; reported as 4.8±0.3, usually taken as 5, =

S = specific surface area per unit volume of particles =  $SF^*\Sigma((P_{No D}-P_{No d})/d)$ 

 $P_{No D}$  = percentage by weight smaller than size D

 $P_{Nod}$  = percentage by weight larger than the next size d

 $D_{eq}$  = equivalent grain size for particles smaller than  $D_{min}$  of gradation =  $D_{min}/3^{0.5}$ 

SF = Shape Factor for particle angularity = 7.5

SF = 6.6 for rounded particles; 7.5 for medium angularity; 8.4 for angular (after Loudon, presented in Ref. 1)

thus, Permeability, may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})\{1/\Sigma[(P_{N_0} - P_{N_0} d)/d]\}^2(1/SF^2)[e^3/(1+e)]$ , Table 1 below

Further, according Ref. 2, measured permeability typically varies from 1/3 to 3 times the estimated permeability. The references also note that this method may overpredict permeability when soil is gravel, and the results present an upper bound. The formula is not suitable for plastic soils.

| TABLE 1 - SUM OF (P <sub>No D</sub> - P <sub>No d</sub> )/d |           |               |         |                                          |  |  |  |
|-------------------------------------------------------------|-----------|---------------|---------|------------------------------------------|--|--|--|
| Sieve De                                                    | signation | Nominal Sieve | Percent | (P <sub>NoD</sub> -P <sub>Nod</sub> )/ d |  |  |  |
| Standard                                                    | Alternate | Opening (cm)  | Passing | (1/cm)                                   |  |  |  |
| 37.5 mm                                                     | 1-1/2"    | 3.750         | 100.0   |                                          |  |  |  |
| 25.0 mm                                                     | 1"        | 2.500         | 100.0   | 0.0                                      |  |  |  |
| 19.0 mm                                                     | 3/4"      | 1.900         | 94.5    | 2.9                                      |  |  |  |
| 12.5 mm                                                     | 1/2"      | 1.250         | 80.7    | 11.1                                     |  |  |  |
| 9.5                                                         | 3/8"      | 0.950         | 78.3    | 2.5                                      |  |  |  |
| 4.75 mm                                                     | No. 4     | 0.475         | 69.1    | 19.3                                     |  |  |  |
| 2.00 mm                                                     | No. 10    | 0.200         | 62.7    | 32.3                                     |  |  |  |
| 1.18 mm                                                     | No. 16    | 0.118         | 56.9    | 48.6                                     |  |  |  |
| 600 µm                                                      | No. 30    | 0.060         | 47.2    | 161.7                                    |  |  |  |
| 300 µm                                                      | No. 50    | 0.030         | 33.8    | 446.7                                    |  |  |  |
| 250 µm                                                      | No. 60    | 0.025         | 31.6    | 88.7                                     |  |  |  |
| 150 µm                                                      | No. 100   | 0.015         | 24.2    | 492.9                                    |  |  |  |
| 75 µm                                                       | No. 200   | 0.008         | 12.7    | 1540.4                                   |  |  |  |
| $D_{eq}$                                                    |           | 0.004         | 0.0     | 2924.1                                   |  |  |  |
| •                                                           |           |               |         |                                          |  |  |  |
|                                                             |           |               |         |                                          |  |  |  |
|                                                             |           |               |         |                                          |  |  |  |
|                                                             |           |               |         |                                          |  |  |  |
|                                                             |           | •             | Sum:    | 5771 2                                   |  |  |  |

Estimate Void Ratio (e) from Relative Density (Ref. 4)

 $D_r^2 = (N_1)60/C_P C_A C_{OCR}$ 

 $(N_1)60=$  19  $C_P=60+25logD_{50}=$  56.6  $D_{50}=$  0.73 mm  $C_A=1.2+0.05log(t/100)=$  1.19 t(yr)= 70  $C_{OCR}=OCR^{0.18}=$  1  $D_r=$  0.5307

 $e_{max} = 0.85$   $e = e_{max} - (D_r)(e_{max} - e_{min})$   $e_{min} = 0.14$ e = 0.4732

thus, range of permeability is estimated as:

| Estimated range of k (cm/s) |            |           |  |  |  |  |
|-----------------------------|------------|-----------|--|--|--|--|
| Probable Probable           |            |           |  |  |  |  |
| measured                    | Calculated | measured  |  |  |  |  |
| lower bnd                   | Estimate   | upper bnd |  |  |  |  |
| 1.9E-03                     | 5.7E-03    | 1.7E-02   |  |  |  |  |

| Copyright © 2008 Stephens Associates Consulting Engineers LLC |
|---------------------------------------------------------------|
| Revisions:                                                    |

By: Date: \_\_\_\_\_\_\_ Date: \_\_\_\_\_\_\_

Stephens Associates
Consulting Engineers
Insightful Coetsaving Solutions
for Buildings and
Initiastructure
Hydrology & Hydraulics

Project: Number: 026-08-007 Sheet 1 of

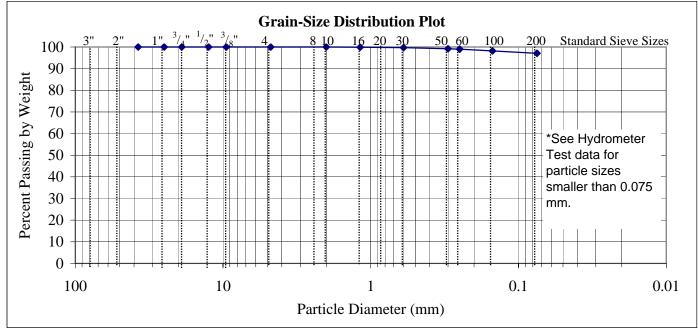
Name:

MWRA Contract No. 6905, Pipeline Rte. 1, Saugus, MA

Original Work:

R. Kline By: Checked By: J. Turner Date:

June 4, 2008 Date: Subject: June 13, 2008


**Laboratory Testing** 

Grain Size Distribution

Boring Number: Sample Number: S-5 Sample Depth: 9-11' Bottom 4" B-4

Sample Description: Brown slightly plastic SILT

| Sieve De | signation | Nominal Sie | eve Opening | Tare Weight | Sieve+Soil Wt.        | Soil Weight (g) | Percent |
|----------|-----------|-------------|-------------|-------------|-----------------------|-----------------|---------|
| Standard | Alternate | mm          | inches      | (g)         | (g)                   | Son Weight (g)  | Passing |
| 37.5 mm  | 1-1/2"    | 37.5        | 1.476"      | 501.3       | 501.3                 | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25          | 0.984"      | 502.5       | 502.5                 | 0.0             | 100.0   |
| 19.0 mm  | 3/4"      | 19          | 0.748"      | 595.8       | 595.8                 | 0.0             | 100.0   |
| 12.5 mm  | 1/2"      | 12.5        | 0.492"      | 607.6       | 607.6                 | 0.0             | 100.0   |
| 9.5      | 3/8"      | 9.5         | 0.374"      | 565.2       | 565.2                 | 0.0             | 100.0   |
| 4.75 mm  | No. 4     | 4.75        | 0.187"      | 527.8       | 527.8                 | 0.0             | 100.0   |
| 2.00 mm  | No. 10    | 2           | 0.078"      | 450.9       | 450.9                 | 0.0             | 100.0   |
| 1.18 mm  | No. 16    | 1.18        | 0.0464"     | 401.2       | 401.3                 | 0.1             | 99.9    |
| 600 µm   | No. 30    | 0.6         | 0.0236"     | 410.4       | 410.6                 | 0.2             | 99.7    |
| 300 µm   | No. 50    | 0.3         | .0118"      | 416.6       | 417.1                 | 0.5             | 99.2    |
| 250 µm   | No. 60    | 0.25        | 0.0098"     | 339.9       | 340.1                 | 0.2             | 99.0    |
| 150 µm   | No. 100   | 0.15        | 0.0059"     | 303.2       | 304.0                 | 0.8             | 98.2    |
| 75 µm    | No. 200   | 0.075       | 0.0029"     | 301.7       | 302.8                 | 1.1             | 97.1    |
| Pan      |           |             |             | 340.4       | 436.7                 | 96.3            | 0.0     |
|          |           |             |             | Sc          | l<br>bil Wt. Sum (g): | 99.2            |         |



 $D_{10} =$ N/A mm Cu = N/A  $D_{30} =$ N/A mm Cc = N/A

 $D_{60} =$ N/A USCS Classification = CL mm

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:

By: Date: Date: By:



026-08-007 **Project:** Number: Sheet 1 of MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA By: R. Kline Date: June 4, 2008 Subject: **Laboratory Testing** Checked By: J. Turner Date: June 13, 2008 **Hydrometer Analysis** 

Boring Number: B-4 Sample Number: S-5 Sample Depth: 9-11'

Sample Description: Brown slightly plastic SILT

Calculation for Percent of Soil in Suspension: P = (R\*a/W)\*100

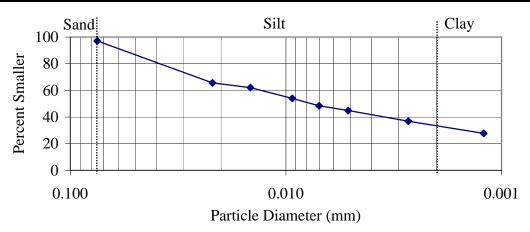
P = percent of soil in suspension at the level of the hydrometer, i.e. percent smaller diameter

R = Hydrometer reading with composite correction

a = correction factor for specific gravity of soil solids other than 2.65

Calculation for Particle Diameter:  $D = K (L/T)^{0.5}$ D = particle diameter, mm T = time, min.

L = distance from the suspension surface to the level at which the density of the suspension is measured, cm


K = constant depending on the temperature of the suspension and the specific gravity of the soil particles.

Values of K for a range of temperatures and specific gravities are given in Table 3 of ASTM D-422

The value of K does not change for a series of readings constituting a test, while values of L and T do vary.

Test Constants: Hydrometer Type: 152H
Reading of Hydrometer in Solution Only (g/l): 3.0 Temperature of Solution (°C) 20.0
Specific Gravity of Soil Solids (Assumed): 2.65 a: 1.00
Dry Soil Weight, W (g): 99.1 K: 0.01365

| Time (min) | Reading (g/l) | Corrected Reading (g/l) | L     | Diameter (mm) | % in suspension |
|------------|---------------|-------------------------|-------|---------------|-----------------|
|            | Data from S   | 0.0750                  | 97.1  |               |                 |
| 2          | 68            | 65                      | 5.15  | 0.0219        | 65.6            |
| 5          | 64.5          | 61.5                    | 5.72  | 0.0146        | 62.1            |
| 15         | 56.5          | 53.5                    | 7.03  | 0.0093        | 54.0            |
| 30         | 51            | 48                      | 7.94  | 0.0070        | 48.4            |
| 60         | 47.5          | 44.5                    | 8.51  | 0.0051        | 44.9            |
| 250        | 39.5          | 36.5                    | 9.82  | 0.0027        | 36.8            |
| 1440       | 30.5          | 27.5                    | 11.30 | 0.0012        | 27.7            |



Copyright © 2008 Stephens Associates Consulting Engineers LLC Revisions:

By: Date:

Date:

Stephens Associates
Consulting Engineers
Insightful, Costsawing Solutions for Buildings and for Buildings and Geotechnical

**Project:** Number:

Name:

026-08-007

Sheet 1 of

MWRA Contract No. 6905, Pipeline

Rte. 1, Saugus, MA

Original Work:

R. Kline By: Checked By: J. Turner Date:

Date:

June 3, 2008 June 13, 2008

Subject:

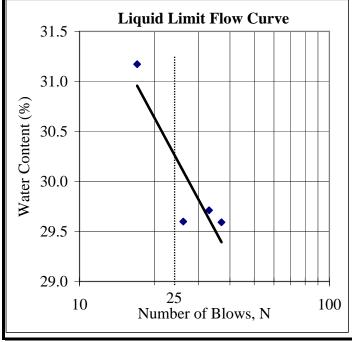
**Laboratory Testing** 

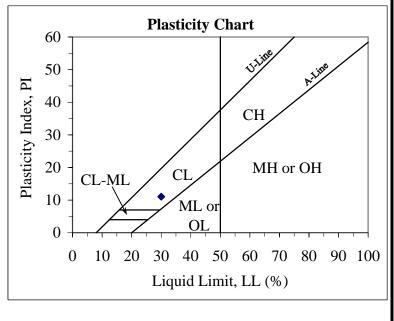
Atterberg Limits

Boring Number:

B-4

Sample Number: S-5


Sample Depth: 9-11'


Sample Description: Brown slightly plastic SILT

| LIQUID LIMIT                       |       |       |       |       |  |  |  |
|------------------------------------|-------|-------|-------|-------|--|--|--|
| Container Number                   | 13    | 2     | 10    | 21    |  |  |  |
| Tare Weight (g)                    | 16.20 | 16.45 | 16.28 | 16.46 |  |  |  |
| Weight Wet Soil+Container Tare (g) | 23.82 | 24.20 | 23.92 | 25.97 |  |  |  |
| Weight Dry Soil+Container Tare (g) | 22.08 | 22.43 | 22.17 | 23.71 |  |  |  |
| Weight Water (g)                   | 1.74  | 1.77  | 1.75  | 2.26  |  |  |  |
| Weight Dry Soil (g)                | 5.88  | 5.98  | 5.89  | 7.25  |  |  |  |
| Water Content (%)                  | 29.6  | 29.6  | 29.7  | 31.2  |  |  |  |
| Number of Blows, N                 | 37    | 26    | 33    | 17    |  |  |  |

| PLASTIC LIMIT                      |       |       |  |  |  |  |  |
|------------------------------------|-------|-------|--|--|--|--|--|
| Container Number                   | 15    | 14    |  |  |  |  |  |
| Tare Weight (g)                    | 16.20 | 16.30 |  |  |  |  |  |
| Weight Wet Soil+Container Tare (g) | 25.31 | 26.13 |  |  |  |  |  |
| Weight Dry Soil+Container Tare (g) | 23.89 | 24.53 |  |  |  |  |  |
| Weight Water (g)                   | 1.42  | 1.60  |  |  |  |  |  |
| Weight Dry Soil (g)                | 7.69  | 8.23  |  |  |  |  |  |
| Water Content (%)                  | 18.5  | 19.4  |  |  |  |  |  |

| SUMMARY OF RESULTS    |      |  |  |  |  |  |
|-----------------------|------|--|--|--|--|--|
| Natural Water Content | 37   |  |  |  |  |  |
| Liquid Limit, LL      | 30   |  |  |  |  |  |
| Plastic Limit, PL     | 19   |  |  |  |  |  |
| Plasticity Index, PI  | 11   |  |  |  |  |  |
| Liquidity Index, LI   | 1.59 |  |  |  |  |  |
| USCS Classification   | CL   |  |  |  |  |  |





Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:

By:\_\_\_\_ Date: Date: By:\_

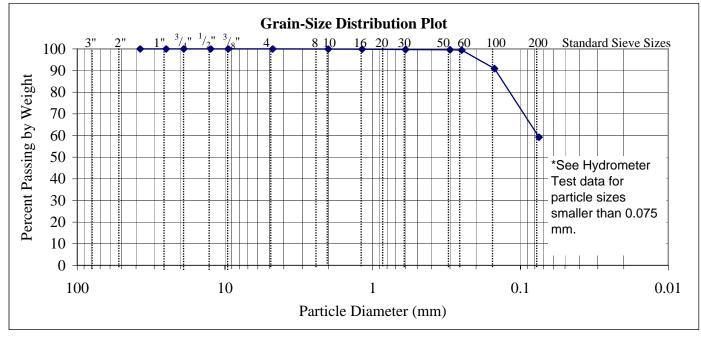
Stephens Associates Consulting Engineers

www.stephensengineers.com 668 Main Street, Wilmington, MA 01887 (978) 988-2115

Original Work:

By: R. Kline Date: June 2, 2008 Subject: Checked By: J. Turner Date: June 13, 2008

Laboratory Testing
Grain Size Distribution


Rte. 1, Saugus, MA

Boring Number: B-5 Sample Number: S-4 Sample Depth: 7-9'

Sample Description: Light brown non-plastic SILT and fine SAND

| Sieve De | signation | Nominal Signature | eve Opening | Tare Weight | Sieve+Soil Wt.     | Soil Weight (g) | Percent |  |
|----------|-----------|-------------------|-------------|-------------|--------------------|-----------------|---------|--|
| Standard | Alternate | mm                | inches      | (g)         | (g) Son Trongin (g |                 | Passing |  |
| 37.5 mm  | 1-1/2"    | 37.5              | 1.476"      | 501.3       | 501.3              | 0.0             | 100.0   |  |
| 25.0 mm  | 1"        | 25                | 0.984"      | 502.5       | 502.5              | 0.0             | 100.0   |  |
| 19.0 mm  | 3/4"      | 19                | 0.748"      | 595.8       | 595.8              | 0.0             | 100.0   |  |
| 12.5 mm  | 1/2"      | 12.5              | 0.492"      | 607.6       | 607.6              | 0.0             | 100.0   |  |
| 9.5      | 3/8"      | 9.5               | 0.374"      | 565.4       | 565.4              | 0.0             | 100.0   |  |
| 4.75 mm  | No. 4     | 4.75              | 0.187"      | 527.9       | 527.9              | 0.0             | 100.0   |  |
| 2.00 mm  | No. 10    | 2                 | 0.078"      | 450.9       | 451.0              | 0.1             | 99.9    |  |
| 1.18 mm  | No. 16    | 1.18              | 0.0464"     | 401.3       | 401.4              | 0.1             | 99.9    |  |
| 600 µm   | No. 30    | 0.6               | 0.0236"     | 410.4       | 410.6              | 0.2             | 99.7    |  |
| 300 µm   | No. 50    | 0.3               | .0118"      | 416.6       | 416.8              | 0.2             | 99.6    |  |
| 250 µm   | No. 60    | 0.25              | 0.0098"     | 340.0       | 340.2              | 0.2             | 99.4    |  |
| 150 µm   | No. 100   | 0.15              | 0.0059"     | 303.7       | 315.9              | 12.2            | 90.9    |  |
| 75 µm    | No. 200   | 0.075             | 0.0029"     | 301.7       | 347.0              | 45.3            | 59.2    |  |
| Pan      |           |                   |             | 340.4       | 425.0              | 84.6            | 0.0     |  |
|          |           |                   |             | Sc          | oil Wt. Sum (a):   | 142.9           |         |  |

Soil Wt. Sum (g): 142.9



 $D_{10} = N/A$  mm Cu = N/A  $D_{30} = N/A$  mm Cc = N/A

 $D_{60} = 0.075$  mm USCS Classification = ML

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:

By: Date: Date:



|         |                |           | Project       | : Number: | 026-08-007        | Sheet 1 of     | 1 |
|---------|----------------|-----------|---------------|-----------|-------------------|----------------|---|
|         |                |           |               | Name:     | MWRA Contract No. | 6905, Pipeline |   |
| Origina | l Work:        |           |               |           | Rte. 1, Saug      | us, MA         |   |
| By:     | R. Kline       | Date:     | June 3, 2008  | Subject:  | Laboratory T      | Testing        |   |
| Checke  | ed By: J. Turr | ner Date: | June 13, 2008 | <u> </u>  | Hydrometer A      | Analysis       |   |

Boring Number: B-5 Sample Number: S-4 Sample Depth: 7-9'

Sample Description: Light brown SILT and fine Sand

Calculation for Percent of Soil in Suspension: P = (R\*a/W)\*100

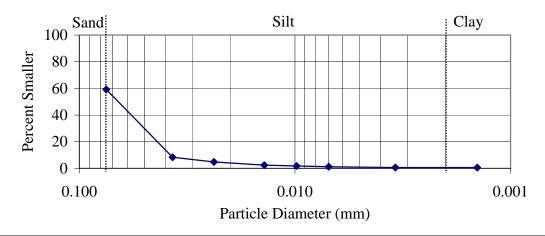
P = percent of soil in suspension at the level of the hydrometer, i.e. percent smaller diameter

R = Hydrometer reading with composite correction

a = correction factor for specific gravity of soil solids other than 2.65

Calculation for Particle Diameter:  $D = K (L/T)^{0.5}$ D = particle diameter, mm T = time, min.

L = distance from the suspension surface to the level at which the density of the suspension is measured, cm


K = constant depending on the temperature of the suspension and the specific gravity of the soil particles.

Values of K for a range of temperatures and specific gravities are given in Table 3 of ASTM D-422

The value of K does not change for a series of readings constituting a test, while values of L and T do vary.

Test Constants: Hydrometer Type: 152H
Reading of Hydrometer in Solution Only (g/l): 3.0 Temperature of Solution (°C) 20.0
Specific Gravity of Soil Solids (Assumed): 2.65 a: 1.00
Dry Soil Weight, W (g): 83.8 K: 0.01365

| Time (min) | Reading (g/l) | Corrected Reading (g/l) | L     | Diameter (mm) | % in suspension |
|------------|---------------|-------------------------|-------|---------------|-----------------|
|            | Data from S   | 0.0750                  | 59.2  |               |                 |
| 2          | 10            | 7                       | 14.66 | 0.0370        | 8.4             |
| 5          | 7             | 4                       | 15.15 | 0.0238        | 4.8             |
| 15         | 5             | 2                       | 15.48 | 0.0139        | 2.4             |
| 30         | 4.5           | 1.5                     | 15.56 | 0.0098        | 1.8             |
| 60         | 4             | 1                       | 15.64 | 0.0070        | 1.2             |
| 250        | 3.5           | 0.5                     | 15.73 | 0.0034        | 0.6             |
| 1440       | 3.5           | 0.5                     | 15.73 | 0.0014        | 0.6             |



Copyright © 2008 Stephens Associates Consulting Engineers LLC Revisions:

By: Date:

Date:

Stephens Associates
Consulting Engineers
Insightful, Costsaving Solutions
for Buildings and
Infrastructure
Hydrology & Hydraulics

Project: Number: 026-08-007 Sheet MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA R. Kline Permeability Estimate by Date: June 2, 2008 Subject: Checked By: J. Turner Date: June 13, 2008 Kozeny-Carman Formula

Boring Number: **B-5** Sample Number: **S-4** Sample Depth: **7-9**'

According to References 1 and 3, (Note: Reference List at end of data sheets) Permeability may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})(1/S^2)[e^3/(1+e)]$ 

 $\gamma$  = assumed unit weight of water in situ, lb/ft<sup>3</sup> = 62.4 = 9800 N/m<sup>3</sup>  $\mu$  = viscosity of water, Ns/m<sup>2</sup> = 0.00131 at 10 °C

 $C_{K-C}$  = Kozeny-Carman empirical coefficient; reported as 4.8±0.3, usually taken as 5, =

S = specific surface area per unit volume of particles =  $SF^*\Sigma((P_{No D}-P_{No d})/d)$ 

 $P_{No D}$  = percentage by weight smaller than size D

 $P_{Nod}$  = percentage by weight larger than the next size d

 $D_{eq}$  = equivalent grain size for particles smaller than  $D_{min}$  of gradation =  $D_{min}/3^{0.5}$ 

SF = Shape Factor for particle angularity = 7.5

SF = 6.6 for rounded particles; 7.5 for medium angularity; 8.4 for angular (after Loudon, presented in Ref. 1)

thus, Permeability, may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})\{1/\Sigma[(P_{N_0,D}-P_{N_0,d})/d]\}^2(1/SF^2)[e^3/(1+e)]$ , Table 1 below

Further, according Ref. 2, measured permeability typically varies from 1/3 to 3 times the estimated permeability. The references also note that this method may overpredict permeability when soil is gravel, and the results present an upper bound. The formula is not suitable for plastic soils.

|          | TABLE 1 - SUM OF (P <sub>No D</sub> - P <sub>No d</sub> )/d |              |         |                                          |  |  |  |
|----------|-------------------------------------------------------------|--------------|---------|------------------------------------------|--|--|--|
| Sieve De | Sieve Designation                                           |              | Percent | (P <sub>NoD</sub> -P <sub>Nod</sub> )/ d |  |  |  |
| Standard | Alternate                                                   | Opening (cm) | Passing | (1/cm)                                   |  |  |  |
| 4.75 mm  | No. 4                                                       | 0.475        | 100.0   | 0.0                                      |  |  |  |
| 2.00 mm  | No. 10                                                      | 0.200        | 99.9    | 0.3                                      |  |  |  |
| 1.18 mm  | No. 16                                                      | 0.118        | 99.9    | 0.6                                      |  |  |  |
| 600 µm   | No. 30                                                      | 0.060        | 99.7    | 2.3                                      |  |  |  |
| 300 µm   | No. 50                                                      | 0.030        | 99.6    | 4.7                                      |  |  |  |
| 250 µm   | No. 60                                                      | 0.025        | 99.4    | 5.6                                      |  |  |  |
| 150 µm   | No. 100                                                     | 0.015        | 90.9    | 569.2                                    |  |  |  |
| 75 µm    | No. 200                                                     | 0.008        | 59.2    | 4226.7                                   |  |  |  |
| •        |                                                             | 0.00370      | 8.4     | 13730.3                                  |  |  |  |
|          |                                                             | 0.00238      | 4.8     | 1512.6                                   |  |  |  |
|          |                                                             | 0.00139      | 2.4     | 1726.6                                   |  |  |  |
| Hydro    | meter                                                       | 0.00098      | 1.8     | 612.2                                    |  |  |  |
|          |                                                             | 0.00070      | 1.2     | 857.1                                    |  |  |  |
|          |                                                             | 0.00034      | 0.6     | 1764.7                                   |  |  |  |
|          |                                                             |              | 0.6     | 0.0                                      |  |  |  |
| $D_{eq}$ |                                                             | 0.00008      | 0.0     | 7423.1                                   |  |  |  |
|          |                                                             |              |         |                                          |  |  |  |
|          |                                                             |              |         |                                          |  |  |  |
|          |                                                             |              | Sum:    | 32436.2                                  |  |  |  |

Estimate Void Ratio (e) from Relative Density (Ref. 4)

 $D_r^2 = (N_1)60/C_P C_A C_{OCR}$ 

 $(N_1)60=$  25  $C_P=60+25logD_{50}=$  30.5  $D_{50}=$  0.07 mm  $C_A=1.2+0.05log(t/100)=$  1.19 t(yr)= 70  $C_{OCR}=OCR^{0.18}=$  1  $D_r=$  0.82931

 $e_{max} = 0.9$   $e = e_{max} - (D_r)(e_{max} - e_{min})$   $e_{min} = 0.3$  e = 0.40241

thus, range of permeability is estimated as:

| Estimated range of k (cm/s) |            |           |  |  |
|-----------------------------|------------|-----------|--|--|
| Probable                    |            | Probable  |  |  |
| measured                    | Calculated | measured  |  |  |
| lower bnd                   | Estimate   | upper bnd |  |  |
| 3.9E-05                     | 1.2E-04    | 3.5E-04   |  |  |

| Copyright © 2008 Stephens Associates Consulting Engineers LL | .C |
|--------------------------------------------------------------|----|
|--------------------------------------------------------------|----|

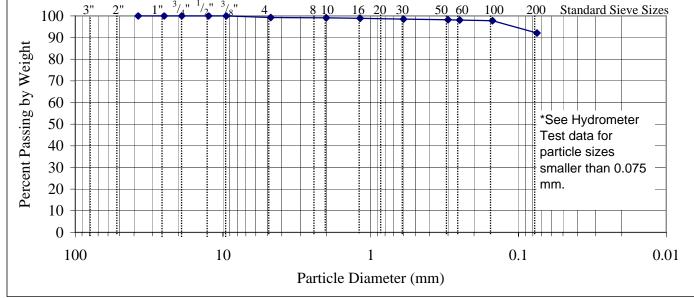
Revisions:

By: Date: Date:



Original Work:

R. Kline June 6, 2008 By: Date: Subject: Checked By: J. Turner Date: June 13, 2008


Rte. 1, Saugus, MA **Laboratory Testing** Grain Size Distribution

Boring Number: Sample Number: S-5 Sample Depth: 9-11' B-5

Sample Description: Light brown non-plastic SILT

| Sieve De | signation | Nominal Sie | eve Opening | Tare Weight | Sieve+Soil Wt.        | Soil Weight (g) | Percent |
|----------|-----------|-------------|-------------|-------------|-----------------------|-----------------|---------|
| Standard | Alternate | mm          | inches      | (g)         | (g)                   | Con Weight (g)  | Passing |
| 37.5 mm  | 1-1/2"    | 37.5        | 1.476"      | 501.3       | 501.3                 | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25          | 0.984"      | 502.5       | 502.5                 | 0.0             | 100.0   |
| 19.0 mm  | 3/4"      | 19          | 0.748"      | 595.8       | 595.8                 | 0.0             | 100.0   |
| 12.5 mm  | 1/2"      | 12.5        | 0.492"      | 607.5       | 607.5                 | 0.0             | 100.0   |
| 9.5      | 3/8"      | 9.5         | 0.374"      | 565.1       | 565.1                 | 0.0             | 100.0   |
| 4.75 mm  | No. 4     | 4.75        | 0.187"      | 527.6       | 528.6                 | 1.0             | 99.3    |
| 2.00 mm  | No. 10    | 2           | 0.078"      | 450.8       | 451.0                 | 0.2             | 99.1    |
| 1.18 mm  | No. 16    | 1.18        | 0.0464"     | 401.1       | 401.4                 | 0.3             | 98.9    |
| 600 µm   | No. 30    | 0.6         | 0.0236"     | 410.3       | 410.8                 | 0.5             | 98.5    |
| 300 µm   | No. 50    | 0.3         | .0118"      | 416.6       | 417.0                 | 0.4             | 98.2    |
| 250 µm   | No. 60    | 0.25        | 0.0098"     | 339.9       | 340.1                 | 0.2             | 98.1    |
| 150 µm   | No. 100   | 0.15        | 0.0059"     | 303.6       | 304.0                 | 0.4             | 97.8    |
| 75 µm    | No. 200   | 0.075       | 0.0029"     | 301.6       | 309.3                 | 7.7             | 92.1    |
| Pan      |           |             |             | 340.3       | 464.9                 | 124.6           | 0.0     |
|          |           |             |             | Sc          | l<br>oil Wt. Sum (g): | 135.3           |         |

**Grain-Size Distribution Plot** 200 Standard Sieve Sizes 16 50 60 100 100 90 80 70



 $D_{10} =$ N/A mm Cu = N/A  $D_{30} =$ N/A Cc = N/A mm  $D_{60} =$ N/A USCS Classification = mm

| Copyright © 2008 Stephens Associ | ates Consulting Engineers LLC |
|----------------------------------|-------------------------------|
|----------------------------------|-------------------------------|

Revisions:

By: Date: Date: Ву<u>:</u>



026-08-007 **Project:** Number: Sheet 1 of MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA R. Kline Date: June 11, 2008 Subject: **Laboratory Testing** Checked By: J. Turner Date: June 13, 2008 **Hydrometer Analysis** 

Boring Number: B-5 Sample Number: S-5 Sample Depth: 9-11'

Sample Description: Light brown non-plastic SILT

By:

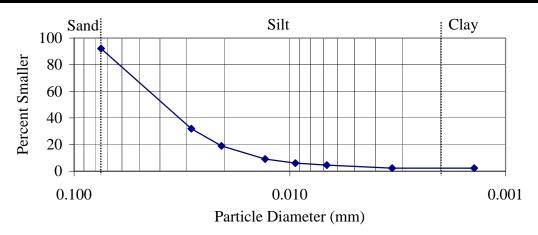
P = (R\*a/W)\*100Calculation for Percent of Soil in Suspension:

P = percent of soil in suspension at the level of the hydrometer, i.e. percent smaller diameter

R = Hydrometer reading with composite correction

a = correction factor for specific gravity of soil solids other than 2.65

 $D = K (L/T)^{0.5}$ Calculation for Particle Diameter: T = time, min. D = particle diameter, mm


L = distance from the suspension surface to the level at which the density of the suspension is measured, cm

K = constant depending on the temperature of the suspension and the specific gravity of the soil particles. Values of K for a range of temperatures and specific gravities are given in Table 3 of ASTM D-422

The value of K does not change for a series of readings constituting a test, while values of L and T do vary.

**Test Constants:** Hydrometer Type: 152H Reading of Hydrometer in Solution Only (g/l): Temperature of Solution (°C) 3.0 20.6 Specific Gravity of Soil Solids (Assumed): 2.65 1.00 a: Dry Soil Weight, W (g): K: 0.013555 131.6

| Time (min) | Reading (g/l) | Corrected Reading (g/l) | L     | Diameter (mm) | % in suspension |
|------------|---------------|-------------------------|-------|---------------|-----------------|
|            | Data from S   | 0.0750                  | 92.1  |               |                 |
| 2          | 45            | 42                      | 8.92  | 0.0286        | 31.9            |
| 5          | 28            | 25                      | 11.71 | 0.0207        | 19.0            |
| 15         | 15            | 12                      | 13.84 | 0.0130        | 9.1             |
| 30         | 11            | 8                       | 14.50 | 0.0094        | 6.1             |
| 60         | 9             | 6                       | 14.82 | 0.0067        | 4.6             |
| 250        | 6             | 3                       | 15.32 | 0.0034        | 2.3             |
| 1440       | 6             | 3                       | 15.32 | 0.0014        | 2.3             |



Copyright © 2008 Stephens Associates Consulting Engineers LLC Revisions:

By: Date: Date: **Stephens Associates Consulting Engineers** 

**Project:** Number: 026-08-007 Sheet 1 of Name: MWRA Contract No. 6905, Pipeline Original Work: Rte. 1, Saugus, MA R. Kline Permeability Estimate by Date: June 6, 2008 Subject: Checked By: J. Turner Date: June 13, 2008 Kozeny-Carman Formula

Boring Number: **B-5** Sample Number: **S-5** Sample Depth: **9-11'** 

According to References 1 and 3, (Note: Reference List at end of data sheets) Permeability may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})(1/S^2)[e^3/(1+e)]$ 

 $\gamma$  = assumed unit weight of water in situ, lb/ft<sup>3</sup> = 62.4 = 9800 N/m<sup>3</sup>  $\mu$  = viscosity of water, Ns/m<sup>2</sup> = 0.00131 at 10 °C

 $C_{K-C}$  = Kozeny-Carman empirical coefficient; reported as 4.8±0.3, usually taken as 5, =

S = specific surface area per unit volume of particles =  $SF^*\Sigma((P_{No D}-P_{No d})/d)$ 

 $P_{No D}$  = percentage by weight smaller than size D

 $P_{Nod}$  = percentage by weight larger than the next size d

 $D_{eq}$  = equivalent grain size for particles smaller than  $D_{min}$  of gradation =  $D_{min}/3^{0.5}$ 

SF = Shape Factor for particle angularity = 7.5

SF = 6.6 for rounded particles; 7.5 for medium angularity; 8.4 for angular (after Loudon, presented in Ref. 1)

thus, Permeability, may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})\{1/\Sigma[(P_{N_0,D}-P_{N_0,d})/d]\}^2(1/SF^2)[e^3/(1+e)]$ , Table 1 below

Further, according Ref. 2, measured permeability typically varies from 1/3 to 3 times the estimated permeability. The references also note that this method may overpredict permeability when soil is gravel, and the results present an upper bound. The formula is not suitable for plastic soils.

|          | TABLE 1 - SUM OF (P <sub>No D</sub> - P <sub>No d</sub> )/d |              |         |                                          |  |  |  |
|----------|-------------------------------------------------------------|--------------|---------|------------------------------------------|--|--|--|
| Sieve De | Sieve Designation                                           |              | Percent | (P <sub>NoD</sub> -P <sub>Nod</sub> )/ d |  |  |  |
| Standard | Alternate                                                   | Opening (cm) | Passing | (1/cm)                                   |  |  |  |
| 9.5      | 3/8"                                                        | 0.950        | 100.0   | 0.0                                      |  |  |  |
| 4.75 mm  | No. 4                                                       | 0.475        | 99.3    | 1.6                                      |  |  |  |
| 2.00 mm  | No. 10                                                      | 0.200        | 99.1    | 0.7                                      |  |  |  |
| 1.18 mm  | No. 16                                                      | 0.118        | 98.9    | 1.9                                      |  |  |  |
| 600 µm   | No. 30                                                      | 0.060        | 98.5    | 6.2                                      |  |  |  |
| 300 µm   | No. 50                                                      | 0.030        | 98.2    | 9.9                                      |  |  |  |
| 250 µm   | No. 60                                                      | 0.025        | 98.1    | 5.9                                      |  |  |  |
| 150 µm   | No. 100                                                     | 0.015        | 97.8    | 19.7                                     |  |  |  |
| 75 µm    | No. 200                                                     | 0.008        | 92.1    | 758.8                                    |  |  |  |
|          |                                                             | 0.00286      | 31.9    | 21046.0                                  |  |  |  |
|          |                                                             | 0.00207      | 19.0    | 6231.9                                   |  |  |  |
|          |                                                             | 0.00130      | 9.1     | 7615.4                                   |  |  |  |
| Hydro    | meter                                                       | 0.00094      | 6.1     | 3191.5                                   |  |  |  |
|          |                                                             | 0.00067      | 4.6     | 2238.8                                   |  |  |  |
|          |                                                             |              | 2.3     | 6764.7                                   |  |  |  |
|          |                                                             | 0.00014      | 2.3     | 0.0                                      |  |  |  |
| $D_{eq}$ |                                                             | 0.00008      | 0.0     | 28455.1                                  |  |  |  |
|          |                                                             |              |         |                                          |  |  |  |
|          |                                                             |              | Sum:    | 76348.0                                  |  |  |  |

Estimate Void Ratio (e) from Relative Density (Ref. 4)

 $D_r^2 = (N_1)60/C_P C_A C_{OCR}$ 

 $\begin{array}{llll} (N_1)60 = & 23 \\ C_P = 60 + 25 log D_{50} = & 24.4 \\ D_{50} = & 0.04 & mm \\ C_A = 1.2 + 0.05 log (t/100) = & 1.19 \\ t(yr) = & 70 \\ C_{OCR} = OCR^{0.18} = & 1 \\ D_r = & 0.89007 \end{array}$ 

 $e_{max} = 0.9$   $e = e_{max} - (D_r)(e_{max} - e_{min})$   $e_{min} = 0.3$  e = 0.36596

thus, range of permeability is estimated as:

| Estimated range of k (cm/s) |            |           |  |  |
|-----------------------------|------------|-----------|--|--|
| Probable                    |            | Probable  |  |  |
| measured                    | Calculated | measured  |  |  |
| lower bnd                   | Estimate   | upper bnd |  |  |
| 5.5E-06                     | 1.6E-05    | 4.9E-05   |  |  |

| Copyright © 2008 Stephens Ass | ociates Consulting E | ngineers LLC |
|-------------------------------|----------------------|--------------|
| Revisions:                    |                      |              |



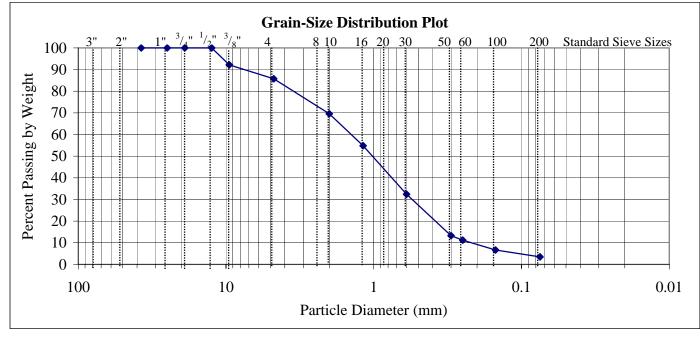
 Project:
 Number:
 026-08-007
 Sheet
 1
 of
 1

 Name:
 MWRA Contract No. 6905, Pipeline

Original Work:

By: R. Kline Date: June 2, 2008 Subject: Checked By: J. Turner Date: June 13, 2008

Laboratory Testing
Grain Size Distribution


Rte. 1, Saugus, MA

Boring Number: B-6 Sample Number: S-4 Sample Depth: 7-9' Middle 6"

Sample Description: Brown fine to coarse SAND, little Gravel

| Sieve De | signation | Nominal Signature | eve Opening | Tare Weight | Sieve+Soil Wt.  | Soil Weight (g) | Percent |
|----------|-----------|-------------------|-------------|-------------|-----------------|-----------------|---------|
| Standard | Alternate | mm                | inches      | (g)         | (g)             | Con Worght (g)  | Passing |
| 37.5 mm  | 1-1/2"    | 37.5              | 1.476"      | 501.3       | 501.3           | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25                | 0.984"      | 502.5       | 502.5           | 0.0             | 100.0   |
| 19.0 mm  | 3/4"      | 19                | 0.748"      | 595.8       | 595.8           | 0.0             | 100.0   |
| 12.5 mm  | 1/2"      | 12.5              | 0.492"      | 607.7       | 607.7           | 0.0             | 100.0   |
| 9.5      | 3/8"      | 9.5               | 0.374"      | 565.4       | 573.3           | 7.9             | 92.2    |
| 4.75 mm  | No. 4     | 4.75              | 0.187"      | 527.8       | 534.3           | 6.5             | 85.7    |
| 2.00 mm  | No. 10    | 2                 | 0.078"      | 450.7       | 467.0           | 16.3            | 69.6    |
| 1.18 mm  | No. 16    | 1.18              | 0.0464"     | 401.2       | 416.1           | 14.9            | 54.8    |
| 600 µm   | No. 30    | 0.6               | 0.0236"     | 410.3       | 432.9           | 22.6            | 32.4    |
| 300 µm   | No. 50    | 0.3               | .0118"      | 416.4       | 435.7           | 19.3            | 13.3    |
| 250 µm   | No. 60    | 0.25              | 0.0098"     | 340.0       | 342.1           | 2.1             | 11.2    |
| 150 µm   | No. 100   | 0.15              | 0.0059"     | 303.6       | 308.2           | 4.6             | 6.6     |
| 75 µm    | No. 200   | 0.075             | 0.0029"     | 301.6       | 304.8           | 3.2             | 3.5     |
| Pan      |           |                   |             | 340.5       | 344.0           | 3.5             | 0.0     |
|          |           |                   |             | 90          | oil Wt Sum (a): | 100.9           |         |

Soil Wt. Sum (g): 100.9



 $D_{10} = 0.215 \text{ mm}$  Cu = 7.7  $D_{30} = 0.55 \text{ mm}$  Cc = 0.9

 $D_{60} = 1.65$  mm USCS Classification = SP

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:

By: Date: \_\_\_\_\_\_ Date: \_\_\_\_\_\_



Project: Number: 026-08-007 Sheet MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA R. Kline June 2, 2008 Permeability Estimate by Date: Subject: Checked By: J. Turner Date: June 13, 2008 Kozeny-Carman Formula

Boring Number: **B-6** Sample Number: **S-4** Sample Depth: **7-9' Middle 6"** 

According to References 1 and 3, (Note: Reference List at end of data sheets) Permeability may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})(1/S^2)[e^3/(1+e)]$ 

 $\gamma$  = assumed unit weight of water in situ, lb/ft<sup>3</sup> = 62.4 = 9800 N/m<sup>3</sup>  $\mu$  = viscosity of water, Ns/m<sup>2</sup> = 0.00131 at 10 °C

 $C_{K-C}$  = Kozeny-Carman empirical coefficient; reported as 4.8±0.3, usually taken as 5, =

S = specific surface area per unit volume of particles =  $SF^*\Sigma((P_{No D}-P_{No d})/d)$ 

 $P_{No D}$  = percentage by weight smaller than size D

 $P_{Nod}$  = percentage by weight larger than the next size d

 $D_{eq}$  = equivalent grain size for particles smaller than  $D_{min}$  of gradation =  $D_{min}/3^{0.5}$ 

SF = Shape Factor for particle angularity = 7.5

SF = 6.6 for rounded particles; 7.5 for medium angularity; 8.4 for angular (after Loudon, presented in Ref. 1)

thus, Permeability, may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})\{1/\Sigma[(P_{N_0,D}-P_{N_0,d})/d]\}^2(1/SF^2)[e^3/(1+e)]$ , Table 1 below

Further, according Ref. 2, measured permeability typically varies from 1/3 to 3 times the estimated permeability. The references also note that this method may overpredict permeability when soil is gravel, and the results present an upper bound. The formula is not suitable for plastic soils.

|          | TABLE 1 - SUM OF (P <sub>No D</sub> - P <sub>No d</sub> )/d |              |         |                                          |  |  |  |
|----------|-------------------------------------------------------------|--------------|---------|------------------------------------------|--|--|--|
| Sieve De | Sieve Designation                                           |              | Percent | (P <sub>NoD</sub> -P <sub>Nod</sub> )/ d |  |  |  |
| Standard | Alternate                                                   | Opening (cm) | Passing | (1/cm)                                   |  |  |  |
| 37.5 mm  | 1-1/2"                                                      | 3.750        | 100.0   | -                                        |  |  |  |
| 25.0 mm  | 1"                                                          | 2.500        | 100.0   | 0.0                                      |  |  |  |
| 19.0 mm  | 3/4"                                                        | 1.900        | 100.0   | 0.0                                      |  |  |  |
| 12.5 mm  | 1/2"                                                        | 1.250        | 100.0   | 0.0                                      |  |  |  |
| 9.5      | 3/8"                                                        | 0.950        | 92.2    | 8.2                                      |  |  |  |
| 4.75 mm  | No. 4                                                       | 0.475        | 85.7    | 13.6                                     |  |  |  |
| 2.00 mm  | No. 10                                                      | 0.200        | 69.6    | 80.8                                     |  |  |  |
| 1.18 mm  | No. 16                                                      | 0.118        | 54.8    | 125.1                                    |  |  |  |
| 600 µm   | No. 30                                                      | 0.060        | 32.4    | 373.3                                    |  |  |  |
| 300 µm   | No. 50                                                      | 0.030        | 13.3    | 637.6                                    |  |  |  |
| 250 µm   | No. 60                                                      | 0.025        | 11.2    | 83.3                                     |  |  |  |
| 150 µm   | No. 100                                                     | 0.015        | 6.6     | 303.9                                    |  |  |  |
| 75 µm    | No. 200                                                     | 0.008        | 3.5     | 422.9                                    |  |  |  |
| $D_{eq}$ |                                                             | 0.004        | 0.0     | 801.1                                    |  |  |  |
| ·        |                                                             |              |         |                                          |  |  |  |
|          |                                                             |              |         |                                          |  |  |  |
|          |                                                             |              |         |                                          |  |  |  |
|          |                                                             |              |         |                                          |  |  |  |
|          |                                                             |              | Sum:    | 2849.7                                   |  |  |  |

Estimate Void Ratio (e) from Relative Density (Ref. 4)

 $D_r^2 = (N_1)60/C_P C_A C_{OCR}$ 

 $(N_1)60=$  23  $C_P=60+25logD_{50}=$  60  $D_{50}=$  1 mm  $C_A=1.2+0.05log(t/100)=$  1.19 t(yr)= 70  $C_{OCR}=OCR^{U.18}=$  1  $D_r=$  0.56703

 $e_{max} = 0.95$   $e = e_{max} - (D_r)(e_{max} - e_{min})$   $e_{min} = 0.2$ e = 0.52473

thus, range of permeability is estimated as:

| Estimated range of k (cm/s) |            |           |  |  |
|-----------------------------|------------|-----------|--|--|
| Probable                    |            | Probable  |  |  |
| measured                    | Calculated | measured  |  |  |
| lower bnd                   | Estimate   | upper bnd |  |  |
| 1.0E-02                     | 3.1E-02    | 9.3E-02   |  |  |

Copyright © 2008 Stephens Associates Consulting Engineers LLC Revisions:

Nevisions.

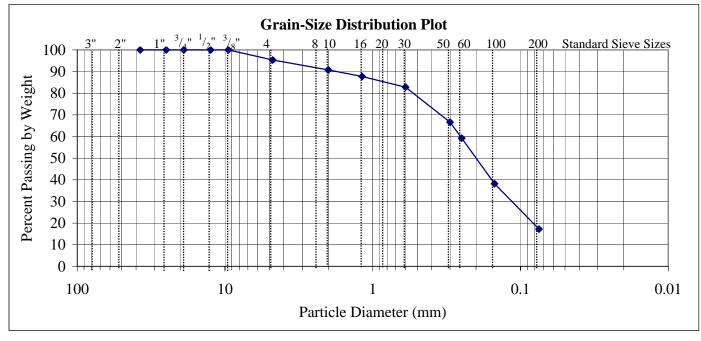
By: Date: \_\_\_\_\_\_ Date: \_\_\_\_\_



Original Work:

R. Kline June 2, 2008 By: Date: Subject: Checked By: J. Turner Date: June 13, 2008

Rte. 1, Saugus, MA **Laboratory Testing** 


Grain Size Distribution

Boring Number: Sample Number: S-5 Sample Depth: 9-11' B-6

Sample Description: Brown fine to medium SAND, little Silt

| Sieve De<br>Standard | signation<br>Alternate |       | eve Opening inches | Tare Weight<br>(g) | Sieve+Soil Wt. | Soil Weight (g) | Percent<br>Passing |
|----------------------|------------------------|-------|--------------------|--------------------|----------------|-----------------|--------------------|
|                      |                        | mm    |                    |                    |                |                 |                    |
| 37.5 mm              | 1-1/2"                 | 37.5  | 1.476"             | 501.3              | 501.3          | 0.0             | 100.0              |
| 25.0 mm              | 1"                     | 25    | 0.984"             | 502.5              | 502.5          | 0.0             | 100.0              |
| 19.0 mm              | 3/4"                   | 19    | 0.748"             | 595.8              | 595.8          | 0.0             | 100.0              |
| 12.5 mm              | 1/2"                   | 12.5  | 0.492"             | 607.7              | 607.7          | 0.0             | 100.0              |
| 9.5                  | 3/8"                   | 9.5   | 0.374"             | 565.4              | 565.4          | 0.0             | 100.0              |
| 4.75 mm              | No. 4                  | 4.75  | 0.187"             | 527.8              | 535.9          | 8.1             | 95.3               |
| 2.00 mm              | No. 10                 | 2     | 0.078"             | 450.8              | 458.7          | 7.9             | 90.8               |
| 1.18 mm              | No. 16                 | 1.18  | 0.0464"            | 401.2              | 406.5          | 5.3             | 87.7               |
| 600 µm               | No. 30                 | 0.6   | 0.0236"            | 410.3              | 418.9          | 8.6             | 82.8               |
| 300 µm               | No. 50                 | 0.3   | .0118"             | 416.5              | 444.5          | 28.0            | 66.6               |
| 250 µm               | No. 60                 | 0.25  | 0.0098"            | 340.0              | 352.8          | 12.8            | 59.3               |
| 150 µm               | No. 100                | 0.15  | 0.0059"            | 303.7              | 340.2          | 36.5            | 38.2               |
| 75 µm                | No. 200                | 0.075 | 0.0029"            | 301.6              | 338.0          | 36.4            | 17.2               |
| Pan                  |                        |       |                    | 340.5              | 370.4          | 29.9            | 0.0                |
|                      |                        |       |                    |                    |                |                 |                    |
| •                    |                        |       |                    |                    | 11144 0 ( )    | 470 5           |                    |

Soil Wt. Sum (g): 173.5



 $D_{10} =$ N/A mm Cu = N/A  $D_{30} =$ 0.12 mm Cc = N/A

 $D_{60} =$ 0.26 USCS Classification = mm SM

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:

By: Date: Date:



Project: Number: 026-08-007 Sheet MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA R. Kline Permeability Estimate by Date: June 2, 2008 Subject: Checked By: J. Turner Date: June 13, 2008 Kozeny-Carman Formula

Boring Number: **B-6** Sample Number: **S-5** Sample Depth: **9-11'** 

According to References 1 and 3, (Note: Reference List at end of data sheets) Permeability may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})(1/S^2)[e^3/(1+e)]$ 

 $\gamma$  = assumed unit weight of water in situ, lb/ft<sup>3</sup> = 62.4 = 9800 N/m<sup>3</sup>  $\mu$  = viscosity of water, Ns/m<sup>2</sup> = 0.00131 at 10 °C

 $C_{K-C}$  = Kozeny-Carman empirical coefficient; reported as 4.8±0.3, usually taken as 5, =

S = specific surface area per unit volume of particles =  $SF^*\Sigma((P_{No D}-P_{No d})/d)$ 

 $P_{No D}$  = percentage by weight smaller than size D

 $P_{No d}$  = percentage by weight larger than the next size d

 $D_{eq}$  = equivalent grain size for particles smaller than  $D_{min}$  of gradation =  $D_{min}/3^{0.5}$ 

SF = Shape Factor for particle angularity = 7.5

SF = 6.6 for rounded particles; 7.5 for medium angularity; 8.4 for angular (after Loudon, presented in Ref. 1)

thus, Permeability, may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})\{1/\Sigma[(P_{N_0,D}-P_{N_0,d})/d]\}^2(1/SF^2)[e^3/(1+e)]$ , Table 1 below

Further, according Ref. 2, measured permeability typically varies from 1/3 to 3 times the estimated permeability. The references also note that this method may overpredict permeability when soil is gravel, and the results present an upper bound. The formula is not suitable for plastic soils.

| TABLE 1 - SUM OF (P <sub>No D</sub> - P <sub>No d</sub> )/d |           |               |         |                                          |  |  |  |  |
|-------------------------------------------------------------|-----------|---------------|---------|------------------------------------------|--|--|--|--|
| Sieve De                                                    | signation | Nominal Sieve | Percent | (P <sub>NoD</sub> -P <sub>Nod</sub> )/ d |  |  |  |  |
| Standard                                                    | Alternate | Opening (cm)  | Passing | (1/cm)                                   |  |  |  |  |
| 37.5 mm                                                     | 1-1/2"    | 3.750         | 100.0   |                                          |  |  |  |  |
| 25.0 mm                                                     | 1"        | 2.500         | 100.0   | 0.0                                      |  |  |  |  |
| 19.0 mm                                                     | 3/4"      | 1.900         | 100.0   | 0.0                                      |  |  |  |  |
| 12.5 mm                                                     | 1/2"      | 1.250         | 100.0   | 0.0                                      |  |  |  |  |
| 9.5                                                         | 3/8"      | 0.950         | 100.0   | 0.0                                      |  |  |  |  |
| 4.75 mm                                                     | No. 4     | 0.475         | 95.3    | 9.8                                      |  |  |  |  |
| 2.00 mm                                                     | No. 10    | 0.200         | 90.8    | 22.8                                     |  |  |  |  |
| 1.18 mm                                                     | No. 16    | 0.118         | 87.7    | 25.9                                     |  |  |  |  |
| 600 µm                                                      | No. 30    | 0.060         | 82.8    | 82.6                                     |  |  |  |  |
| 300 µm                                                      | No. 50    | 0.030         | 66.6    | 537.9                                    |  |  |  |  |
| 250 µm                                                      | No. 60    | 0.025         | 59.3    | 295.1                                    |  |  |  |  |
| 150 µm                                                      | No. 100   | 0.015         | 38.2    | 1402.5                                   |  |  |  |  |
| 75 µm                                                       | No. 200   | 0.008         | 17.2    | 2797.3                                   |  |  |  |  |
| $D_{eq}$                                                    |           | 0.004         | 0.0     | 3979.9                                   |  |  |  |  |
| •                                                           |           |               |         |                                          |  |  |  |  |
|                                                             |           |               |         |                                          |  |  |  |  |
|                                                             |           |               |         |                                          |  |  |  |  |
|                                                             |           |               |         |                                          |  |  |  |  |
|                                                             |           | •             | Sum:    | 9153.8                                   |  |  |  |  |

Estimate Void Ratio (e) from Relative Density (Ref. 4)

 $D_r^2 = (N_1)60/C_P C_A C_{OCR}$ 

 $(N_1)60=$  23  $C_P=60+25logD_{50}=$  42.5  $D_{50}=$  0.2 mm  $C_A=1.2+0.05log(t/100)=$  1.19 t(yr)= 70  $C_{OCR}=OCR^{0.18}=$  1  $D_r=$  0.67352

 $e_{max} = 0.9$   $e = e_{max} - (D_r)(e_{max} - e_{min})$   $e_{min} = 0.3$  e = 0.49589

thus, range of permeability is estimated as:

| Estimated range of k (cm/s) |            |           |  |  |  |  |  |
|-----------------------------|------------|-----------|--|--|--|--|--|
| Probable Probable           |            |           |  |  |  |  |  |
| measured                    | Calculated | measured  |  |  |  |  |  |
| lower bnd                   | Estimate   | upper bnd |  |  |  |  |  |
| 8.6E-04                     | 2.6E-03    | 7.8E-03   |  |  |  |  |  |

| Copyright © 2008 Stephens As | ssociates Consulting Engineers LLC |
|------------------------------|------------------------------------|
| Revisions:                   |                                    |

By:\_\_\_\_\_\_Date: \_\_\_\_\_

Date:

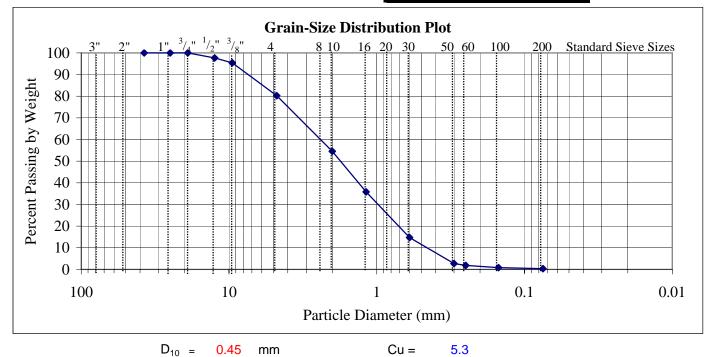


**Project:** Number: 026-08-007 Sheet 1 of Name:

By:

MWRA Contract No. 6905, Pipeline Rte. 1, Saugus, MA

Original Work: R. Kline June 9, 2008 Date: Subject: Checked By: J. Turner Date: June 13, 2008


**Laboratory Testing** Grain Size Distribution

Boring Number: Sample Number: S-1 Sample Depth: 1-3' Top 5" B-8

Sample Description: Gray medium to coarse SAND, little Gravel

| Sieve De | signation | Nominal Signature | eve Opening | Tare Weight | Sieve+Soil Wt.  | Soil Weight (g) | Percent |
|----------|-----------|-------------------|-------------|-------------|-----------------|-----------------|---------|
| Standard | Alternate | mm                | inches      | (g)         | (g)             | Con Worght (g)  | Passing |
| 37.5 mm  | 1-1/2"    | 37.5              | 1.476"      | 501.3       | 501.3           | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25                | 0.984"      | 502.5       | 502.5           | 0.0             | 100.0   |
| 19.0 mm  | 3/4"      | 19                | 0.748"      | 596         | 596             | 0.0             | 100.0   |
| 12.5 mm  | 1/2"      | 12.5              | 0.492"      | 607.2       | 612.0           | 4.8             | 97.7    |
| 9.5      | 3/8"      | 9.5               | 0.374"      | 565.2       | 569.9           | 4.7             | 95.4    |
| 4.75 mm  | No. 4     | 4.75              | 0.187"      | 527.7       | 559.2           | 31.5            | 80.2    |
| 2.00 mm  | No. 10    | 2                 | 0.078"      | 450.8       | 504.0           | 53.2            | 54.6    |
| 1.18 mm  | No. 16    | 1.18              | 0.0464"     | 401.2       | 440.1           | 38.9            | 35.8    |
| 600 µm   | No. 30    | 0.6               | 0.0236"     | 410.5       | 454.2           | 43.7            | 14.7    |
| 300 µm   | No. 50    | 0.3               | .0118"      | 416.8       | 441.7           | 24.9            | 2.7     |
| 250 µm   | No. 60    | 0.25              | 0.0098"     | 339.9       | 341.7           | 1.8             | 1.8     |
| 150 µm   | No. 100   | 0.15              | 0.0059"     | 303.7       | 305.8           | 2.1             | 8.0     |
| 75 µm    | No. 200   | 0.075             | 0.0029"     | 301.6       | 302.6           | 1.0             | 0.3     |
| Pan      |           |                   |             | 340.4       | 341.1           | 0.7             | 0.0     |
|          |           |                   |             | 90          | il Wt. Sum (a): | 207.3           |         |

Soil Wt. Sum (g):



Cc =

Copyright © 2008 Stephens Associates Consulting Engineers LLC

 $D_{30} =$ 

 $D_{60} =$ 

0.975

2.4

mm

mm

Revisions:

By: Date: Date:



0.9

SP

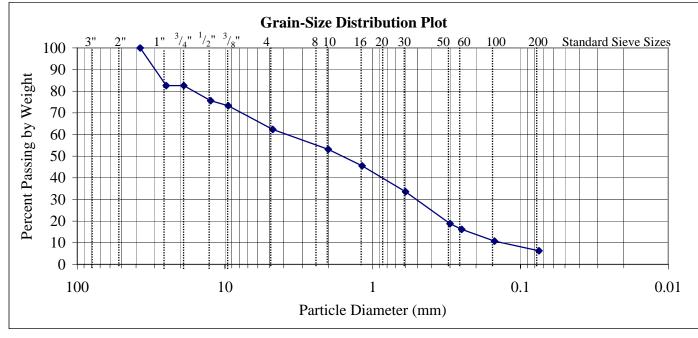
USCS Classification =

Original Work:

By: R. Kline Date: June 2, 2008 Subject:

Laboratory Testing

Rte. 1, Saugus, MA


Checked By: J. Turner Date: June 13, 2008 Grain Size Distribution

Boring Number: B-8 Sample Number: S-1 Sample Depth: 1-3' Bottom 11"

Sample Description: Brown fine to medium SAND and GRAVEL, trace silt

|          | signation |       | eve Opening | Tare Weight | Sieve+Soil Wt.  | Soil Weight (g) | Percent |
|----------|-----------|-------|-------------|-------------|-----------------|-----------------|---------|
| Standard | Alternate | mm    | inches      | (g)         | (g)             | 3 (6)           | Passing |
| 37.5 mm  | 1-1/2"    | 37.5  | 1.476"      | 501.4       | 501.4           | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25    | 0.984"      | 502.5       | 544.8           | 42.3            | 82.6    |
| 19.0 mm  | 3/4"      | 19    | 0.748"      | 595.9       | 595.9           | 0.0             | 82.6    |
| 12.5 mm  | 1/2"      | 12.5  | 0.492"      | 607.6       | 624.5           | 16.9            | 75.6    |
| 9.5      | 3/8"      | 9.5   | 0.374"      | 565.2       | 570.9           | 5.7             | 73.3    |
| 4.75 mm  | No. 4     | 4.75  | 0.187"      | 527.8       | 554.4           | 26.6            | 62.3    |
| 2.00 mm  | No. 10    | 2     | 0.078"      | 450.9       | 473.2           | 22.3            | 53.1    |
| 1.18 mm  | No. 16    | 1.18  | 0.0464"     | 401.2       | 419.7           | 18.5            | 45.5    |
| 600 µm   | No. 30    | 0.6   | 0.0236"     | 410.4       | 439.5           | 29.1            | 33.6    |
| 300 µm   | No. 50    | 0.3   | .0118"      | 416.6       | 452.4           | 35.8            | 18.8    |
| 250 µm   | No. 60    | 0.25  | 0.0098"     | 339.9       | 346.3           | 6.4             | 16.2    |
| 150 µm   | No. 100   | 0.15  | 0.0059"     | 303.7       | 316.9           | 13.2            | 10.7    |
| 75 µm    | No. 200   | 0.075 | 0.0029"     | 301.7       | 312.5           | 10.8            | 6.3     |
| Pan      |           |       |             | 340.4       | 355.7           | 15.3            | 0.0     |
|          |           |       |             |             |                 |                 |         |
|          |           |       |             | Sc          | oil Wt Sum (a): | 242 9           |         |

Soil Wt. Sum (g): 242.9



 $D_{10} = 0.14$  mm Cu = 27.1  $D_{30} = 0.5$  mm Cc = 0.5

 $D_{30} = 0.3$  mm CC = 0.3 $D_{60} = 3.8$  mm USCS Classification =

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:

By: \_\_\_\_\_ Date: \_\_\_\_\_ Date: \_\_\_\_\_

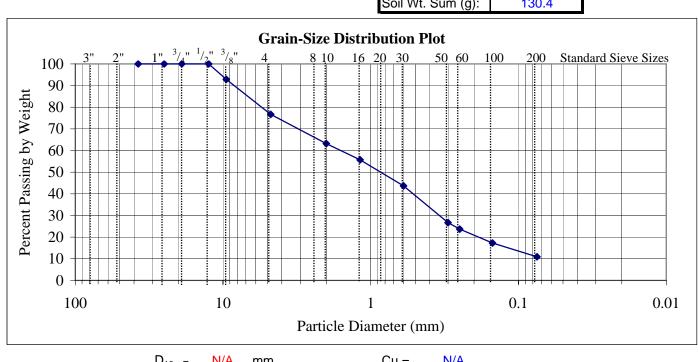


SP-SM

Original Work:

By: R. Kline Date: June 2, 2008 Subject:

Laboratory Testing


Rte. 1, Saugus, MA

Checked By: J. Turner Date: June 13, 2008 Grain Size Distribution

Boring Number: B-9 Sample Number: S-2 Sample Depth: 3-5'

Sample Description: Brown fine to coarse SAND, some Gravel, little Silt

| Sieve Designation |           | Nominal Sie | eve Opening | Tare Weight | Sieve+Soil Wt.  | Soil Weight (g)    | Percent |
|-------------------|-----------|-------------|-------------|-------------|-----------------|--------------------|---------|
| Standard          | Alternate | mm          | inches      | (g)         | (g)             | 2 3 11 3 19 11 (9) | Passing |
| 37.5 mm           | 1-1/2"    | 37.5        | 1.476"      | 501.3       | 501.3           | 0.0                | 100.0   |
| 25.0 mm           | 1"        | 25          | 0.984"      | 502.5       | 502.5           | 0.0                | 100.0   |
| 19.0 mm           | 3/4"      | 19          | 0.748"      | 595.8       | 595.8           | 0.0                | 100.0   |
| 12.5 mm           | 1/2"      | 12.5        | 0.492"      | 607.5       | 607.5           | 0.0                | 100.0   |
| 9.5               | 3/8"      | 9.5         | 0.374"      | 565.2       | 574.5           | 9.3                | 92.9    |
| 4.75 mm           | No. 4     | 4.75        | 0.187"      | 527.7       | 548.8           | 21.1               | 76.7    |
| 2.00 mm           | No. 10    | 2           | 0.078"      | 450.9       | 468.5           | 17.6               | 63.2    |
| 1.18 mm           | No. 16    | 1.18        | 0.0464"     | 401.3       | 411.1           | 9.8                | 55.7    |
| 600 µm            | No. 30    | 0.6         | 0.0236"     | 410.4       | 426.1           | 15.7               | 43.6    |
| 300 µm            | No. 50    | 0.3         | .0118"      | 416.6       | 438.7           | 22.1               | 26.7    |
| 250 µm            | No. 60    | 0.25        | 0.0098"     | 340.0       | 343.9           | 3.9                | 23.7    |
| 150 µm            | No. 100   | 0.15        | 0.0059"     | 303.8       | 312.2           | 8.4                | 17.3    |
| 75 µm             | No. 200   | 0.075       | 0.0029"     | 301.8       | 310.1           | 8.3                | 10.9    |
| Pan               |           |             |             | 340.5       | 354.7           | 14.2               | 0.0     |
|                   |           |             |             |             |                 |                    |         |
|                   |           |             |             | Sc          | oil Wt Sum (a): | 130 4              |         |



 $D_{10} = N/A$  mm Cu = N/A  $D_{30} = 0.35$  mm Cc = N/A

 $D_{60}$  = 1.8 mm USCS Classification = SW-SM

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:

By: Date: Date:



Project: Number: 026-08-007 Sheet MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA R. Kline Permeability Estimate by Date: June 2, 2008 Subject: Checked By: J. Turner Date: June 13, 2008 Kozeny-Carman Formula

Boring Number: B-9 Sample Number: S-2 Sample Depth: 3-5'

According to References 1 and 3, (Note: Reference List at end of data sheets) Permeability may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})(1/S^2)[e^3/(1+e)]$ 

 $\gamma$  = assumed unit weight of water in situ, lb/ft<sup>3</sup> = 62.4 = 9800 N/m<sup>3</sup>  $\mu$  = viscosity of water, Ns/m<sup>2</sup> = 0.00131 at 10 °C

 $C_{K-C}$  = Kozeny-Carman empirical coefficient; reported as 4.8±0.3, usually taken as 5, =

S = specific surface area per unit volume of particles =  $SF^*\Sigma((P_{No D}-P_{No d})/d)$ 

 $P_{No D}$  = percentage by weight smaller than size D

 $P_{Nod}$  = percentage by weight larger than the next size d

 $D_{eq}$  = equivalent grain size for particles smaller than  $D_{min}$  of gradation =  $D_{min}/3^{0.5}$ 

SF = Shape Factor for particle angularity = 7.5

SF = 6.6 for rounded particles; 7.5 for medium angularity; 8.4 for angular (after Loudon, presented in Ref. 1)

thus, Permeability, may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})\{1/\Sigma[(P_{N_0} - P_{N_0} d)/d]\}^2(1/SF^2)[e^3/(1+e)]$ , Table 1 below

Further, according Ref. 2, measured permeability typically varies from 1/3 to 3 times the estimated permeability. The references also note that this method may overpredict permeability when soil is gravel, and the results present an upper bound. The formula is not suitable for plastic soils.

| TABLE 1 - SUM OF (P <sub>No D</sub> - P <sub>No d</sub> )/d |           |               |         |                                          |  |  |  |  |
|-------------------------------------------------------------|-----------|---------------|---------|------------------------------------------|--|--|--|--|
| Sieve De                                                    | signation | Nominal Sieve | Percent | (P <sub>NoD</sub> -P <sub>Nod</sub> )/ d |  |  |  |  |
| Standard                                                    | Alternate | Opening (cm)  | Passing | (1/cm)                                   |  |  |  |  |
| 37.5 mm                                                     | 1-1/2"    | 3.750         | 100.0   |                                          |  |  |  |  |
| 25.0 mm                                                     | 1"        | 2.500         | 100.0   | 0.0                                      |  |  |  |  |
| 19.0 mm                                                     | 3/4"      | 1.900         | 100.0   | 0.0                                      |  |  |  |  |
| 12.5 mm                                                     | 1/2"      | 1.250         | 100.0   | 0.0                                      |  |  |  |  |
| 9.5                                                         | 3/8"      | 0.950         | 92.9    | 7.5                                      |  |  |  |  |
| 4.75 mm                                                     | No. 4     | 0.475         | 76.7    | 34.1                                     |  |  |  |  |
| 2.00 mm                                                     | No. 10    | 0.200         | 63.2    | 67.5                                     |  |  |  |  |
| 1.18 mm                                                     | No. 16    | 0.118         | 55.7    | 63.7                                     |  |  |  |  |
| 600 µm                                                      | No. 30    | 0.060         | 43.6    | 200.7                                    |  |  |  |  |
| 300 µm                                                      | No. 50    | 0.030         | 26.7    | 564.9                                    |  |  |  |  |
| 250 µm                                                      | No. 60    | 0.025         | 23.7    | 119.6                                    |  |  |  |  |
| 150 µm                                                      | No. 100   | 0.015         | 17.3    | 429.4                                    |  |  |  |  |
| 75 µm                                                       | No. 200   | 0.008         | 10.9    | 848.7                                    |  |  |  |  |
| $D_{eq}$                                                    |           | 0.004         | 0.0     | 2514.8                                   |  |  |  |  |
|                                                             |           |               |         |                                          |  |  |  |  |
|                                                             |           |               |         |                                          |  |  |  |  |
|                                                             |           |               |         |                                          |  |  |  |  |
|                                                             |           |               |         |                                          |  |  |  |  |
|                                                             |           |               | Sum:    | 4850.9                                   |  |  |  |  |

Estimate Void Ratio (e) from Relative Density (Ref. 4)

 $D_r^2 = (N_1)60/C_P C_A C_{OCR}$ 

 $(N_1)60=$  54  $C_P=60+25logD_{50}=$  58.2  $D_{50}=$  0.85 mm  $C_A=1.2+0.05log(t/100)=$  1.19 t(yr)= 70  $C_{OCR}=OCR^{0.18}=$  1  $D_r=$  0.8819

 $e_{max} = 0.85$   $e = e_{max} - (D_r)(e_{max} - e_{min})$   $e_{min} = 0.14$ e = 0.22385

thus, range of permeability is estimated as:

| Estimated range of k (cm/s) |            |           |  |  |  |  |  |
|-----------------------------|------------|-----------|--|--|--|--|--|
| Probable Probable           |            |           |  |  |  |  |  |
| measured                    | Calculated | measured  |  |  |  |  |  |
| lower bnd                   | Estimate   | upper bnd |  |  |  |  |  |
| 3.5E-04                     | 1.0E-03    | 3.1E-03   |  |  |  |  |  |

| Copyright © 2008 Stephens Associates Consulting Engineers LL0 | С |
|---------------------------------------------------------------|---|
| Revisions:                                                    |   |

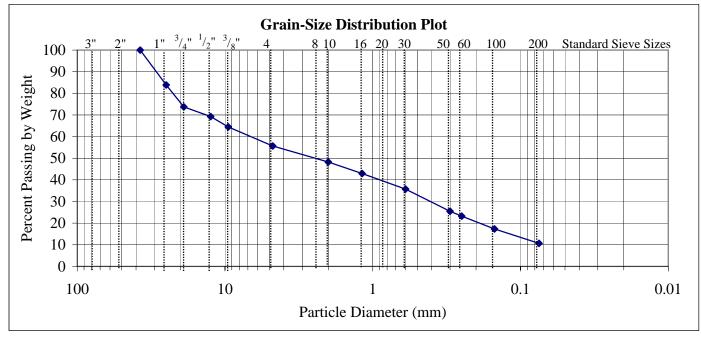


Original Work:

R. Kline June 2, 2008 By: Date: Subject: Checked By: J. Turner Date: June 13, 2008

**Laboratory Testing** 

Grain Size Distribution


Rte. 1, Saugus, MA

Boring Number: Sample Number: S-1 Sample Depth: 1-3' Bottom 11" B-11

Sample Description: Brown fine to medium SAND and GRAVEL, little Silt

|          | signation |       | eve Opening | Tare Weight | Sieve+Soil Wt.  | Soil Weight (g) | Percent |
|----------|-----------|-------|-------------|-------------|-----------------|-----------------|---------|
| Standard | Alternate | mm    | inches      | (g)         | (g)             | 0 (0)           | Passing |
| 37.5 mm  | 1-1/2"    | 37.5  | 1.476"      | 501.3       | 501.3           | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25    | 0.984"      | 502.4       | 546.8           | 44.4            | 83.9    |
| 19.0 mm  | 3/4"      | 19    | 0.748"      | 595.7       | 623.5           | 27.8            | 73.8    |
| 12.5 mm  | 1/2"      | 12.5  | 0.492"      | 607.5       | 619.8           | 12.3            | 69.3    |
| 9.5      | 3/8"      | 9.5   | 0.374"      | 565.2       | 578.5           | 13.3            | 64.4    |
| 4.75 mm  | No. 4     | 4.75  | 0.187"      | 527.2       | 551.4           | 24.2            | 55.7    |
| 2.00 mm  | No. 10    | 2     | 0.078"      | 450.9       | 471.2           | 20.3            | 48.3    |
| 1.18 mm  | No. 16    | 1.18  | 0.0464"     | 401.3       | 416.0           | 14.7            | 42.9    |
| 600 µm   | No. 30    | 0.6   | 0.0236"     | 410.4       | 430.2           | 19.8            | 35.7    |
| 300 µm   | No. 50    | 0.3   | .0118"      | 416.6       | 444.8           | 28.2            | 25.5    |
| 250 µm   | No. 60    | 0.25  | 0.0098"     | 340.0       | 346.2           | 6.2             | 23.2    |
| 150 µm   | No. 100   | 0.15  | 0.0059"     | 303.8       | 320.1           | 16.3            | 17.3    |
| 75 µm    | No. 200   | 0.075 | 0.0029"     | 301.8       | 320.1           | 18.3            | 10.7    |
| Pan      |           |       |             | 340.5       | 369.8           | 29.3            | 0.0     |
|          |           |       |             |             |                 |                 |         |
|          |           |       |             | Co          | oil Mt Sum (a). | 275.1           |         |

Soil Wt. Sum (g): 275.1



 $D_{10} =$ N/A mm Cu = N/A  $D_{30} =$ 0.4 mm Cc = N/A

 $D_{60} =$ USCS Classification = SW-SM 6.75 mm

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:

By: Date: Date:



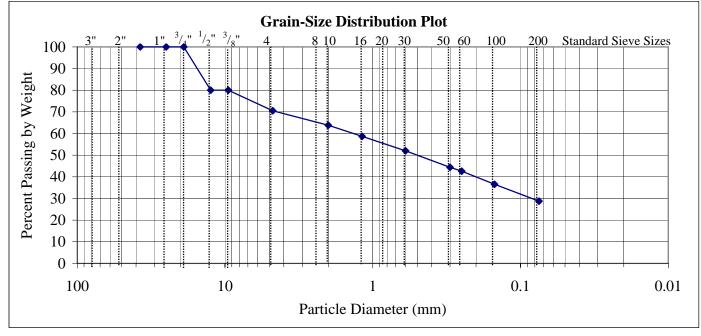
 Project:
 Number:
 026-08-007
 Sheet
 1
 of
 1

 Name:
 MWRA Contract No. 6905, Pipeline

Original Work:

By: R. Kline Date: June 2, 2008 Subject: Checked By: J. Turner Date: June 13, 2008

Laboratory Testing
Grain Size Distribution


Rte. 1, Saugus, MA

Boring Number: B-11 Sample Number: S-4 Sample Depth: 7-9'

Sample Description: Brown fine to medium SAND, some Gravel, some Silt

| Sieve De | signation | Nominal Sie | eve Opening | Tare Weight | Sieve+Soil Wt.  | Soil Weight (g) | Percent |
|----------|-----------|-------------|-------------|-------------|-----------------|-----------------|---------|
| Standard | Alternate | mm          | inches      | (g)         | (g)             | Con Worgin (g)  | Passing |
| 37.5 mm  | 1-1/2"    | 37.5        | 1.476"      | 501.3       | 501.3           | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25          | 0.984"      | 502.7       | 502.7           | 0.0             | 100.0   |
| 19.0 mm  | 3/4"      | 19          | 0.748"      | 595.9       | 595.9           | 0.0             | 100.0   |
| 12.5 mm  | 1/2"      | 12.5        | 0.492"      | 607.7       | 629.2           | 21.5            | 80.0    |
| 9.5      | 3/8"      | 9.5         | 0.374"      | 565.4       | 565.4           | 0.0             | 80.0    |
| 4.75 mm  | No. 4     | 4.75        | 0.187"      | 527.9       | 538.1           | 10.2            | 70.5    |
| 2.00 mm  | No. 10    | 2           | 0.078"      | 451.1       | 458.3           | 7.2             | 63.8    |
| 1.18 mm  | No. 16    | 1.18        | 0.0464"     | 401.4       | 406.9           | 5.5             | 58.7    |
| 600 µm   | No. 30    | 0.6         | 0.0236"     | 410.6       | 417.8           | 7.2             | 52.0    |
| 300 µm   | No. 50    | 0.3         | .0118"      | 416.9       | 425.1           | 8.2             | 44.4    |
| 250 µm   | No. 60    | 0.25        | 0.0098"     | 340.2       | 342.1           | 1.9             | 42.6    |
| 150 µm   | No. 100   | 0.15        | 0.0059"     | 303.8       | 310.3           | 6.5             | 36.6    |
| 75 µm    | No. 200   | 0.075       | 0.0029"     | 301.9       | 310.3           | 8.4             | 28.7    |
| Pan      |           |             |             | 340.4       | 371.3           | 30.9            | 0.0     |
|          |           |             |             |             |                 |                 |         |
|          |           |             | ·           | _           | oil Mt Sum (a). | 107.5           | ·       |

Soil Wt. Sum (g): 107.5



 $D_{10} = N/A$  mm Cu = N/A  $D_{30} = 0.83$  mm Cc = N/A

 $D_{60} = 1.4$  mm USCS Classification = SM

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:

By: \_\_\_\_\_ Date: \_\_\_\_\_ Date: \_\_\_\_\_



Project: Number: 026-08-007 Sheet MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA R. Kline Permeability Estimate by Date: June 2, 2008 Subject: Checked By: J. Turner Date: June 13, 2008 Kozeny-Carman Formula

Boring Number: **B-11** Sample Number: **S-4** Sample Depth: **7-9'** 

According to References 1 and 3, (Note: Reference List at end of data sheets) Permeability may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})(1/S^2)[e^3/(1+e)]$ 

 $\gamma$  = assumed unit weight of water in situ, lb/ft<sup>3</sup> = 62.4 = 9800 N/m<sup>3</sup>  $\mu$  = viscosity of water, Ns/m<sup>2</sup> = 0.00131 at 10 °C

 $C_{K-C}$  = Kozeny-Carman empirical coefficient; reported as 4.8±0.3, usually taken as 5, =

S = specific surface area per unit volume of particles =  $SF^*\Sigma((P_{No D}-P_{No d})/d)$ 

 $P_{No D}$  = percentage by weight smaller than size D

 $P_{No d}$  = percentage by weight larger than the next size d

 $D_{eq}$  = equivalent grain size for particles smaller than  $D_{min}$  of gradation =  $D_{min}/3^{0.5}$ 

SF = Shape Factor for particle angularity = 7.5

SF = 6.6 for rounded particles; 7.5 for medium angularity; 8.4 for angular (after Loudon, presented in Ref. 1)

thus, Permeability, may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})\{1/\Sigma[(P_{N_0} - P_{N_0} d)/d]\}^2(1/SF^2)[e^3/(1+e)]$ , Table 1 below

Further, according Ref. 2, measured permeability typically varies from 1/3 to 3 times the estimated permeability. The references also note that this method may overpredict permeability when soil is gravel, and the results present an upper bound. The formula is not suitable for plastic soils.

| TABLE 1 - SUM OF (P <sub>No D</sub> - P <sub>No d</sub> )/d |           |               |         |                                          |  |  |
|-------------------------------------------------------------|-----------|---------------|---------|------------------------------------------|--|--|
| Sieve De                                                    | signation | Nominal Sieve | Percent | (P <sub>NoD</sub> -P <sub>Nod</sub> )/ d |  |  |
| Standard                                                    | Alternate | Opening (cm)  | Passing | (1/cm)                                   |  |  |
| 19.0 mm                                                     | 3/4"      | 1.900         | 100.0   | 0.0                                      |  |  |
| 12.5 mm                                                     | 1/2"      | 1.250         | 80.0    | 16.0                                     |  |  |
| 9.5                                                         | 3/8"      | 0.950         | 80.0    | 0.0                                      |  |  |
| 4.75 mm                                                     | No. 4     | 0.475         | 70.5    | 20.0                                     |  |  |
| 2.00 mm                                                     | No. 10    | 0.200         | 63.8    | 33.5                                     |  |  |
| 1.18 mm                                                     | No. 16    | 0.118         | 58.7    | 43.4                                     |  |  |
| 600 µm                                                      | No. 30    | 0.060         | 52.0    | 111.6                                    |  |  |
| 300 µm                                                      | No. 50    | 0.030         | 44.4    | 254.3                                    |  |  |
| 250 µm                                                      | No. 60    | 0.025         | 42.6    | 70.7                                     |  |  |
| 150 µm                                                      | No. 100   | 0.015         | 36.6    | 403.1                                    |  |  |
| 75 µm                                                       | No. 200   | 0.008         | 28.7    | 1041.9                                   |  |  |
| D <sub>eq</sub>                                             |           | 0.004         | 0.0     | 6638.2                                   |  |  |
|                                                             |           |               |         |                                          |  |  |
|                                                             |           |               |         |                                          |  |  |
|                                                             |           |               |         |                                          |  |  |
|                                                             |           |               |         |                                          |  |  |
|                                                             |           | L             | Sum:    | 8632.6                                   |  |  |

Estimate Void Ratio (e) from Relative Density (Ref. 4)

 $D_r^2 = (N_1)60/C_P C_A C_{OCR}$ 

 $(N_1)60=$  39  $C_P=60+25logD_{50}=$  52.5  $D_{50}=$  0.5 mm  $C_A=1.2+0.05log(t/100)=$  1.19 t(yr)= 70  $C_{OCR}=OCR^{0.18}=$  1  $D_r=$  0.78954

 $e_{max} = 0.85$   $e = e_{max} - (D_r)(e_{max} - e_{min})$   $e_{min} = 0.14$ e = 0.28943

thus, range of permeability is estimated as:

| Estimated range of k (cm/s) |            |           |  |
|-----------------------------|------------|-----------|--|
| Probable                    | Probable   |           |  |
| measured                    | Calculated | measured  |  |
| lower bnd                   | Estimate   | upper bnd |  |
| 2.2E-04                     | 6.7E-04    | 2.0E-03   |  |

| Copyright © 2008 Stephens | Associates Consulting Engineers LL | C |
|---------------------------|------------------------------------|---|
|                           |                                    |   |

Revisions:

By:\_\_\_\_\_ Date: \_\_\_\_\_ By:\_\_\_\_\_ Date: \_\_\_\_\_

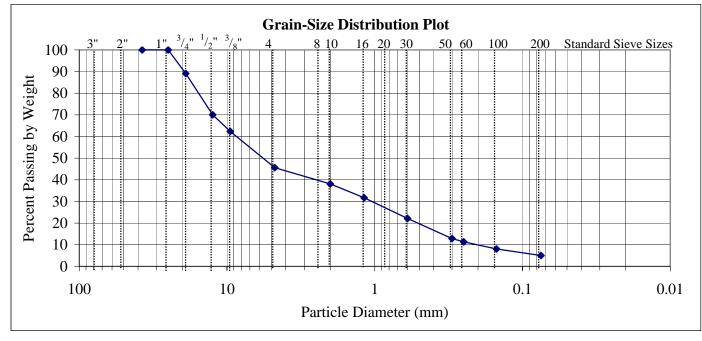


Original Work:

R. Kline June 2, 2008 By: Date: Subject: Checked By: J. Turner Date: June 13, 2008

**Laboratory Testing** 

Grain Size Distribution


Rte. 1, Saugus, MA

Boring Number: Sample Number: S-1 Sample Depth: 1-3' B-12

Sample Description: Gray GRAVEL and fine to medium SAND, trace silt

| Sieve De | signation | Nominal Sie | eve Opening | Tare Weight | Sieve+Soil Wt.    | Soil Weight (g) | Percent |
|----------|-----------|-------------|-------------|-------------|-------------------|-----------------|---------|
| Standard | Alternate | mm          | inches      | (g)         | (g)               | Con Weight (g)  | Passing |
| 37.5 mm  | 1-1/2"    | 37.5        | 1.476"      | 501.4       | 501.4             | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25          | 0.984"      | 502.5       | 502.5             | 0.0             | 100.0   |
| 19.0 mm  | 3/4"      | 19          | 0.748"      | 595.9       | 623.5             | 27.6            | 89.1    |
| 12.5 mm  | 1/2"      | 12.5        | 0.492"      | 607.6       | 655.6             | 48.0            | 70.0    |
| 9.5      | 3/8"      | 9.5         | 0.374"      | 565.1       | 584.5             | 19.4            | 62.4    |
| 4.75 mm  | No. 4     | 4.75        | 0.187"      | 527.7       | 570.0             | 42.3            | 45.6    |
| 2.00 mm  | No. 10    | 2           | 0.078"      | 450.7       | 469.6             | 18.9            | 38.1    |
| 1.18 mm  | No. 16    | 1.18        | 0.0464"     | 401.1       | 417.3             | 16.2            | 31.7    |
| 600 µm   | No. 30    | 0.6         | 0.0236"     | 410.2       | 434.3             | 24.1            | 22.1    |
| 300 µm   | No. 50    | 0.3         | .0118"      | 416.4       | 439.8             | 23.4            | 12.9    |
| 250 µm   | No. 60    | 0.25        | 0.0098"     | 339.9       | 343.8             | 3.9             | 11.3    |
| 150 µm   | No. 100   | 0.15        | 0.0059"     | 303.7       | 312.0             | 8.3             | 8.0     |
| 75 µm    | No. 200   | 0.075       | 0.0029"     | 301.9       | 309.5             | 7.6             | 5.0     |
| Pan      |           |             |             | 340.4       | 353.1             | 12.7            | 0.0     |
| İ        |           |             |             |             | oil \\/t Cum (a\: | 252.4           |         |

Soil Wt. Sum (g): 252.4



 $D_{10} =$ 0.2 mm Cu = 43.0  $D_{30} =$ 1.08 mm Cc = 0.7

 $D_{60} =$ USCS Classification = **GP-GM** 8.6 mm

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:

By: Date: Date:



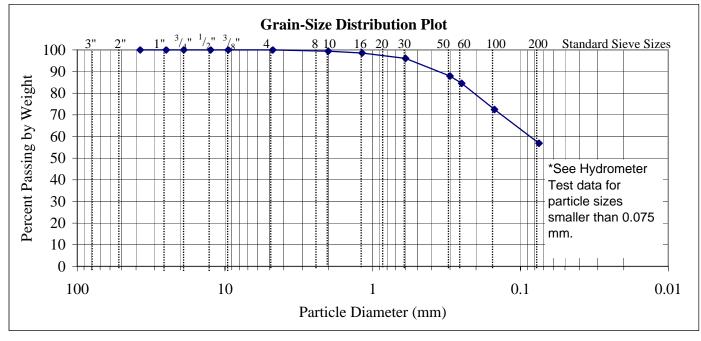
 Project:
 Number:
 026-08-007
 Sheet
 1
 of
 1

 Name:
 MWRA Contract No. 6905, Pipeline
 Pipeline
 Image: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name: Name

Original Work:

By: R. Kline Date: June 5, 2008 Subject: Checked By: J. Turner Date: June 13, 2008

Laboratory Testing
Grain Size Distribution


Rte. 1, Saugus, MA

Boring Number: B-12 Sample Number: S-5 Sample Depth: 10-12'

Sample Description: Gray to olive brown non-plastic SILT and fine SAND

|          | signation |       | eve Opening | Tare Weight | Sieve+Soil Wt.  | Soil Weight (g) | Percent |
|----------|-----------|-------|-------------|-------------|-----------------|-----------------|---------|
| Standard | Alternate | mm    | inches      | (g)         | (g)             | (9)             | Passing |
| 37.5 mm  | 1-1/2"    | 37.5  | 1.476"      | 501.3       | 501.3           | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25    | 0.984"      | 502.5       | 502.5           | 0.0             | 100.0   |
| 19.0 mm  | 3/4"      | 19    | 0.748"      | 595.8       | 595.8           | 0.0             | 100.0   |
| 12.5 mm  | 1/2"      | 12.5  | 0.492"      | 607.6       | 607.6           | 0.0             | 100.0   |
| 9.5      | 3/8"      | 9.5   | 0.374"      | 565.6       | 565.6           | 0.0             | 100.0   |
| 4.75 mm  | No. 4     | 4.75  | 0.187"      | 527.9       | 527.9           | 0.0             | 100.0   |
| 2.00 mm  | No. 10    | 2     | 0.078"      | 450.8       | 451.6           | 0.8             | 99.4    |
| 1.18 mm  | No. 16    | 1.18  | 0.0464"     | 401.2       | 402.3           | 1.1             | 98.6    |
| 600 µm   | No. 30    | 0.6   | 0.0236"     | 410.3       | 413.6           | 3.3             | 96.1    |
| 300 µm   | No. 50    | 0.3   | .0118"      | 416.6       | 427.5           | 10.9            | 87.9    |
| 250 µm   | No. 60    | 0.25  | 0.0098"     | 340.0       | 344.5           | 4.5             | 84.5    |
| 150 µm   | No. 100   | 0.15  | 0.0059"     | 303.7       | 319.8           | 16.1            | 72.5    |
| 75 µm    | No. 200   | 0.075 | 0.0029"     | 301.6       | 322.4           | 20.8            | 56.9    |
| Pan      |           |       |             | 340.4       | 416.2           | 75.8            | 0.0     |
|          |           |       |             |             |                 |                 |         |
|          |           |       |             | So          | oil Wt Sum (a): | 133.3           |         |

Soil Wt. Sum (g): 133.3



 $D_{60} = 0.085$  mm USCS Classification = ML

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:

By:\_\_\_\_\_\_ Date: \_\_\_\_\_\_ Date: \_\_\_\_\_\_



|         |               |           | Project       | : Number: | 026-08-007           | Sheet 1 o    | of 1 |
|---------|---------------|-----------|---------------|-----------|----------------------|--------------|------|
|         |               |           |               | Name:     | MWRA Contract No. 69 | 05, Pipeline |      |
| Origina | l Work:       |           |               |           | Rte. 1, Saugus,      | MA           |      |
| By:     | R. Kline      | Date:     | June 6, 2008  | Subject:  | Laboratory Tes       | ting         |      |
| Checke  | d By: J. Turr | ner Date: | June 13, 2008 |           | Hydrometer Ana       | llysis       |      |

Boring Number: B-12 Sample Number: S-5 Sample Depth: 10-12'

Sample Description: Grey to olive brown non-plastic SILT and fine SAND

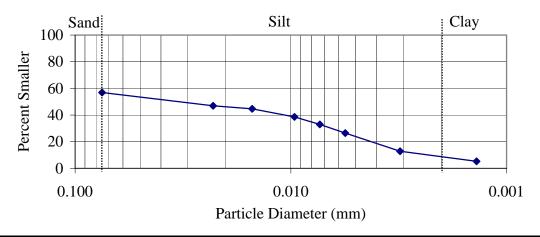
Calculation for Percent of Soil in Suspension: P = (R\*a/W)\*100

P = percent of soil in suspension at the level of the hydrometer, i.e. percent smaller diameter

R = Hydrometer reading with composite correction

a = correction factor for specific gravity of soil solids other than 2.65

 $D = K (L/T)^{0.5}$ Calculation for Particle Diameter: T = time, min. D = particle diameter, mm


L = distance from the suspension surface to the level at which the density of the suspension is measured, cm

K = constant depending on the temperature of the suspension and the specific gravity of the soil particles. Values of K for a range of temperatures and specific gravities are given in Table 3 of ASTM D-422

The value of K does not change for a series of readings constituting a test, while values of L and T do vary.

Test Constants: Hydrometer Type: 152H Temperature of Solution (°C) Reading of Hydrometer in Solution Only (g/l): 3.0 20.0 Specific Gravity of Soil Solids (Assumed): 2.65 1.00 a: Dry Soil Weight, W (g): K: 132.1 0.01365

| Time (min) | Reading (g/l) | Corrected Reading (g/l) | L     | Diameter (mm) | % in suspension |
|------------|---------------|-------------------------|-------|---------------|-----------------|
|            | Data from S   | 0.0750                  | 56.9  |               |                 |
| 2          | 65            | 62                      | 5.64  | 0.0229        | 46.9            |
| 5          | 62            | 59                      | 6.13  | 0.0151        | 44.7            |
| 15         | 54            | 51                      | 7.44  | 0.0096        | 38.6            |
| 30         | 46.5          | 43.5                    | 8.67  | 0.0073        | 32.9            |
| 60         | 38            | 35                      | 10.07 | 0.0056        | 26.5            |
| 250        | 20            | 17                      | 13.02 | 0.0031        | 12.9            |
| 1440       | 10            | 7                       | 14.66 | 0.0014        | 5.3             |



Copyright © 2008 Stephens Associates Consulting Engineers LLC Revisions:

By: Date:

Date:



Project: Number: 026-08-007 Sheet 1 of MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA R. Kline Permeability Estimate by Date: June 5, 2008 Subject: Checked By: J. Turner Date: June 13, 2008 Kozeny-Carman Formula

Boring Number: B-12 Sample Number: S-5 Sample Depth: 10-12'

According to References 1 and 3, (Note: Reference List at end of data sheets) Permeability may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})(1/S^2)[e^3/(1+e)]$ 

 $\gamma$  = assumed unit weight of water in situ, lb/ft<sup>3</sup> = 62.4 = 9800 N/m<sup>3</sup>  $\mu$  = viscosity of water, Ns/m<sup>2</sup> = 0.00131 at 10 °C

 $C_{K-C}$  = Kozeny-Carman empirical coefficient; reported as 4.8±0.3, usually taken as 5, =

S = specific surface area per unit volume of particles =  $SF^*\Sigma((P_{No D}-P_{No d})/d)$ 

 $P_{No D}$  = percentage by weight smaller than size D

 $P_{Nod}$  = percentage by weight larger than the next size d

 $D_{eq}$  = equivalent grain size for particles smaller than  $D_{min}$  of gradation =  $D_{min}/3^{0.5}$ 

SF = Shape Factor for particle angularity = 7.5

SF = 6.6 for rounded particles; 7.5 for medium angularity; 8.4 for angular (after Loudon, presented in Ref. 1)

thus, Permeability, may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})\{1/\Sigma[(P_{N_0,D}-P_{N_0,d})/d]\}^2(1/SF^2)[e^3/(1+e)]$ , Table 1 below

Further, according Ref. 2, measured permeability typically varies from 1/3 to 3 times the estimated permeability. The references also note that this method may overpredict permeability when soil is gravel, and the results present an upper bound. The formula is not suitable for plastic soils.

| TABLE 1 - SUM OF (P <sub>No D</sub> - P <sub>No d</sub> )/d |           |               |         |                                          |  |
|-------------------------------------------------------------|-----------|---------------|---------|------------------------------------------|--|
| Sieve Designation                                           |           | Nominal Sieve | Percent | (P <sub>NoD</sub> -P <sub>Nod</sub> )/ d |  |
| Standard                                                    | Alternate | Opening (cm)  | Passing | (1/cm)                                   |  |
| 4.75 mm                                                     | No. 4     | 0.475         | 100.0   | 0.0                                      |  |
| 2.00 mm                                                     | No. 10    | 0.200         | 99.4    | 3.0                                      |  |
| 1.18 mm                                                     | No. 16    | 0.118         | 98.6    | 7.0                                      |  |
| 600 µm                                                      | No. 30    | 0.060         | 96.1    | 41.3                                     |  |
| 300 µm                                                      | No. 50    | 0.030         | 87.9    | 272.6                                    |  |
| 250 µm                                                      | No. 60    | 0.025         | 84.5    | 135.0                                    |  |
| 150 µm                                                      | No. 100   | 0.015         | 72.5    | 805.2                                    |  |
| 75 µm                                                       | No. 200   | 0.008         | 56.9    | 2080.5                                   |  |
|                                                             |           | 0.00229       | 46.9    | 4351.2                                   |  |
|                                                             |           |               | 44.7    | 1457.0                                   |  |
|                                                             |           | 0.00096       | 38.6    | 6354.2                                   |  |
| Hydro                                                       | meter     | 0.00073       | 32.9    | 7808.2                                   |  |
|                                                             |           | 0.00056       | 26.5    | 11428.6                                  |  |
|                                                             |           | 0.00031       | 12.9    | 43871.0                                  |  |
|                                                             |           | 0.00014       | 5.3     | 54285.7                                  |  |
| $D_{eq}$                                                    |           | 0.00008       | 0.0     | 65570.5                                  |  |
|                                                             |           |               |         |                                          |  |
|                                                             |           |               |         |                                          |  |
|                                                             | -         |               | Sum:    | 198470.9                                 |  |

Estimate Void Ratio (e) from Relative Density (Ref. 4)

 $D_r^2 = (N_1)60/C_P C_A C_{OCR}$ 

 $(N_1)60=$  38  $C_P=60+25logD_{50}=$  22.8  $D_{50}=$  0.03 mm  $C_A=1.2+0.05log(t/100)=$  1.19 t(yr)= 70  $C_{OCR}=OCR^{0.18}=$  1  $D_r=$  1.18241 > 1, use 1.0

 $e_{max} = 1.8$   $e = e_{max} - (D_r)(e_{max} - e_{min})$  e = 0.25

thus, range of permeability is estimated as:

| Estimated range of k (cm/s) |            |           |  |
|-----------------------------|------------|-----------|--|
| Probable                    | Probable   |           |  |
| measured                    | Calculated | measured  |  |
| lower bnd                   | Estimate   | upper bnd |  |
| 2.8E-07                     | 8.4E-07    | 2.5E-06   |  |

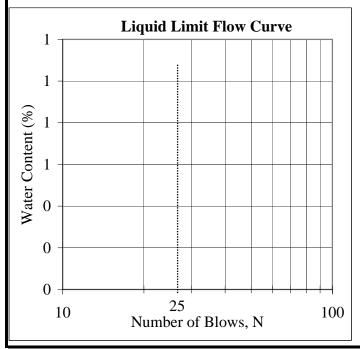
Copyright  $\hbox{@}$  2008 Stephens Associates Consulting Engineers LLC

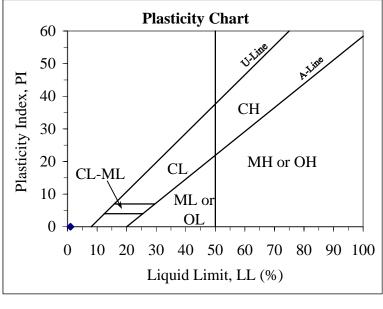
Revisions:

By: Date: \_\_\_\_\_\_ Date: \_\_\_\_\_



**Project:** Number: 026-08-007 Sheet 1 of MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA R. Kline June 3, 2008 **Laboratory Testing** By: Date: Subject: Checked By: J. Turner Date: June 13, 2008 Atterberg Limits


Sample Depth: 10-12' Boring Number: B-12 Sample Number: S-5


Sample Description: Grey to olive brown non-plastic SILT and fine SAND

| LIQUID LIMIT                       |                                 |  |  |  |
|------------------------------------|---------------------------------|--|--|--|
| Container Number                   |                                 |  |  |  |
| Tare Weight (g)                    |                                 |  |  |  |
| Weight Wet Soil+Container Tare (g) |                                 |  |  |  |
| Weight Dry Soil+Container Tare (g) | *Non Plastic. Liquid Limit test |  |  |  |
| Weight Water (g)                   | could not be performed.         |  |  |  |
| Weight Dry Soil (g)                |                                 |  |  |  |
| Water Content (%)                  |                                 |  |  |  |
| Number of Blows, N                 |                                 |  |  |  |

| PLASTIC LIMIT                      |       |       |  |  |  |
|------------------------------------|-------|-------|--|--|--|
| Container Number                   | 7     | 1     |  |  |  |
| Tare Weight (g)                    | 19.67 | 16.38 |  |  |  |
| Weight Wet Soil+Container Tare (g) | 27.46 | 23.70 |  |  |  |
| Weight Dry Soil+Container Tare (g) | 26.59 | 22.90 |  |  |  |
| Weight Water (g)                   | 0.87  | 0.80  |  |  |  |
| Weight Dry Soil (g)                | 6.92  | 6.52  |  |  |  |
| Water Content (%)                  | 12.6  | 12.3  |  |  |  |

| SUMMARY OF RESULTS    |     |  |  |  |
|-----------------------|-----|--|--|--|
| Natural Water Content | 16  |  |  |  |
| Liquid Limit, LL      | N/A |  |  |  |
| Plastic Limit, PL     | 12  |  |  |  |
| Plasticity Index, Pl  | N/A |  |  |  |
| Liquidity Index, LI   | N/A |  |  |  |
| USCS Classification   | ML  |  |  |  |





Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:

By:\_\_\_\_ Date: Date: By:\_

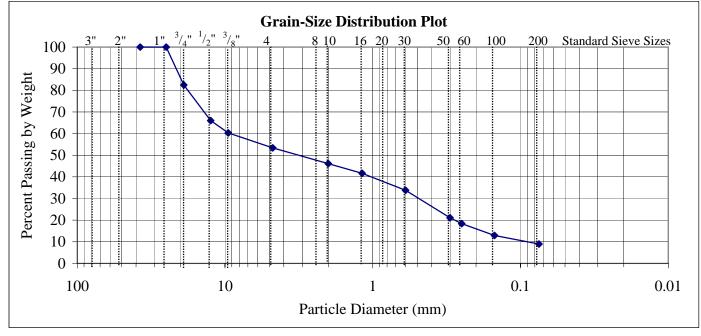


Rte. 1, Saugus, MA

**Laboratory Testing** 

R. Kline June 9, 2008 By: Date: Subject: Checked By: J. Turner Date: June 13, 2008

Original Work:


Grain Size Distribution

Boring Number: Sample Number: S-1 Sample Depth: 1-3' B-13

Sample Description: Brown fine to medium SAND and GRAVEL, trace silt

| Sieve Designation |           | Nominal Sieve Opening |         | Tare Weight | Sieve+Soil Wt. | Soil Weight (g) | Percent |
|-------------------|-----------|-----------------------|---------|-------------|----------------|-----------------|---------|
| Standard          | Alternate | mm                    | inches  | (g)         | (g)            | Con Weight (g)  | Passing |
| 37.5 mm           | 1-1/2"    | 37.5                  | 1.476"  | 501.3       | 501.3          | 0.0             | 100.0   |
| 25.0 mm           | 1"        | 25                    | 0.984"  | 502.8       | 502.8          | 0.0             | 100.0   |
| 19.0 mm           | 3/4"      | 19                    | 0.748"  | 595.8       | 628.9          | 33.1            | 82.5    |
| 12.5 mm           | 1/2"      | 12.5                  | 0.492"  | 607.6       | 638.7          | 31.1            | 66.0    |
| 9.5               | 3/8"      | 9.5                   | 0.374"  | 565.3       | 576.0          | 10.7            | 60.3    |
| 4.75 mm           | No. 4     | 4.75                  | 0.187"  | 527.7       | 540.8          | 13.1            | 53.4    |
| 2.00 mm           | No. 10    | 2                     | 0.078"  | 450.8       | 464.5          | 13.7            | 46.1    |
| 1.18 mm           | No. 16    | 1.18                  | 0.0464" | 401.2       | 409.7          | 8.5             | 41.6    |
| 600 µm            | No. 30    | 0.6                   | 0.0236" | 410.3       | 425.1          | 14.8            | 33.8    |
| 300 µm            | No. 50    | 0.3                   | .0118"  | 416.6       | 440.6          | 24.0            | 21.1    |
| 250 µm            | No. 60    | 0.25                  | 0.0098" | 340.0       | 345.1          | 5.1             | 18.4    |
| 150 µm            | No. 100   | 0.15                  | 0.0059" | 303.7       | 314.0          | 10.3            | 12.9    |
| 75 µm             | No. 200   | 0.075                 | 0.0029" | 301.6       | 309.1          | 7.5             | 9.0     |
| Pan               |           |                       |         | 340.4       | 357.3          | 16.9            | 0.0     |
|                   |           |                       |         |             |                |                 |         |
| ·                 | •         | 100 0                 | ·       |             |                |                 |         |

Soil Wt. Sum (g): 188.8



 $D_{10} =$ 0.091 mm Cu = 101.6  $D_{30} =$ 0.485 mm Cc = 0.3

 $D_{60} =$ 9.25 USCS Classification = SP-SM  $\mathsf{mm}$ 

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions: By:

Date: Date:

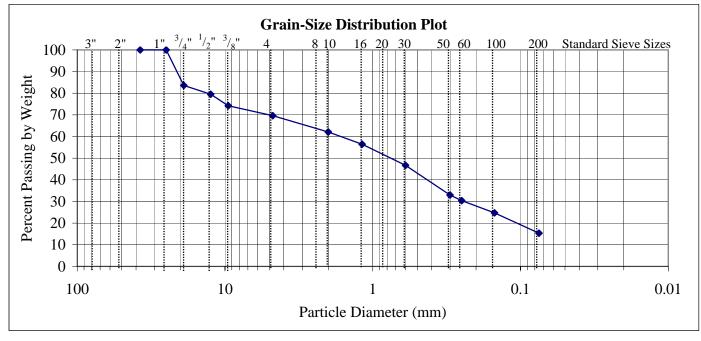


Original Work:

R. Kline June 2, 2008 By: Date: Subject: Checked By: J. Turner Date: June 13, 2008

**Laboratory Testing** 

Grain Size Distribution


Rte. 1, Saugus, MA

Boring Number: Sample Number: S-2 B-13 Sample Depth: 3-5'

Sample Description: Brown fine to medium SAND, some Gravel, little Silt

| Sieve Designation Standard Alternate |         | Nominal Sieve Opening mm inches |         | Tare Weight<br>(g) | Sieve+Soil Wt. | Soil Weight (g) | Percent<br>Passing |
|--------------------------------------|---------|---------------------------------|---------|--------------------|----------------|-----------------|--------------------|
| 37.5 mm                              | 1-1/2"  | 37.5                            | 1.476"  | 501.3              | 501.3          | 0.0             | 100.0              |
| 25.0 mm                              | 1"      | 25                              | 0.984"  | 502.5              | 502.5          | 0.0             | 100.0              |
| 19.0 mm                              | 3/4"    | 19                              | 0.748"  | 595.9              | 621.8          | 25.9            | 83.6               |
| 12.5 mm                              | 1/2"    | 12.5                            | 0.492"  | 607.8              | 614.2          | 6.4             | 79.5               |
| 9.5                                  | 3/8"    | 9.5                             | 0.374"  | 565.4              | 573.8          | 8.4             | 74.2               |
| 4.75 mm                              | No. 4   | 4.75                            | 0.187"  | 527.9              | 535.1          | 7.2             | 69.6               |
| 2.00 mm                              | No. 10  | 2                               | 0.078"  | 450.8              | 462.7          | 11.9            | 62.1               |
| 1.18 mm                              | No. 16  | 1.18                            | 0.0464" | 401.3              | 410.2          | 8.9             | 56.4               |
| 600 µm                               | No. 30  | 0.6                             | 0.0236" | 410.4              | 425.8          | 15.4            | 46.7               |
| 300 µm                               | No. 50  | 0.3                             | .0118"  | 416.6              | 438.2          | 21.6            | 33.0               |
| 250 µm                               | No. 60  | 0.25                            | 0.0098" | 340.1              | 344.2          | 4.1             | 30.4               |
| 150 µm                               | No. 100 | 0.15                            | 0.0059" | 303.8              | 312.7          | 8.9             | 24.7               |
| 75 μm                                | No. 200 | 0.075                           | 0.0029" | 301.8              | 316.6          | 14.8            | 15.3               |
| Pan                                  |         |                                 |         | 340.6              | 364.8          | 24.2            | 0.0                |
|                                      |         |                                 |         |                    | ::I \M\\ C (a) |                 |                    |

Soil Wt. Sum (g): 157.7



 $D_{10} =$ N/A mm Cu = N/A  $D_{30} =$ 0.25 mm Cc = N/A

 $D_{60} =$ USCS Classification = 1.7 mm SM

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:

By: Date: Date:



 Project:
 Number:
 026-08-007
 Sheet
 1
 of
 1

 Name:
 MWRA Contract No. 6905, Pipeline

Original Work:

By: R. Kline Date: June 2, 2008 Subject: Checked By: J. Turner Date: June 13, 2008

Rte. 1, Saugus, MA

Laboratory Testing

Grain Size Distribution

Composite

Boring Number: B-13 Sample Number: S-3 & S-4 Sample Depth: 3-7'

Sample Description: Brown GRAVEL, some fine to medium Sand

| Sieve De |           |       | eve Opening | Tare Weight | Sieve+Soil Wt.  | Soil Weight (g) | Percent |
|----------|-----------|-------|-------------|-------------|-----------------|-----------------|---------|
| Standard | Alternate | mm    | inches      | (g)         | (g)             |                 | Passing |
| 37.5 mm  | 1-1/2"    | 37.5  | 1.476"      | 501.3       | 501.3           | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25    | 0.984"      | 502.5       | 502.5           | 0.0             | 100.0   |
| 19.0 mm  | 3/4"      | 19    | 0.748"      | 595.8       | 665.9           | 70.1            | 69.1    |
| 12.5 mm  | 1/2"      | 12.5  | 0.492"      | 607.5       | 664.0           | 56.5            | 44.2    |
| 9.5      | 3/8"      | 9.5   | 0.374"      | 565.2       | 576.9           | 11.7            | 39.1    |
| 4.75 mm  | No. 4     | 4.75  | 0.187"      | 527.7       | 539.4           | 11.7            | 33.9    |
| 2.00 mm  | No. 10    | 2     | 0.078"      | 450.8       | 464.5           | 13.7            | 27.9    |
| 1.18 mm  | No. 16    | 1.18  | 0.0464"     | 401.1       | 410.7           | 9.6             | 23.7    |
| 600 µm   | No. 30    | 0.6   | 0.0236"     | 410.3       | 423.1           | 12.8            | 18.0    |
| 300 µm   | No. 50    | 0.3   | .0118"      | 416.5       | 430.4           | 13.9            | 11.9    |
| 250 µm   | No. 60    | 0.25  | 0.0098"     | 339.9       | 342.3           | 2.4             | 10.8    |
| 150 µm   | No. 100   | 0.15  | 0.0059"     | 303.6       | 311.0           | 7.4             | 7.6     |
| 75 µm    | No. 200   | 0.075 | 0.0029"     | 302.0       | 308.3           | 6.3             | 4.8     |
| Pan      |           |       |             | 340.3       | 351.2           | 10.9            | 0.0     |
|          |           |       |             | 90          | il Wt. Sum (g): | 227             |         |

**Grain-Size Distribution Plot** 8 10 16 20 30 50 60 100 200 Standard Sieve Sizes 100 90 Percent Passing by Weight 80 70 60 50 40 30 20 10 0 100 10 1 0.1 0.01 Particle Diameter (mm)  $D_{10} =$ 0.21 Cu = 83.3 mm

Cc =

1.8

USCS Classification =

Copyright  $\hbox{@}$  2008 Stephens Associates Consulting Engineers LLC

 $D_{30} =$ 

 $D_{60} =$ 

2.6

17.5

mm

mm

Revisions:

By: \_\_\_\_ Date: \_\_\_\_ Date: \_\_\_\_



GW

Project: Number: 026-08-007 Sheet MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA R. Kline Permeability Estimate by Date: June 2, 2008 Subject: Checked By: J. Turner Date: June 13, 2008 Kozeny-Carman Formula

Boring Number: B-13 Sample Number: S-3 & S-4 Sample Depth: 3-7'

According to References 1 and 3, (Note: Reference List at end of data sheets) Permeability may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})(1/S^2)[e^3/(1+e)]$ 

 $\gamma$  = assumed unit weight of water in situ, lb/ft<sup>3</sup> = 62.4 = 9800 N/m<sup>3</sup>  $\mu$  = viscosity of water, Ns/m<sup>2</sup> = 0.00131 at 10 °C

 $C_{K-C}$  = Kozeny-Carman empirical coefficient; reported as 4.8±0.3, usually taken as 5, =

S = specific surface area per unit volume of particles =  $SF^*\Sigma((P_{No D}-P_{No d})/d)$ 

 $P_{No D}$  = percentage by weight smaller than size D

 $P_{Nod}$  = percentage by weight larger than the next size d

 $D_{eq}$  = equivalent grain size for particles smaller than  $D_{min}$  of gradation =  $D_{min}/3^{0.5}$ 

SF = Shape Factor for particle angularity = 7.5

SF = 6.6 for rounded particles; 7.5 for medium angularity; 8.4 for angular (after Loudon, presented in Ref. 1)

thus, Permeability, may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})\{1/\Sigma[(P_{N_0} - P_{N_0} d)/d]\}^2(1/SF^2)[e^3/(1+e)]$ , Table 1 below

Further, according Ref. 2, measured permeability typically varies from 1/3 to 3 times the estimated permeability. The references also note that this method may overpredict permeability when soil is gravel, and the results present an upper bound. The formula is not suitable for plastic soils.

| TABLE 1 - SUM OF (P <sub>No D</sub> - P <sub>No d</sub> )/d |           |               |         |                                          |  |  |
|-------------------------------------------------------------|-----------|---------------|---------|------------------------------------------|--|--|
| Sieve Designation                                           |           | Nominal Sieve | Percent | (P <sub>NoD</sub> -P <sub>Nod</sub> )/ d |  |  |
| Standard                                                    | Alternate | Opening (cm)  | Passing | (1/cm)                                   |  |  |
| 37.5 mm                                                     | 1-1/2"    | 3.750         | 100.0   |                                          |  |  |
| 25.0 mm                                                     | 1"        | 2.500         | 100.0   | 0.0                                      |  |  |
| 19.0 mm                                                     | 3/4"      | 1.900         | 69.1    | 16.3                                     |  |  |
| 12.5 mm                                                     | 1/2"      | 1.250         | 44.2    | 19.9                                     |  |  |
| 9.5                                                         | 3/8"      | 0.950         | 39.1    | 5.4                                      |  |  |
| 4.75 mm                                                     | No. 4     | 0.475         | 33.9    | 10.9                                     |  |  |
| 2.00 mm                                                     | No. 10    | 0.200         | 27.9    | 30.2                                     |  |  |
| 1.18 mm                                                     | No. 16    | 0.118         | 23.7    | 35.8                                     |  |  |
| 600 µm                                                      | No. 30    | 0.060         | 18.0    | 94.0                                     |  |  |
| 300 µm                                                      | No. 50    | 0.030         | 11.9    | 204.1                                    |  |  |
| 250 µm                                                      | No. 60    | 0.025         | 10.8    | 42.3                                     |  |  |
| 150 µm                                                      | No. 100   | 0.015         | 7.6     | 217.3                                    |  |  |
| 75 µm                                                       | No. 200   | 0.008         | 4.8     | 370.0                                    |  |  |
| $D_{eq}$                                                    |           | 0.004         | 0.0     | 1108.9                                   |  |  |
| •                                                           |           |               |         |                                          |  |  |
|                                                             |           |               |         |                                          |  |  |
|                                                             |           |               |         |                                          |  |  |
|                                                             |           |               |         |                                          |  |  |
|                                                             |           | •             | Sum:    | 2155 1                                   |  |  |

Estimate Void Ratio (e) from Relative Density (Ref. 4)

 $D_r^2 = (N_1)60/C_P C_A C_{OCR}$ 

 $(N_1)60=$  34.5  $C_P=60+25logD_{50}=$  89.4  $D_{50}=$  15 mm  $C_A=1.2+0.05log(t/100)=$  1.19 t(yr)= 70  $C_{OCR}=OCR^{U.18}=$  1  $D_r=$  0.56892

 $e_{max} = 0.85$   $e = e_{max} - (D_r)(e_{max} - e_{min})$   $e_{min} = 0.14$ e = 0.44607

thus, range of permeability is estimated as:

| Estimated range of k (cm/s) |            |           |  |  |
|-----------------------------|------------|-----------|--|--|
| Probable                    |            | Probable  |  |  |
| measured                    | Calculated | measured  |  |  |
| lower bnd                   | Estimate   | upper bnd |  |  |
| 1.2E-02                     | 3.5E-02    | 1.1E-01   |  |  |

| Copyright © 2008 Stephens As | ssociates Consulting Engineers LLC |
|------------------------------|------------------------------------|
| Revisions:                   |                                    |

By: Date:

Date:

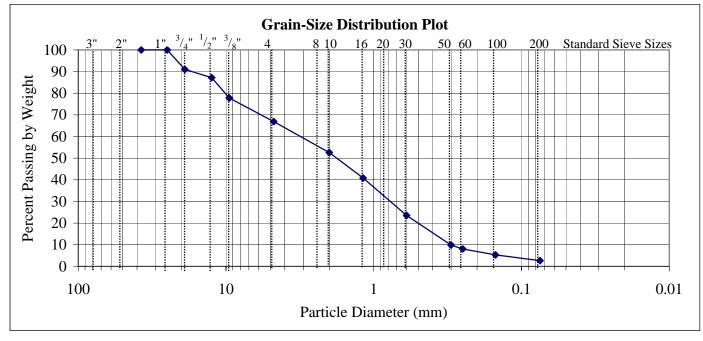


Original Work:

Ву: R. Kline June 2, 2008 Date: Subject: Checked By: J. Turner Date: June 13, 2008

**Laboratory Testing** 

Grain Size Distribution


Rte. 1, Saugus, MA

Boring Number: Sample Number: S-6 B-13 Sample Depth: 14-16'

Sample Description: Gray/brown fine to coarse SAND, some Gravel

| Sieve De | signation | Nominal Sie | eve Opening | Tare Weight | Sieve+Soil Wt.  | Soil Weight (g) | Percent |
|----------|-----------|-------------|-------------|-------------|-----------------|-----------------|---------|
| Standard | Alternate | mm          | inches      | (g)         | (g)             | Ooli Weight (g) | Passing |
| 37.5 mm  | 1-1/2"    | 37.5        | 1.476"      | 501.3       | 501.3           | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25          | 0.984"      | 502.6       | 502.6           | 0.0             | 100.0   |
| 19.0 mm  | 3/4"      | 19          | 0.748"      | 595.8       | 607.3           | 11.5            | 91.0    |
| 12.5 mm  | 1/2"      | 12.5        | 0.492"      | 607.5       | 612.4           | 4.9             | 87.2    |
| 9.5      | 3/8"      | 9.5         | 0.374"      | 565.2       | 577.2           | 12.0            | 77.8    |
| 4.75 mm  | No. 4     | 4.75        | 0.187"      | 527.2       | 541.1           | 13.9            | 66.9    |
| 2.00 mm  | No. 10    | 2           | 0.078"      | 450.9       | 469.2           | 18.3            | 52.6    |
| 1.18 mm  | No. 16    | 1.18        | 0.0464"     | 401.3       | 416.3           | 15.0            | 40.8    |
| 600 µm   | No. 30    | 0.6         | 0.0236"     | 410.4       | 432.5           | 22.1            | 23.6    |
| 300 µm   | No. 50    | 0.3         | .0118"      | 416.6       | 434.1           | 17.5            | 9.9     |
| 250 µm   | No. 60    | 0.25        | 0.0098"     | 340.0       | 342.3           | 2.3             | 8.1     |
| 150 µm   | No. 100   | 0.15        | 0.0059"     | 303.8       | 307.3           | 3.5             | 5.3     |
| 75 µm    | No. 200   | 0.075       | 0.0029"     | 301.8       | 305.2           | 3.4             | 2.7     |
| Pan      |           |             |             | 340.5       | 343.9           | 3.4             | 0.0     |
|          |           |             |             |             |                 |                 |         |
|          | •         | •           | •           | Co          | oil Wt Sum (a): | 127 Q           | •       |

Soil Wt. Sum (g): 127.8



 $D_{10} =$ 0.3 mm Cu = 10.8  $D_{30} =$ 0.76 mm Cc = 0.6

 $D_{60} =$ 3.25 USCS Classification = mm SP

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:



Project: Number: 026-08-007 Sheet MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA R. Kline Permeability Estimate by Date: June 2, 2008 Subject: Checked By: J. Turner Date: June 13, 2008 Kozeny-Carman Formula

Boring Number: B-13 Sample Number: S-6 Sample Depth: 14-16'

According to References 1 and 3, (Note: Reference List at end of data sheets) Permeability may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})(1/S^2)[e^3/(1+e)]$ 

 $\gamma$  = assumed unit weight of water in situ, lb/ft<sup>3</sup> = 62.4 = 9800 N/m<sup>3</sup>  $\mu$  = viscosity of water, Ns/m<sup>2</sup> = 0.00131 at 10 °C

 $C_{K-C}$  = Kozeny-Carman empirical coefficient; reported as 4.8±0.3, usually taken as 5, =

S = specific surface area per unit volume of particles =  $SF^*\Sigma((P_{No D}-P_{No d})/d)$ 

 $P_{No D}$  = percentage by weight smaller than size D

P<sub>No d</sub> = percentage by weight larger than the next size d

 $D_{eq}$  = equivalent grain size for particles smaller than  $D_{min}$  of gradation =  $D_{min}/3^{0.5}$ 

SF = Shape Factor for particle angularity = 7.5

SF = 6.6 for rounded particles; 7.5 for medium angularity; 8.4 for angular (after Loudon, presented in Ref. 1)

thus, Permeability, may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})\{1/\Sigma[(P_{N_0} - P_{N_0} d)/d]\}^2(1/SF^2)[e^3/(1+e)]$ , Table 1 below

Further, according Ref. 2, measured permeability typically varies from 1/3 to 3 times the estimated permeability. The references also note that this method may overpredict permeability when soil is gravel, and the results present an upper bound. The formula is not suitable for plastic soils.

| TABLE 1 - SUM OF (P <sub>No D</sub> - P <sub>No d</sub> )/d |                   |              |         |                                          |  |  |
|-------------------------------------------------------------|-------------------|--------------|---------|------------------------------------------|--|--|
| Sieve De                                                    | Sieve Designation |              | Percent | (P <sub>NoD</sub> -P <sub>Nod</sub> )/ d |  |  |
| Standard                                                    | Alternate         | Opening (cm) | Passing | (1/cm)                                   |  |  |
| 37.5 mm                                                     | 1-1/2"            | 3.750        | 100.0   |                                          |  |  |
| 25.0 mm                                                     | 1"                | 2.500        | 100.0   | 0.0                                      |  |  |
| 19.0 mm                                                     | 3/4"              | 1.900        | 91.0    | 4.7                                      |  |  |
| 12.5 mm                                                     | 1/2"              | 1.250        | 87.2    | 3.1                                      |  |  |
| 9.5                                                         | 3/8"              | 0.950        | 77.8    | 9.9                                      |  |  |
| 4.75 mm                                                     | No. 4             | 0.475        | 66.9    | 22.9                                     |  |  |
| 2.00 mm                                                     | No. 10            | 0.200        | 52.6    | 71.6                                     |  |  |
| 1.18 mm                                                     | No. 16            | 0.118        | 40.8    | 99.5                                     |  |  |
| 600 µm                                                      | No. 30            | 0.060        | 23.6    | 288.2                                    |  |  |
| 300 µm                                                      | No. 50            | 0.030        | 9.9     | 456.4                                    |  |  |
| 250 µm                                                      | No. 60            | 0.025        | 8.1     | 72.0                                     |  |  |
| 150 µm                                                      | No. 100           | 0.015        | 5.3     | 182.6                                    |  |  |
| 75 µm                                                       | No. 200           | 0.008        | 2.7     | 354.7                                    |  |  |
| $D_{eq}$                                                    |                   | 0.004        | 0.0     | 614.4                                    |  |  |
| •                                                           |                   |              |         |                                          |  |  |
|                                                             |                   |              |         |                                          |  |  |
|                                                             |                   |              |         |                                          |  |  |
|                                                             |                   |              |         |                                          |  |  |
|                                                             |                   | •            | Sum:    | 2180.0                                   |  |  |

Estimate Void Ratio (e) from Relative Density (Ref. 4)

 $D_r^2 = (N_1)60/C_P C_A C_{OCR}$ 

 $(N_1)60=$  22  $C_P=60+25logD_{50}=$  66.4  $D_{50}=$  1.8 mm  $C_A=1.2+0.05log(t/100)=$  1.19 t(yr)= 70  $C_{OCR}=OCR^{U.18}=$  1  $D_r=$  0.52723

 $e_{max} = 0.9$   $e = e_{max} - (D_r)(e_{max} - e_{min})$   $e_{min} = 0.3$  e = 0.58366

thus, range of permeability is estimated as:

| Estimated range of k (cm/s) |               |           |  |  |
|-----------------------------|---------------|-----------|--|--|
| Probable                    | able Probable |           |  |  |
| measured                    | Calculated    | measured  |  |  |
| lower bnd                   | Estimate      | upper bnd |  |  |
| 2.3E-02                     | 7.0E-02       | 2.1E-01   |  |  |

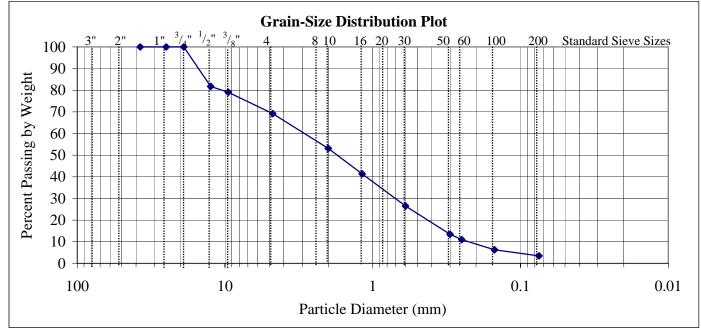
| Copyright © 2008 Stephens Associates Consulting Engineers LLC |
|---------------------------------------------------------------|
| Revisions:                                                    |



Original Work:

Ву: R. Kline June 2, 2008 Date: Subject: Checked By: J. Turner Date: June 13, 2008

**Laboratory Testing** 


Grain Size Distribution

Rte. 1, Saugus, MA

Boring Number: Sample Number: S-3 Sample Depth: 6-8' B-14

Sample Description: Brown fine to coarse SAND, some Gravel

| Sieve De | signation | Nominal Sign | eve Opening | Tare Weight | Sieve+Soil Wt.        | Soil Weight (g) | Percent |
|----------|-----------|--------------|-------------|-------------|-----------------------|-----------------|---------|
| Standard | Alternate | mm           | inches      | (g)         | (g)                   | Soli Weight (g) | Passing |
| 37.5 mm  | 1-1/2"    | 37.5         | 1.476"      | 501.2       | 501.2                 | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25           | 0.984"      | 502.5       | 502.5                 | 0.0             | 100.0   |
| 19.0 mm  | 3/4"      | 19           | 0.748"      | 595.8       | 595.8                 | 0.0             | 100.0   |
| 12.5 mm  | 1/2"      | 12.5         | 0.492"      | 607.6       | 624.4                 | 16.8            | 81.8    |
| 9.5      | 3/8"      | 9.5          | 0.374"      | 565.1       | 567.6                 | 2.5             | 79.0    |
| 4.75 mm  | No. 4     | 4.75         | 0.187"      | 527.7       | 536.8                 | 9.1             | 69.2    |
| 2.00 mm  | No. 10    | 2            | 0.078"      | 450.7       | 465.5                 | 14.8            | 53.1    |
| 1.18 mm  | No. 16    | 1.18         | 0.0464"     | 401.1       | 411.9                 | 10.8            | 41.4    |
| 600 µm   | No. 30    | 0.6          | 0.0236"     | 410.2       | 423.9                 | 13.7            | 26.5    |
| 300 µm   | No. 50    | 0.3          | .0118"      | 416.4       | 428.4                 | 12.0            | 13.5    |
| 250 µm   | No. 60    | 0.25         | 0.0098"     | 339.9       | 342.2                 | 2.3             | 11.0    |
| 150 µm   | No. 100   | 0.15         | 0.0059"     | 303.7       | 308.0                 | 4.3             | 6.3     |
| 75 µm    | No. 200   | 0.075        | 0.0029"     | 301.9       | 304.5                 | 2.6             | 3.5     |
| Pan      |           |              |             | 340.4       | 343.6                 | 3.2             | 0.0     |
|          |           |              |             | Sc          | l<br>oil Wt. Sum (g): | 92.1            |         |



 $D_{10} =$ 0.225 mm Cu = 14.4  $D_{30} =$ 0.7 0.7 mm Cc =

 $D_{60} =$ 3.25 USCS Classification = SP mm

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:

By: Date: Date: By:



Project: Number: 026-08-007 Sheet MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA R. Kline Permeability Estimate by Date: June 2, 2008 Subject: Checked By: J. Turner Date: June 13, 2008 Kozeny-Carman Formula

Boring Number: B-14 Sample Number: S-3 Sample Depth: 6-8'

According to References 1 and 3, (Note: Reference List at end of data sheets) Permeability may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})(1/S^2)[e^3/(1+e)]$ 

 $\gamma$  = assumed unit weight of water in situ, lb/ft<sup>3</sup> = 62.4 = 9800 N/m<sup>3</sup>  $\mu$  = viscosity of water, Ns/m<sup>2</sup> = 0.00131 at 10 °C

 $C_{K-C}$  = Kozeny-Carman empirical coefficient; reported as 4.8±0.3, usually taken as 5, =

S = specific surface area per unit volume of particles =  $SF^*\Sigma((P_{No D}-P_{No d})/d)$ 

 $P_{No D}$  = percentage by weight smaller than size D

 $P_{Nod}$  = percentage by weight larger than the next size d

 $D_{eq}$  = equivalent grain size for particles smaller than  $D_{min}$  of gradation =  $D_{min}/3^{0.5}$ 

SF = Shape Factor for particle angularity = 7.5

SF = 6.6 for rounded particles; 7.5 for medium angularity; 8.4 for angular (after Loudon, presented in Ref. 1)

thus, Permeability, may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})\{1/\Sigma[(P_{N_0} - P_{N_0} d)/d]\}^2(1/SF^2)[e^3/(1+e)]$ , Table 1 below

Further, according Ref. 2, measured permeability typically varies from 1/3 to 3 times the estimated permeability. The references also note that this method may overpredict permeability when soil is gravel, and the results present an upper bound. The formula is not suitable for plastic soils.

| TABLE 1 - SUM OF (P <sub>No D</sub> - P <sub>No d</sub> )/d |           |               |         |                                          |  |  |
|-------------------------------------------------------------|-----------|---------------|---------|------------------------------------------|--|--|
| Sieve Designation                                           |           | Nominal Sieve | Percent | (P <sub>NoD</sub> -P <sub>Nod</sub> )/ d |  |  |
| Standard                                                    | Alternate | Opening (cm)  | Passing | (1/cm)                                   |  |  |
| 37.5 mm                                                     | 1-1/2"    | 3.750         | 100.0   |                                          |  |  |
| 25.0 mm                                                     | 1"        | 2.500         | 100.0   | 0.0                                      |  |  |
| 19.0 mm                                                     | 3/4"      | 1.900         | 100.0   | 0.0                                      |  |  |
| 12.5 mm                                                     | 1/2"      | 1.250         | 81.8    | 14.6                                     |  |  |
| 9.5                                                         | 3/8"      | 0.950         | 79.0    | 2.9                                      |  |  |
| 4.75 mm                                                     | No. 4     | 0.475         | 69.2    | 20.8                                     |  |  |
| 2.00 mm                                                     | No. 10    | 0.200         | 53.1    | 80.3                                     |  |  |
| 1.18 mm                                                     | No. 16    | 0.118         | 41.4    | 99.4                                     |  |  |
| 600 µm                                                      | No. 30    | 0.060         | 26.5    | 247.9                                    |  |  |
| 300 µm                                                      | No. 50    | 0.030         | 13.5    | 434.3                                    |  |  |
| 250 µm                                                      | No. 60    | 0.025         | 11.0    | 99.9                                     |  |  |
| 150 µm                                                      | No. 100   | 0.015         | 6.3     | 311.3                                    |  |  |
| 75 µm                                                       | No. 200   | 0.008         | 3.5     | 376.4                                    |  |  |
| $D_{eq}$                                                    |           | 0.004         | 0.0     | 802.4                                    |  |  |
| •                                                           |           |               |         |                                          |  |  |
|                                                             |           |               |         |                                          |  |  |
|                                                             |           |               |         |                                          |  |  |
|                                                             |           |               |         |                                          |  |  |
|                                                             | -         | •             | Sum:    | 2490.2                                   |  |  |

Estimate Void Ratio (e) from Relative Density (Ref. 4)

 $D_r^2 = (N_1)60/C_P C_A C_{OCR}$ 

 $(N_1)60=$  22  $C_P=60+25logD_{50}=$  66.4  $D_{50}=$  1.8 mm  $C_A=1.2+0.05log(t/100)=$  1.19 t(yr)= 70  $C_{OCR}=OCR^{0.18}=$  1  $D_r=$  0.52723

 $e_{max} = 0.85$   $e = e_{max} - (D_r)(e_{max} - e_{min})$   $e_{min} = 0.14$ e = 0.47566

thus, range of permeability is estimated as:

| Estimated range of k (cm/s) |            |           |  |  |
|-----------------------------|------------|-----------|--|--|
| Probable                    |            | Probable  |  |  |
| measured                    | Calculated | measured  |  |  |
| lower bnd                   | Estimate   | upper bnd |  |  |
| 1.0E-02                     | 3.1E-02    | 9.4E-02   |  |  |

| Copyright © 2008 Stephens As | ssociates Consulting Engineers LLC |
|------------------------------|------------------------------------|
| Revisions:                   |                                    |

By:\_\_\_\_\_\_Date: \_\_\_\_\_

Date:

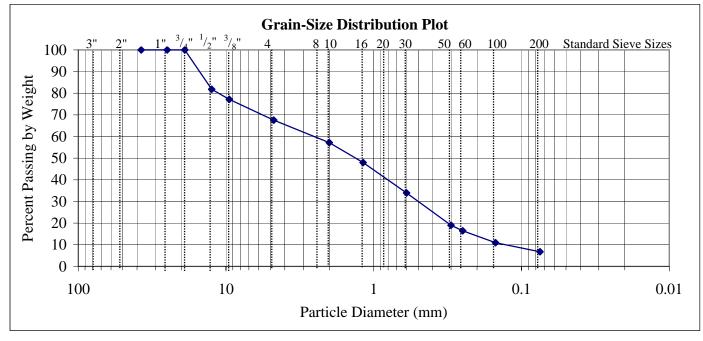


Original Work:

R. Kline June 2, 2008 By: Date: Subject: Checked By: J. Turner Date: June 13, 2008

**Laboratory Testing** 

Grain Size Distribution


Rte. 1, Saugus, MA

Boring Number: Sample Number: S-1 Sample Depth: 1-3' Bottom 7" B-15

Sample Description: Brown fine to coarse SAND, some Gravel, trace silt

| Sieve De | signation | Nominal Sie | eve Opening | Tare Weight | Sieve+Soil Wt.  | Soil Weight (g) | Percent |
|----------|-----------|-------------|-------------|-------------|-----------------|-----------------|---------|
| Standard | Alternate | mm          | inches      | (g)         | (g)             | Con Worght (g)  | Passing |
| 37.5 mm  | 1-1/2"    | 37.5        | 1.476"      | 501.3       | 501.3           | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25          | 0.984"      | 502.5       | 502.5           | 0.0             | 100.0   |
| 19.0 mm  | 3/4"      | 19          | 0.748"      | 595.8       | 595.8           | 0.0             | 100.0   |
| 12.5 mm  | 1/2"      | 12.5        | 0.492"      | 607.8       | 630.9           | 23.1            | 81.8    |
| 9.5      | 3/8"      | 9.5         | 0.374"      | 565.4       | 571.3           | 5.9             | 77.2    |
| 4.75 mm  | No. 4     | 4.75        | 0.187"      | 527.9       | 540.1           | 12.2            | 67.6    |
| 2.00 mm  | No. 10    | 2           | 0.078"      | 450.8       | 464.0           | 13.2            | 57.2    |
| 1.18 mm  | No. 16    | 1.18        | 0.0464"     | 401.3       | 413.0           | 11.7            | 48.0    |
| 600 µm   | No. 30    | 0.6         | 0.0236"     | 410.4       | 428.2           | 17.8            | 33.9    |
| 300 µm   | No. 50    | 0.3         | .0118"      | 416.6       | 435.6           | 19.0            | 19.0    |
| 250 µm   | No. 60    | 0.25        | 0.0098"     | 340.1       | 343.3           | 3.2             | 16.5    |
| 150 µm   | No. 100   | 0.15        | 0.0059"     | 303.8       | 310.8           | 7.0             | 10.9    |
| 75 µm    | No. 200   | 0.075       | 0.0029"     | 301.8       | 307.1           | 5.3             | 6.8     |
| Pan      |           |             |             | 340.6       | 349.2           | 8.6             | 0.0     |
|          |           |             |             |             |                 |                 |         |
|          |           |             |             | C           | oil Wt Sum (a): | 127             |         |

Soil Wt. Sum (g):



 $D_{10} =$ 0.13 Cu = 23.1 mm  $D_{30} =$ 0.5 mm Cc = 0.6

 $D_{60} =$ 3 USCS Classification = SP-SM mm

Copyright © 2008 Stephens Associates Consulting Engineers LLC Revisions:



 Project:
 Number:
 026-08-007
 Sheet
 1
 of
 1

 Name:
 MWRA Contract No. 6905, Pipeline

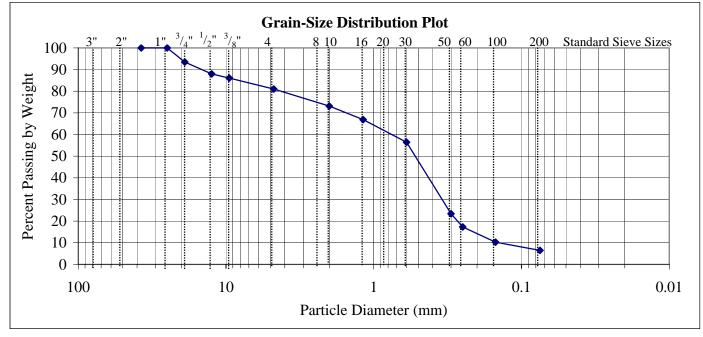
Original Work:

By: R. Kline Date: June 2, 2008 Subject: Checked By: J. Turner Date: June 13, 2008

Rte. 1, Saugus, MA

Laboratory Testing

Grain Size Distribution


## Composite

Boring Number: B-15 Sample Number: S-2 & S-3 Sample Depth: 3-7'

Sample Description: Brown fine to medium SAND, little Gravel, trace silt

| Sieve De | signation | Nominal Sie | eve Opening | Tare Weight | Sieve+Soil Wt.   | Soil Weight (g) | Percent |
|----------|-----------|-------------|-------------|-------------|------------------|-----------------|---------|
| Standard | Alternate | mm          | inches      | (g)         | (g)              | <b>3</b> (9)    | Passing |
| 37.5 mm  | 1-1/2"    | 37.5        | 1.476"      | 501.3       | 501.3            | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25          | 0.984"      | 502.5       | 502.5            | 0.0             | 100.0   |
| 19.0 mm  | 3/4"      | 19          | 0.748"      | 595.7       | 606.8            | 11.1            | 93.5    |
| 12.5 mm  | 1/2"      | 12.5        | 0.492"      | 607.5       | 616.8            | 9.3             | 88.0    |
| 9.5      | 3/8"      | 9.5         | 0.374"      | 565.2       | 568.5            | 3.3             | 86.1    |
| 4.75 mm  | No. 4     | 4.75        | 0.187"      | 527.7       | 536.3            | 8.6             | 81.0    |
| 2.00 mm  | No. 10    | 2           | 0.078"      | 450.8       | 464.2            | 13.4            | 73.1    |
| 1.18 mm  | No. 16    | 1.18        | 0.0464"     | 401.1       | 411.7            | 10.6            | 66.9    |
| 600 µm   | No. 30    | 0.6         | 0.0236"     | 410.3       | 428.1            | 17.8            | 56.4    |
| 300 µm   | No. 50    | 0.3         | .0118"      | 416.5       | 472.7            | 56.2            | 23.4    |
| 250 µm   | No. 60    | 0.25        | 0.0098"     | 339.9       | 350.3            | 10.4            | 17.3    |
| 150 µm   | No. 100   | 0.15        | 0.0059"     | 303.6       | 315.5            | 11.9            | 10.3    |
| 75 µm    | No. 200   | 0.075       | 0.0029"     | 302.0       | 308.5            | 6.5             | 6.5     |
| Pan      |           |             |             | 340.3       | 351.3            | 11.0            | 0.0     |
|          |           |             |             |             |                  |                 |         |
|          |           |             |             | Co          | il \\/t Sum (a). | 170 1           |         |

Soil Wt. Sum (g): 170.1



 $D_{10} = 0.15$  mm Cu = 5.0  $D_{30} = 0.35$  mm Cc = 1.1

 $D_{60} = 0.75$  mm USCS Classification = SP-SM

Copyright © 2008 Stephens Associates Consulting Engineers LLC Revisions:



Project: Number: 026-08-007 Sheet MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA R. Kline Permeability Estimate by Date: June 2, 2008 Subject: Checked By: J. Turner Date: June 13, 2008 Kozeny-Carman Formula

Boring Number: B-15 Sample Number: S-2 & S-3 Sample Depth: 3-7'

According to References 1 and 3, (Note: Reference List at end of data sheets) Permeability may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})(1/S^2)[e^3/(1+e)]$ 

 $\gamma$  = assumed unit weight of water in situ, lb/ft<sup>3</sup> = 62.4 = 9800 N/m<sup>3</sup>  $\mu$  = viscosity of water, Ns/m<sup>2</sup> = 0.00131 at 10 °C

 $C_{K-C}$  = Kozeny-Carman empirical coefficient; reported as 4.8±0.3, usually taken as 5, =

S = specific surface area per unit volume of particles =  $SF^*\Sigma((P_{No D}-P_{No d})/d)$ 

 $P_{No\ D}$  = percentage by weight smaller than size D

 $P_{Nod}$  = percentage by weight larger than the next size d

 $D_{eq}$  = equivalent grain size for particles smaller than  $D_{min}$  of gradation =  $D_{min}/3^{0.5}$ 

SF = Shape Factor for particle angularity = 7.5

SF = 6.6 for rounded particles; 7.5 for medium angularity; 8.4 for angular (after Loudon, presented in Ref. 1)

thus, Permeability, may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})\{1/\Sigma[(P_{N_0,D}-P_{N_0,d})/d]\}^2(1/SF^2)[e^3/(1+e)]$ , Table 1 below

Further, according Ref. 2, measured permeability typically varies from 1/3 to 3 times the estimated permeability. The references also note that this method may overpredict permeability when soil is gravel, and the results present an upper bound. The formula is not suitable for plastic soils.

| TABLE 1 - SUM OF (P <sub>No D</sub> - P <sub>No d</sub> )/d |           |               |         |                                          |  |  |  |
|-------------------------------------------------------------|-----------|---------------|---------|------------------------------------------|--|--|--|
| Sieve De                                                    | signation | Nominal Sieve | Percent | (P <sub>NoD</sub> -P <sub>Nod</sub> )/ d |  |  |  |
| Standard                                                    | Alternate | Opening (cm)  | Passing | (1/cm)                                   |  |  |  |
| 37.5 mm                                                     | 1-1/2"    | 3.750         | 100.0   |                                          |  |  |  |
| 25.0 mm                                                     | 1"        | 2.500         | 100.0   | 0.0                                      |  |  |  |
| 19.0 mm                                                     | 3/4"      | 1.900         | 93.5    | 3.4                                      |  |  |  |
| 12.5 mm                                                     | 1/2"      | 1.250         | 88.0    | 4.4                                      |  |  |  |
| 9.5                                                         | 3/8"      | 0.950         | 86.1    | 2.0                                      |  |  |  |
| 4.75 mm                                                     | No. 4     | 0.475         | 81.0    | 10.6                                     |  |  |  |
| 2.00 mm                                                     | No. 10    | 0.200         | 73.1    | 39.4                                     |  |  |  |
| 1.18 mm                                                     | No. 16    | 0.118         | 66.9    | 52.8                                     |  |  |  |
| 600 µm                                                      | No. 30    | 0.060         | 56.4    | 174.4                                    |  |  |  |
| 300 µm                                                      | No. 50    | 0.030         | 23.4    | 1101.3                                   |  |  |  |
| 250 µm                                                      | No. 60    | 0.025         | 17.3    | 244.6                                    |  |  |  |
| 150 µm                                                      | No. 100   | 0.015         | 10.3    | 466.4                                    |  |  |  |
| 75 µm                                                       | No. 200   | 0.008         | 6.5     | 509.5                                    |  |  |  |
| $D_{eq}$                                                    |           | 0.004         | 0.0     | 1493.4                                   |  |  |  |
| ·                                                           |           |               |         |                                          |  |  |  |
|                                                             |           |               |         |                                          |  |  |  |
|                                                             |           |               |         |                                          |  |  |  |
| _                                                           |           |               |         |                                          |  |  |  |
|                                                             |           |               | Sum     | 4102.3                                   |  |  |  |

Estimate Void Ratio (e) from Relative Density (Ref. 4)

 $D_r^2 = (N_1)60/C_P C_A C_{OCR}$ 

 $\begin{array}{lll} (N_1)60=&32\\ C_P=60+25logD_{50}=&53\\ D_{50}=&0.53\text{ mm}\\ C_A=1.2+0.05log(t/100)=&1.19\\ t(yr)=&70\\ C_{OCR}=OCR^{0.18}=&1\\ D_r=&0.7116 \end{array}$ 

 $e_{max} = 0.85$   $e = e_{max} - (D_r)(e_{max} - e_{min})$   $e_{min} = 0.14$ e = 0.34476

thus, range of permeability is estimated as:

| Estimated range of k (cm/s) |            |           |  |  |  |  |  |
|-----------------------------|------------|-----------|--|--|--|--|--|
| Probable Probable           |            |           |  |  |  |  |  |
| measured                    | Calculated | measured  |  |  |  |  |  |
| lower bnd                   | Estimate   | upper bnd |  |  |  |  |  |
| 1.6E-03                     | 4.8E-03    | 1.4E-02   |  |  |  |  |  |

| Copyright © 2008 Stephens Associates Consulting Engineers LL |
|--------------------------------------------------------------|
| Revisions:                                                   |

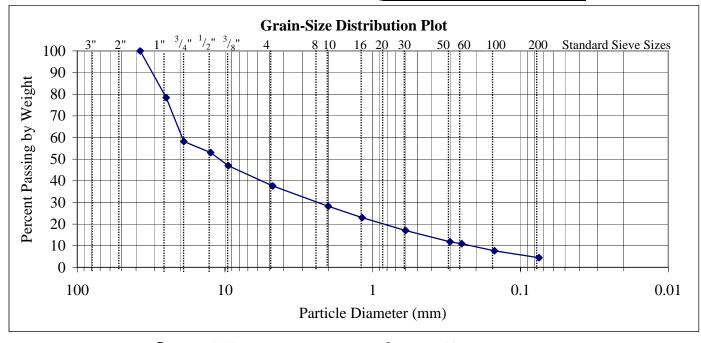


Original Work:

Ву: R. Kline June 3, 2008 Date: Subject: Checked By: J. Turner Date: June 13, 2008

**Laboratory Testing** 

Grain Size Distribution


Rte. 1, Saugus, MA

Boring Number: Sample Depth: 7-9' B-15 Sample Number: S-4

Sample Description: Brown GRAVEL, some fine to medium Sand

| Sieve De | signation | Nominal Sie | eve Opening | Tare Weight | Sieve+Soil Wt.  | Soil Weight (g) | Percent |
|----------|-----------|-------------|-------------|-------------|-----------------|-----------------|---------|
| Standard | Alternate | mm          | inches      | (g)         | (g)             | Con Worght (g)  | Passing |
| 37.5 mm  | 1-1/2"    | 37.5        | 1.476"      | 501.4       | 501.4           | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25          | 0.984"      | 502.5       | 533.3           | 30.8            | 78.4    |
| 19.0 mm  | 3/4"      | 19          | 0.748"      | 595.8       | 624.7           | 28.9            | 58.2    |
| 12.5 mm  | 1/2"      | 12.5        | 0.492"      | 607.5       | 614.8           | 7.3             | 53.0    |
| 9.5      | 3/8"      | 9.5         | 0.374"      | 565.2       | 573.9           | 8.7             | 47.0    |
| 4.75 mm  | No. 4     | 4.75        | 0.187"      | 527.7       | 541.0           | 13.3            | 37.6    |
| 2.00 mm  | No. 10    | 2           | 0.078"      | 450.8       | 464.2           | 13.4            | 28.2    |
| 1.18 mm  | No. 16    | 1.18        | 0.0464"     | 401.1       | 408.6           | 7.5             | 23.0    |
| 600 µm   | No. 30    | 0.6         | 0.0236"     | 410.3       | 418.8           | 8.5             | 17.0    |
| 300 µm   | No. 50    | 0.3         | .0118"      | 416.5       | 423.9           | 7.4             | 11.8    |
| 250 µm   | No. 60    | 0.25        | 0.0098"     | 339.9       | 341.2           | 1.3             | 10.9    |
| 150 µm   | No. 100   | 0.15        | 0.0059"     | 303.6       | 308.3           | 4.7             | 7.6     |
| 75 µm    | No. 200   | 0.075       | 0.0029"     | 302.0       | 306.5           | 4.5             | 4.5     |
| Pan      |           |             |             | 340.3       | 346.7           | 6.4             | 0.0     |
|          |           |             |             |             | oil Wt Sum (a): | 1/12 7          |         |

Soil Wt. Sum (g): 142.7



 $D_{10} =$ 0.21 Cu = 90.5  $\mathsf{mm}$  $D_{30} =$ 2.25 mm Cc = 1.3

 $D_{60} =$ 19 USCS Classification = mm GW

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:



Project: Number: 026-08-007 Sheet MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA R. Kline Permeability Estimate by Date: June 3, 2008 Subject: Checked By: J. Turner Date: June 13, 2008 Kozeny-Carman Formula

Boring Number: B-15 Sample Number: S-4 Sample Depth: 7-9'

According to References 1 and 3, (Note: Reference List at end of data sheets) Permeability may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})(1/S^2)[e^3/(1+e)]$ 

 $\gamma$  = assumed unit weight of water in situ, lb/ft<sup>3</sup> = 62.4 = 9800 N/m<sup>3</sup>  $\mu$  = viscosity of water, Ns/m<sup>2</sup> = 0.00131 at 10 °C

 $C_{K-C}$  = Kozeny-Carman empirical coefficient; reported as 4.8±0.3, usually taken as 5, =

S = specific surface area per unit volume of particles =  $SF^*\Sigma((P_{No D}-P_{No d})/d)$ 

 $P_{N_0 D}$  = percentage by weight smaller than size D

P<sub>No d</sub> = percentage by weight larger than the next size d

 $D_{eq}$  = equivalent grain size for particles smaller than  $D_{min}$  of gradation =  $D_{min}/3^{0.5}$ 

SF = Shape Factor for particle angularity = 7.5

SF = 6.6 for rounded particles; 7.5 for medium angularity; 8.4 for angular (after Loudon, presented in Ref. 1)

thus, Permeability, may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})\{1/\Sigma[(P_{N_0} - P_{N_0} d)/d]\}^2(1/SF^2)[e^3/(1+e)]$ , Table 1 below

Further, according Ref. 2, measured permeability typically varies from 1/3 to 3 times the estimated permeability. The references also note that this method may overpredict permeability when soil is gravel, and the results present an upper bound. The formula is not suitable for plastic soils.

| TABLE 1 - SUM OF (P <sub>No D</sub> - P <sub>No d</sub> )/d |           |               |         |                                          |  |  |  |  |
|-------------------------------------------------------------|-----------|---------------|---------|------------------------------------------|--|--|--|--|
| Sieve De                                                    | signation | Nominal Sieve | Percent | (P <sub>NoD</sub> -P <sub>Nod</sub> )/ d |  |  |  |  |
| Standard                                                    | Alternate | Opening (cm)  | Passing | (1/cm)                                   |  |  |  |  |
| 37.5 mm                                                     | 1-1/2"    | 3.750         | 100.0   |                                          |  |  |  |  |
| 25.0 mm                                                     | 1"        | 2.500         | 78.4    | 8.6                                      |  |  |  |  |
| 19.0 mm                                                     | 3/4"      | 1.900         | 58.2    | 10.7                                     |  |  |  |  |
| 12.5 mm                                                     | 1/2"      | 1.250         | 53.0    | 4.1                                      |  |  |  |  |
| 9.5                                                         | 3/8"      | 0.950         | 47.0    | 6.4                                      |  |  |  |  |
| 4.75 mm                                                     | No. 4     | 0.475         | 37.6    | 19.6                                     |  |  |  |  |
| 2.00 mm                                                     | No. 10    | 0.200         | 28.2    | 47.0                                     |  |  |  |  |
| 1.18 mm                                                     | No. 16    | 0.118         | 23.0    | 44.5                                     |  |  |  |  |
| 600 µm                                                      | No. 30    | 0.060         | 17.0    | 99.3                                     |  |  |  |  |
| 300 µm                                                      | No. 50    | 0.030         | 11.8    | 172.9                                    |  |  |  |  |
| 250 µm                                                      | No. 60    | 0.025         | 10.9    | 36.4                                     |  |  |  |  |
| 150 µm                                                      | No. 100   | 0.015         | 7.6     | 219.6                                    |  |  |  |  |
| 75 µm                                                       | No. 200   | 0.008         | 4.5     | 420.5                                    |  |  |  |  |
| $D_{eq}$                                                    |           | 0.004         | 0.0     | 1035.8                                   |  |  |  |  |
|                                                             |           |               |         |                                          |  |  |  |  |
|                                                             |           |               |         |                                          |  |  |  |  |
|                                                             |           |               |         |                                          |  |  |  |  |
|                                                             |           |               |         |                                          |  |  |  |  |
|                                                             |           |               | Sum:    | 2125.3                                   |  |  |  |  |

Estimate Void Ratio (e) from Relative Density (Ref. 4)

 $D_r^2 = (N_1)60/C_P C_A C_{OCR}$ 

 $(N_1)60=$  34  $C_P=60+25logD_{50}=$  87  $D_{50}=$  12 mm  $C_A=1.2+0.05log(t/100)=$  1.19 t(yr)= 70  $C_{OCR}=OCR^{0.18}=$  1  $D_r=$  0.57259

 $e_{max} = 0.85$   $e = e_{max} - (D_r)(e_{max} - e_{min})$   $e_{min} = 0.14$ e = 0.44346

thus, range of permeability is estimated as:

| Estimated range of k (cm/s) |            |           |  |  |  |  |  |
|-----------------------------|------------|-----------|--|--|--|--|--|
| Probable                    |            | Probable  |  |  |  |  |  |
| measured                    | Calculated | measured  |  |  |  |  |  |
| lower bnd                   | Estimate   | upper bnd |  |  |  |  |  |
| 1.2E-02                     | 3.6E-02    | 1.1E-01   |  |  |  |  |  |

| Copyright © 2008 Stephens Associates Consulting Engineers LL | .C |
|--------------------------------------------------------------|----|
|--------------------------------------------------------------|----|

Revisions:



Original Work:

R. Kline

Ву:

June 9, 2008 Date: Subject: Checked By: J. Turner Date: June 13, 2008

**Laboratory Testing** Grain Size Distribution

Rte. 1, Saugus, MA

Boring Number: Sample Number: S-1 Sample Depth: 1-3' Top 6" B-16

Sample Description: Gray medium to coarse SAND, some Gravel

| Sieve Designation |           | Nominal Signal | eve Opening | Tare Weight | Sieve+Soil Wt.  | Soil Weight (g) | Percent |
|-------------------|-----------|----------------|-------------|-------------|-----------------|-----------------|---------|
| Standard          | Alternate | mm             | inches      | (g)         | (g)             | Son Weight (g)  | Passing |
| 37.5 mm           | 1-1/2"    | 37.5           | 1.476"      | 501.3       | 501.3           | 0.0             | 100.0   |
| 25.0 mm           | 1"        | 25             | 0.984"      | 502.5       | 502.5           | 0.0             | 100.0   |
| 19.0 mm           | 3/4"      | 19             | 0.748"      | 596         | 596             | 0.0             | 100.0   |
| 12.5 mm           | 1/2"      | 12.5           | 0.492"      | 607.2       | 633.9           | 26.7            | 84.0    |
| 9.5               | 3/8"      | 9.5            | 0.374"      | 565.2       | 567.2           | 2.0             | 82.8    |
| 4.75 mm           | No. 4     | 4.75           | 0.187"      | 527.7       | 541.8           | 14.1            | 74.4    |
| 2.00 mm           | No. 10    | 2              | 0.078"      | 450.8       | 486.8           | 36.0            | 52.8    |
| 1.18 mm           | No. 16    | 1.18           | 0.0464"     | 401.2       | 430.1           | 28.9            | 35.5    |
| 600 µm            | No. 30    | 0.6            | 0.0236"     | 410.5       | 444.6           | 34.1            | 15.1    |
| 300 µm            | No. 50    | 0.3            | .0118"      | 416.8       | 435.8           | 19.0            | 3.7     |
| 250 µm            | No. 60    | 0.25           | 0.0098"     | 339.9       | 341.6           | 1.7             | 2.7     |
| 150 µm            | No. 100   | 0.15           | 0.0059"     | 303.7       | 306.2           | 2.5             | 1.2     |
| 75 µm             | No. 200   | 0.075          | 0.0029"     | 301.6       | 302.9           | 1.3             | 0.4     |
| Pan               |           |                |             | 340.4       | 341.1           | 0.7             | 0.0     |
|                   |           |                |             | 9/          | il Wt. Sum (g): | 167             |         |

**Grain-Size Distribution Plot** 16 20 30 50 60 100 200 Standard Sieve Sizes 100 90 Percent Passing by Weight 80 70 60 50 40 30 20

> $D_{10} =$ 0.44 mm Cu = 6.1  $D_{30} =$ Cc = 0.96 mm 8.0  $D_{60} =$ USCS Classification = 2.7 mm

1

Particle Diameter (mm)

10

Copyright © 2008 Stephens Associates Consulting Engineers LLC Revisions:

10 0

100

By: Date: Date: By:



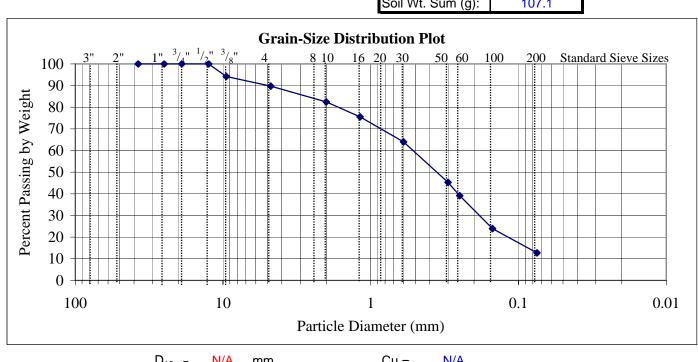
0.01

0.1

SP

Original Work:

By: R. Kline Date: June 3, 2008 Subject: Checked By: J. Turner Date: June 13, 2008


Rte. 1, Saugus, MA
Laboratory Testing

Grain Size Distribution

Boring Number: B-16 Sample Number: S-1 Sample Depth: 1-3' Bottom 8"

Sample Description: Brown fine to medium SAND, little Gravel, little Silt

| Sieve Designation |           | Nominal Sie | eve Opening | Tare Weight | Sieve+Soil Wt.  | Soil Weight (g) | Percent |
|-------------------|-----------|-------------|-------------|-------------|-----------------|-----------------|---------|
| Standard          | Alternate | mm          | inches      | (g)         | (g)             | Con Worght (g)  | Passing |
| 37.5 mm           | 1-1/2"    | 37.5        | 1.476"      | 501.3       | 501.3           | 0.0             | 100.0   |
| 25.0 mm           | 1"        | 25          | 0.984"      | 502.5       | 502.5           | 0.0             | 100.0   |
| 19.0 mm           | 3/4"      | 19          | 0.748"      | 595.8       | 595.8           | 0.0             | 100.0   |
| 12.5 mm           | 1/2"      | 12.5        | 0.492"      | 607.5       | 607.5           | 0.0             | 100.0   |
| 9.5               | 3/8"      | 9.5         | 0.374"      | 565.2       | 571.4           | 6.2             | 94.2    |
| 4.75 mm           | No. 4     | 4.75        | 0.187"      | 527.8       | 532.6           | 4.8             | 89.7    |
| 2.00 mm           | No. 10    | 2           | 0.078"      | 450.8       | 458.6           | 7.8             | 82.4    |
| 1.18 mm           | No. 16    | 1.18        | 0.0464"     | 401.1       | 408.5           | 7.4             | 75.5    |
| 600 µm            | No. 30    | 0.6         | 0.0236"     | 410.3       | 422.7           | 12.4            | 64.0    |
| 300 µm            | No. 50    | 0.3         | .0118"      | 416.5       | 436.5           | 20.0            | 45.3    |
| 250 µm            | No. 60    | 0.25        | 0.0098"     | 339.9       | 346.5           | 6.6             | 39.1    |
| 150 µm            | No. 100   | 0.15        | 0.0059"     | 303.6       | 319.9           | 16.3            | 23.9    |
| 75 µm             | No. 200   | 0.075       | 0.0029"     | 301.6       | 313.6           | 12.0            | 12.7    |
| Pan               |           |             |             | 340.3       | 353.9           | 13.6            | 0.0     |
|                   |           |             |             | _           |                 |                 |         |
|                   |           |             |             | Sc          | oil Wt Sum (a): | 107 1           |         |



 $D_{10} = N/A$  mm Cu = N/A  $D_{30} = 0.18$  mm Cc = N/A

 $D_{60} = 0.525$  mm USCS Classification = SM

Copyright  $\ @$  2008 Stephens Associates Consulting Engineers LLC

Revisions:

By: \_\_\_\_\_ Date: \_\_\_\_\_ Date: \_\_\_\_\_

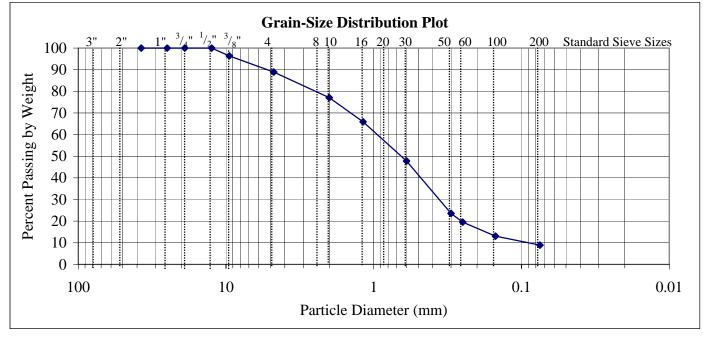


Original Work:

R. Kline June 3, 2008 By: Date: Subject: Checked By: J. Turner Date: June 13, 2008

**Laboratory Testing** 

Grain Size Distribution


Rte. 1, Saugus, MA

Boring Number: Sample Number: S-3 B-16 Sample Depth: 5-7'

Sample Description: Brown fine to coarse SAND, little Gravel, trace silt

| Sieve De | signation | Nominal Sie | eve Opening | Tare Weight | Sieve+Soil Wt.  | Soil Weight (g) | Percent |
|----------|-----------|-------------|-------------|-------------|-----------------|-----------------|---------|
| Standard | Alternate | mm          | inches      | (g)         | (g)             | Con Weight (g)  | Passing |
| 37.5 mm  | 1-1/2"    | 37.5        | 1.476"      | 501.3       | 501.3           | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25          | 0.984"      | 502.5       | 502.5           | 0.0             | 100.0   |
| 19.0 mm  | 3/4"      | 19          | 0.748"      | 595.8       | 595.8           | 0.0             | 100.0   |
| 12.5 mm  | 1/2"      | 12.5        | 0.492"      | 607.6       | 607.6           | 0.0             | 100.0   |
| 9.5      | 3/8"      | 9.5         | 0.374"      | 565.4       | 570.7           | 5.3             | 96.4    |
| 4.75 mm  | No. 4     | 4.75        | 0.187"      | 527.9       | 538.9           | 11.0            | 88.9    |
| 2.00 mm  | No. 10    | 2           | 0.078"      | 450.9       | 468.3           | 17.4            | 77.1    |
| 1.18 mm  | No. 16    | 1.18        | 0.0464"     | 401.3       | 417.7           | 16.4            | 65.9    |
| 600 µm   | No. 30    | 0.6         | 0.0236"     | 410.4       | 437.0           | 26.6            | 47.8    |
| 300 µm   | No. 50    | 0.3         | .0118"      | 416.6       | 452.2           | 35.6            | 23.6    |
| 250 µm   | No. 60    | 0.25        | 0.0098"     | 340.0       | 345.9           | 5.9             | 19.5    |
| 150 µm   | No. 100   | 0.15        | 0.0059"     | 303.7       | 313.2           | 9.5             | 13.1    |
| 75 µm    | No. 200   | 0.075       | 0.0029"     | 301.7       | 307.8           | 6.1             | 8.9     |
| Pan      |           |             |             | 340.4       | 353.5           | 13.1            | 0.0     |
|          |           |             |             |             |                 |                 |         |
|          | •         | •           | •           | 0           | oil Wt Sum (a): | 146.0           | •       |

Soil Wt. Sum (g): 146.9



 $D_{10} =$ 0.085 mm Cu = 11.1  $D_{30} =$ 1.7 0.365 mm Cc =

 $D_{60} =$ USCS Classification = SW-SM 0.94  $\mathsf{mm}$ 

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:



Project: Number: 026-08-007 Sheet MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA R. Kline Permeability Estimate by Date: June 3, 2008 Subject: Checked By: J. Turner Date: June 13, 2008 Kozeny-Carman Formula

Boring Number: **B-16** Sample Number: **S-3** Sample Depth: **5-7'** 

According to References 1 and 3, (Note: Reference List at end of data sheets) Permeability may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})(1/S^2)[e^3/(1+e)]$ 

 $\gamma$  = assumed unit weight of water in situ, lb/ft<sup>3</sup> = 62.4 = 9800 N/m<sup>3</sup>  $\mu$  = viscosity of water, Ns/m<sup>2</sup> = 0.00131 at 10 °C

 $C_{K-C}$  = Kozeny-Carman empirical coefficient; reported as 4.8±0.3, usually taken as 5, =

S = specific surface area per unit volume of particles =  $SF^*\Sigma((P_{No D}-P_{No d})/d)$ 

 $P_{No D}$  = percentage by weight smaller than size D

 $P_{Nod}$  = percentage by weight larger than the next size d

 $D_{eq}$  = equivalent grain size for particles smaller than  $D_{min}$  of gradation =  $D_{min}/3^{0.5}$ 

SF = Shape Factor for particle angularity = 7.5

SF = 6.6 for rounded particles; 7.5 for medium angularity; 8.4 for angular (after Loudon, presented in Ref. 1)

thus, Permeability, may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})\{1/\Sigma[(P_{N_0} - P_{N_0} d)/d]\}^2(1/SF^2)[e^3/(1+e)]$ , Table 1 below

Further, according Ref. 2, measured permeability typically varies from 1/3 to 3 times the estimated permeability. The references also note that this method may overpredict permeability when soil is gravel, and the results present an upper bound. The formula is not suitable for plastic soils.

|          | TABLE 1 - SUM OF (P <sub>No D</sub> - P <sub>No d</sub> )/d |              |         |                                          |  |
|----------|-------------------------------------------------------------|--------------|---------|------------------------------------------|--|
| Sieve De | eve Designation Nominal Sieve                               |              | Percent | (P <sub>NoD</sub> -P <sub>Nod</sub> )/ d |  |
| Standard | Alternate                                                   | Opening (cm) | Passing | (1/cm)                                   |  |
| 37.5 mm  | 1-1/2"                                                      | 3.750        | 100.0   | -                                        |  |
| 25.0 mm  | 1"                                                          | 2.500        | 100.0   | 0.0                                      |  |
| 19.0 mm  | 3/4"                                                        | 1.900        | 100.0   | 0.0                                      |  |
| 12.5 mm  | 1/2"                                                        | 1.250        | 100.0   | 0.0                                      |  |
| 9.5      | 3/8"                                                        | 0.950        | 96.4    | 3.8                                      |  |
| 4.75 mm  | No. 4                                                       | 0.475        | 88.9    | 15.8                                     |  |
| 2.00 mm  | No. 10                                                      | 0.200        | 77.1    | 59.2                                     |  |
| 1.18 mm  | No. 16                                                      | 0.118        | 65.9    | 94.6                                     |  |
| 600 µm   | No. 30                                                      | 0.060        | 47.8    | 301.8                                    |  |
| 300 µm   | No. 50                                                      | 0.030        | 23.6    | 807.8                                    |  |
| 250 µm   | No. 60                                                      | 0.025        | 19.5    | 160.7                                    |  |
| 150 µm   | No. 100                                                     | 0.015        | 13.1    | 431.1                                    |  |
| 75 µm    | No. 200                                                     | 0.008        | 8.9     | 553.7                                    |  |
| $D_{eq}$ |                                                             | 0.004        | 0.0     | 2059.4                                   |  |
| •        |                                                             |              |         |                                          |  |
|          |                                                             |              |         |                                          |  |
|          |                                                             |              |         |                                          |  |
|          |                                                             |              |         |                                          |  |
|          | •                                                           | •            | Sum:    | 4487 9                                   |  |

Estimate Void Ratio (e) from Relative Density (Ref. 4)

 $D_r^2 = (N_1)60/C_P C_A C_{OCR}$ 

 $\begin{array}{lll} (N_1)60=&40\\ C_P=60+25logD_{50}=&55.3\\ D_{50}=&0.65\text{ mm}\\ C_A=1.2+0.05log(t/100)=&1.19\\ t(yr)=&70\\ C_{OCR}=OCR^{0.18}=&1\\ D_r=&0.77874 \end{array}$ 

 $e_{max} = 0.85$   $e = e_{max} - (D_r)(e_{max} - e_{min})$   $e_{min} = 0.14$ e = 0.29709

thus, range of permeability is estimated as:

| Estimated range of k (cm/s) |            |           |  |
|-----------------------------|------------|-----------|--|
| Probable                    |            | Probable  |  |
| measured                    | Calculated | measured  |  |
| lower bnd                   | Estimate   | upper bnd |  |
| 8.9E-04                     | 2.7E-03    | 8.0E-03   |  |

| Copyright © | 2008 Stephen | s Associates | Consulting | Engineers | LLC |
|-------------|--------------|--------------|------------|-----------|-----|
| Davisiana   |              |              |            |           |     |

Revisions:

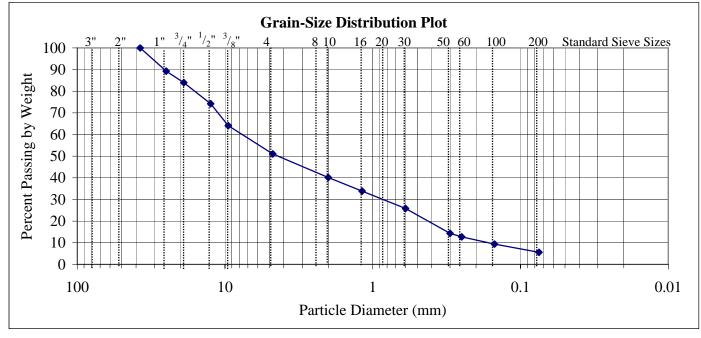


Original Work:

R. Kline June 3, 2008 By: Date: Subject: Checked By: J. Turner Date: June 13, 2008

**Laboratory Testing** 

Grain Size Distribution


Rte. 1, Saugus, MA

Boring Number: Sample Number: S-4 Sample Depth: 7-9' B-16

Sample Description: Brown fine to coarse SAND and GRAVEL, trace silt

| Sieve De<br>Standard | signation<br>Alternate | Nominal Sie | eve Opening inches | Tare Weight<br>(g) | Sieve+Soil Wt. | Soil Weight (g) | Percent<br>Passing |
|----------------------|------------------------|-------------|--------------------|--------------------|----------------|-----------------|--------------------|
| 37.5 mm              | 1-1/2"                 | 37.5        | 1.476"             | 501.5              | 501.5          | 0.0             | 100.0              |
| 25.0 mm              | 1"                     | 25          | 0.984"             | 502.5              | 528            | 25.5            | 89.3               |
|                      | •                      | t           | 0.964              | 595.9              | 608.6          |                 |                    |
| 19.0 mm              | 3/4"                   | 19          |                    |                    |                | 12.7            | 84.0               |
| 12.5 mm              | 1/2"                   | 12.5        | 0.492"             | 607.7              | 631.0          | 23.3            | 74.2               |
| 9.5                  | 3/8"                   | 9.5         | 0.374"             | 565.4              | 589.5          | 24.1            | 64.1               |
| 4.75 mm              | No. 4                  | 4.75        | 0.187"             | 527.8              | 558.9          | 31.1            | 51.0               |
| 2.00 mm              | No. 10                 | 2           | 0.078"             | 450.8              | 476.8          | 26.0            | 40.1               |
| 1.18 mm              | No. 16                 | 1.18        | 0.0464"            | 401.2              | 416.1          | 14.9            | 33.9               |
| 600 µm               | No. 30                 | 0.6         | 0.0236"            | 410.3              | 429.4          | 19.1            | 25.8               |
| 300 µm               | No. 50                 | 0.3         | .0118"             | 416.5              | 443.9          | 27.4            | 14.4               |
| 250 µm               | No. 60                 | 0.25        | 0.0098"            | 340.0              | 343.9          | 3.9             | 12.7               |
| 150 µm               | No. 100                | 0.15        | 0.0059"            | 303.7              | 311.6          | 7.9             | 9.4                |
| 75 µm                | No. 200                | 0.075       | 0.0029"            | 301.6              | 310.7          | 9.1             | 5.6                |
| Pan                  |                        |             |                    | 340.5              | 353.8          | 13.3            | 0.0                |
|                      |                        |             |                    | ·                  |                |                 |                    |
| Coil MA Comp (c)     |                        |             |                    | 220.2              |                |                 |                    |

Soil Wt. Sum (g): 238.3



 $D_{10} =$ 0.16 mm Cu = 47.5  $D_{30} =$ 0.825 mm Cc = 0.6

 $D_{60} =$ 7.6 USCS Classification = SP-SM mm

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:



Project: Number: 026-08-007 Sheet MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA R. Kline Permeability Estimate by Date: June 3, 2008 Subject: Checked By: J. Turner Date: June 13, 2008 Kozeny-Carman Formula

Boring Number: **B-16** Sample Number: **S-4** Sample Depth: **7-9'** 

According to References 1 and 3, (Note: Reference List at end of data sheets) Permeability may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})(1/S^2)[e^3/(1+e)]$ 

 $\gamma$  = assumed unit weight of water in situ, lb/ft<sup>3</sup> = 62.4 = 9800 N/m<sup>3</sup>  $\mu$  = viscosity of water, Ns/m<sup>2</sup> = 0.00131 at 10 °C

 $C_{K-C}$  = Kozeny-Carman empirical coefficient; reported as 4.8±0.3, usually taken as 5, =

S = specific surface area per unit volume of particles =  $SF^*\Sigma((P_{No D}-P_{No d})/d)$ 

 $P_{No D}$  = percentage by weight smaller than size D

 $P_{No d}$  = percentage by weight larger than the next size d

 $D_{eq}$  = equivalent grain size for particles smaller than  $D_{min}$  of gradation =  $D_{min}/3^{0.5}$ 

SF = Shape Factor for particle angularity = 7.5

SF = 6.6 for rounded particles; 7.5 for medium angularity; 8.4 for angular (after Loudon, presented in Ref. 1)

thus, Permeability, may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})\{1/\Sigma[(P_{N_0,D}-P_{N_0,d})/d]\}^2(1/SF^2)[e^3/(1+e)]$ , Table 1 below

Further, according Ref. 2, measured permeability typically varies from 1/3 to 3 times the estimated permeability. The references also note that this method may overpredict permeability when soil is gravel, and the results present an upper bound. The formula is not suitable for plastic soils.

|          | TABLE 1 - SUM OF (P <sub>No D</sub> - P <sub>No d</sub> )/d |               |         |                                          |  |
|----------|-------------------------------------------------------------|---------------|---------|------------------------------------------|--|
| Sieve De | signation                                                   | Nominal Sieve | Percent | (P <sub>NoD</sub> -P <sub>Nod</sub> )/ d |  |
| Standard | Alternate                                                   | Opening (cm)  | Passing | (1/cm)                                   |  |
| 37.5 mm  | 1-1/2"                                                      | 3.750         | 100.0   |                                          |  |
| 25.0 mm  | 1"                                                          | 2.500         | 89.3    | 4.3                                      |  |
| 19.0 mm  | 3/4"                                                        | 1.900         | 84.0    | 2.8                                      |  |
| 12.5 mm  | 1/2"                                                        | 1.250         | 74.2    | 7.8                                      |  |
| 9.5      | 3/8"                                                        | 0.950         | 64.1    | 10.6                                     |  |
| 4.75 mm  | No. 4                                                       | 0.475         | 51.0    | 27.5                                     |  |
| 2.00 mm  | No. 10                                                      | 0.200         | 40.1    | 54.6                                     |  |
| 1.18 mm  | No. 16                                                      | 0.118         | 33.9    | 53.0                                     |  |
| 600 µm   | No. 30                                                      | 0.060         | 25.8    | 133.6                                    |  |
| 300 µm   | No. 50                                                      | 0.030         | 14.4    | 383.3                                    |  |
| 250 µm   | No. 60                                                      | 0.025         | 12.7    | 65.5                                     |  |
| 150 µm   | No. 100                                                     | 0.015         | 9.4     | 221.0                                    |  |
| 75 µm    | No. 200                                                     | 0.008         | 5.6     | 509.2                                    |  |
| $D_{eq}$ |                                                             | 0.004         | 0.0     | 1288.9                                   |  |
|          |                                                             |               |         |                                          |  |
|          |                                                             |               |         |                                          |  |
|          |                                                             |               |         |                                          |  |
|          |                                                             |               |         |                                          |  |
|          |                                                             |               | Sum:    | 2762.0                                   |  |

Estimate Void Ratio (e) from Relative Density (Ref. 4)

 $D_r^2 = (N_1)60/C_P C_A C_{OCR}$ 

 $(N_1)60=$  66  $C_P=60+25logD_{50}=$  76.1  $D_{50}=$  4.4 mm  $C_A=1.2+0.05log(t/100)=$  1.19 t(yr)= 70  $C_{OCR}=OCR^{0.18}=$  1  $D_r=$  0.85297

 $e_{max} = 0.85$   $e = e_{max} - (D_r)(e_{max} - e_{min})$   $e_{min} = 0.14$ e = 0.24439

thus, range of permeability is estimated as:

| Estimated range of k (cm/s) |            |           |  |
|-----------------------------|------------|-----------|--|
| Probable                    |            | Probable  |  |
| measured                    | Calculated | measured  |  |
| lower bnd                   | Estimate   | upper bnd |  |
| 1.4E-03                     | 4.1E-03    | 1.2E-02   |  |

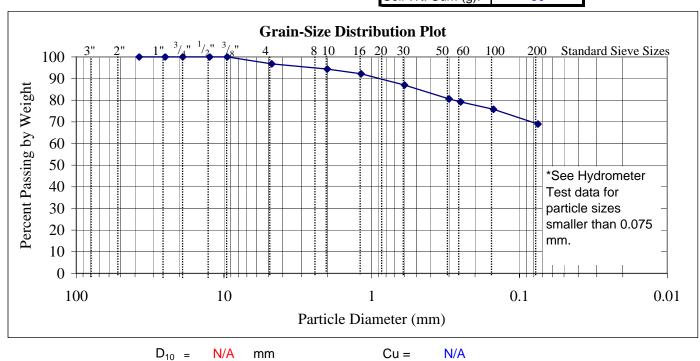
| Copyright © | 2008 Stephen | s Associates | Consulting | Engineers | LLC |
|-------------|--------------|--------------|------------|-----------|-----|
| Davisiana   |              |              |            |           |     |

Revisions:



Original Work:

By: R. Kline Date: June 2, 2008 Subject: Checked By: J. Turner Date: June 13, 2008


Laboratory Testing
Grain Size Distribution

Rte. 1, Saugus, MA

Boring Number: B-17 Sample Number: S-4 Sample Depth: 8-10' Bottom 8"

Sample Description: Red/brown non-plastic SILT, little fine to medium Sand

| Sieve De | signation | Nominal Sie | eve Opening | Tare Weight | Sieve+Soil Wt.              | Soil Weight (g) | Percent |
|----------|-----------|-------------|-------------|-------------|-----------------------------|-----------------|---------|
| Standard | Alternate | mm          | inches      | (g)         | (g)                         | Ooli Weight (g) | Passing |
| 37.5 mm  | 1-1/2"    | 37.5        | 1.476"      | 501.3       | 501.3                       | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25          | 0.984"      | 502.5       | 502.5                       | 0.0             | 100.0   |
| 19.0 mm  | 3/4"      | 19          | 0.748"      | 595.8       | 595.8                       | 0.0             | 100.0   |
| 12.5 mm  | 1/2"      | 12.5        | 0.492"      | 607.6       | 607.6                       | 0.0             | 100.0   |
| 9.5      | 3/8"      | 9.5         | 0.374"      | 565.4       | 565.4                       | 0.0             | 100.0   |
| 4.75 mm  | No. 4     | 4.75        | 0.187"      | 527.9       | 529.5                       | 1.6             | 96.8    |
| 2.00 mm  | No. 10    | 2           | 0.078"      | 450.9       | 452.1                       | 1.2             | 94.4    |
| 1.18 mm  | No. 16    | 1.18        | 0.0464"     | 401.3       | 402.4                       | 1.1             | 92.2    |
| 600 µm   | No. 30    | 0.6         | 0.0236"     | 410.4       | 413.0                       | 2.6             | 87.0    |
| 300 µm   | No. 50    | 0.3         | .0118"      | 416.6       | 419.8                       | 3.2             | 80.6    |
| 250 µm   | No. 60    | 0.25        | 0.0098"     | 340.0       | 340.7                       | 0.7             | 79.2    |
| 150 µm   | No. 100   | 0.15        | 0.0059"     | 303.7       | 305.4                       | 1.7             | 75.8    |
| 75 µm    | No. 200   | 0.075       | 0.0029"     | 301.7       | 305.1                       | 3.4             | 69.0    |
| Pan      |           |             |             | 340.4       | 374.9                       | 34.5            | 0.0     |
|          |           |             |             | Sc          | <u>l</u><br>il Wt. Sum (g): | 50              |         |



Cc =

Copyright  $\hbox{@}$  2008 Stephens Associates Consulting Engineers LLC

 $D_{30} =$ 

 $D_{60} =$ 

N/A

N/A

mm

mm

Revisions:

By:\_\_\_\_\_\_ Date: \_\_\_\_\_\_ Date: \_\_\_\_\_



N/A

ML

USCS Classification =

026-08-007 **Project:** Number: Sheet 1 of MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA By: R. Kline Date: June 3, 2008 Subject: **Laboratory Testing** Checked By: J. Turner Date: June 13, 2008 **Hydrometer Analysis** 

Boring Number: B-17 Sample Number: S-4 Sample Depth: 8-10' Bottom 8"

Sample Description: Red/brown non-plastic SILT, little fine to medium Sand

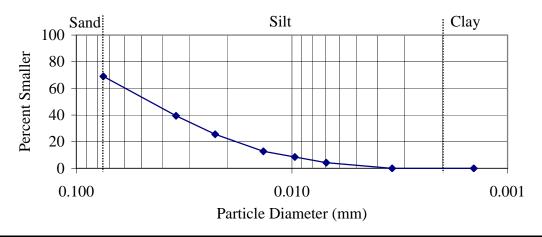
P = (R\*a/W)\*100Calculation for Percent of Soil in Suspension:

P = percent of soil in suspension at the level of the hydrometer, i.e. percent smaller diameter

R = Hydrometer reading with composite correction

a = correction factor for specific gravity of soil solids other than 2.65

 $D = K (L/T)^{0.5}$ Calculation for Particle Diameter: T = time, min. D = particle diameter, mm


L = distance from the suspension surface to the level at which the density of the suspension is measured, cm

K = constant depending on the temperature of the suspension and the specific gravity of the soil particles. Values of K for a range of temperatures and specific gravities are given in Table 3 of ASTM D-422

The value of K does not change for a series of readings constituting a test, while values of L and T do vary.

**Test Constants:** Hydrometer Type: 152H Reading of Hydrometer in Solution Only (g/l): Temperature of Solution (°C) 3.0 20.0 Specific Gravity of Soil Solids (Assumed): 2.65 1.00 a: Dry Soil Weight, W (g): K: 46.9 0.01365

| Time (min) | Reading (g/l) | Corrected Reading (g/l) | L     | Diameter (mm) | % in suspension |
|------------|---------------|-------------------------|-------|---------------|-----------------|
|            | Data from S   | ieve Analysis           |       | 0.0750        | 69              |
| 2          | 21.5          | 18.5                    | 12.77 | 0.0345        | 39.4            |
| 5          | 15            | 12                      | 13.84 | 0.0227        | 25.6            |
| 15         | 9             | 6                       | 14.82 | 0.0136        | 12.8            |
| 30         | 7             | 4                       | 15.15 | 0.0097        | 8.5             |
| 60         | 5             | 2                       | 15.48 | 0.0069        | 4.3             |
| 250        | 3             | 0                       | 15.81 | 0.0034        | 0.0             |
| 1440       | 2.5           | 0                       | 15.89 | 0.0014        | 0.0             |



Copyright © 2008 Stephens Associates Consulting Engineers LLC Revisions:

By: Date: Date: **Stephens Associates** 

**Consulting Engineers** 

**Project:** Number: 026-08-007 Sheet MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA R. Kline Permeability Estimate by Date: June 2, 2008 Subject: Checked By: J. Turner Date: June 13, 2008 Kozeny-Carman Formula

Boring Number: B-17 Sample Number: S-4 Sample Depth: 8-10' Bottom 8"

According to References 1 and 3, (Note: Reference List at end of data sheets) Permeability may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})(1/S^2)[e^3/(1+e)]$ 

 $\gamma$  = assumed unit weight of water in situ, lb/ft<sup>3</sup> = 62.4 = 9800 N/m<sup>3</sup>  $\mu$  = viscosity of water, Ns/m<sup>2</sup> = 0.00131 at 10 °C

 $C_{K-C}$  = Kozeny-Carman empirical coefficient; reported as 4.8±0.3, usually taken as 5, =

S = specific surface area per unit volume of particles =  $SF^*\Sigma((P_{No D}-P_{No d})/d)$ 

 $P_{No D}$  = percentage by weight smaller than size D

P<sub>No d</sub> = percentage by weight larger than the next size d

 $D_{eq}$  = equivalent grain size for particles smaller than  $D_{min}$  of gradation =  $D_{min}/3^{0.5}$ 

SF = Shape Factor for particle angularity = 7.5

SF = 6.6 for rounded particles; 7.5 for medium angularity; 8.4 for angular (after Loudon, presented in Ref. 1)

thus, Permeability, may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})\{1/\Sigma[(P_{N_0,D}-P_{N_0,d})/d]\}^2(1/SF^2)[e^3/(1+e)]$ , Table 1 below

Further, according Ref. 2, measured permeability typically varies from 1/3 to 3 times the estimated permeability. The references also note that this method may overpredict permeability when soil is gravel, and the results present an upper bound. The formula is not suitable for plastic soils.

|          | TABLE 1 - SUM OF (P <sub>No D</sub> - P <sub>No d</sub> )/d |               |         |                                          |  |
|----------|-------------------------------------------------------------|---------------|---------|------------------------------------------|--|
| Sieve De | signation                                                   | Nominal Sieve | Percent | (P <sub>NoD</sub> -P <sub>Nod</sub> )/ d |  |
| Standard | Alternate                                                   | Opening (cm)  | Passing | (1/cm)                                   |  |
| 9.5      | 3/8"                                                        | 0.950         | 100.0   | 0.0                                      |  |
| 4.75 mm  | No. 4                                                       | 0.475         | 96.8    | 6.7                                      |  |
| 2.00 mm  | No. 10                                                      | 0.200         | 94.4    | 12.0                                     |  |
| 1.18 mm  | No. 16                                                      | 0.118         | 92.2    | 18.6                                     |  |
| 600 µm   | No. 30                                                      | 0.060         | 87.0    | 86.7                                     |  |
| 300 µm   | No. 50                                                      | 0.030         | 80.6    | 213.3                                    |  |
| 250 µm   | No. 60                                                      | 0.025         | 79.2    | 56.0                                     |  |
| 150 µm   | No. 100                                                     | 0.015         | 75.8    | 226.7                                    |  |
| 75 µm    | No. 200                                                     | 0.008         | 69.0    | 906.7                                    |  |
|          |                                                             | 0.00345       | 39.4    | 8579.7                                   |  |
|          |                                                             | 0.00227       | 25.6    | 6079.3                                   |  |
|          |                                                             | 0.00136       | 12.8    | 9411.8                                   |  |
| Hydro    | meter                                                       | 0.00097       | 8.5     | 4433.0                                   |  |
|          |                                                             | 0.00069       | 4.3     | 6087.0                                   |  |
|          |                                                             |               | 0.0     | 12647.1                                  |  |
|          |                                                             |               | 0.0     | 0.0                                      |  |
|          |                                                             |               |         |                                          |  |
|          |                                                             |               |         |                                          |  |
|          |                                                             |               | Sum:    | 48764.5                                  |  |

Estimate Void Ratio (e) from Relative Density (Ref. 4)

 $D_r^2 = (N_1)60/C_P C_A C_{OCR}$ 

 $(N_1)60=$  5  $C_P=60+25logD_{50}=$  26.3  $D_{50}=$  0.05 mm  $C_A=1.2+0.05log(t/100)=$  1.19 t(yr)= 70  $C_{OCR}=OCR^{U.18}=$  1  $D_r=$  0.39909

 $e_{max} = 0.9$   $e = e_{max} - (D_r)(e_{max} - e_{min})$   $e_{min} = 0.3$  e = 0.66055

thus, range of permeability is estimated as:

| Estimated range of k (cm/s) |            |           |  |
|-----------------------------|------------|-----------|--|
| Probable                    |            | Probable  |  |
| measured                    | Calculated | measured  |  |
| lower bnd                   | Estimate   | upper bnd |  |
| 6.5E-05                     | 1.9E-04    | 5.8E-04   |  |

| Copyright © 2008 Stephens Associates Consulting Engineers LLC |
|---------------------------------------------------------------|
| Revisions:                                                    |



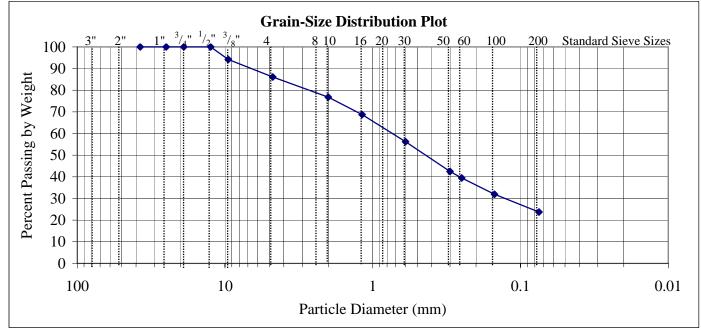
 Project:
 Number:
 026-08-007
 Sheet
 1
 of
 1

 Name:
 MWRA Contract No. 6905, Pipeline

Original Work:

Rte. 1, Saugus, MA

By: R. Kline Date: June 3, 2008 Subject: Checked By: J. Turner Date: June 13, 2008


**Laboratory Testing**Grain Size Distribution

Boring Number: B-18 Sample Number: S-1 Sample Depth: 1-3' Bottom 12"

Sample Description: Brown fine to medium SAND, little Gravel, some Silt

| Sieve De |           |       | 9       |       | Sieve+Soil Wt. | Soil Weight (g) | Percent<br>Passing |
|----------|-----------|-------|---------|-------|----------------|-----------------|--------------------|
| Standard | Alternate | mm    | inches  | (g)   | (g)            |                 | rassing            |
| 37.5 mm  | 1-1/2"    | 37.5  | 1.476"  | 501.3 | 501.3          | 0.0             | 100.0              |
| 25.0 mm  | 1"        | 25    | 0.984"  | 502.5 | 502.5          | 0.0             | 100.0              |
| 19.0 mm  | 3/4"      | 19    | 0.748"  | 595.8 | 595.8          | 0.0             | 100.0              |
| 12.5 mm  | 1/2"      | 12.5  | 0.492"  | 607.7 | 607.7          | 0.0             | 100.0              |
| 9.5      | 3/8"      | 9.5   | 0.374"  | 565.4 | 577.5          | 12.1            | 94.2               |
| 4.75 mm  | No. 4     | 4.75  | 0.187"  | 527.9 | 544.8          | 16.9            | 86.1               |
| 2.00 mm  | No. 10    | 2     | 0.078"  | 451.1 | 470.5          | 19.4            | 76.8               |
| 1.18 mm  | No. 16    | 1.18  | 0.0464" | 401.4 | 418.2          | 16.8            | 68.7               |
| 600 µm   | No. 30    | 0.6   | 0.0236" | 410.6 | 436.7          | 26.1            | 56.2               |
| 300 µm   | No. 50    | 0.3   | .0118"  | 416.9 | 445.6          | 28.7            | 42.4               |
| 250 µm   | No. 60    | 0.25  | 0.0098" | 340.2 | 346.4          | 6.2             | 39.5               |
| 150 µm   | No. 100   | 0.15  | 0.0059" | 303.8 | 319.5          | 15.7            | 31.9               |
| 75 µm    | No. 200   | 0.075 | 0.0029" | 301.9 | 319.0          | 17.1            | 23.7               |
| Pan      | _         |       | _       | 340.4 | 389.9          | 49.5            | 0.0                |
|          |           |       |         | •     | il Wt Sum (a): | 208.5           |                    |

Soil Wt. Sum (g): 208.5



 $D_{60} = 0.74$  mm USCS Classification = SM

Copyright  $\hbox{@}$  2008 Stephens Associates Consulting Engineers LLC

Revisions:

By: \_\_\_\_\_ Date: \_\_\_\_\_ Date: \_\_\_\_\_

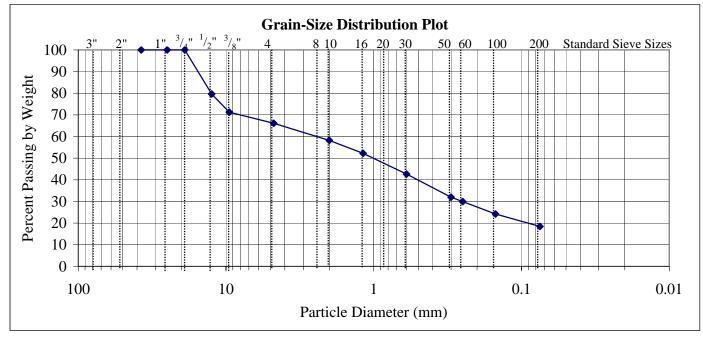


Original Work:

R. Kline June 3, 2008 By: Date: Subject: Checked By: J. Turner Date: June 13, 2008

**Laboratory Testing** 

Grain Size Distribution


Rte. 1, Saugus, MA

Boring Number: Sample Number: S-2 B-18 Sample Depth: 3-5'

Sample Description: Brown fine to medium SAND, some Gravel, little Silt

| Standard         Alternate         mm         inches         (g)         (g)         (g)         Passing           37.5 mm         1-1/2"         37.5         1.476"         501.3         501.3         0.0         100.0           25.0 mm         1"         25         0.984"         502.5         502.5         0.0         100.0           19.0 mm         3/4"         19         0.748"         595.8         595.8         0.0         100.0           12.5 mm         1/2"         12.5         0.492"         607.5         624.5         17.0         79.6           9.5         3/8"         9.5         0.374"         565.2         572.2         7.0         71.3           4.75 mm         No. 4         4.75         0.187"         527.8         532.1         4.3         66.1           2.00 mm         No. 10         2         0.078"         450.8         457.4         6.6         58.2           1.18 mm         No. 16         1.18         0.0464"         401.1         406.1         5.0         52.2           600 μm         No. 30         0.6         0.0236"         410.3         418.3         8.0         42.6           300 μm <th>Sieve De</th> <th>signation</th> <th>Nominal Sie</th> <th>eve Opening</th> <th>Tare Weight</th> <th>Sieve+Soil Wt.</th> <th>Soil Weight (g)</th> <th>Percent</th> | Sieve De | signation | Nominal Sie | eve Opening | Tare Weight | Sieve+Soil Wt. | Soil Weight (g) | Percent |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-------------|-------------|-------------|----------------|-----------------|---------|
| 25.0 mm         1"         25         0.984"         502.5         502.5         0.0         100.0           19.0 mm         3/4"         19         0.748"         595.8         595.8         0.0         100.0           12.5 mm         1/2"         12.5         0.492"         607.5         624.5         17.0         79.6           9.5         3/8"         9.5         0.374"         565.2         572.2         7.0         71.3           4.75 mm         No. 4         4.75         0.187"         527.8         532.1         4.3         66.1           2.00 mm         No. 10         2         0.078"         450.8         457.4         6.6         58.2           1.18 mm         No. 16         1.18         0.0464"         401.1         406.1         5.0         52.2           600 μm         No. 30         0.6         0.0236"         410.3         418.3         8.0         42.6           300 μm         No. 50         0.3         .0118"         416.5         425.4         8.9         32.0           250 μm         No. 60         0.25         0.0098"         339.9         341.6         1.7         29.9           150 μm                                                                                                                                                                           | Standard | Alternate | mm          | inches      | (g)         | (g)            | Con Worgin (g)  | Passing |
| 19.0 mm       3/4"       19       0.748"       595.8       595.8       0.0       100.0         12.5 mm       1/2"       12.5       0.492"       607.5       624.5       17.0       79.6         9.5       3/8"       9.5       0.374"       565.2       572.2       7.0       71.3         4.75 mm       No. 4       4.75       0.187"       527.8       532.1       4.3       66.1         2.00 mm       No. 10       2       0.078"       450.8       457.4       6.6       58.2         1.18 mm       No. 16       1.18       0.0464"       401.1       406.1       5.0       52.2         600 μm       No. 30       0.6       0.0236"       410.3       418.3       8.0       42.6         300 μm       No. 50       0.3       .0118"       416.5       425.4       8.9       32.0         250 μm       No. 60       0.25       0.0098"       339.9       341.6       1.7       29.9         150 μm       No. 100       0.15       0.0059"       303.6       308.4       4.8       24.2         75 μm       No. 200       0.075       0.0029"       301.6       306.4       4.8       18.4                                                                                                                                                                                                                                                 | 37.5 mm  | 1-1/2"    | 37.5        | 1.476"      | 501.3       | 501.3          | 0.0             | 100.0   |
| 12.5 mm         1/2"         12.5         0.492"         607.5         624.5         17.0         79.6           9.5         3/8"         9.5         0.374"         565.2         572.2         7.0         71.3           4.75 mm         No. 4         4.75         0.187"         527.8         532.1         4.3         66.1           2.00 mm         No. 10         2         0.078"         450.8         457.4         6.6         58.2           1.18 mm         No. 16         1.18         0.0464"         401.1         406.1         5.0         52.2           600 μm         No. 30         0.6         0.0236"         410.3         418.3         8.0         42.6           300 μm         No. 50         0.3         .0118"         416.5         425.4         8.9         32.0           250 μm         No. 60         0.25         0.0098"         339.9         341.6         1.7         29.9           150 μm         No. 100         0.15         0.0059"         303.6         308.4         4.8         24.2           75 μm         No. 200         0.075         0.0029"         301.6         306.4         4.8         18.4                                                                                                                                                                                  | 25.0 mm  | 1"        | 25          | 0.984"      | 502.5       | 502.5          | 0.0             | 100.0   |
| 9.5     3/8"     9.5     0.374"     565.2     572.2     7.0     71.3       4.75 mm     No. 4     4.75     0.187"     527.8     532.1     4.3     66.1       2.00 mm     No. 10     2     0.078"     450.8     457.4     6.6     58.2       1.18 mm     No. 16     1.18     0.0464"     401.1     406.1     5.0     52.2       600 μm     No. 30     0.6     0.0236"     410.3     418.3     8.0     42.6       300 μm     No. 50     0.3     .0118"     416.5     425.4     8.9     32.0       250 μm     No. 60     0.25     0.0098"     339.9     341.6     1.7     29.9       150 μm     No. 100     0.15     0.0059"     303.6     308.4     4.8     24.2       75 μm     No. 200     0.075     0.0029"     301.6     306.4     4.8     18.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.0 mm  | 3/4"      | 19          | 0.748"      | 595.8       | 595.8          | 0.0             | 100.0   |
| 4.75 mm         No. 4         4.75         0.187"         527.8         532.1         4.3         66.1           2.00 mm         No. 10         2         0.078"         450.8         457.4         6.6         58.2           1.18 mm         No. 16         1.18         0.0464"         401.1         406.1         5.0         52.2           600 μm         No. 30         0.6         0.0236"         410.3         418.3         8.0         42.6           300 μm         No. 50         0.3         .0118"         416.5         425.4         8.9         32.0           250 μm         No. 60         0.25         0.0098"         339.9         341.6         1.7         29.9           150 μm         No. 100         0.15         0.0059"         303.6         308.4         4.8         24.2           75 μm         No. 200         0.075         0.0029"         301.6         306.4         4.8         18.4                                                                                                                                                                                                                                                                                                                                                                                                              | 12.5 mm  | 1/2"      | 12.5        | 0.492"      | 607.5       | 624.5          | 17.0            | 79.6    |
| 2.00 mm         No. 10         2         0.078"         450.8         457.4         6.6         58.2           1.18 mm         No. 16         1.18         0.0464"         401.1         406.1         5.0         52.2           600 μm         No. 30         0.6         0.0236"         410.3         418.3         8.0         42.6           300 μm         No. 50         0.3         .0118"         416.5         425.4         8.9         32.0           250 μm         No. 60         0.25         0.0098"         339.9         341.6         1.7         29.9           150 μm         No. 100         0.15         0.0059"         303.6         308.4         4.8         24.2           75 μm         No. 200         0.075         0.0029"         301.6         306.4         4.8         18.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.5      | 3/8"      | 9.5         | 0.374"      | 565.2       | 572.2          | 7.0             | 71.3    |
| 1.18 mm         No. 16         1.18         0.0464"         401.1         406.1         5.0         52.2           600 μm         No. 30         0.6         0.0236"         410.3         418.3         8.0         42.6           300 μm         No. 50         0.3         .0118"         416.5         425.4         8.9         32.0           250 μm         No. 60         0.25         0.0098"         339.9         341.6         1.7         29.9           150 μm         No. 100         0.15         0.0059"         303.6         308.4         4.8         24.2           75 μm         No. 200         0.075         0.0029"         301.6         306.4         4.8         18.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.75 mm  | No. 4     | 4.75        | 0.187"      | 527.8       | 532.1          | 4.3             | 66.1    |
| 600 μm         No. 30         0.6         0.0236"         410.3         418.3         8.0         42.6           300 μm         No. 50         0.3         .0118"         416.5         425.4         8.9         32.0           250 μm         No. 60         0.25         0.0098"         339.9         341.6         1.7         29.9           150 μm         No. 100         0.15         0.0059"         303.6         308.4         4.8         24.2           75 μm         No. 200         0.075         0.0029"         301.6         306.4         4.8         18.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.00 mm  | No. 10    | 2           | 0.078"      | 450.8       | 457.4          | 6.6             | 58.2    |
| 300 μm     No. 50     0.3     .0118"     416.5     425.4     8.9     32.0       250 μm     No. 60     0.25     0.0098"     339.9     341.6     1.7     29.9       150 μm     No. 100     0.15     0.0059"     303.6     308.4     4.8     24.2       75 μm     No. 200     0.075     0.0029"     301.6     306.4     4.8     18.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.18 mm  | No. 16    | 1.18        | 0.0464"     | 401.1       | 406.1          | 5.0             | 52.2    |
| 250 μm     No. 60     0.25     0.0098"     339.9     341.6     1.7     29.9       150 μm     No. 100     0.15     0.0059"     303.6     308.4     4.8     24.2       75 μm     No. 200     0.075     0.0029"     301.6     306.4     4.8     18.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 600 µm   | No. 30    | 0.6         | 0.0236"     | 410.3       | 418.3          | 8.0             | 42.6    |
| 150 μm No. 100 0.15 0.0059" 303.6 308.4 4.8 24.2 75 μm No. 200 0.075 0.0029" 301.6 306.4 4.8 18.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 300 µm   | No. 50    | 0.3         | .0118"      | 416.5       | 425.4          | 8.9             | 32.0    |
| 75 µm No. 200 0.075 0.0029" 301.6 306.4 4.8 18.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 250 µm   | No. 60    | 0.25        | 0.0098"     | 339.9       | 341.6          | 1.7             | 29.9    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150 µm   | No. 100   | 0.15        | 0.0059"     | 303.6       | 308.4          | 4.8             | 24.2    |
| Pan 340.3 355.7 15.4 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 75 µm    | No. 200   | 0.075       | 0.0029"     | 301.6       | 306.4          | 4.8             | 18.4    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pan      |           |             |             | 340.3       | 355.7          | 15.4            | 0.0     |
| Soil Wt Sum (a): 83.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |           |             |             |             |                |                 |         |

Soil Wt. Sum (g): 83.5



 $D_{10} =$ N/A mm Cu = N/A  $D_{30} =$ 0.25 mm Cc = N/A

 $D_{60} =$ 2.5 USCS Classification = mm SM

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:

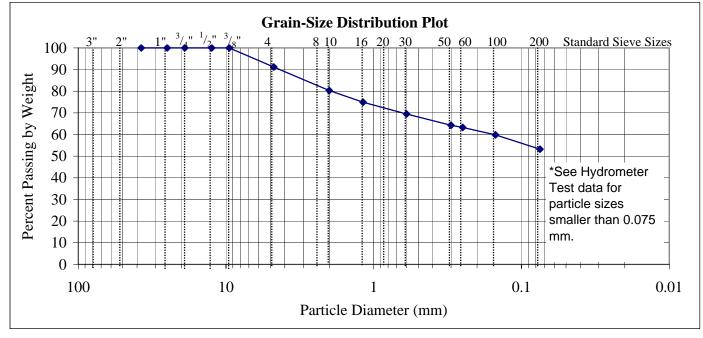


Original Work:

R. Kline June 3, 2008 By: Date: Subject: Checked By: J. Turner Date: June 13, 2008

**Laboratory Testing** 

Grain Size Distribution


Rte. 1, Saugus, MA

Boring Number: Sample Number: S-4 Sample Depth: 7-9' B-18

Sample Description: Light brown non-plastic SILT and fine to coarse SAND

| Sieve De | signation | Nominal Sieve Opening |         | Tare Weight | Sieve+Soil Wt.   | Soil Weight (g) | Percent |
|----------|-----------|-----------------------|---------|-------------|------------------|-----------------|---------|
| Standard | Alternate | mm                    | inches  | (g)         | (g)              | Con Woight (g)  | Passing |
| 37.5 mm  | 1-1/2"    | 37.5                  | 1.476"  | 501.3       | 501.3            | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25                    | 0.984"  | 502.5       | 502.5            | 0.0             | 100.0   |
| 19.0 mm  | 3/4"      | 19                    | 0.748"  | 595.8       | 595.8            | 0.0             | 100.0   |
| 12.5 mm  | 1/2"      | 12.5                  | 0.492"  | 607.6       | 607.6            | 0.0             | 100.0   |
| 9.5      | 3/8"      | 9.5                   | 0.374"  | 565.2       | 565.2            | 0.0             | 100.0   |
| 4.75 mm  | No. 4     | 4.75                  | 0.187"  | 527.7       | 532.1            | 4.4             | 91.2    |
| 2.00 mm  | No. 10    | 2                     | 0.078"  | 450.7       | 456.1            | 5.4             | 80.3    |
| 1.18 mm  | No. 16    | 1.18                  | 0.0464" | 401.2       | 403.9            | 2.7             | 74.9    |
| 600 µm   | No. 30    | 0.6                   | 0.0236" | 410.3       | 413.0            | 2.7             | 69.5    |
| 300 µm   | No. 50    | 0.3                   | .0118"  | 416.7       | 419.3            | 2.6             | 64.3    |
| 250 µm   | No. 60    | 0.25                  | 0.0098" | 339.9       | 340.4            | 0.5             | 63.3    |
| 150 µm   | No. 100   | 0.15                  | 0.0059" | 303.7       | 305.4            | 1.7             | 59.8    |
| 75 µm    | No. 200   | 0.075                 | 0.0029" | 301.6       | 304.9            | 3.3             | 53.2    |
| Pan      |           |                       |         | 340.4       | 366.9            | 26.5            | 0.0     |
|          |           |                       |         | 9,          | oil Wt. Sum (a): | 49.8            |         |

Soil Wt. Sum (g):



 $D_{10} =$ N/A mm Cu = N/A  $D_{30} =$ N/A mm Cc = N/A

 $D_{60} =$ USCS Classification = 0.16 mm ML

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:



|         |                          | Project   | : Number:     | 026-08-007            | Sheet              | 1    | of | 1 |  |
|---------|--------------------------|-----------|---------------|-----------------------|--------------------|------|----|---|--|
|         |                          |           | Name:         | MWRA Contract No. 690 | 5, Pipelii         | ne   |    |   |  |
| Origina | al Work:                 |           |               |                       | Rte. 1, Saugus, l  | MA   |    |   |  |
| Ву:     | R. Kline Date: June 5, 2 |           | June 5, 2008  | Subject:              | Laboratory Testing |      |    |   |  |
| Checke  | ed By: J. Turr           | ner Date: | June 13, 2008 | <u> </u>              | Hydrometer Anal    | ysis |    |   |  |

Boring Number: B-18 Sample Number: S-4 Sample Depth: 7-9'

Sample Description: Light brown non-plastic SILT and fine to coarse SAND

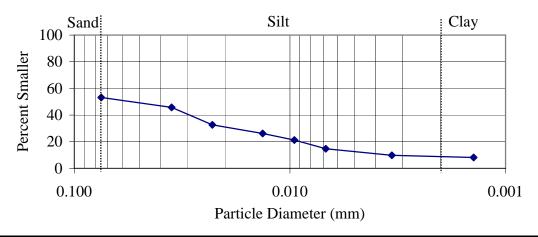
Calculation for Percent of Soil in Suspension: P = (R\*a/W)\*100

P = percent of soil in suspension at the level of the hydrometer, i.e. percent smaller diameter

R = Hydrometer reading with composite correction

a = correction factor for specific gravity of soil solids other than 2.65

Calculation for Particle Diameter:  $D = K (L/T)^{0.5}$ D = particle diameter, mm T = time, min.


L = distance from the suspension surface to the level at which the density of the suspension is measured, cm

K = constant depending on the temperature of the suspension and the specific gravity of the soil particles. Values of K for a range of temperatures and specific gravities are given in Table 3 of ASTM D-422

The value of K does not change for a series of readings constituting a test, while values of L and T do vary.

Test Constants: Hydrometer Type: 152H
Reading of Hydrometer in Solution Only (g/l): 3.0 Temperature of Solution (°C) 20.3
Specific Gravity of Soil Solids (Assumed): 2.65 a: 1.00
Dry Soil Weight, W (g): 30.6 K: 0.013603

| Time (min) | Reading (g/l) | Corrected Reading (g/l) | L     | Diameter (mm) | % in suspension |
|------------|---------------|-------------------------|-------|---------------|-----------------|
|            | Data from S   | 0.0750                  | 53.2  |               |                 |
| 2          | 17            | 14                      | 13.51 | 0.0354        | 45.8            |
| 5          | 13            | 10                      | 14.17 | 0.0229        | 32.7            |
| 15         | 11            | 8                       | 14.50 | 0.0134        | 26.1            |
| 30         | 9.5           | 6.5                     | 14.74 | 0.0095        | 21.2            |
| 60         | 7.5           | 4.5                     | 15.07 | 0.0068        | 14.7            |
| 250        | 6             | 3                       | 15.32 | 0.0034        | 9.8             |
| 1440       | 5.5           | 2.5                     | 15.40 | 0.0014        | 8.2             |



Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:

By:\_\_\_\_\_ Date: \_\_\_\_\_

Date:

Stephens Associates
Consulting Engineers
Insightful, Costsaving Solutions for Buildings and Geotechnical

Project: Number: 026-08-007 Sheet MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA R. Kline Permeability Estimate by Date: June 3, 2008 Subject: Checked By: J. Turner Date: June 13, 2008 Kozeny-Carman Formula

Boring Number: B-18 Sample Number: S-4 Sample Depth: 7-9'

According to References 1 and 3, (Note: Reference List at end of data sheets) Permeability may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})(1/S^2)[e^3/(1+e)]$ 

 $\gamma$  = assumed unit weight of water in situ, lb/ft<sup>3</sup> = 62.4 = 9800 N/m<sup>3</sup>  $\mu$  = viscosity of water, Ns/m<sup>2</sup> = 0.00131 at 10 °C

 $C_{K-C}$  = Kozeny-Carman empirical coefficient; reported as 4.8±0.3, usually taken as 5, =

S = specific surface area per unit volume of particles =  $SF^*\Sigma((P_{No D}-P_{No d})/d)$ 

 $P_{No D}$  = percentage by weight smaller than size D

P<sub>No d</sub> = percentage by weight larger than the next size d

 $D_{eq}$  = equivalent grain size for particles smaller than  $D_{min}$  of gradation =  $D_{min}/3^{0.5}$ 

SF = Shape Factor for particle angularity = 7.5

SF = 6.6 for rounded particles; 7.5 for medium angularity; 8.4 for angular (after Loudon, presented in Ref. 1)

thus, Permeability, may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})\{1/\Sigma[(P_{N_0,D}-P_{N_0,d})/d]\}^2(1/SF^2)[e^3/(1+e)]$ , Table 1 below

Further, according Ref. 2, measured permeability typically varies from 1/3 to 3 times the estimated permeability. The references also note that this method may overpredict permeability when soil is gravel, and the results present an upper bound. The formula is not suitable for plastic soils.

| TABLE 1 - SUM OF (P <sub>No D</sub> - P <sub>No d</sub> )/d |           |               |         |                                          |  |  |  |  |  |  |
|-------------------------------------------------------------|-----------|---------------|---------|------------------------------------------|--|--|--|--|--|--|
| Sieve De                                                    | signation | Nominal Sieve | Percent | (P <sub>NoD</sub> -P <sub>Nod</sub> )/ d |  |  |  |  |  |  |
| Standard                                                    | Alternate | Opening (cm)  | Passing | (1/cm)                                   |  |  |  |  |  |  |
| 9.5                                                         | 3/8"      | 0.950         | 100.0   | 0.0                                      |  |  |  |  |  |  |
| 4.75 mm                                                     | No. 4     | 0.475         | 91.2    | 18.6                                     |  |  |  |  |  |  |
| 2.00 mm                                                     | No. 10    | 0.200         | 80.3    | 54.2                                     |  |  |  |  |  |  |
| 1.18 mm                                                     | No. 16    | 0.118         | 74.9    | 45.9                                     |  |  |  |  |  |  |
| 600 µm                                                      | No. 30    | 0.060         | 69.5    | 90.4                                     |  |  |  |  |  |  |
| 300 µm                                                      | No. 50    | 0.030         | 64.3    | 174.0                                    |  |  |  |  |  |  |
| 250 µm                                                      | No. 60    | 0.025         | 63.3    | 40.2                                     |  |  |  |  |  |  |
| 150 µm                                                      | No. 100   | 0.015         | 59.8    | 227.6                                    |  |  |  |  |  |  |
| 75 µm                                                       | No. 200   | 0.008         | 53.2    | 883.5                                    |  |  |  |  |  |  |
|                                                             |           | 0.00354       | 45.8    | 2094.0                                   |  |  |  |  |  |  |
|                                                             |           | 0.00229       | 32.7    | 5720.5                                   |  |  |  |  |  |  |
|                                                             |           | 0.00134       | 26.1    | 4925.4                                   |  |  |  |  |  |  |
| Hydro                                                       | meter     | 0.00095       | 21.2    | 5157.9                                   |  |  |  |  |  |  |
|                                                             |           | 0.00068       | 14.7    | 9558.8                                   |  |  |  |  |  |  |
|                                                             |           | 0.00034       | 9.8     | 14411.8                                  |  |  |  |  |  |  |
|                                                             |           | 0.00014       | 8.2     | 11428.6                                  |  |  |  |  |  |  |
| $D_{eq}$                                                    |           | 0.00008       | 0.0     | 101448.7                                 |  |  |  |  |  |  |
|                                                             |           |               |         |                                          |  |  |  |  |  |  |
|                                                             |           |               | Sum:    | 156280.1                                 |  |  |  |  |  |  |

Estimate Void Ratio (e) from Relative Density (Ref. 4)

 $D_r^2 = (N_1)60/C_P C_A C_{OCR}$ 

 $\begin{array}{llll} (N_1)60=&12\\ C_P=60+25logD_{50}=&28\\ D_{50}=&0.05\text{ mm}\\ C_A=1.2+0.05log(t/100)=&1.19\\ t(yr)=&70\\ C_{OCR}=OCR^{0.18}=&1\\ D_r=&0.59951 \end{array}$ 

 $e_{max} = 1.8$   $e = e_{max} - (D_r)(e_{max} - e_{min})$   $e_{min} = 0.25$  e = 0.87076

thus, range of permeability is estimated as:

| Estimated range of k (cm/s) |            |           |  |  |  |  |
|-----------------------------|------------|-----------|--|--|--|--|
| Probable                    |            | Probable  |  |  |  |  |
| measured                    | Calculated | measured  |  |  |  |  |
| lower bnd                   | Estimate   | upper bnd |  |  |  |  |
| 1.3E-05                     | 3.8E-05    | 1.2E-04   |  |  |  |  |

| Copyright © 2008 Stephens Associates Consulting Engineers LLC |
|---------------------------------------------------------------|
|---------------------------------------------------------------|

Revisions:

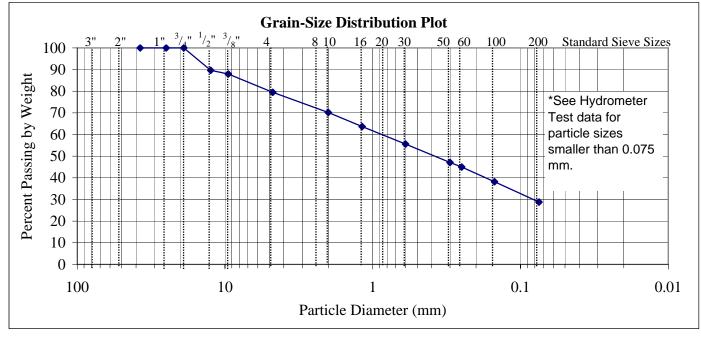


 Project:
 Number:
 026-08-007
 Sheet
 1
 of
 1

 Name:
 MWRA Contract No. 6905, Pipeline

Original Work:

By: R. Kline Date: June 4, 2008 Subject: Checked By: J. Turner Date: June 13, 2008


Laboratory Testing
Grain Size Distribution

Rte. 1, Saugus, MA

Boring Number: B-18 Sample Number: S-5 Sample Depth: 9-11' Sample Description: Light brown fine to medium SAND, some Gravel, some non-plastic Silt

| Sieve De |           |       | eve Opening | Tare Weight | Sieve+Soil Wt.  | Soil Weight (g) | Percent<br>Passing |
|----------|-----------|-------|-------------|-------------|-----------------|-----------------|--------------------|
| Standard | Alternate | mm    | inches      | (g)         | (g)             |                 | Passing            |
| 37.5 mm  | 1-1/2"    | 37.5  | 1.476"      | 501.3       | 501.3           | 0.0             | 100.0              |
| 25.0 mm  | 1"        | 25    | 0.984"      | 502.5       | 502.5           | 0.0             | 100.0              |
| 19.0 mm  | 3/4"      | 19    | 0.748"      | 595.8       | 595.8           | 0.0             | 100.0              |
| 12.5 mm  | 1/2"      | 12.5  | 0.492"      | 607.8       | 626.0           | 18.2            | 89.7               |
| 9.5      | 3/8"      | 9.5   | 0.374"      | 565.4       | 568.4           | 3.0             | 88.0               |
| 4.75 mm  | No. 4     | 4.75  | 0.187"      | 527.9       | 542.8           | 14.9            | 79.5               |
| 2.00 mm  | No. 10    | 2     | 0.078"      | 450.9       | 467.3           | 16.4            | 70.2               |
| 1.18 mm  | No. 16    | 1.18  | 0.0464"     | 401.3       | 412.8           | 11.5            | 63.7               |
| 600 µm   | No. 30    | 0.6   | 0.0236"     | 410.5       | 424.7           | 14.2            | 55.6               |
| 300 µm   | No. 50    | 0.3   | .0118"      | 416.8       | 431.8           | 15.0            | 47.1               |
| 250 µm   | No. 60    | 0.25  | 0.0098"     | 340.2       | 343.9           | 3.7             | 45.0               |
| 150 µm   | No. 100   | 0.15  | 0.0059"     | 303.8       | 315.8           | 12.0            | 38.2               |
| 75 µm    | No. 200   | 0.075 | 0.0029"     | 301.8       | 318.3           | 16.5            | 28.8               |
| Pan      |           |       |             | 340.6       | 391.3           | 50.7            | 0.0                |
|          |           |       |             |             | oil Wt Sum (a): | 176.1           |                    |

Soil Wt. Sum (g): 176.1



 $D_{60} = 0.86$  mm USCS Classification = SM

Copyright  $\hbox{@}$  2008 Stephens Associates Consulting Engineers LLC

Revisions:

By: \_\_\_\_\_ Date: \_\_\_\_\_ Date: \_\_\_\_\_



|                |                | Project   | : Number:     | 026-08-007          | Sheet 1               | of      | 1 |  |
|----------------|----------------|-----------|---------------|---------------------|-----------------------|---------|---|--|
|                |                |           | Name:         | MWRA Contract No. 6 | 905, Pipeline         |         |   |  |
| Original Work: |                |           |               |                     | Rte. 1, Saugus        | s, MA   |   |  |
| Ву:            | R. Kline       | Date:     | June 5, 2008  | Subject:            | t: Laboratory Testing |         |   |  |
| Checke         | ed By: J. Turr | ner Date: | June 13, 2008 |                     | Hydrometer An         | nalysis |   |  |

Boring Number: B-18 Sample Number: S-5 Sample Depth: 9-11' Sample Description: Light brown fine to medium SAND, some Gravel, some non-plastic Silt

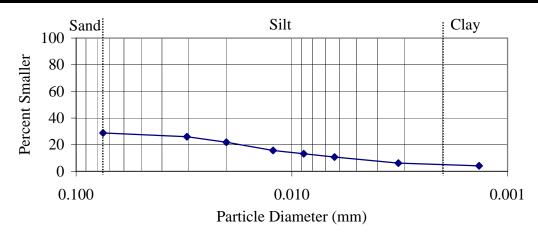
P = (R\*a/W)\*100Calculation for Percent of Soil in Suspension:

P = percent of soil in suspension at the level of the hydrometer, i.e. percent smaller diameter

R = Hydrometer reading with composite correction

a = correction factor for specific gravity of soil solids other than 2.65

 $D = K (L/T)^{0.5}$ Calculation for Particle Diameter: T = time, min. D = particle diameter, mm


L = distance from the suspension surface to the level at which the density of the suspension is measured, cm

K = constant depending on the temperature of the suspension and the specific gravity of the soil particles. Values of K for a range of temperatures and specific gravities are given in Table 3 of ASTM D-422

The value of K does not change for a series of readings constituting a test, while values of L and T do vary.

Test Constants: Hydrometer Type: 152H Temperature of Solution (°C) Reading of Hydrometer in Solution Only (g/l): 3.0 22.2 Specific Gravity of Soil Solids (Assumed): 2.65 1.00 a: Dry Soil Weight, W (g): K: 0.013287 121.3

| Time (min) | Reading (g/l) | Corrected Reading (g/l) | L     | Diameter (mm) | % in suspension |
|------------|---------------|-------------------------|-------|---------------|-----------------|
|            | Data from S   | 0.0750                  | 28.8  |               |                 |
| 2          | 34.5          | 31.5                    | 10.64 | 0.0306        | 26.0            |
| 5          | 29.5          | 26.5                    | 11.46 | 0.0201        | 21.8            |
| 15         | 22            | 19                      | 12.69 | 0.0122        | 15.7            |
| 30         | 19            | 16                      | 13.18 | 0.0088        | 13.2            |
| 60         | 16            | 13                      | 13.68 | 0.0063        | 10.7            |
| 250        | 10.5          | 7.5                     | 14.58 | 0.0032        | 6.2             |
| 1440       | 8             | 5                       | 14.99 | 0.0014        | 4.1             |



| Copyright © 2008 Stephens Associates Consulting Engineers LL | С |
|--------------------------------------------------------------|---|
| Revisions:                                                   |   |

Date: Date:



Project: Number: 026-08-007 Sheet MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA R. Kline Permeability Estimate by Date: June 4, 2008 Subject: Checked By: J. Turner Date: June 13, 2008 Kozeny-Carman Formula

Boring Number: **B-18** Sample Number: **S-5** Sample Depth: **9-11'** 

According to References 1 and 3, (Note: Reference List at end of data sheets) Permeability may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})(1/S^2)[e^3/(1+e)]$ 

 $\gamma$  = assumed unit weight of water in situ, lb/ft<sup>3</sup> = 62.4 = 9800 N/m<sup>3</sup>  $\mu$  = viscosity of water, Ns/m<sup>2</sup> = 0.00131 at 10 °C

 $C_{K-C}$  = Kozeny-Carman empirical coefficient; reported as 4.8±0.3, usually taken as 5, =

S = specific surface area per unit volume of particles =  $SF^*\Sigma((P_{No D}-P_{No d})/d)$ 

 $P_{No D}$  = percentage by weight smaller than size D

 $P_{Nod}$  = percentage by weight larger than the next size d

 $D_{eq}$  = equivalent grain size for particles smaller than  $D_{min}$  of gradation =  $D_{min}/3^{0.5}$ 

SF = Shape Factor for particle angularity = 7.5

SF = 6.6 for rounded particles; 7.5 for medium angularity; 8.4 for angular (after Loudon, presented in Ref. 1)

thus, Permeability, may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})\{1/\Sigma[(P_{N_0} - P_{N_0} d)/d]\}^2(1/SF^2)[e^3/(1+e)]$ , Table 1 below

Further, according Ref. 2, measured permeability typically varies from 1/3 to 3 times the estimated permeability. The references also note that this method may overpredict permeability when soil is gravel, and the results present an upper bound. The formula is not suitable for plastic soils.

| present an upper bound. The formula is not suitable for plastic soils. |           |                 |                                           |                                          |  |  |
|------------------------------------------------------------------------|-----------|-----------------|-------------------------------------------|------------------------------------------|--|--|
|                                                                        | TABLI     | E 1 - SUM OF (P | P <sub>No D</sub> - P <sub>No d</sub> )/d |                                          |  |  |
| Sieve De                                                               | signation | Nominal Sieve   | Percent                                   | (P <sub>NoD</sub> -P <sub>Nod</sub> )/ d |  |  |
| Standard                                                               | Alternate | Opening (cm)    | Passing                                   | (1/cm)                                   |  |  |
| 19.0 mm                                                                | 3/4"      | 1.900 100.0     |                                           | 0.0                                      |  |  |
| 12.5 mm                                                                | 1/2"      | 1.250           | 89.7                                      | 8.3                                      |  |  |
| 9.5                                                                    | 3/8"      | 0.950           | 88.0                                      | 1.8                                      |  |  |
| 4.75 mm                                                                | No. 4     | 0.475           | 79.5                                      | 17.8                                     |  |  |
| 2.00 mm                                                                | No. 10    | 0.200           | 70.2                                      | 46.6                                     |  |  |
| 1.18 mm                                                                | No. 16    | 0.118           | 63.7                                      | 55.3                                     |  |  |
| 600 µm                                                                 | No. 30    | 0.060           | 55.6                                      | 134.4                                    |  |  |
| 300 µm                                                                 | No. 50    | 0.030           | 47.1                                      | 283.9                                    |  |  |
| 250 µm                                                                 | No. 60    | 0.025           | 45.0                                      | 84.0                                     |  |  |
| 150 µm                                                                 | No. 100   | 0.015           | 38.2                                      | 454.3                                    |  |  |
| 75 µm                                                                  | No. 200   | 0.008           | 28.8                                      | 1249.3                                   |  |  |
|                                                                        |           | 0.00306         | 26.0                                      | 26.0 911.9                               |  |  |
|                                                                        |           | 0.00201         | 21.8                                      | 2089.6                                   |  |  |
|                                                                        |           | 0.00122         | 15.7                                      | 5000.0                                   |  |  |
| Hydro                                                                  | meter     | 0.00088         | 13.2                                      | 2840.9                                   |  |  |
|                                                                        |           | 0.00063         | 10.7                                      | 3968.3                                   |  |  |
|                                                                        |           |                 | 6.2                                       | 14062.5                                  |  |  |
|                                                                        |           | 0.00014         | 4.1                                       | 15000.0                                  |  |  |
| D <sub>eq</sub>                                                        |           | 0.00008         | 0.0                                       | 50724.3                                  |  |  |
| <u> </u>                                                               |           |                 | Sum:                                      | 96933.2                                  |  |  |

Estimate Void Ratio (e) from Relative Density (Ref. 4)

 $D_r^2 = (N_1)60/C_P C_A C_{OCR}$ 

 $(N_1)60=$  77  $C_P=60+25logD_{50}=$  49.4  $D_{50}=$  0.38 mm  $C_A=1.2+0.05log(t/100)=$  1.19 t(yr)= 70  $C_{OCR}=OCR^{U.18}=$  1  $D_r=$  1.14397 >1, use 1.0

 $e_{max} = 0.85$   $e = e_{max} - (D_r)(e_{max} - e_{min})$   $e_{min} = 0.14$  e = 0.14

thus, range of permeability is estimated as:

| Estimated range of k (cm/s) |            |           |  |  |  |
|-----------------------------|------------|-----------|--|--|--|
| Probable Probable           |            |           |  |  |  |
| measured                    | Calculated | measured  |  |  |  |
| lower bnd                   | Estimate   | upper bnd |  |  |  |
| 2.3E-07                     | 6.8E-07    | 2.0E-06   |  |  |  |

| Copyright © 2008 Stephens | Associates Consulting Engineers LLC |
|---------------------------|-------------------------------------|
| Revisions:                |                                     |

By: Date:

\_\_Date: \_\_\_\_\_ Date:



 Project:
 Number:
 026-08-007
 Sheet
 1
 of
 1

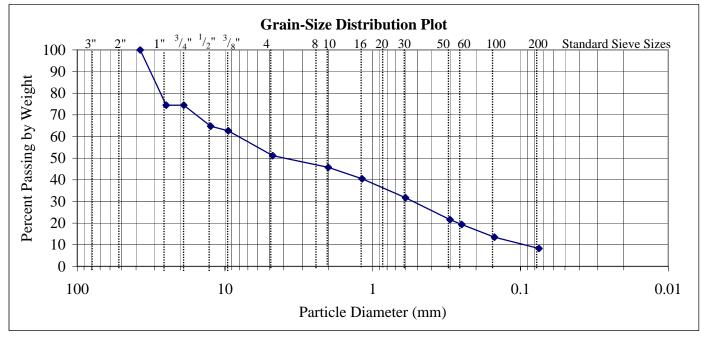
 Name:
 MWRA Contract No. 6905, Pipeline

Original Work:

By: R. Kline Date: June 4, 2008 Subject: Checked By: J. Turner Date: June 13, 2008

Rte. 1, Saugus, MA

Laboratory Testing


Grain Size Distribution

Boring Number: B-19 Sample Number: S-2 Sample Depth: 3-5'

Sample Description: Light brown fine to medium SAND and GRAVEL, trace silt

| Sieve De | signation | Nominal Sie | eve Opening | Tare Weight | Sieve+Soil Wt. | Soil Weight (g) | Percent |
|----------|-----------|-------------|-------------|-------------|----------------|-----------------|---------|
| Standard | Alternate | mm          | inches      | (g)         | (g)            | Con Worght (g)  | Passing |
| 37.5 mm  | 1-1/2"    | 37.5        | 1.476"      | 501.4       | 501.4          | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25          | 0.984"      | 502.5       | 529            | 26.5            | 74.5    |
| 19.0 mm  | 3/4"      | 19          | 0.748"      | 595.6       | 595.6          | 0.0             | 74.5    |
| 12.5 mm  | 1/2"      | 12.5        | 0.492"      | 607.6       | 617.7          | 10.1            | 64.7    |
| 9.5      | 3/8"      | 9.5         | 0.374"      | 565.2       | 567.4          | 2.2             | 62.6    |
| 4.75 mm  | No. 4     | 4.75        | 0.187"      | 527.8       | 539.7          | 11.9            | 51.2    |
| 2.00 mm  | No. 10    | 2           | 0.078"      | 450.9       | 456.5          | 5.6             | 45.8    |
| 1.18 mm  | No. 16    | 1.18        | 0.0464"     | 401.2       | 406.7          | 5.5             | 40.5    |
| 600 µm   | No. 30    | 0.6         | 0.0236"     | 410.4       | 419.5          | 9.1             | 31.7    |
| 300 µm   | No. 50    | 0.3         | .0118"      | 416.6       | 427.1          | 10.5            | 21.6    |
| 250 µm   | No. 60    | 0.25        | 0.0098"     | 339.9       | 342.2          | 2.3             | 19.4    |
| 150 µm   | No. 100   | 0.15        | 0.0059"     | 303.7       | 309.8          | 6.1             | 13.5    |
| 75 µm    | No. 200   | 0.075       | 0.0029"     | 301.7       | 307.1          | 5.4             | 8.3     |
| Pan      |           |             |             | 340.4       | 349.0          | 8.6             | 0.0     |
|          |           |             |             |             |                |                 |         |

Soil Wt. Sum (g): 103.8



 $D_{10} = 0.09$  mm Cu = 88.9  $D_{30} = 0.525$  mm Cc = 0.4

 $D_{60} = 8$  mm USCS Classification = SP-SM

Copyright  $\ @$  2008 Stephens Associates Consulting Engineers LLC

Revisions:



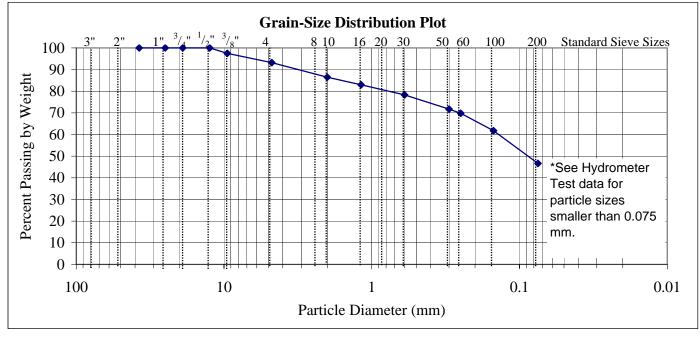
 Project:
 Number:
 026-08-007
 Sheet
 1
 of
 1

 Name:
 MWRA Contract No. 6905, Pipeline

Original Work:

By: R. Kline Date: June 4, 2008 Subject: Checked By: J. Turner Date: June 13, 2008

Laboratory Testing
Grain Size Distribution


Rte. 1, Saugus, MA

Boring Number: B-20 Sample Number: S-4 Sample Depth: 7-9'

Sample Description: Gray-brown fine to medium SAND and non-plastic SILT

|          | signation |       | eve Opening | Tare Weight | Sieve+Soil Wt.  | Soil Weight (g) | Percent |
|----------|-----------|-------|-------------|-------------|-----------------|-----------------|---------|
| Standard | Alternate | mm    | inches      | (g)         | (g)             | 3 (3/           | Passing |
| 37.5 mm  | 1-1/2"    | 37.5  | 1.476"      | 501.3       | 501.3           | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25    | 0.984"      | 502.5       | 502.5           | 0.0             | 100.0   |
| 19.0 mm  | 3/4"      | 19    | 0.748"      | 595.8       | 595.8           | 0.0             | 100.0   |
| 12.5 mm  | 1/2"      | 12.5  | 0.492"      | 607.8       | 607.8           | 0.0             | 100.0   |
| 9.5      | 3/8"      | 9.5   | 0.374"      | 565.4       | 567.6           | 2.2             | 97.5    |
| 4.75 mm  | No. 4     | 4.75  | 0.187"      | 527.9       | 531.7           | 3.8             | 93.2    |
| 2.00 mm  | No. 10    | 2     | 0.078"      | 450.9       | 456.8           | 5.9             | 86.5    |
| 1.18 mm  | No. 16    | 1.18  | 0.0464"     | 401.3       | 404.4           | 3.1             | 83.0    |
| 600 µm   | No. 30    | 0.6   | 0.0236"     | 410.5       | 414.6           | 4.1             | 78.3    |
| 300 µm   | No. 50    | 0.3   | .0118"      | 416.8       | 422.6           | 5.8             | 71.7    |
| 250 µm   | No. 60    | 0.25  | 0.0098"     | 340.2       | 341.9           | 1.7             | 69.8    |
| 150 µm   | No. 100   | 0.15  | 0.0059"     | 303.8       | 310.9           | 7.1             | 61.7    |
| 75 µm    | No. 200   | 0.075 | 0.0029"     | 301.8       | 315.1           | 13.3            | 46.7    |
| Pan      |           |       |             | 340.6       | 381.7           | 41.1            | 0.0     |
| ı        |           |       |             |             |                 |                 |         |
|          |           |       |             | So          | oil Wt Sum (a): | 88 1            |         |

Soil Wt. Sum (g): 88.1



 $D_{10} = N/A$  mm Cu = N/A  $D_{30} = N/A$  mm Cc = N/A

 $D_{60} = 0.175$  mm USCS Classification = SM

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:

By:\_\_\_\_\_\_ Date: \_\_\_\_\_\_ Date: \_\_\_\_\_\_



|         |                |           | Project       | : Number: | 026-08-007        | Sheet 1 of     | 1 |
|---------|----------------|-----------|---------------|-----------|-------------------|----------------|---|
|         |                |           |               | Name:     | MWRA Contract No. | 6905, Pipeline |   |
| Origina | l Work:        |           |               |           | Rte. 1, Saug      | us, MA         |   |
| By:     | R. Kline       | Date:     | June 5, 2008  | Subject:  | Laboratory 1      | <b>Testing</b> |   |
| Checke  | ed By: J. Turr | ner Date: | June 13, 2008 | <u> </u>  | Hydrometer A      | Analysis       |   |

Boring Number: B-20 Sample Number: S-4 Sample Depth: 7-9'

Sample Description: Gray-brown fine to medium SAND and non-plastic SILT

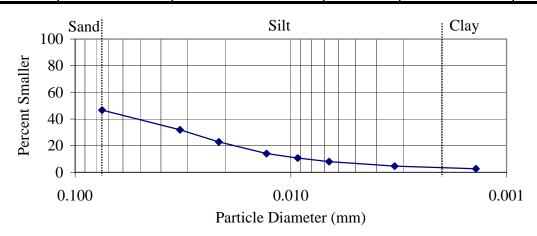
Calculation for Percent of Soil in Suspension: P = (R\*a/W)\*100

P = percent of soil in suspension at the level of the hydrometer, i.e. percent smaller diameter

R = Hydrometer reading with composite correction

a = correction factor for specific gravity of soil solids other than 2.65

Calculation for Particle Diameter:  $D = K (L/T)^{0.5}$ D = particle diameter, mm T = time, min.


L = distance from the suspension surface to the level at which the density of the suspension is measured, cm

K = constant depending on the temperature of the suspension and the specific gravity of the soil particles. Values of K for a range of temperatures and specific gravities are given in Table 3 of ASTM D-422

The value of K does not change for a series of readings constituting a test, while values of L and T do vary.

Test Constants: Hydrometer Type: 152H
Reading of Hydrometer in Solution Only (g/l): 3.0 Temperature of Solution (°C) 21.7
Specific Gravity of Soil Solids (Assumed): 2.65 a: 1.00
Dry Soil Weight, W (g): 74.4 K: 0.013373

| Time (min) | Reading (g/l) | Corrected Reading (g/l) | ┙     | Diameter (mm) | n) % in suspension |  |
|------------|---------------|-------------------------|-------|---------------|--------------------|--|
|            | Data from Si  | ieve Analysis           |       | 0.0750        | 46.7               |  |
| 2          | 26.75         | 23.75                   | 11.91 | 0.0326        | 31.9               |  |
| 5          | 20            | 17                      | 13.02 | 0.0216        | 22.8               |  |
| 15         | 13.5          | 10.5                    | 14.09 | 0.0130        | 14.1               |  |
| 30         | 11            | 8                       | 14.50 | 0.0093        | 10.8               |  |
| 60         | 9             | 6                       | 14.82 | 0.0066        | 8.1                |  |
| 250        | 6.5           | 3.5                     | 15.23 | 0.0033        | 4.7                |  |
| 1440       | 5             | 2                       | 15.48 | 0.0014        | 2.7                |  |



| Copyright © 2008 Stephens Associates Consulting Engineers LLC |
|---------------------------------------------------------------|
| Revisions:                                                    |

By: Date: \_\_\_\_\_\_ Date:



Project: Number: 026-08-007 Sheet 1 of MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA R. Kline Permeability Estimate by Date: June 4, 2008 Subject: Checked By: J. Turner Date: June 13, 2008 Kozeny-Carman Formula

Boring Number: **B-20** Sample Number: **S-4** Sample Depth: **7-9**'

According to References 1 and 3, (Note: Reference List at end of data sheets) Permeability may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})(1/S^2)[e^3/(1+e)]$ 

 $\gamma$  = assumed unit weight of water in situ, lb/ft<sup>3</sup> = 62.4 = 9800 N/m<sup>3</sup>  $\mu$  = viscosity of water, Ns/m<sup>2</sup> = 0.00131 at 10 °C

 $C_{K-C}$  = Kozeny-Carman empirical coefficient; reported as 4.8±0.3, usually taken as 5, =

S = specific surface area per unit volume of particles =  $SF^*\Sigma((P_{No D}-P_{No d})/d)$ 

 $P_{No D}$  = percentage by weight smaller than size D

 $P_{Nod}$  = percentage by weight larger than the next size d

 $D_{eq}$  = equivalent grain size for particles smaller than  $D_{min}$  of gradation =  $D_{min}/3^{0.5}$ 

SF = Shape Factor for particle angularity = 7.5

SF = 6.6 for rounded particles; 7.5 for medium angularity; 8.4 for angular (after Loudon, presented in Ref. 1)

thus, Permeability, may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})\{1/\Sigma[(P_{N_0,D}-P_{N_0,d})/d]\}^2(1/SF^2)[e^3/(1+e)]$ , Table 1 below

Further, according Ref. 2, measured permeability typically varies from 1/3 to 3 times the estimated permeability. The references also note that this method may overpredict permeability when soil is gravel, and the results present an upper bound. The formula is not suitable for plastic soils.

|                 | TABLE 1 - SUM OF (P <sub>No D</sub> - P <sub>No d</sub> )/d |                      |         |                                          |  |  |  |  |
|-----------------|-------------------------------------------------------------|----------------------|---------|------------------------------------------|--|--|--|--|
| Sieve De        | signation                                                   | Nominal Sieve        | Percent | (P <sub>NoD</sub> -P <sub>Nod</sub> )/ d |  |  |  |  |
| Standard        | Alternate                                                   | Opening (cm) Passing |         | (1/cm)                                   |  |  |  |  |
| 12.5 mm         | 1/2"                                                        | 1.250 100.0          |         | 0.0                                      |  |  |  |  |
| 9.5             | 3/8"                                                        | 0.950                | 97.5    | 2.6                                      |  |  |  |  |
| 4.75 mm         | No. 4                                                       | 0.475                | 93.2    | 9.1                                      |  |  |  |  |
| 2.00 mm         | No. 10                                                      | 0.200                | 86.5    | 33.5                                     |  |  |  |  |
| 1.18 mm         | No. 16                                                      | 0.118                | 83.0    | 29.8                                     |  |  |  |  |
| 600 µm          | No. 30                                                      | 0.060                | 78.3    | 77.6                                     |  |  |  |  |
| 300 µm          | No. 50                                                      | 0.030                | 71.7    | 219.4                                    |  |  |  |  |
| 250 µm          | No. 60                                                      | 0.025                | 69.8    | 77.2                                     |  |  |  |  |
| 150 µm          | No. 100                                                     | 0.015                | 61.7    | 537.3                                    |  |  |  |  |
| 75 µm           | No. 200                                                     | 0.008                | 46.7    | 2012.9                                   |  |  |  |  |
|                 |                                                             | 0.00326              | 31.9    | 4525.0                                   |  |  |  |  |
|                 |                                                             | 0.00216              | 22.8    | 4213.0                                   |  |  |  |  |
|                 |                                                             | 0.00130              | 14.1    | 6692.3                                   |  |  |  |  |
| Hydro           | meter                                                       | 0.00093              | 10.8    | 3548.4                                   |  |  |  |  |
|                 |                                                             | 0.00066              | 8.1     | 4090.9                                   |  |  |  |  |
|                 |                                                             | 0.00033              | 4.7     | 10303.0                                  |  |  |  |  |
|                 |                                                             | 0.00014              | 2.7     | 14285.7                                  |  |  |  |  |
| D <sub>eq</sub> |                                                             | 0.00008              | 0.0     | 33403.8                                  |  |  |  |  |
|                 | Sum: 84061.5                                                |                      |         |                                          |  |  |  |  |

Estimate Void Ratio (e) from Relative Density (Ref. 4)

 $D_r^2 = (N_1)60/C_P C_A C_{OCR}$ 

 $(N_1)60=$  95  $C_P=60+25logD_{50}=$  33.7  $D_{50}=$  0.09 mm  $C_A=1.2+0.05log(t/100)=$  1.19 t(yr)= 70  $C_{OCR}=OCR^{0.18}=$  1  $D_r=$  1.53687 >1, use 1.0

 $e_{max} = 0.85$   $e = e_{max} - (D_r)(e_{max} - e_{min})$   $e_{min} = 0.14$ e = 0.14

thus, range of permeability is estimated as:

| Estimated range of k (cm/s) |            |           |  |  |  |  |
|-----------------------------|------------|-----------|--|--|--|--|
| Probable Probable           |            |           |  |  |  |  |
| measured                    | Calculated | measured  |  |  |  |  |
| lower bnd                   | Estimate   | upper bnd |  |  |  |  |
| 3.0E-07                     | 9.1E-07    | 2.7E-06   |  |  |  |  |

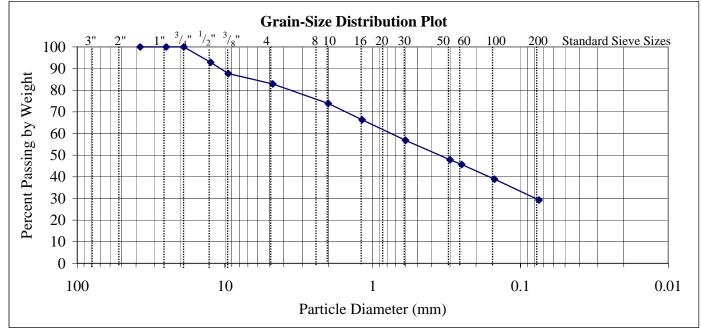
| Copyright © 2008 Stephens | Associates Consulting Engineers LLC |
|---------------------------|-------------------------------------|
| Revisions:                |                                     |

 Stephens Associates
Consulting Engineers
Insightful Costsaving Solutions
for Buildings and
Infrastructure
Hydrology & Hydraulics

Original Work:

R. Kline June 6, 2008 By: Date: Subject: **Laboratory Testing** 

Rte. 1, Saugus, MA


Checked By: J. Turner Date: June 13, 2008 Grain Size Distribution

Boring Number: Sample Number: S-2 B-21 Sample Depth: 3-5'

Sample Description: Gray-brown fine to medium SAND, some Silt, little Gravel

| Sieve De | signation | Nominal Sig | eve Opening | Tare Weight | Sieve+Soil Wt.   | Soil Weight (g) | Percent |
|----------|-----------|-------------|-------------|-------------|------------------|-----------------|---------|
| Standard | Alternate | mm          | inches      | (g)         | (g)              | Oon Weight (g)  | Passing |
| 37.5 mm  | 1-1/2"    | 37.5        | 1.476"      | 501.3       | 501.3            | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25          | 0.984"      | 502.5       | 502.5            | 0.0             | 100.0   |
| 19.0 mm  | 3/4"      | 19          | 0.748"      | 596         | 596              | 0.0             | 100.0   |
| 12.5 mm  | 1/2"      | 12.5        | 0.492"      | 607.2       | 617.1            | 9.9             | 92.9    |
| 9.5      | 3/8"      | 9.5         | 0.374"      | 565.2       | 572.4            | 7.2             | 87.7    |
| 4.75 mm  | No. 4     | 4.75        | 0.187"      | 527.7       | 534.4            | 6.7             | 82.9    |
| 2.00 mm  | No. 10    | 2           | 0.078"      | 450.8       | 463.3            | 12.5            | 73.9    |
| 1.18 mm  | No. 16    | 1.18        | 0.0464"     | 401.2       | 411.7            | 10.5            | 66.3    |
| 600 µm   | No. 30    | 0.6         | 0.0236"     | 410.5       | 423.7            | 13.2            | 56.8    |
| 300 µm   | No. 50    | 0.3         | .0118"      | 416.8       | 429.3            | 12.5            | 47.8    |
| 250 µm   | No. 60    | 0.25        | 0.0098"     | 339.9       | 342.9            | 3.0             | 45.7    |
| 150 µm   | No. 100   | 0.15        | 0.0059"     | 303.7       | 313.1            | 9.4             | 38.9    |
| 75 µm    | No. 200   | 0.075       | 0.0029"     | 301.6       | 315.0            | 13.4            | 29.3    |
| Pan      |           |             |             | 340.4       | 381.1            | 40.7            | 0.0     |
|          |           |             |             |             |                  |                 |         |
|          |           |             |             | Sc          | oil Wt. Sum (a): | 139             |         |

Soii vvt. Sum (g):



 $D_{10} =$ N/A mm Cu = N/A  $D_{30} =$ 0.075 mm Cc = N/A

 $D_{60} =$ USCS Classification = 0.75 mm SM

Copyright © 2008 Stephens Associates Consulting Engineers LLC

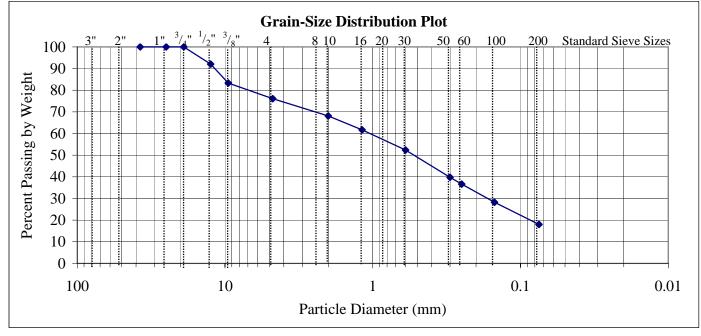
Revisions:



Original Work:

R. Kline June 9, 2008 By: Date: Subject: **Laboratory Testing** 

Rte. 1, Saugus, MA


Checked By: J. Turner Date: June 13, 2008 Grain Size Distribution

Boring Number: Sample Number: S-1 Sample Depth: 1-3' Bottom 11" B-22

Sample Description: Gray fine to medium SAND, some Gravel, little Silt

| Sieve De |           | Nominal Signal | eve Opening | Tare Weight | Sieve+Soil Wt.        | Soil Weight (g) | Percent |
|----------|-----------|----------------|-------------|-------------|-----------------------|-----------------|---------|
| Standard | Alternate | mm             | inches      | (g)         | (g)                   | Oon Weight (g)  | Passing |
| 37.5 mm  | 1-1/2"    | 37.5           | 1.476"      | 501.3       | 501.3                 | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25             | 0.984"      | 502.5       | 502.5                 | 0.0             | 100.0   |
| 19.0 mm  | 3/4"      | 19             | 0.748"      | 595.8       | 595.8                 | 0.0             | 100.0   |
| 12.5 mm  | 1/2"      | 12.5           | 0.492"      | 607.6       | 618.7                 | 11.1            | 92.0    |
| 9.5      | 3/8"      | 9.5            | 0.374"      | 565.3       | 577.5                 | 12.2            | 83.3    |
| 4.75 mm  | No. 4     | 4.75           | 0.187"      | 527.7       | 537.8                 | 10.1            | 76.1    |
| 2.00 mm  | No. 10    | 2              | 0.078"      | 450.8       | 461.9                 | 11.1            | 68.1    |
| 1.18 mm  | No. 16    | 1.18           | 0.0464"     | 401.2       | 410.2                 | 9.0             | 61.7    |
| 600 µm   | No. 30    | 0.6            | 0.0236"     | 410.3       | 423.3                 | 13.0            | 52.4    |
| 300 µm   | No. 50    | 0.3            | .0118"      | 416.6       | 434.2                 | 17.6            | 39.8    |
| 250 µm   | No. 60    | 0.25           | 0.0098"     | 340.0       | 344.4                 | 4.4             | 36.6    |
| 150 µm   | No. 100   | 0.15           | 0.0059"     | 303.7       | 315.4                 | 11.7            | 28.2    |
| 75 µm    | No. 200   | 0.075          | 0.0029"     | 301.6       | 315.9                 | 14.3            | 18.0    |
| Pan      |           |                |             | 340.4       | 365.5                 | 25.1            | 0.0     |
|          |           |                |             | _           | l<br>bil Wt. Sum (a): | 139.6           |         |

Soil VVt. Sum (g):



 $D_{10} =$ N/A mm Cu = N/A  $D_{30} =$ 0.175 mm Cc = N/A

 $D_{60} =$ USCS Classification = 1.1 mm SM

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:



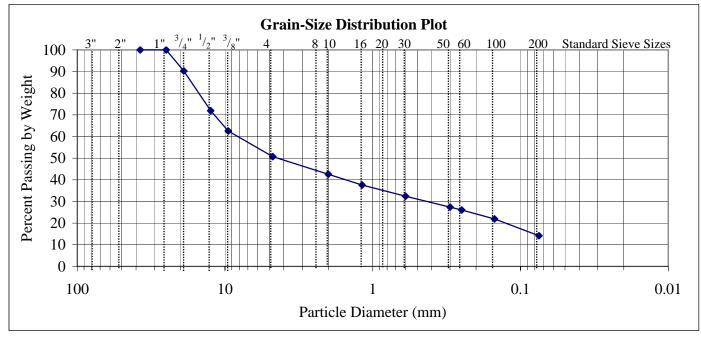
 Project:
 Number:
 026-08-007
 Sheet
 1
 of
 1

 Name:
 MWRA Contract No. 6905, Pipeline

Original Work:

By: R. Kline Date: June 5, 2008 Subject: Checked By: J. Turner Date: June 13, 2008

Laboratory Testing
Grain Size Distribution


Rte. 1, Saugus, MA

Boring Number: B-22 Sample Number: S-3 Sample Depth: 5-7'

Sample Description: Gray-brown fine to medium SAND and GRAVEL, little Silt

| Sieve De | signation | Nominal Sign | eve Opening | Tare Weight | Sieve+Soil Wt.  | Soil Weight (g) | Percent |
|----------|-----------|--------------|-------------|-------------|-----------------|-----------------|---------|
| Standard | Alternate | mm           | inches      | (g)         | (g)             | Con Weight (g)  | Passing |
| 37.5 mm  | 1-1/2"    | 37.5         | 1.476"      | 501.3       | 501.3           | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25           | 0.984"      | 502.7       | 502.7           | 0.0             | 100.0   |
| 19.0 mm  | 3/4"      | 19           | 0.748"      | 596         | 612.2           | 16.2            | 90.3    |
| 12.5 mm  | 1/2"      | 12.5         | 0.492"      | 607.8       | 638.4           | 30.6            | 71.9    |
| 9.5      | 3/8"      | 9.5          | 0.374"      | 565.4       | 581.0           | 15.6            | 62.5    |
| 4.75 mm  | No. 4     | 4.75         | 0.187"      | 527.9       | 547.6           | 19.7            | 50.7    |
| 2.00 mm  | No. 10    | 2            | 0.078"      | 451.1       | 464.7           | 13.6            | 42.6    |
| 1.18 mm  | No. 16    | 1.18         | 0.0464"     | 401.4       | 409.7           | 8.3             | 37.6    |
| 600 µm   | No. 30    | 0.6          | 0.0236"     | 410.6       | 419.2           | 8.6             | 32.4    |
| 300 µm   | No. 50    | 0.3          | .0118"      | 416.9       | 425.3           | 8.4             | 27.4    |
| 250 µm   | No. 60    | 0.25         | 0.0098"     | 340.1       | 342.3           | 2.2             | 26.1    |
| 150 µm   | No. 100   | 0.15         | 0.0059"     | 303.8       | 310.7           | 6.9             | 21.9    |
| 75 µm    | No. 200   | 0.075        | 0.0029"     | 301.8       | 314.7           | 12.9            | 14.2    |
| Pan      |           |              |             | 340.5       | 364.1           | 23.6            | 0.0     |
|          |           |              |             | 90          | il Wt. Sum (a): | 166.6           | -       |

Soil Wt. Sum (g): 166.6



 $D_{10} = N/A$  mm Cu = N/A  $D_{30} = 0.41$  mm Cc = N/A

 $D_{60} = 8.05$  mm USCS Classification = SM

 ${\it Copyright} \ @ \ 2008 \ {\it Stephens Associates Consulting Engineers LLC}$ 

Revisions:

By: \_\_\_\_\_ Date: \_\_\_\_\_ Date: \_\_\_\_\_



Project: Number: 026-08-007 Sheet MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA R. Kline Permeability Estimate by Date: June 5, 2008 Subject: Checked By: J. Turner Date: June 13, 2008 Kozeny-Carman Formula

Boring Number: B-22 Sample Number: S-3 Sample Depth: 5-7'

According to References 1 and 3, (Note: Reference List at end of data sheets) Permeability may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})(1/S^2)[e^3/(1+e)]$ 

 $\gamma$  = assumed unit weight of water in situ, lb/ft<sup>3</sup> = 62.4 = 9800 N/m<sup>3</sup>  $\mu$  = viscosity of water, Ns/m<sup>2</sup> = 0.00131 at 10 °C

 $C_{K-C}$  = Kozeny-Carman empirical coefficient; reported as 4.8±0.3, usually taken as 5, =

S = specific surface area per unit volume of particles =  $SF^*\Sigma((P_{No D}-P_{No d})/d)$ 

 $P_{No D}$  = percentage by weight smaller than size D

 $P_{Nod}$  = percentage by weight larger than the next size d

 $D_{eq}$  = equivalent grain size for particles smaller than  $D_{min}$  of gradation =  $D_{min}/3^{0.5}$ 

SF = Shape Factor for particle angularity = 7.5

SF = 6.6 for rounded particles; 7.5 for medium angularity; 8.4 for angular (after Loudon, presented in Ref. 1)

thus, Permeability, may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})\{1/\Sigma[(P_{N_0,D}-P_{N_0,d})/d]\}^2(1/SF^2)[e^3/(1+e)]$ , Table 1 below

Further, according Ref. 2, measured permeability typically varies from 1/3 to 3 times the estimated permeability. The references also note that this method may overpredict permeability when soil is gravel, and the results present an upper bound. The formula is not suitable for plastic soils.

|          | TABL      | E 1 - SUM OF (P | No D - P <sub>No d</sub> )/d |                                          |  |
|----------|-----------|-----------------|------------------------------|------------------------------------------|--|
| Sieve De | signation | Nominal Sieve   | Percent                      | (P <sub>NoD</sub> -P <sub>Nod</sub> )/ d |  |
| Standard | Alternate | Opening (cm)    | Passing                      | (1/cm)                                   |  |
| 37.5 mm  | 1-1/2"    | 3.750           | 100.0                        |                                          |  |
| 25.0 mm  | 1"        | 2.500           | 100.0                        | 0.0                                      |  |
| 19.0 mm  | 3/4"      | 1.900           | 90.3                         | 5.1                                      |  |
| 12.5 mm  | 1/2"      | 1.250           | 71.9                         | 14.7                                     |  |
| 9.5      | 3/8"      | 0.950           | 62.5                         | 9.9                                      |  |
| 4.75 mm  | No. 4     | 0.475           | 50.7                         | 24.9                                     |  |
| 2.00 mm  | No. 10    | 0.200           | 42.6                         | 40.8                                     |  |
| 1.18 mm  | No. 16    | 0.118           | 37.6                         | 42.2                                     |  |
| 600 µm   | No. 30    | 0.060           | 32.4                         | 86.0                                     |  |
| 300 µm   | No. 50    | 0.030           | 27.4                         | 168.1                                    |  |
| 250 µm   | No. 60    | 0.025           | 26.1                         | 52.8                                     |  |
| 150 µm   | No. 100   | 0.015           | 21.9                         | 276.1                                    |  |
| 75 µm    | No. 200   | 0.008           | 14.2                         | 1032.4                                   |  |
| $D_{eq}$ |           | 0.004           | 0.0                          | 3271.4                                   |  |
| •        |           |                 |                              |                                          |  |
|          |           |                 |                              |                                          |  |
|          |           |                 |                              |                                          |  |
|          |           |                 |                              |                                          |  |
|          |           | •               | Sum:                         | 5024.5                                   |  |

Estimate Void Ratio (e) from Relative Density (Ref. 4)

 $D_r^2 = (N_1)60/C_P C_A C_{OCR}$ 

 $(N_1)60=$  78  $C_P=60+25logD_{50}=$  76.3  $D_{50}=$  4.5 mm  $C_A=1.2+0.05log(t/100)=$  1.19 t(yr)= 70  $C_{OCR}=OCR^{0.18}=$  1  $D_r=$  0.92579

 $e_{max} = 0.85$   $e = e_{max} - (D_r)(e_{max} - e_{min})$   $e_{min} = 0.14$  e = 0.19269

thus, range of permeability is estimated as:

| Estimated range of k (cm/s) |            |           |  |  |  |
|-----------------------------|------------|-----------|--|--|--|
| Probable                    |            | Probable  |  |  |  |
| measured                    | Calculated | measured  |  |  |  |
| lower bnd                   | Estimate   | upper bnd |  |  |  |
| 2.1E-04                     | 6.3E-04    | 1.9E-03   |  |  |  |

| Copyright © 2008 Stephens Associates Consulting Engineers LL | .C |
|--------------------------------------------------------------|----|
|--------------------------------------------------------------|----|

Revisions:

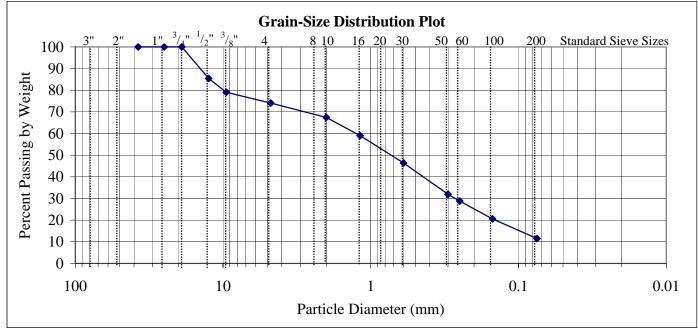


Project:Number:026-08-007Sheet1of1Name:MWRA Contract No. 6905, Pipeline

Original Work:

By: R. Kline Date: June 5, 2008 Subject: Checked By: J. Turner Date: June 13, 2008

Laboratory Testing
Grain Size Distribution


Rte. 1, Saugus, MA

Boring Number: B-23 Sample Number: S-2 Sample Depth: 3-5'

Sample Description: Gray-brown fine to medium SAND, some Gravel, little Silt

| Sieve De | signation | Nominal Sie | eve Opening | Tare Weight | Sieve+Soil Wt.  | Soil Weight (g) | Percent |
|----------|-----------|-------------|-------------|-------------|-----------------|-----------------|---------|
| Standard | Alternate | mm          | inches      | (g)         | (g)             | Con Worght (g)  | Passing |
| 37.5 mm  | 1-1/2"    | 37.5        | 1.476"      | 501.3       | 501.3           | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25          | 0.984"      | 502.5       | 502.5           | 0.0             | 100.0   |
| 19.0 mm  | 3/4"      | 19          | 0.748"      | 595.8       | 595.8           | 0.0             | 100.0   |
| 12.5 mm  | 1/2"      | 12.5        | 0.492"      | 607.6       | 621.9           | 14.3            | 85.5    |
| 9.5      | 3/8"      | 9.5         | 0.374"      | 565.2       | 571.5           | 6.3             | 79.0    |
| 4.75 mm  | No. 4     | 4.75        | 0.187"      | 527.8       | 532.7           | 4.9             | 74.1    |
| 2.00 mm  | No. 10    | 2           | 0.078"      | 450.9       | 457.4           | 6.5             | 67.4    |
| 1.18 mm  | No. 16    | 1.18        | 0.0464"     | 401.2       | 409.5           | 8.3             | 59.0    |
| 600 µm   | No. 30    | 0.6         | 0.0236"     | 410.4       | 422.8           | 12.4            | 46.4    |
| 300 µm   | No. 50    | 0.3         | .0118"      | 416.6       | 430.8           | 14.2            | 31.9    |
| 250 µm   | No. 60    | 0.25        | 0.0098"     | 339.9       | 343.0           | 3.1             | 28.8    |
| 150 µm   | No. 100   | 0.15        | 0.0059"     | 303.7       | 311.8           | 8.1             | 20.5    |
| 75 µm    | No. 200   | 0.075       | 0.0029"     | 301.7       | 310.6           | 8.9             | 11.5    |
| Pan      |           |             |             | 340.4       | 351.7           | 11.3            | 0.0     |
|          |           |             |             |             |                 |                 |         |
|          |           |             | •           | C           | oil Wt Sum (a): | 08.3            | ·       |

Soil Wt. Sum (g): 98.3



 $D_{10} = N/A$  mm Cu = N/A  $D_{30} = 0.265$  mm Cc = N/A

 $D_{60} = 1.25$  mm USCS Classification = SP-SM

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:

By: Date: \_\_\_\_\_\_\_ Date: \_\_\_\_\_\_\_



 Project:
 Number:
 026-08-007
 Sheet
 1
 of
 1

 Name:
 MWRA Contract No. 6905, Pipeline

 Rte. 1, Saugus, MA

Original Work:

By: R. Kline Date: June 5, 2008 Subject: Checked By: J. Turner Date: June 13, 2008

Laboratory Testing
Grain Size Distribution

Checked By: J. Turner Date: June 13, 2008 Grain Size Distribution

Boring Number: B-23 Sample Number: S-4 Sample Depth: 7-9' Bottom 6"

Sample Description: Light brown non-plastic SILT, some fine to medium Sand, little Gravel

|          | signation | Nominal Sie | eve Opening | Tare Weight | Sieve+Soil Wt.               | Soil Weight (g)    | Percent |
|----------|-----------|-------------|-------------|-------------|------------------------------|--------------------|---------|
| Standard | Alternate | mm          | inches      | (g)         | (g)                          | 0 0 11 0 19 11 (9) | Passing |
| 37.5 mm  | 1-1/2"    | 37.5        | 1.476"      | 501.3       | 501.3                        | 0.0                | 100.0   |
| 25.0 mm  | 1"        | 25          | 0.984"      | 502.5       | 502.5                        | 0.0                | 100.0   |
| 19.0 mm  | 3/4"      | 19          | 0.748"      | 595.8       | 595.8                        | 0.0                | 100.0   |
| 12.5 mm  | 1/2"      | 12.5        | 0.492"      | 607.5       | 607.5                        | 0.0                | 100.0   |
| 9.5      | 3/8"      | 9.5         | 0.374"      | 565.1       | 567.6                        | 2.5                | 96.3    |
| 4.75 mm  | No. 4     | 4.75        | 0.187"      | 527.6       | 537.0                        | 9.4                | 82.5    |
| 2.00 mm  | No. 10    | 2           | 0.078"      | 450.8       | 454.9                        | 4.1                | 76.5    |
| 1.18 mm  | No. 16    | 1.18        | 0.0464"     | 401.1       | 403.1                        | 2.0                | 73.6    |
| 600 µm   | No. 30    | 0.6         | 0.0236"     | 410.3       | 412.8                        | 2.5                | 69.9    |
| 300 µm   | No. 50    | 0.3         | .0118"      | 416.6       | 419.8                        | 3.2                | 65.2    |
| 250 µm   | No. 60    | 0.25        | 0.0098"     | 339.9       | 340.9                        | 1.0                | 63.7    |
| 150 µm   | No. 100   | 0.15        | 0.0059"     | 303.6       | 306.8                        | 3.2                | 59.0    |
| 75 µm    | No. 200   | 0.075       | 0.0029"     | 301.6       | 306.9                        | 5.3                | 51.2    |
| Pan      |           |             |             | 340.3       | 375.2                        | 34.9               | 0.0     |
|          |           |             |             | Sc          | <u>l</u><br>oil Wt. Sum (g): | 68.1               |         |

**Grain-Size Distribution Plot** 16 20 30 50 60 100 200 Standard Sieve Sizes 100 90 Percent Passing by Weight 80 70 60 50 \*See Hydrometer 40 Test data for 30 particle sizes 20 smaller than 0.075 mm. 10 0 100 10 1 0.1 0.01 Particle Diameter (mm)

 ${\it Copyright} \ @ \ 2008 \ {\it Stephens Associates Consulting Engineers LLC}$ 

Revisions:

By: \_\_\_\_\_ Date: \_\_\_\_\_ Date: \_\_\_\_\_



|         |                | Project   | : Number:     | 026-08-007 | Sheet 1 of 1     |                  |  |
|---------|----------------|-----------|---------------|------------|------------------|------------------|--|
|         |                |           |               | Name:      | MWRA Contract No | . 6905, Pipeline |  |
| Origina | l Work:        |           |               |            | Rte. 1, Sauç     | gus, MA          |  |
| By:     | R. Kline       | Date:     | June 9, 2008  | Subject:   | Laboratory       | Testing          |  |
| Checke  | ed By: J. Turr | ner Date: | June 13, 2008 |            | Hydrometer       | Analysis         |  |

Boring Number: B-23 Sample Number: S-4 Sample Depth: 7-9' Bottom 6"

Sample Description: Light brown non-plastic SILT, some fine to medium Sand, little Gravel

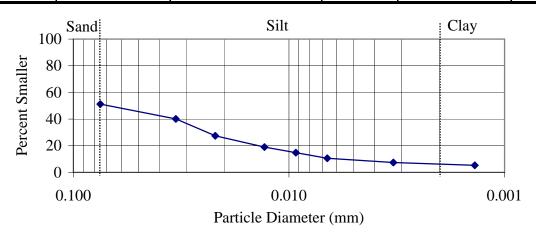
Calculation for Percent of Soil in Suspension: P = (R\*a/W)\*100

P = percent of soil in suspension at the level of the hydrometer, i.e. percent smaller diameter

R = Hydrometer reading with composite correction

a = correction factor for specific gravity of soil solids other than 2.65

Calculation for Particle Diameter:  $D = K (L/T)^{0.5}$ D = particle diameter, mm T = time, min.


L = distance from the suspension surface to the level at which the density of the suspension is measured, cm

K = constant depending on the temperature of the suspension and the specific gravity of the soil particles. Values of K for a range of temperatures and specific gravities are given in Table 3 of ASTM D-422

The value of K does not change for a series of readings constituting a test, while values of L and T do vary.

Test Constants: Hydrometer Type: 152H
Reading of Hydrometer in Solution Only (g/l): 3.0 Temperature of Solution (°C) 22.2
Specific Gravity of Soil Solids (Assumed): 2.65 a: 1.00
Dry Soil Weight, W (g): 47.4 K: 0.013287

| Time (min) | Reading (g/l) | Corrected Reading (g/l) L |       | Diameter (mm) | % in suspension |
|------------|---------------|---------------------------|-------|---------------|-----------------|
|            | Data from Si  | 0.0750                    | 51.2  |               |                 |
| 2          | 22            | 19                        | 12.69 | 0.0335        | 40.1            |
| 5          | 16            | 13                        | 13.68 | 0.0220        | 27.4            |
| 15         | 12            | 9                         | 14.33 | 0.0130        | 19.0            |
| 30         | 10            | 7                         | 14.66 | 0.0093        | 14.8            |
| 60         | 8             | 5                         | 14.99 | 0.0066        | 10.5            |
| 250        | 6.5           | 3.5                       | 15.23 | 0.0033        | 7.4             |
| 1440       | 5.5           | 2.5                       | 15.40 | 0.0014        | 5.3             |



| Copyright © 2008 Stephens Associates Consulting Engineers LL | _C |
|--------------------------------------------------------------|----|
| Revisions:                                                   |    |



Project: Number: 026-08-007 Sheet 1 of MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA R. Kline Permeability Estimate by Date: June 5, 2008 Subject: Checked By: J. Turner Date: June 13, 2008 Kozeny-Carman Formula

Boring Number: B-23 Sample Number: S-4 Sample Depth: 7-9' Bottom 6"

According to References 1 and 3, (Note: Reference List at end of data sheets) Permeability may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})(1/S^2)[e^3/(1+e)]$ 

 $\gamma$  = assumed unit weight of water in situ, lb/ft<sup>3</sup> = 62.4 = 9800 N/m<sup>3</sup>  $\mu$  = viscosity of water, Ns/m<sup>2</sup> = 0.00131 at 10 °C

 $C_{K-C}$  = Kozeny-Carman empirical coefficient; reported as 4.8±0.3, usually taken as 5, =

S = specific surface area per unit volume of particles =  $SF^*\Sigma((P_{No D}-P_{No d})/d)$ 

 $P_{No D}$  = percentage by weight smaller than size D

 $P_{No d}$  = percentage by weight larger than the next size d

 $D_{eq}$  = equivalent grain size for particles smaller than  $D_{min}$  of gradation =  $D_{min}/3^{0.5}$ 

SF = Shape Factor for particle angularity = 7.5

SF = 6.6 for rounded particles; 7.5 for medium angularity; 8.4 for angular (after Loudon, presented in Ref. 1)

thus, Permeability, may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})\{1/\Sigma[(P_{N_0,D}-P_{N_0,d})/d]\}^2(1/SF^2)[e^3/(1+e)]$ , Table 1 below

Further, according Ref. 2, measured permeability typically varies from 1/3 to 3 times the estimated permeability. The references also note that this method may overpredict permeability when soil is gravel, and the results present an upper bound. The formula is not suitable for plastic soils.

|          | TABLE 1 - SUM OF (P <sub>No D</sub> - P <sub>No d</sub> )/d |               |         |                                          |  |  |  |  |
|----------|-------------------------------------------------------------|---------------|---------|------------------------------------------|--|--|--|--|
| Sieve De | signation                                                   | Nominal Sieve | Percent | (P <sub>NoD</sub> -P <sub>Nod</sub> )/ d |  |  |  |  |
| Standard | Alternate                                                   | Opening (cm)  | Passing | (1/cm)                                   |  |  |  |  |
| 12.5 mm  | 1/2"                                                        | 1.250         | 100.0   | 0.0                                      |  |  |  |  |
| 9.5      | 3/8"                                                        | 0.950         | 96.3    | 3.9                                      |  |  |  |  |
| 4.75 mm  | No. 4                                                       | 0.475         | 82.5    | 29.1                                     |  |  |  |  |
| 2.00 mm  | No. 10                                                      | 0.200         | 76.5    | 30.1                                     |  |  |  |  |
| 1.18 mm  | No. 16                                                      | 0.118         | 73.6    | 24.9                                     |  |  |  |  |
| 600 µm   | No. 30                                                      | 0.060         | 69.9    | 61.2                                     |  |  |  |  |
| 300 µm   | No. 50                                                      | 0.030         | 65.2    | 156.6                                    |  |  |  |  |
| 250 µm   | No. 60                                                      | 0.025         | 63.7    | 58.7                                     |  |  |  |  |
| 150 µm   | No. 100                                                     | 0.015         | 59.0    | 313.3                                    |  |  |  |  |
| 75 µm    | No. 200                                                     | 0.008         | 51.2    | 1037.7                                   |  |  |  |  |
|          |                                                             | 0.00335       | 40.1    | 3327.8                                   |  |  |  |  |
|          |                                                             | 0.00220       | 27.4    | 5772.7                                   |  |  |  |  |
|          |                                                             | 0.00130       | 19.0    | 6461.5                                   |  |  |  |  |
| Hydro    | meter                                                       | 0.00093       | 14.8    | 4516.1                                   |  |  |  |  |
|          |                                                             | 0.00066       | 10.5    | 6515.2                                   |  |  |  |  |
|          |                                                             | 0.00033       | 7.4     | 9393.9                                   |  |  |  |  |
|          |                                                             | 0.00014       | 5.3     | 15000.0                                  |  |  |  |  |
| $D_{eq}$ |                                                             | 0.00008       | 0.0     | 65570.5                                  |  |  |  |  |
|          | _                                                           |               | Sum:    | 118273.2                                 |  |  |  |  |

Estimate Void Ratio (e) from Relative Density (Ref. 4)

 $D_r^2 = (N_1)60/C_P C_A C_{OCR}$ 

 $(N_1)60=$  59  $C_P=60+25logD_{50}=$  31  $D_{50}=$  0.07 mm  $C_A=1.2+0.05log(t/100)=$  1.19 t(yr)= 70  $C_{OCR}=OCR^{0.18}=$  1  $D_r=$  1.26404 >1, use 1.0

 $e=e_{max}-(D_r)(e_{max}-e_{min})$   $e_{min}=0.25$ e=0.25

thus, range of permeability is estimated as:

| Estimated range of k (cm/s) |            |           |  |  |  |
|-----------------------------|------------|-----------|--|--|--|
| Probable                    |            | Probable  |  |  |  |
| measured                    | Calculated | measured  |  |  |  |
| lower bnd                   | Estimate   | upper bnd |  |  |  |
| 7.9E-07                     | 2.4E-06    | 7.1E-06   |  |  |  |

| Copyright © 2008 Stephens As | ssociates Consulting Engineers LLC |
|------------------------------|------------------------------------|
| Revisions:                   |                                    |

By: Date:

Date:

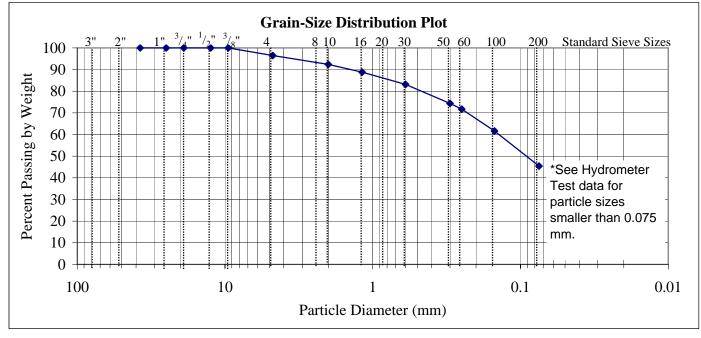


Project:Number:026-08-007Sheet1of1Name:MWRA Contract No. 6905, Pipeline

Original Work:

By: R. Kline Date: June 5, 2008 Subject: Checked By: J. Turner Date: June 13, 2008

Laboratory Testing
Grain Size Distribution


Rte. 1, Saugus, MA

Boring Number: B-24 Sample Number: S-3 Sample Depth: 5-7'

Sample Description: Light brown fine to medium SAND and non-plastic SILT

| Sieve De | signation | Nominal Sign | eve Opening | Tare Weight | Sieve+Soil Wt.   | Soil Weight (g) | Percent |
|----------|-----------|--------------|-------------|-------------|------------------|-----------------|---------|
| Standard | Alternate | mm           | inches      | (g)         | (g)              | Con Woight (g)  | Passing |
| 37.5 mm  | 1-1/2"    | 37.5         | 1.476"      | 501.3       | 501.3            | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25           | 0.984"      | 502.5       | 502.5            | 0.0             | 100.0   |
| 19.0 mm  | 3/4"      | 19           | 0.748"      | 595.8       | 595.8            | 0.0             | 100.0   |
| 12.5 mm  | 1/2"      | 12.5         | 0.492"      | 607.5       | 607.5            | 0.0             | 100.0   |
| 9.5      | 3/8"      | 9.5          | 0.374"      | 565.1       | 565.1            | 0.0             | 100.0   |
| 4.75 mm  | No. 4     | 4.75         | 0.187"      | 527.6       | 531.2            | 3.6             | 96.5    |
| 2.00 mm  | No. 10    | 2            | 0.078"      | 450.8       | 455.0            | 4.2             | 92.4    |
| 1.18 mm  | No. 16    | 1.18         | 0.0464"     | 401.1       | 404.8            | 3.7             | 88.8    |
| 600 µm   | No. 30    | 0.6          | 0.0236"     | 410.3       | 416.1            | 5.8             | 83.1    |
| 300 µm   | No. 50    | 0.3          | .0118"      | 416.6       | 425.6            | 9.0             | 74.4    |
| 250 µm   | No. 60    | 0.25         | 0.0098"     | 339.9       | 342.6            | 2.7             | 71.7    |
| 150 µm   | No. 100   | 0.15         | 0.0059"     | 303.6       | 314.0            | 10.4            | 61.6    |
| 75 µm    | No. 200   | 0.075        | 0.0029"     | 301.6       | 318.2            | 16.6            | 45.4    |
| Pan      |           |              |             | 340.3       | 386.9            | 46.6            | 0.0     |
|          |           |              |             | 90          | oil Wt. Sum (a): | 102.6           |         |

Soil Wt. Sum (g): 102.6



 $D_{10} = N/A$  mm Cu = N/A  $D_{30} = N/A$  mm Cc = N/A

 $D_{60} = 0.15$  mm USCS Classification = SM

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:

By: \_\_\_\_\_ Date: \_\_\_\_\_ Date: \_\_\_\_\_



| Project: |                | Project   | : Number:            | 026-08-007 SI |                 | 1      | of | 1 |  |
|----------|----------------|-----------|----------------------|---------------|-----------------|--------|----|---|--|
|          |                | Name:     | MWRA Contract No. 69 | 05, Pipelii   | ne              |        |    |   |  |
| Origina  | al Work:       |           |                      |               | Rte. 1, Saugus, | MA     |    |   |  |
| Ву:      | R. Kline       | Date:     | June 9, 2008         | Subject:      | Laboratory Tes  | sting  |    |   |  |
| Checke   | ed By: J. Turr | ner Date: | June 13, 2008        |               | Hydrometer Ana  | alysis |    |   |  |

Boring Number: B-24 Sample Number: S-3 Sample Depth: 5-7'

Sample Description: Light brown fine to medium SAND and non-plastic SILT

Calculation for Percent of Soil in Suspension: P = (R\*a/W)\*100

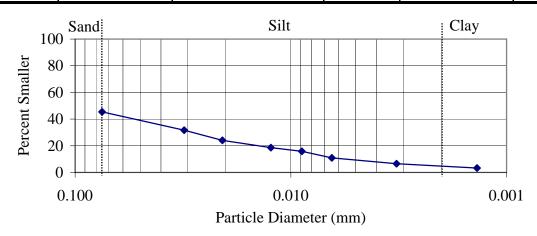
P = percent of soil in suspension at the level of the hydrometer, i.e. percent smaller diameter

R = Hydrometer reading with composite correction

a = correction factor for specific gravity of soil solids other than 2.65

Calculation for Particle Diameter:  $D = K (L/T)^{0.5}$ D = particle diameter, mm T = time, min.

L = distance from the suspension surface to the level at which the density of the suspension is measured, cm


K = constant depending on the temperature of the suspension and the specific gravity of the soil particles.

Values of K for a range of temperatures and specific gravities are given in Table 3 of ASTM D-422

The value of K does not change for a series of readings constituting a test, while values of L and T do vary.

Test Constants: Hydrometer Type: 152H
Reading of Hydrometer in Solution Only (g/l): 3.0 Temperature of Solution (°C) 22.2
Specific Gravity of Soil Solids (Assumed): 2.65 a: 1.00
Dry Soil Weight, W (g): 91.5 K: 0.013287

| Time (min) | Reading (g/l) | Corrected Reading (g/l) L |       | Diameter (mm) | % in suspension |
|------------|---------------|---------------------------|-------|---------------|-----------------|
|            | Data from Si  | 0.0750                    | 45.4  |               |                 |
| 2          | 32            | 29                        | 11.05 | 0.0312        | 31.7            |
| 5          | 25            | 22                        | 12.20 | 0.0208        | 24.0            |
| 15         | 20            | 17                        | 13.02 | 0.0124        | 18.6            |
| 30         | 17.5          | 14.5                      | 13.43 | 0.0089        | 15.8            |
| 60         | 13            | 10                        | 14.17 | 0.0065        | 10.9            |
| 250        | 9             | 6                         | 14.82 | 0.0032        | 6.6             |
| 1440       | 6             | 3                         | 15.32 | 0.0014        | 3.3             |



| Copyright © 2008 Stephens Associates Consulting Engineers LL | С |
|--------------------------------------------------------------|---|
| Revisions:                                                   |   |

By: Date: \_\_\_\_\_\_Date: \_\_\_\_\_



**Project:** Number: 026-08-007 Sheet 1 of MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA R. Kline Permeability Estimate by Date: June 5, 2008 Subject: Checked By: J. Turner Date: June 13, 2008 Kozeny-Carman Formula

Boring Number: **B-24** Sample Number: **S-3** Sample Depth: **5-7'** 

According to References 1 and 3, (Note: Reference List at end of data sheets) Permeability may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})(1/S^2)[e^3/(1+e)]$ 

 $\gamma$  = assumed unit weight of water in situ, lb/ft<sup>3</sup> = 62.4 = 9800 N/m<sup>3</sup>  $\mu$  = viscosity of water, Ns/m<sup>2</sup> = 0.00131 at 10 °C

 $C_{K-C}$  = Kozeny-Carman empirical coefficient; reported as 4.8±0.3, usually taken as 5, =

S = specific surface area per unit volume of particles =  $SF^*\Sigma((P_{No D}-P_{No d})/d)$ 

 $P_{No D}$  = percentage by weight smaller than size D

 $P_{No d}$  = percentage by weight larger than the next size d

 $D_{eq}$  = equivalent grain size for particles smaller than  $D_{min}$  of gradation =  $D_{min}/3^{0.5}$ 

SF = Shape Factor for particle angularity = 7.5

SF = 6.6 for rounded particles; 7.5 for medium angularity; 8.4 for angular (after Loudon, presented in Ref. 1)

thus, Permeability, may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})\{1/\Sigma[(P_{N_0,D}-P_{N_0,d})/d]\}^2(1/SF^2)[e^3/(1+e)]$ , Table 1 below

Further, according Ref. 2, measured permeability typically varies from 1/3 to 3 times the estimated permeability. The references also note that this method may overpredict permeability when soil is gravel, and the results present an upper bound. The formula is not suitable for plastic soils.

|          | TABLE 1 - SUM OF (P <sub>No D</sub> - P <sub>No d</sub> )/d |               |              |                                          |  |  |  |  |
|----------|-------------------------------------------------------------|---------------|--------------|------------------------------------------|--|--|--|--|
| Sieve De | signation                                                   | Nominal Sieve | Percent      | (P <sub>NoD</sub> -P <sub>Nod</sub> )/ d |  |  |  |  |
| Standard | Alternate                                                   | Opening (cm)  | Passing      | (1/cm)                                   |  |  |  |  |
| 9.5      | 3/8"                                                        | 0.950         | 100.0        | 0.0                                      |  |  |  |  |
| 4.75 mm  | No. 4                                                       | 0.475         | 96.5         | 7.4                                      |  |  |  |  |
| 2.00 mm  | No. 10                                                      | 0.200         | 92.4         | 20.5                                     |  |  |  |  |
| 1.18 mm  | No. 16                                                      | 0.118         | 88.8         | 30.6                                     |  |  |  |  |
| 600 µm   | No. 30                                                      | 0.060         | 83.1         | 94.2                                     |  |  |  |  |
| 300 µm   | No. 50                                                      | 0.030         | 74.4         | 292.4                                    |  |  |  |  |
| 250 µm   | No. 60                                                      | 0.025         | 71.7         | 105.3                                    |  |  |  |  |
| 150 µm   | No. 100                                                     | 0.015         | 61.6         | 675.8                                    |  |  |  |  |
| 75 µm    | No. 200                                                     | 0.008         | 45.4         | 2157.2                                   |  |  |  |  |
|          |                                                             |               | 31.7         | 4397.1                                   |  |  |  |  |
|          |                                                             | 0.00208       | 24.0         | 3701.9                                   |  |  |  |  |
|          |                                                             | 0.00124       | 18.6         | 4354.8                                   |  |  |  |  |
| Hydro    | meter                                                       | 0.00089       | 15.8         |                                          |  |  |  |  |
|          |                                                             |               | 0.00065 10.9 |                                          |  |  |  |  |
|          |                                                             | 0.00032       | 6.6          | 13437.5                                  |  |  |  |  |
|          |                                                             | 0.00014       | 3.3          | 23571.4                                  |  |  |  |  |
| $D_{eq}$ |                                                             | 0.00008       | 0.0          | 40826.9                                  |  |  |  |  |
|          |                                                             |               |              |                                          |  |  |  |  |
|          |                                                             |               | Sum:         | 104357.6                                 |  |  |  |  |

Estimate Void Ratio (e) from Relative Density (Ref. 4)

 $D_r^2 = (N_1)60/C_P C_A C_{OCR}$ 

 $(N_1)60=$  122  $C_P=60+25logD_{50}=$  33.9  $D_{50}=$  0.09 mm  $C_A=1.2+0.05log(t/100)=$  1.19 t(yr)= 70  $C_{OCR}=OCR^{0.18}=$  1  $D_r=$  1.73851 >1, use 1.0

 $e_{max} = 0.85$   $e = e_{max} - (D_r)(e_{max} - e_{min})$   $e_{min} = 0.14$ e = 0.14

thus, range of permeability is estimated as:

| Estimated range of k (cm/s) |                    |           |  |  |  |
|-----------------------------|--------------------|-----------|--|--|--|
| Probable                    | Probable           |           |  |  |  |
| measured                    | easured Calculated |           |  |  |  |
| lower bnd                   | Estimate           | upper bnd |  |  |  |
| 2.0E-07                     | 5.9E-07            | 1.8E-06   |  |  |  |

| Copyright © 2008 Stephens As | ssociates Consulting Engineers LLC |
|------------------------------|------------------------------------|
| Revisions:                   |                                    |

By:\_\_\_\_\_\_Date: \_\_\_\_\_

\_\_Date: \_\_\_\_



Project:Number:026-08-007Sheet1of1Name:MWRA Contract No. 6905, Pipeline

Original Work:

By: R. Kline Date: June 5, 2008 Subject:

Laboratory Testing

Rte. 1, Saugus, MA


Checked By: J. Turner Date: June 13, 2008 Grain Size Distribution

Boring Number: B-25 Sample Number: S-1 Sample Depth: 1-3' Bottom 11"

Sample Description: Brown fine to medium SAND, little Gravel, little Silt

| Sieve De |           |       | eve Opening | Tare Weight | Sieve+Soil Wt. | Soil Weight (g) | Percent |
|----------|-----------|-------|-------------|-------------|----------------|-----------------|---------|
| Standard | Alternate | mm    | inches      | (g)         | (g)            | 0 (0)           | Passing |
| 37.5 mm  | 1-1/2"    | 37.5  | 1.476"      | 501.3       | 501.3          | 0.0             | 100.0   |
| 25.0 mm  | 1"        | 25    | 0.984"      | 502.5       | 502.5          | 0.0             | 100.0   |
| 19.0 mm  | 3/4"      | 19    | 0.748"      | 595.7       | 595.7          | 0.0             | 100.0   |
| 12.5 mm  | 1/2"      | 12.5  | 0.492"      | 607.7       | 613.1          | 5.4             | 97.4    |
| 9.5      | 3/8"      | 9.5   | 0.374"      | 565.4       | 567.5          | 2.1             | 96.4    |
| 4.75 mm  | No. 4     | 4.75  | 0.187"      | 527.9       | 545.9          | 18.0            | 87.7    |
| 2.00 mm  | No. 10    | 2     | 0.078"      | 451.1       | 470.0          | 18.9            | 78.6    |
| 1.18 mm  | No. 16    | 1.18  | 0.0464"     | 401.4       | 418.9          | 17.5            | 70.2    |
| 600 µm   | No. 30    | 0.6   | 0.0236"     | 410.6       | 444.4          | 33.8            | 53.9    |
| 300 µm   | No. 50    | 0.3   | .0118"      | 416.9       | 462.3          | 45.4            | 32.1    |
| 250 µm   | No. 60    | 0.25  | 0.0098"     | 340.2       | 349.5          | 9.3             | 27.6    |
| 150 µm   | No. 100   | 0.15  | 0.0059"     | 303.8       | 323.4          | 19.6            | 18.2    |
| 75 µm    | No. 200   | 0.075 | 0.0029"     | 301.9       | 316.5          | 14.6            | 11.2    |
| Pan      |           |       |             | 340.4       | 363.6          | 23.2            | 0.0     |
|          |           |       |             |             | il Wt Sum (a): | 207.8           |         |

Soil Wt. Sum (g): 207.8



 $D_{60} = 0.76$  mm USCS Classification = SW-SM

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:

By: \_\_\_\_\_ Date: \_\_\_\_\_ Date: \_\_\_\_\_

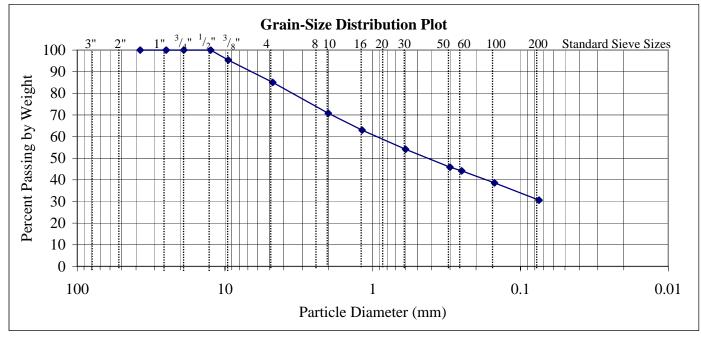


**Project:** Number: 026-08-007 Sheet 1 of Name: MWRA Contract No. 6905, Pipeline

Original Work:

R. Kline June 5, 2008 By: Date: Subject: Checked By: J. Turner Date: June 13, 2008

Rte. 1, Saugus, MA **Laboratory Testing** 


Grain Size Distribution

Boring Number: Sample Number: S-3 Sample Depth: 5-7' Bottom 4" B-25

Sample Description: Brown fine to coarse SAND, some Silt, little Gravel

| Sieve De | signation | Nominal Sie | eve Opening | Tare Weight | Sieve+Soil Wt.  | Soil Weight (g) | Percent  |  |
|----------|-----------|-------------|-------------|-------------|-----------------|-----------------|----------|--|
| Standard | Alternate | mm          | inches      | (g)         | (g)             | Ooli Weight (g) | Passing  |  |
| 37.5 mm  | 1-1/2"    | 37.5        | 1.476"      | 501.3       | 501.3           | 0.0             | 100.0    |  |
| 25.0 mm  | 1"        | 25          | 0.984"      | 502.5       | 502.5           | 0.0             | 100.0    |  |
| 19.0 mm  | 3/4"      | 19          | 0.748"      | 595.8       | 595.8           | 0.0             | 100.0    |  |
| 12.5 mm  | 1/2"      | 12.5        | 0.492"      | 607.7       | 607.7           | 0.0             | 100.0    |  |
| 9.5      | 3/8"      | 9.5         | 0.374"      | 565.4       | 570.3           | 4.9             | 95.4     |  |
| 4.75 mm  | No. 4     | 4.75        | 0.187"      | 527.9       | 538.9           | 11.0            | 85.1     |  |
| 2.00 mm  | No. 10    | 2           | 0.078"      | 451.1       | 466.3           | 15.2            | 70.8     |  |
| 1.18 mm  | No. 16    | 1.18        | 0.0464"     | 401.4       | 409.7           | 8.3             | 63.0     |  |
| 600 µm   | No. 30    | 0.6         | 0.0236"     | 410.6       | 420.0           | 9.4             | 54.1     |  |
| 300 µm   | No. 50    | 0.3         | .0118"      | 416.9       | 425.7           | 8.8             | 45.9     |  |
| 250 µm   | No. 60    | 0.25        | 0.0098"     | 340.2       | 342.0           | 1.8             | 44.2     |  |
| 150 µm   | No. 100   | 0.15        | 0.0059"     | 303.8       | 309.7           | 5.9             | 38.6     |  |
| 75 µm    | No. 200   | 0.075       | 0.0029"     | 301.9       | 310.4           | 8.5             | 30.6     |  |
| Pan      |           |             |             | 340.4       | 373.0           | 32.6            | 0.0      |  |
|          |           |             |             |             |                 |                 |          |  |
|          |           |             |             | Sa          | oil Mt Sum (a): | 106.4           | <u> </u> |  |

Soil Wt. Sum (g): 106.4



 $D_{10} =$ N/A mm Cu = N/A  $D_{30} =$ N/A mm Cc = N/A

 $D_{60} =$ 0.95 USCS Classification = mm SM

Copyright © 2008 Stephens Associates Consulting Engineers LLC

Revisions:

By: Date: Date:



Project: Number: 026-08-007 Sheet MWRA Contract No. 6905, Pipeline Name: Original Work: Rte. 1, Saugus, MA R. Kline Permeability Estimate by Date: June 5, 2008 Subject: Checked By: J. Turner Date: June 13, 2008 Kozeny-Carman Formula

Boring Number: B-25 Sample Number: S-3 Sample Depth: 5-7' Bottom 4"

According to References 1 and 3, (Note: Reference List at end of data sheets) Permeability may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})(1/S^2)[e^3/(1+e)]$ 

 $\gamma$  = assumed unit weight of water in situ, lb/ft<sup>3</sup> = 62.4 = 9800 N/m<sup>3</sup>  $\mu$  = viscosity of water, Ns/m<sup>2</sup> = 0.00131 at 10 °C

 $C_{K-C}$  = Kozeny-Carman empirical coefficient; reported as 4.8±0.3, usually taken as 5, =

S = specific surface area per unit volume of particles =  $SF^*\Sigma((P_{No D}-P_{No d})/d)$ 

 $P_{No D}$  = percentage by weight smaller than size D

 $P_{Nod}$  = percentage by weight larger than the next size d

 $D_{eq}$  = equivalent grain size for particles smaller than  $D_{min}$  of gradation =  $D_{min}/3^{0.5}$ 

SF = Shape Factor for particle angularity = 7.5

SF = 6.6 for rounded particles; 7.5 for medium angularity; 8.4 for angular (after Loudon, presented in Ref. 1)

thus, Permeability, may be estimated as  $k = (\gamma/\mu)(1/C_{K-C})\{1/\Sigma[(P_{N_0,D}-P_{N_0,d})/d]\}^2(1/SF^2)[e^3/(1+e)]$ , Table 1 below

Further, according Ref. 2, measured permeability typically varies from 1/3 to 3 times the estimated permeability. The references also note that this method may overpredict permeability when soil is gravel, and the results present an upper bound. The formula is not suitable for plastic soils.

| TABLE 1 - SUM OF (P <sub>No D</sub> - P <sub>No d</sub> )/d |                   |              |         |                                          |  |  |  |
|-------------------------------------------------------------|-------------------|--------------|---------|------------------------------------------|--|--|--|
| Sieve De                                                    | Sieve Designation |              | Percent | (P <sub>NoD</sub> -P <sub>Nod</sub> )/ d |  |  |  |
| Standard                                                    | Alternate         | Opening (cm) | Passing | (1/cm)                                   |  |  |  |
| 37.5 mm                                                     | 1-1/2"            | 3.750        | 100.0   |                                          |  |  |  |
| 25.0 mm                                                     | 1"                | 2.500        | 100.0   | 0.0                                      |  |  |  |
| 19.0 mm                                                     | 3/4"              | 1.900        | 100.0   | 0.0                                      |  |  |  |
| 12.5 mm                                                     | 1/2"              | 1.250        | 100.0   | 0.0                                      |  |  |  |
| 9.5                                                         | 3/8"              | 0.950        | 95.4    | 4.8                                      |  |  |  |
| 4.75 mm                                                     | No. 4             | 0.475        | 85.1    | 21.8                                     |  |  |  |
| 2.00 mm                                                     | No. 10            | 0.200        | 70.8    | 71.4                                     |  |  |  |
| 1.18 mm                                                     | No. 16            | 0.118        | 63.0    | 66.1                                     |  |  |  |
| 600 µm                                                      | No. 30            | 0.060        | 54.1    | 147.2                                    |  |  |  |
| 300 µm                                                      | No. 50            | 0.030        | 45.9    | 275.7                                    |  |  |  |
| 250 µm                                                      | No. 60            | 0.025        | 44.2    | 67.7                                     |  |  |  |
| 150 µm                                                      | No. 100           | 0.015        | 38.6    | 369.7                                    |  |  |  |
| 75 µm                                                       | No. 200           | 0.008        | 30.6    | 1065.2                                   |  |  |  |
| $D_{eq}$                                                    |                   | 0.004        | 0.0     | 7075.8                                   |  |  |  |
| •                                                           |                   |              |         |                                          |  |  |  |
|                                                             |                   |              |         |                                          |  |  |  |
|                                                             |                   |              |         |                                          |  |  |  |
|                                                             |                   |              |         |                                          |  |  |  |
|                                                             |                   | •            | Sum:    | 9165.4                                   |  |  |  |

Estimate Void Ratio (e) from Relative Density (Ref. 4)

 $D_r^2 = (N_1)60/C_P C_A C_{OCR}$ 

 $(N_1)60=$  86  $C_P=60+25logD_{50}=$  50.6  $D_{50}=$  0.42 mm  $C_A=1.2+0.05log(t/100)=$  1.19 t(yr)= 70  $C_{OCR}=OCR^{U.18}=$  1  $D_r=$  1.19418 >1, use 1.0

 $e_{max} = 0.85$   $e = e_{max} - (D_r)(e_{max} - e_{min})$   $e_{min} = 0.14$  e = 0.14

thus, range of permeability is estimated as:

| Estimated range of k (cm/s) |                    |           |  |  |  |
|-----------------------------|--------------------|-----------|--|--|--|
| Probable                    | Probable           |           |  |  |  |
| measured                    | easured Calculated |           |  |  |  |
| lower bnd                   | Estimate           | upper bnd |  |  |  |
| 2.5E-05                     | 7.6E-05            | 2.3E-04   |  |  |  |

| Copyright © 2008 Stephens As | ssociates Consulting Engineers LLC |
|------------------------------|------------------------------------|
| Revisions:                   |                                    |

By:\_\_\_\_\_\_Date: \_\_\_\_\_

\_\_\_Date: \_\_\_\_\_



|                        |                              | Name: MWRA Contract No.        |                                       |                        |
|------------------------|------------------------------|--------------------------------|---------------------------------------|------------------------|
| Original Work:         |                              |                                | Rte. 1, Saugus,                       |                        |
| Ву:                    | Date:                        | Subject:                       | Permeability Estin                    |                        |
| Checked By:            | Date:                        |                                | Kozeny-Carman Formula                 | - References           |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
| Ref 1. Carrier III     | , W.D. (2003), "Goodby       | e, Hazen; Hello, Kozeny-C      | arman," <i>Journal of Geotechnica</i> | al and                 |
| Geoenvironment         | tal Egnineering, Vol. 129    | 9, No. 11, November 2003,      | American Society of Civil Engi        | neers                  |
|                        |                              |                                |                                       |                        |
| Ref 2 Aubertin         | et al. (2005). Discussion    | of "Goodbye Hazen: Hell        | o, Kozeny-Carman," <i>Journal of</i>  | Geotechnical and       |
|                        |                              |                                | erican Society of Civil Engineers     |                        |
| Geochvironinen         | ar Egrinicening, voi. 13     | 1, 140. 0, August 2000, Alli   | shear occiety of Givil Engineers      | •                      |
| Def O Observie I       | D.D. and Aubantin M. (       | 2000)    [                     | Commonly Founding to De-              | allat than I badanalla |
|                        |                              |                                | zeny-Carman's Equation to Pre         | edict the Hydraulic    |
| Conductivity of a      | Soil, Canadian Geolec        | chnical Journal, 40(3), 616-   | 020.                                  |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                | s for Foundation Design, Electri      | c Power Research       |
| Institute, prepare     | ed by Cornell University,    | Ithaca, NY, p <i>age 2-38.</i> |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
|                        |                              |                                |                                       |                        |
| Copyright © 2008 Steph | ens Associates Consulting Er | gineers LLC                    |                                       | Stephens Associates    |

**Project:** Number: \_\_\_\_\_\_ 026-08-007 \_\_\_\_ Sheet \_ 1 \_ of \_ 1

# APPENDIX D EXCAVATIONS



# **APPENDIX D - EXCAVATIONS**

Stephens Associates Consulting Engineers, LLC (SA) is providing this information solely as a service to our Client. Under no circumstances should the information provided below be interpreted to mean that SA is assuming responsibility for construction site safety or the contractor's activities; such responsibility is not being implied and should not be inferred.

The Owner and the Contractor should make themselves aware of and become familiar with applicable local, state, and federal regulations, including, but not limited to, the current Occupational Safety and Health Administration Excavation and Trench Standards. In Federal Register, Volume 54, No. 209 (October 1989), the United States Department of Labor, Occupational Safety and Health Administration (**OSHA**) amended its "Construction Standards for Excavations, 29 CFR, Part 1926, Subpart P". This document was issued to reduce the risk of death or injury from collapse of trenches and excavations. This generally is the sole responsibility of the Contractor, who shall also be solely responsible for the means, methods, and sequencing of construction operations.

# **Excavations and Slopes**

The Contractor is solely responsible for designing and constructing stable, temporary excavations and should shore, slope, or bench the sides of the excavations as required to maintain stability of the excavation sides and bottom. Slope height, slope inclination, or excavation depths (including utility trench excavations) should **in no case** exceed those specified in local, state, or federal safety regulations (e.g., OSHA Health and Safety Standards for Excavations, 29 CFR Part 1926, or successor regulations, etc.). The Owner and Contractor should be aware that such regulations are strictly enforced and, if they are not followed, could endanger worker and public health, safety and property, and be liable for substantial penalties.

The Contractor's responsible person, as defined in 29 CFR Part 1926, should evaluate the soil exposed in the excavations as part of the Contractor's safety procedures. The exposed slope face should be protected against the elements. If any excavation, including a utility trench, is extended to a depth of more than twenty (20) feet, it will be necessary to have the side slopes designed by a professional engineer registered in *the state where construction is occurring*. Vehicles and soil piles should be kept a minimum lateral distance from the crest of the slope equal to no less than 1.5 times the slope height.

# Important note on Soil Variability

The soils to be excavated may vary significantly across the Site. Exploratory Borings performed as part of this Report indicate that near-surface soils are generally classified as Sand and Gravel based on ASTM D2488 – the Visual-Manual Procedure. This is considered Type C soil when applying the OSHA regulations. OSHA mandates that slope inclinations **not** exceed 1 ½: 1, horizontal: vertical, for Type C soils for excavations of 20 feet or less. Excavations should be evaluated by the Contractor's responsible person. Our preliminary soil classification is based solely on the our soil borings. The Contractor should verify that these soil conditions exist throughout the proposed area of excavation. The Contractor's responsible person, as defined in 29 CFR Part 1926, should evaluate the soil exposed in the excavations in accordance with OSHA requirements as part of the Contractor's regular procedures.

# **Temporary Shoring**

Where excavations encroach on, or may undermine nearby structures, such as roadways and utilities, etc. or as an alternative to sloping, vertical excavations less than 20 feet in height can be temporarily shored. The Contractor or the Contractor's specialty subcontractor should be responsible for the design of the temporary shoring in accordance with applicable regulatory requirements and the Contract Documents.



026-08-007 Page D-2 of 2 7/25/08

Appendix C
Dilution Factor Calculations and Saugus River Data

# **Dilution Factor (DF) Calculations**

The DF that was utilized in finding the appropriate DRCs was calculated as follows:

$$DF = (Qd + Qs)/Qd$$

Where: Qd is the maximum discharge flow rate

Qs is the receiving water flow rate (minimum for 7 consecutive days with a recurrence intercal of 10 years – 7Q10)

Note: Qs for the Saugus River was not available, therefore Qs was modified to represent the lowest flow over the 16 year period of available data for the Saugus River.

$$Qd = 210 \quad gpm$$

$$Coversion \quad 1.0 \quad gpm = 0.00223 \quad ft^{3}/s$$

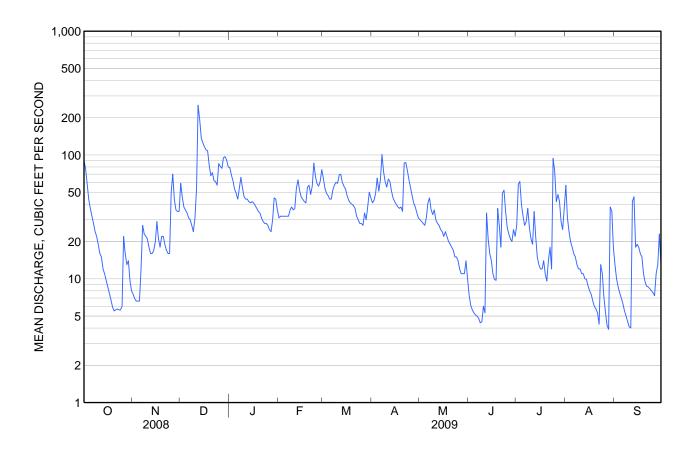
$$210$$
 x  $0.00223$  =  $0.4683$  ft<sup>3</sup>/s

Therefore, Qd =  $0.4683$  ft<sup>3</sup>/s

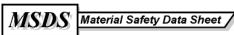
Qs = 33.6 ft<sup>3</sup>/s (Average flow recorded over a 16 year period)

From: http://waterdata.usgs.gov/ma/nwis/uv?

$$DF = (Qd + Qs)/Qd = 72.75$$
 (See Table 1)


The calculated DF was then used to find the appropriate Dilution Range Concentrations (DRCs) contained in MAG91000, Appendix IV.

Water-Data Report 2009


# 01102345 SAUGUS RIVER AT SAUGUS IRONWORKS AT SAUGUS, MA—Continued

# **SUMMARY STATISTICS**

| ·                        | Calendar Ye | ar 2008 | Water Year | r 2009 | Water Year | s 1994 - 2009 |
|--------------------------|-------------|---------|------------|--------|------------|---------------|
| Annual total             | 15,979.6    |         | 12,508.5   |        |            |               |
| Annual mean              | 43.7        |         | 34.3       |        | 33.6       |               |
| Highest annual mean      |             |         |            |        | 56.5       | 2006          |
| Lowest annual mean       |             |         |            |        | 14.5       | 2002          |
| Highest daily mean       | 253         | Dec 12  | 253        | Dec 12 | 1,220      | May 15, 2006  |
| Lowest daily mean        | 3.6         | Jul 19  | 3.9        | Aug 28 | 0.50       | Sep 5, 1999   |
| Annual seven-day minimum | 5.5         | Jul 14  | 5.0        | Jun 3  | 0.53       | Aug 31, 1999  |
| Maximum peak flow        |             |         | 319        | Dec 12 | 1,420      | May 14, 2006  |
| Maximum peak stage       |             |         | 4.75       | Dec 12 | 7.39       | May 14, 2006  |
| Instantaneous low flow   |             |         | 3.7        | Aug 28 | 0.46       | Sep 5, 1999   |
| Annual runoff (cfsm)     | 2.10        |         | 1.65       | C      | 1.61       | •             |
| Annual runoff (inches)   | 28.58       |         | 22.37      |        | 21.93      |               |
| 10 percent exceeds       | 93          |         | 65         |        | 75         |               |
| 50 percent exceeds       | 33          |         | 30         |        | 20         |               |
| 90 percent exceeds       | 7.8         |         | 7.0        |        | 3.3        |               |



Appendix D Material Safety Data Sheets



From: Mallinckrodt Baker, Inc. 222 Red School Lane Phillipsburg, NJ 08865



24 Hour Emergency Telephone: 908-859-2151 CHEMTREC: 1-800-424-9300

National Response in Canada CANUTEC: 613-996-6666

Outside U.S. And Canada Chemtrec: 703-527-3887

NOTE: CHEMTREC, CANUTEC and National Response Center emergency numbers to be used only in the event of chemical emergencies involving a spill, leak, fire, exposure or accident involving chemicals.

All non-emergency questions should be directed to Customer Service (1-800-582-2537) for assistance

# **Calcium Hypochlorite**

# 1. Product Identification

Synonyms: Hypochlorous Acid, Calcium Salt; Losantin; Calcium Hypochloride; Chlorinated lime

CAS No.: 7778-54-3 Molecular Weight: 142.98 Chemical Formula: CaCl2O2 Product Codes: 1378

# 2. Composition/Information on Ingredients

| Ingredient           | CAS No    | Percent | Hazardous |
|----------------------|-----------|---------|-----------|
|                      |           |         |           |
| Calcium Hypochlorite | 7778-54-3 | 100%    | Yes       |

# 3. Hazards Identification

# **Emergency Overview**

DANGER! STRONG OXIDIZER. CONTACT WITH OTHER MATERIAL MAY CAUSE FIRE. CORROSIVE. CAUSES BURNS TO ANY AREA OF CONTACT, HARMFUL IF SWALLOWED OR INHALED, WATER REACTIVE.

SAF-T-DATA<sup>(tm)</sup> Ratings (Provided here for your convenience)

Health Rating: 2 - Moderate

Health Rating: 2 - Moderate Flammability Rating: 0 - None Reactivity Rating: 3 - Severe (Oxidizer) Contact Rating: 2 - Moderate

Lab Protective Equip: GOGGLES; LAB COAT; VENT HOOD; PROPER GLOVES

Storage Color Code: Yellow (Reactive)

-----

# **Potential Health Effects**

-----

# Inhalation:

Corrosive. Extremely destructive to tissues of the mucous membranes and upper respiratory tract. Symptoms may include burning sensation, coughing, wheezing, laryngitis, shortness of breath, headache, nausea and vomiting. Inhalation may be fatal as a result of spasm inflammation and edema of the larynx and bronchi, chemical pneumonitis and pulmonary edema.

# Ingestion:

Corrosive. Swallowing can cause severe burns of the mouth, throat, and stomach. Can cause sore throat, vomiting, diarrhea.

# Skin Contact:

Corrosive. Symptoms of redness, pain, and severe burn can occur.

# **Eye Contact:**

Corrosive. Contact can cause blurred vision, redness, pain and severe tissue burns.

# Chronic Exposure:

Repeated exposures to calcium hypochlorite may cause bronchitis to develop with cough and/or shortness of breath.

# Aggravation of Pre-existing Conditions:

No information found.

# 4. First Aid Measures

# Inhalation:

Remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention immediately.

### Ingestion:

If swallowed, DO NOT INDUCE VOMITING. Give large quantities of water. Never give anything by mouth to an unconscious person. Get medical attention immediately.

### **Skin Contact:**

Immediately flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Get medical attention immediately. Wash clothing before reuse. Thoroughly clean shoes before reuse.

# **Eye Contact:**

Immediately flush eyes with plenty of water for at least 15 minutes, lifting lower and upper eyelids occasionally. Get medical attention immediately.

# 5. Fire Fighting Measures

### Fire:

Not combustible, but substance is a strong oxidizer and its heat of reaction with reducing agents or combustibles may cause ignition. Thermally unstable; at higher temperatures, may undergo accelerated decomposition with release of heat and oxygen.

### Explosion:

Sealed containers may rupture when heated. An explosion can occur if either a carbon tetrachloride or a dry ammonium compound fire extinguisher is used to extinguish a fire involving calcium hypochlorite. Sensitive to mechanical impact.

### Fire Extinguishing Media:

Use flooding quantities of water as fog or spray. Use water spray to keep fire-exposed containers cool. Avoid direct contact with water; reacts with water releasing chlorine gas. Fight fire from protected location or maximum possible distance. Do not use dry chemical fire extinguishers containing ammonium compounds. Do not use carbon tetrachloride fire extinguishers. Do not allow water runoff to enter sewers or waterways.

### **Special Information:**

In the event of a fire, wear full protective clothing and NIOSH-approved self-contained breathing apparatus with full facepiece operated in the pressure demand or other positive pressure mode.

# 6. Accidental Release Measures

Remove all sources of ignition. Keep water away from spilled material. Ventilate area of leak or spill. Wear appropriate personal protective equipment as specified in Section 8. Spills: Clean up spills in a manner that does not disperse dust into the air. Use non-sparking tools and equipment. Pick up spill for recovery or disposal and place in a closed container. Do not seal tightly.

# 7. Handling and Storage

Keep in a tightly closed container, stored in a cool, dry, ventilated area. Protect against physical damage and moisture. Isolate from any source of heat or ignition. Avoid storage on wood floors. Separate from incompatibles, combustibles, organic or other readily oxidizable materials. Containers of this material may be hazardous when empty since they retain product residues (dust, solids); observe all warnings and precautions listed for the product.

# 8. Exposure Controls/Personal Protection

# Airborne Exposure Limits:

None established.

# Ventilation System:

A system of local and/or general exhaust is recommended to keep employee exposures as low as possible. Local exhaust ventilation is generally preferred because it can control the emissions of the contaminant at its source, preventing dispersion of it into the general work area. Please refer to the ACGIH document, *Industrial Ventilation, A Manual of Recommended Practices*, most recent edition, for details.

# Personal Respirators (NIOSH Approved):

For conditions of use where exposure to the dust or mist is apparent, a half-face dust/mist respirator may be worn. For emergencies or instances where the exposure levels are not known, use a full-face positive-pressure, air-supplied respirator. WARNING: Air-purifying respirators do not protect workers in oxygen-deficient atmospheres.

# Skin Protection:

Wear impervious protective clothing, including boots, gloves, lab coat, apron or coveralls, as appropriate, to prevent skin contact.

# **Eye Protection:**

Use chemical safety goggles and/or a full face shield where splashing is possible. Maintain eye wash fountain and quick-drench facilities in work area.

# 9. Physical and Chemical Properties

# Appearance:

White or grayish-white powder.

# Odor:

Chlorine-like odor.

# Solubility:

Soluble in water; reacts, releasing chlorine gas.

# Specific Gravity:

2.35 @ 20C

# pH:

No information found.

% Volatiles by volume @ 21C (70F):

0

# **Boiling Point:**

No information found.

**Melting Point:** 

Decomposes above 177C (350F), releasing oxygen.

Vapor Density (Air=1):

6.9

Vapor Pressure (mm Hg):

Not applicable.

**Evaporation Rate (BuAc=1):** 

No information found.

# 10. Stability and Reactivity

### Stability

Rapidly decomposes on expsure to air. May decompose violently if exposed to heat or direct sunlight. Thermally unstable; decomposes at 177C (350F).

**Hazardous Decomposition Products:** 

Calcium hypochlorite gives off oxygen, chlorine and chlorine monoxide.

Hazardous Polymerization:

Will not occur.

Incompatibilities:

Calcium hypochlorite is a strong oxidizer. Reacts with water and acids giving off chlorine gas. Forms explosive compounds with ammonia and amines.

Incompatable with organic materials, nitrogen compounds and combustible materials.

Conditions to Avoid:

Heat, flame, moisture, dusting, sources of ignition and shock, and incompatibles.

# 11. Toxicological Information

Calcium hypochlorite: LD50 oral rat 850 mg/kg. Investigated as a tumorigen and mutagen.

# 12. Ecological Information

# **Environmental Fate:**

No information found.

**Environmental Toxicity:** No information found.

# 13. Disposal Considerations

Whatever cannot be saved for recovery or recycling should be handled as hazardous waste and sent to a RCRA approved waste facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

# 14. Transport Information

Domestic (Land, D.O.T.)

**Proper Shipping Name:** CALCIUM HYPOCHLORITE MIXTURE, DRY

Hazard Class: 5.1 UN/NA: UN1748 Packing Group: II

Information reported for product/size: 2.5KG

International (Water, I.M.O.)

Proper Shipping Name: CALCIUM HYPOCHLORITE, DRY

Hazard Class: 5.1 UN/NA: UN1748 Packing Group: II

Information reported for product/size: 2.5KG

# 15. Regulatory Information

| Chemical Inventory Status - Part 1\ |      |     |       |           |
|-------------------------------------|------|-----|-------|-----------|
| Ingredient                          | TSCA | EC  | Japan | Australia |
|                                     |      |     |       |           |
| Calcium Hypochlorite (7778-54-3)    | Yes  | Yes | Yes   | Yes       |

| \Chemical Inventory Status - Part 2\                                                                                                                | 、      |        |                |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----------------|--|--|--|
|                                                                                                                                                     | Canada |        |                |  |  |  |
| Ingredient                                                                                                                                          |        |        | NDSL Phil.     |  |  |  |
|                                                                                                                                                     |        |        |                |  |  |  |
| Calcium Hypochlorite (7778-54-3)                                                                                                                    | Yes    | Yes    | No Yes         |  |  |  |
| \Federal, State & International Regulations - Part 1\SARA 313                                                                                       |        |        |                |  |  |  |
| Ingredient R                                                                                                                                        |        |        | Chemical Catg. |  |  |  |
|                                                                                                                                                     | lo No  |        |                |  |  |  |
| \Federal, State & International Regulations - Part 2\                                                                                               |        |        |                |  |  |  |
| Ingredient C                                                                                                                                        | CERCLA | 261.33 | 8(d)           |  |  |  |
|                                                                                                                                                     | 10     |        |                |  |  |  |
| Chemical Weapons Convention: No TSCA 12(b): No CDTA: No SARA 311/312: Acute: Yes Chronic: Yes Fire: Yes Pressure: No Reactivity: Yes (Pure / Solid) |        |        |                |  |  |  |

Australian Hazchem Code: 2PE

Poison Schedule: S5

WHMIS:

This MSDS has been prepared according to the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS contains all of the information required by the CPR.

# 16. Other Information

NFPA Ratings: Health: 3 Flammability: 0 Reactivity: 1 Other: Oxidizer

Label Hazard Warning:

DANGER! STRONG OXIDIZER. CONTACT WITH OTHER MATERIAL MAY CAUSE FIRE. CORROSIVE. CAUSES BURNS TO ANY AREA OF CONTACT. HARMFUL IF SWALLOWED OR INHALED. WATER REACTIVE.

### **Label Precautions:**

Keep from contact with clothing and other combustible materials.

Store in a tightly closed container.

Remove and wash contaminated clothing promptly.

Do not store near combustible materials.

Do not get in eyes, on skin, or on clothing.

Do not breathe dust or vapor.

Keep container closed.

Use only with adequate ventilation.

Wash thoroughly after handling.

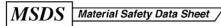
Do not contact with water.

# Label First Aid:

If swallowed, DO NOT INDUCE VOMITING. Give large quantities of water. Never give anything by mouth to an unconscious person. If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. In case of contact, immediately flush eyes or skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before reuse. In all cases get medical attention immediately.

# **Product Use:**

Laboratory Reagent.


**Revision Information:** 

MSDS Section(s) changed since last revision of document include: 3.

Disclaimer:

Mallinckrodt Baker, Inc. provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only as a guide to the appropriate precautionary handling of the material by a properly trained person using this product. Individuals receiving the information must exercise their independent judgment in determining its appropriateness for a particular purpose. MALLINCKRODT BAKER, INC. MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE INFORMATION SET FORTH HEREIN OR THE PRODUCT TO WHICH THE INFORMATION REFERS. ACCORDINGLY, MALLINCKRODT BAKER, INC. WILL NOT BE RESPONSIBLE FOR DAMAGES RESULTING FROM USE OF OR RELIANCE UPON THIS INFORMATION.

**Prepared by:** Environmental Health & Safety Phone Number: (314) 654-1600 (U.S.A.)



Mallinckrodt Baker, Inc. 222 Red School Lane Phillipsburg, NJ 08865

24 Hour Emergency Telephone: 908-859-2151 CHEMTREC: 1-800-424-9300

Outside U.S. and Canada Chemtrec: 703-527-3887

NOTE: CHEMTREC, CANUTEC and National Response Center emergency numbers to be used only in the event of chemical emergencies involving a spill, leak, fire, exposure or accident involving chamicals.

All non-emergency questions should be directed to Customer Service (1-800-582-2537) for assistance.

# SODIUM THIOSULFATE

# 1. Product Identification

Synonyms: Sodium thiosulfate, pentahydrate; thiosulfuric acid, disodium salt, pentahydrate

**CAS No.:** 7772-98-7 (Anhydrous) 10102-17-7 (Pentahydrate)

Molecular Weight: 248.17 Chemical Formula: Na2S2O3.5H2O

**Product Codes:** 

J.T. Baker: 3945, 3946, 3951 Mallinckrodt: 7763, 7802, 8100

# 2. Composition/Information on Ingredients

| Ingredient         | CAS No    | Percent | Hazardous |
|--------------------|-----------|---------|-----------|
| Sodium Thiosulfate | 7772-98-7 | 100%    | Yes       |

# 3. Hazards Identification

# **Emergency Overview**

CAUTION! MAY BE HARMFUL IF SWALLOWED OR INHALED. MAY CAUSE IRRITATION TO SKIN, EYES, AND RESPIRATORY TRACT.

 $SAF\text{-}T\text{-}DATA^{(tm)} \text{ Ratings (Provided here for your convenience)}$ 

Health Rating: 1 - Slight

Flammability Rating: 0 - None Reactivity Rating: 1 - Slight Contact Rating: 1 - Slight

Lab Protective Equip: GOGGLES; LAB COAT; PROPER GLOVES

Storage Color Code: Green (General Storage)

# **Potential Health Effects**

May cause irritation to the respiratory tract. Symptoms may include coughing and shortness of breath.

# Ingestion:

Low level of toxicity by ingestion. Diarrhea may occur by ingestion of large quantities.

# **Skin Contact:**

Irritation may occur from prolonged skin contact. **Eye Contact:** 

Contact may cause mechanical irritation.

Chronic Exposure:

Chronic exposure may cause skin effects. Aggravation of Pre-existing Conditions:

No information found.

# 4. First Aid Measures

Inhalation:

Remove to fresh air. Get medical attention for any breathing difficulty.

Ingestion:

Induce vomiting immediately as directed by medical personnel. Never give anything by mouth to an unconscious person. Get medical attention.

**Skin Contact:** 

Wash exposed area with soap and water. Get medical advice if irritation develops.

**Eye Contact:** 

Wash thoroughly with running water. Get medical advice if irritation develops.

# 5. Fire Fighting Measures

Fire:

Not considered to be a fire hazard.

Explosion:

Not considered to be an explosion hazard.

Fire Extinguishing Media:

Use any means suitable for extinguishing surrounding fire.

**Special Information:** 

Use protective clothing and breathing equipment appropriate for the surrounding fire.

# 6. Accidental Release Measures

Ventilate area of leak or spill. Wear appropriate personal protective equipment as specified in Section 8. Spills: Sweep up and containerize for reclamation or disposal. Vacuuming or wet sweeping may be used to avoid dust dispersal.

# 7. Handling and Storage

Keep in a tightly closed container, stored in a cool, dry, ventilated area. Protect against physical damage. Isolate from incompatible substances. Containers of this material may be hazardous when empty since they retain product residues (dust, solids); observe all warnings and precautions listed for the product.

# 8. Exposure Controls/Personal Protection

# Airborne Exposure Limits:

None established.

Ventilation System:

In general, dilution ventilation is a satisfactory health hazard control for this substance. However, if conditions of use create discomfort to the worker, a local exhaust system should be considered.

# Personal Respirators (NIOSH Approved):

For conditions of use where exposure to dust or mist is apparent and engineering controls are not feasible, a particulate respirator (NIOSH type N95 or better filters) may be worn. If oil particles (e.g. lubricants, cutting fluids, glycerine, etc.) are present, use a NIOSH type R or P filter. For emergencies or instances where the exposure levels are not known, use a full-face positive-pressure, air-supplied respirator. WARNING: Air-purifying respirators do not protect workers in oxygen-deficient atmospheres.

Skin Protection:

Wear protective gloves and clean body-covering clothing.

Eye Protection:

Safety glasses. Maintain eye wash fountain and quick-drench facilities in work area

# 9. Physical and Chemical Properties

Appearance:

Monoclinic, colorless crystals.

Odor:

Odorless

Solubility:

79g/100 ml water @ 4C (39F)

Density:

pH:

No information found.

% Volatiles by volume @ 21C (70F):

Ó

**Boiling Point:** 

> 100C (> 212F)

**Melting Point:** 

48C (118F) Loses water @ 100C (212F)

Vapor Density (Air=1):

No information found.

Vapor Pressure (mm Hg):

No information found.

 $Evaporation \ Rate \ (BuAc=1): \\$ 

# 10. Stability and Reactivity

Stability:

Stable under ordinary conditions of use and storage. Stability limited in solution.

**Hazardous Decomposition Products:** 

Oxides of sulfur and hydrogen sulfide. **Hazardous Polymerization:** 

Will not occur.

Incompatibilities:

Sodium nitrate, halogens, and oxidizing agents. Reacts with acids to release sulfur dioxide.

Conditions to Avoid:

Incompatibles.

# 11. Toxicological Information

No LD50/LC50 information found relating to normal routes of occupational exposure.

| \Cancer Lists\                 |       |             |               |
|--------------------------------|-------|-------------|---------------|
|                                | NTP   | Carcinogen  |               |
| Ingredient                     | Known | Anticipated | IARC Category |
|                                |       |             |               |
| Sodium Thiosulfate (7772-98-7) | No    | No          | None          |

# 12. Ecological Information

**Environmental Fate:** 

No information found.

**Environmental Toxicity:** 

No information found.

# 13. Disposal Considerations

Whatever cannot be saved for recovery or recycling should be managed in an appropriate and approved waste disposal facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

# 14. Transport Information

Not regulated.

# 15. Regulatory Information

```
Ingredient
 Sodium Thiosulfate (7772-98-7)
                                         Yes Yes Yes
 ------\Chemical Inventory Status - Part 2\-----
                                              --Canada--
           _____
 Sodium Thiosulfate (7772-98-7)
 -----\Federal, State & International Regulations - Part 1\-----
                                    -SARA 302-
                                                -----SARA 313-----
 Ingredient
                                    RQ TPQ
                                                List Chemical Catq.
                                  No No
 Sodium Thiosulfate (7772-98-7)
                                               No
                                                       No
 ------\Federal, State & International Regulations - Part 2\------
                                             -RCRA-
          -----
 Sodium Thiosulfate (7772-98-7)
Chemical Weapons Convention: No TSCA 12(b): No CDTA: No SARA 311/312: Acute: Yes Chronic: No Fire: No Pressure: No Reactivity: No (Pure / Solid)
```

Australian Hazchem Code: None allocated.

Poison Schedule: None allocated.

WHMIS:

This MSDS has been prepared according to the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS contains all of the information required by the CPR.

# 16. Other Information

NFPA Ratings: Health: 1 Flammability: 0 Reactivity: 0

Label Hazard Warning:

CAUTION! MAY BE HARMFUL IF SWALLOWED OR INHALED. MAY CAUSE IRRITATION TO SKIN, EYES, AND RESPIRATORY TRACT.

# **Label Precautions:**

Avoid contact with eyes, skin and clothing.

Wash thoroughly after handling.

Avoid breathing dust.

Keep container closed.

Use with adequate ventilation.

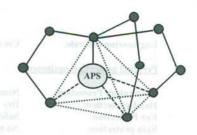
### Label First Aid:

If inhaled, remove to fresh air. Get medical attention for any breathing difficulty. In case of contact, immediately flush eyes or skin with plenty of water for at least 15 minutes. Get medical attention if irritation develops or persists. If swallowed, induce vomiting immediately as directed by medical personnel. Never give anything by mouth to an unconscious person.

**Product Use:** 

Laboratory Reagent.

Revision Information:


No Changes.

Disclaimer:

Mallinckrodt Baker, Inc. provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only as a guide to the appropriate precautionary handling of the material by a properly trained person using this product. Individuals receiving the information must exercise their independent judgment in determining its appropriateness for a particular purpose. MALLINCKRODT BAKER, INC. MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE INFORMATION SET FORTH HEREIN OR THE PRODUCT TO WHICH THE INFORMATION REFERS, ACCORDINGLY, MALLINCKRODT BAKER, INC. WILL NOT BE RESPONSIBLE FOR DAMAGES RESULTING FROM USE OF OR RELIANCE UPON THIS INFORMATION.

Prepared by: Environmental Health & Safety Phone Number: (314) 654-1600 (U.S.A.)

# Applied Polymer Systems, Inc.



# **Material Safety Data Sheet**

# IDENTIFICATION OF THE PRODUCT AND THE COMPANY

Product Name:

APS 702aa Floc Log

Supplied:

Applied Polymer Systems, Inc. 519 Industrial Drive Woodstock, GA 30189

www.siltstop.com Tel. 678-494-5998 Fax. 678-494-5298

# COMPOSITION/INFORMATION ON INGREDIENTS

Identification of the preparation:

Anionic water-soluble Co-polymer gel

# 3. HAZARD IDENTIFICATION

Placement of these materials on wet walking surface will create extreme slipping hazard.

# FIRST AID MEASURES

Inhalation:

None

Skin contact:

Contact with wet skin could cause dryness and chapping. Wash with soap and water. Use of

rubber gloves required.

Eye contact:

Rinse thoroughly with plenty of water, also under the eyelids, seek medical attention in case of

persistent irritation.

Ingestion:

Consult a physician

# 5. FIRE-FIGHTING MEASURES

Suitable extinguishing media:

Water, water spray, foam, carbon dioxide, dry powder.

Special fire-fighting precautions:

Floc Logs that become wet render surfaces extremely slippery.

Protective equipment for firefighters:

No special equipment required.

# ACCIDENTAL RELEASE MEASURES

Personal precautions:

No special precautions required.

Methods for cleaning up:

Dry wipe as well as possible. Keep in suitable and closed containers for disposal.

After cleaning, flush away traces with water.

# HANDLING AND STORAGE

Handling: Avoid contact with skin and eyes. Wash hands after handling.

Storage: Keep in a cool, dry place.

# 8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Engineering controls:

Use dry handling areas only. 21191242 19114109 belief A

### Personal protection equipment

Respiratory Protection:

Hand protection:

Dry cloth, leather or rubber gloves.

Eve Protection:

Safety glasses with side shields. Do not wear contact lenses.

Skin protection:

No special protective clothing required.

Hygiene measures:

Wash hands before breaks and at end of work day.

# PHYSICAL AND CHEMICAL PROPERTIES

Form:

Granular semi-solid gel

Color:

White to Brown

Odor:

None

pH:

7.89

Melting point:

N/A N/A

Flash point: Vapor density:

N/A

# 10. STABILITY AND REACTIVITY

Stability:

Product is stable, no hazardous polymerization will occur.

Materials to avoid:

Oxidizing agents may cause exothermic reactions.

Hazardous decomposition products:

Thermal decomposition may produce nitrogen oxides (NOx), carbon oxides.

# 11. TOXICOLOGICAL INFORMATION

# Acute toxicity

Oral:

LC 50/Daphnia Magna/48h/>420mg/L

Inhalation:

None

# 12. ECOLOGICAL INFORMATION

Water Flea: LC 50/Daphnia Magna/48h/>420mg/l

Algae: EC 50/Selenastrum capricornutum/96h>500mg/l

Bioaccumulation: The product is not expected to bioaccumulate.

Persistence / degradability: Not readily biodegradable: (~85% after 180 days ).

# 13. TRANSPORT AND REGULATORY INFORMATION

Not regulated by DOT,

RCRA status-Not a hazardous waste

NFPA and HMIS ratings:

NFPA Health:

Flammability:

0 Reactivity:

HMIS Health

3 2

Flammability

0 Reactivity