

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region 1 5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

CERTIFIED MAIL RETURN RECEIPT REQUESTED

APR 6 , 2011

Lori McCarthy, Project Manager Environmental Compliance Service, Inc. 588 Silver Street Agawam, MA 01001

Re: Authorization to discharge under the Remediation General Permit (RGP) – MAG910000. O'Connell Oil – Lee 5 site located at 241 Main Street, Lee, MA 01238, Berkshire County; Authorization # MAG910481

Dear Ms. McCarthy:

Based on the review of a Notice of Intent (NOI) submitted on behalf of O'Connell Oil Associates by your firm Environmental Compliance Service, Inc., for the site referenced above, the U.S. Environmental Protection Agency (EPA) hereby authorizes you, as the named Operator, to discharge in accordance with the provisions of the RGP at that site. Your authorization number is listed above.

The checklist enclosed with this RGP authorization indicates the pollutants which you are required to monitor. Also indicated on the checklist are the effluent limits, test methods and minimum levels (MLs) for each pollutant. Please note that the checklist does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of this permit, including influent and effluent monitoring, narrative water quality standards, record keeping, and reporting requirements, found in Parts I and II, and Appendices I – VIII of the RGP. See EPA's website for the complete RGP and other information at: <u>http://www.epa.gov/region1/npdes/mass.html#dgp</u>.

Please note the enclosed checklist includes parameters that exceeded Appendix III limits. The checklist also includes other parameters for which your laboratory reports indicated there was insufficient sensitivity to detect these parameters at the minimum levels established in Appendix VI of the RGP.

Also, please note that the metals include in the list are dilution dependent subject to limitations based on a dilution factor range (DFR), due to the ample dilution at the point of discharge (1,238) the DFR applicable for this pollutant is equal to the Ceiling Value DFR established in the RGP. (See Appendix IV of the RGP for Massachusetts facilities).

Therefore, the limit for arsenic of 540ug/L, nickel of 2,380ug/L, zinc of 1,480ug/L and iron of 5,000ug/L, shall not be exceeded in the discharge.

Finally, please note the list of pollutants attached to this authorization is subject to a recertification if the operations at the site result in a discharge lasting longer than six months. A recertification can be submitted to EPA within six (6) to twelve (12) months of operations in accordance with the 2010 RGP regulations.

This general permit and authorization to discharge will expire on September 9, 2015. You have reported that this project will terminate on May 11, 2011. If for any reason the discharge terminates sooner you are required to submit a Notice of Termination (NOT) to the attention of the contact person indicated below within 30 days of project completion.

Thank you in advance for your cooperation in this matter. Please contact Victor Alvarez at 617-918-1572 or Alvarez.Victor@epa.gov, if you have any questions.

Sincerely,

David M. Webster, Chief Industrial Permits Branch

Enclosure

Kathleen Keohane, MassDEP cc:

2

2010 Remediation General Permit Summary of Monitoring Parameters^[11]

NPDES Authorization Number:		MAG910481 - New			
Date Authorization Issued: April.		2011			
Facility/Site Name:	O'Cor	inell Oil – Lee 5			
Facility/Site Address:	Site lo	ocated at 241 Main Street, Lee, MA 01238, Berkshire County			
		address of owner:			
Legal Name of Operator:		Environmental Compliance Service, Inc.			
Operator contact name and Address:	, title,	Lori McCarthy, Project Manager, 588 Silver Street, Agawam, MA 01001			
and Address.	14 (T. 2)	Email:jniedzielski@ecsconsult.com= John Niedzielski. LSP			
Estimated Date of Com	pletion	: May 11, 2011			
Category and Sub-Category:		Category III. Contaminated Construction Dewatering. Subcategory B. Known Contaminated Sites			
Receiving Water:	A CONTRACTOR	Housatonic River			

Monitoring & Limits are applicable if checked. All samples are to be collected as grab samples

	<u>Parameter</u> .	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
\checkmark	1. Total Suspended Solids (TSS)	30 milligrams/liter (mg/L) **, 50 mg/L for hydrostatic testing **, Me#60.2/ML5ug/L
	2. Total Residual Chlorine (TRC) ¹	Freshwater = 11 ug/L ** Saltwater = 7.5 ug/L **/ Me#330.5/ML 20ug/L
	3. Total Petroleum Hydrocarbons (TPH)	5.0 mg/L/ Me# 1664A/ML 5.0mg/L
\checkmark	4. Cyanide (CN) ^{2, 3}	Freshwater = 5.2 ug/l ** Saltwater = 1.0 ug/L **/ Me#335.4/ML 5ug/L
\checkmark	5. Benzene (B)	5ug/L /50.0 ug/L for hydrostatic testing only/ Me#8260C/ML 2 ug/L
\checkmark	6. Toluene (T)	(limited as ug/L total BTEX)/ Me#8260C/ ML 2ug/L
~	7. Ethylbenzene (E)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L
\checkmark	8. (m,p,o) Xylenes (X)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L
~	9. Total Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) ⁴	100 ug/L/ Me#8260C/ ML 2ug/L
	10. Ethylene Dibromide (EDB) (1,2- Dibromoethane)	0.05 ug/l/ Me#8260C/ ML 10ug/L
	11. Methyl-tert-Butyl Ether (MtBE)	70.0 ug/l/Me#8260C/ML 10ug/L

	<u>Parameter</u>	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
\checkmark	12.tert-Butyl Alcohol (TBA) (TertiaryButanol)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
	13. tert-Amyl Methyl Ether (TAME)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
\checkmark	14. Naphthalene ⁵	20 ug/L /Me#8260C/ML 2ug/L
101-204	15. Carbon Tetrachloride	4.4 ug/L /Me#8260C/ ML 5ug/L
-Ison	16. 1,2 Dichlorobenzene (o- DCB)	600 ug/L /Me#8260C/ ML 5ug/L
	17. 1,3 Dichlorobenzene (m- DCB)	320 ug/L /Me#8260C/ ML 5ug/L
	18. 1,4 Dichlorobenzene (p- DCB)	5.0 ug/L /Me#8260C/ ML 5ug/L
A. Mary	18a. Total dichlorobenzene	763 ug/L - NH only /Me#8260C/ ML 5ug/I
	19. 1,1 Dichloroethane (DCA)	70 ug/L /Me#8260C/ ML 5ug/L
	20. 1,2 Dichloroethane (DCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
	21. 1,1 Dichloroethene (DCE)	3.2 ug/L/Me#8260C/ ML 5ug/L
	22. cis-1,2 Dichloroethene (DCE)	70 ug/L/Me#8260C/ ML 5ug/L
\checkmark	23. Methylene Chloride	4.6 ug/L/Me#8260C/ ML 5ug/L
\checkmark	24. Tetrachloroethene (PCE)	5.0 ug/L/Me#8260C/ ML 5ug/L
	25. 1,1,1 Trichloro-ethane (TCA)	200 ug/L/Me#8260C/ ML 5ug/L
	26. 1,1,2 Trichloro-ethane (TCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
\checkmark	27. Trichloroethene (TCE)	5.0 ug/L /Me#8260C/ ML 5ug/L
199960-91 -91	28. Vinyl Chloride (Chloroethene)	2.0 ug/L /Me#8260C/ ML 5ug/L
	29. Acetone	Monitor Only(ug/L)/Me#8260C/ML 50ug/L
\checkmark	30. 1,4 Dioxane	Monitor Only /Me#1624C/ML 50ug/L
	31. Total Phenols	300 ug/L Me#420.1&420.2/ML 2 ug/L/ Me# 420.4 /ML 50ug/L
	32. Pentachlorophenol (PCP)	1.0 ug/L /Me#8270D/ML 5ug/L,Me#604 &625/ML 10ug/L
3.0	33. Total Phthalates (Phthalate esters) ⁶	3.0 ug/L ** /Me#8270D/ML 5ug/L, Me#606/ML 10ug/L& Me#625/ML 5ug/L
~	34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	6.0 ug/L /Me#8270D/ML 5ug/L,Me#606/ML 10ug/L & Me#625/ML 5ug/L
	35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)	10.0 ug/L
	a. Benzo(a) Anthracene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	b. Benzo(a) Pyrene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	c. Benzo(b)Fluoranthene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L

	Parameter	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
and the second	d. Benzo(k)Fluoranthene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	e. Chrysene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	f. Dibenzo(a,h)anthracene 7	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	g. Indeno(1,2,3-cd) Pyrene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML5ug/L
	36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)	100 ug/L
	h. Acenaphthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	i. Acenaphthylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	j. Anthracene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	k. Benzo(ghi) Perylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	I. Fluoranthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
E PIL	m. Fluorene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	n. Naphthalene ⁵	20 ug/l / Me#8270/ML 5ug/L, Me#610/MI 5ug/L & Me#625/ML 5ug/L
	o. Phenanthrene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	p. Pyrene	X/Me#8270D/ML5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	37. Total Polychlorinated Biphenyls (PCBs) ^{8, 9}	0.000064 ug/L/Me# 608/ ML 0.5 ug/L
\checkmark	38. Chloride	Monitor only/Me# 300.0/ ML 0.1ug/L

		<u>Total Recoverable</u> <u>Metal Limit @ H ¹⁰=</u> <u>50 mg/l CaCO3 for</u> <u>discharges in</u> <u>Massachusetts</u> (ug/l) ^{11/12}		<u>Minimum</u> level=ML	
	Metal parameter	Freshwater		Contraction Prove	
	39. Antimony	5.6/ML	10		
\checkmark	40. Arsenic **	540/ML20	Repairing the		
	41. Cadmium **	0.2/ML10			
	42. Chromium III (trivalent) **	48.8/ML15			
	43. Chromium VI (hexavalent)	11.4/ML10			

1844		Total Recoverable Metal Limit @ H 10 =50 mg/l CaCO3 for discharges in Massachusetts (ug/l) 11/12	<u>Minimum</u> level=ML	
A STAR AND	Metal parameter	Freshwater		
	44. Copper **	5.2/ML15		
	45. Lead **	1.3/ML20		
	46. Mercury **	0.9/ML0.2		
\checkmark	47. Nickel **	2,380ML20		
	48. Selenium **	5/ML20	COLUMN THE PARTY	
	49. Silver	1.2/ML10	State of the state of the state	
\checkmark	50. Zinc **	1,480/ML15		
\checkmark	51. Iron	5,000/ML 20		

	Other Parameters	Limit
	52. Instantaneous Flow	Site specific in CFS
\checkmark	53. Total Flow	Site specific in CFS
\checkmark	54. pH Range for Class A & Class B Waters in MA	6.5-8.3; 1/Month/Grab13
1	55. pH Range for Class SA & Class SB Waters in MA	6.5-8.3; 1/Month/Grab13
	56. pH Range for Class B Waters in NH	6.5-8; 1/Month/Grab ¹³
	57. Daily maximum temperature - Warm water fisheries	83°F; 1/Month/Grab ¹⁴
	58. Daily maximum temperature - Cold water fisheries	68°F; 1/Month/Grab ¹⁴
	59. Maximum Change in Temperature in MA - Any Class A water body	1.5°F; 1/Month/Grab ¹⁴
	60. Maximum Change in Temperature in MA - Any Class B water body- Warm Water	5°F; 1/Month/Grab ¹⁴
-	61. Maximum Change in Temperature in MA – Any Class B water body - Cold water and Lakes/Ponds	3°F; 1/Month/Grab ¹⁴
	62. Maximum Change in Temperature in MA – Any Class SA water body - Coastal	1.5°F; 1/Month/Grab ¹⁴
	63. Maximum Change in Temperature in MA – Any Class SB water body - July to September	1.5°F; 1/Month/Grab ¹⁴
	64. Maximum Change in Temperature in MA –Any Class SB water body - October to June	4°F; 1/Month/Grab ¹⁴

Footnotes:

¹ Although the maximum values for TRC are 11ug/l and 7.5 ug/l for freshwater, and saltwater respectively, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., Method 330.5, 20 ug/l).
² Limits for cyanide are based on EPA's water quality criteria expressed as micrograms per liter. There is currently no EPA approved test method for free cyanide. Therefore, total cyanide must be reported.

³ Although the maximum values for cyanide are 5.2 ug/l and 1.0 ug/l for freshwater and saltwater, respectively, the compliance limits are equal to the minimum level (ML) of the Method 335.4 as listed in Appendix VI (i.e., 10 ug/l).

BTEX = sum of Benzene, Toluene, Ethylbenzene, and total Xylenes.

⁵ Naphthalene can be reported as both a purgeable (VOC) and extractable (SVOC) organic compound. If both VOC and SVOC are analyzed, the highest value must be used unless the QC criteria for one of the analyses is not met. In such cases, the value from the analysis meeting the QC criteria must be used.

⁶ The sum of individual phthalate compounds(not including the #34, Bis (2-Ethylhexyl) Phthalate . The compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measurement of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁷ Although the maximum value for the individual PAH compounds is 0.0038 ug/l, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

⁸ In the November 2002 WQC, EPA has revised the definition of Total PCBs for aquatic life as total PCBs is the sum of all homologue, all isomer, all congener, or all "Oroclor analyses."Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measure of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁹Although the maximum value for total PCBs is 0.000064 ug/l, the compliance limit is equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., 0.5 ug/l for Method 608 or 0.00005 ug/l when Method 1668a is approved).
¹⁰ Hardness. Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc are Hardness Dependent.

¹¹ For a Dilution Factor (DF) from 1 to 5, metals limits are calculated using DF times the base limit for the metal. See Appendix IV. For example, iron limits are calculated using DF x 1,000ug/L (the iron base limit). Therefore DF is 1.5, the iron limit will be 1,500 ug/L; DF 2, then iron limit =1,000 x 2 =2,000 ug/L., etc. not to exceed the DF=5.

Minimum Level (ML) is the lowest level at which the analytical system gives a recognizable signal and acceptable calibration point for the analyte. The ML represents the lowest concentration at which an analyte can be measured with a known level of confidence. The ML is calculated by multiplying the laboratory-determined method detection limit by 3.18 (see 40 CFR Part 136, Appendix B).

pH sampling for compliance with permit limits may be performed using field methods as provided for in EPA test Method 150.1.

Temperature sampling per Method 170.1

588 Silver Street, Agawam, MA 01001 tel 413.789.3530 fax 413.789.2776 www.ecsconsult.com

Mr. Victor Alvarez United States Environmental Protection Agency, Region 1 RPG-NOC Processing 1 Congress Street, Suite 1100 Boston, MA 02114-2023 March 29, 2011 Project No. 91-212738.10

RE: O'Connell Oil Associates 241 Main Street Lee, Massachusetts MassDEP RTN 1-17601

Dear Mr. Alvarez:

Environmental Compliance Services, Inc. (ECS) is pleased to provide supporting documentation for the Notice of Intent (NOI) for the Remediation General Permit (RGP) on behalf of O'Connell Oil Associates, Inc. (O'Connell). This NOI is submitted in order to obtain a permit for the operation of a temporary groundwater recovery and treatment system (GWTS) to be located at 241 Main Street, Lee, Massachusetts (the Site). The GWTS will be operated during construction activities at the Site in order to allow for the removal of petroleum-impacted soil, collection of soil samples, and removal and replacement of the underground storage tank (UST) system. A Site Locus is provided as Figure 1. A copy of the NOI form is provided as Attachment I.

System Design

A proposed schematic is attached. The groundwater treatment system located on the Site will be composed of submersible pneumatic pumps that collect groundwater from the excavation area. Recovered groundwater will be pumped to a frac tank and subsequently through bag filters and three liquid phase granular activated carbon units (plumbed in series) prior to discharge to the Town of Lee storm water line located in Center Street. The storm water line outfalls to the Housatonic River at a point located northwest of the Site.

A Site plan detailing the location of the groundwater treatment system, the catch basin for the storm water line, and the planned excavation areas is provided as Figure 2. A line diagram of the groundwater treatment system is provided as Figure 3. The outfall location of the storm water line and surface water bodies adjacent to the outfall location are indicated on the Site Locus, Figure 1.

Average flow rate of discharge of treated groundwater from the system to the storm water line is expected to be approximately 5 gallons per minute (gpm). The design capacity of the groundwater treatment system is 25 gpm based upon a design capacity of the submersible pump. As a conservative estimate, a maximum flow capacity for the groundwater treatment system was estimated at 25 gpm.

Project No. 91-212738.10 Mr. Victor Alvarez USEPA Region 1 March 29, 2011

Page 2

Influent Sample Analysis

Groundwater samples were collected at monitoring wells ECS-1 and ECS-3, located in the areas of planned excavation, on March 18, 2011. The samples were submitted to Spectrum Analytical, Inc. of Agawam, Massachusetts under standard chain of custody protocol for analysis of semivolatile organic compounds (SVOCs) by USEPA Method 625, volatile organic compounds (VOCs) by USEPA Method 8260B, polychlorinated biphenyls (PCBs) by USEPA Method 608, total petroleum hydrocarbons (TPH) by USEPA Method 1664, ethylene dibromide (EDB) by USEPA Method 504.1, total metals (silver, arsenic, cadmium, chromium, copper, iron, nickel, lead, antimony, selenium, and zinc) by USEPA Method 200.7, mercury by USEPA Method 245.1/7470A, cyanide by USEPA Method 9012A, total residual chlorine by Hach 8167, chloride by USEPA Method 300, and total suspended solids by SM2540D. A copy of the laboratory report and chain of custody record are provided as Attachment II.

The attached Table 1 summarizes the results of analysis of the samples. Arsenic, iron, nickel, zinc, cyanide, bis(2-chloroethyl)ether, naphthalene, total suspended solids, chloride, benzene, nbutylbenzene, ethylbenzene, isopropylbenzene, n-propylbenzene, tetrachloroethene, trichloroethene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, m,p-xylenes, o-xylene, and tert-butanol (TBA)were detected in the sample collected at ECS-1 and/or ECS-3 on March 18, 2011. Comparison of the compounds Appendix concentrations of these to the III effluent limitations (http://www.epa.gov/ne/npdes/remediation/RGP2010_PermitAppendixIII.pdf, accessed March 28, 2011) indicates that the concentrations of arsenic, iron, cyanide, bis(2-chloroisopropyl)ether, total suspended solids, benzene, naphthalene, tetrachloroethene, trichloroethene, and total benzene, toluene, ethylbenzene and xylenes (BTEX) were above the Appendix III effluent limitations.

Receiving Waters Information

The receiving water for the treated groundwater discharge is the Housatonic River, located approximately 600 feet northwest of the Site.

ECS consulted the online United States Geological Survey (USGS) Streamstats program to determine the 7Q10 flow rate at the discharge location (http://streamstatsags.cr.usgs.gov/gages/viewer 14.htm?stabbr=GAGES, accessed March 28, 2011). The nearest stream gauge location to the discharge point is Station No. 01197500 (located at 42.23193N, 73.35499W) in Great Barrington, Massachusetts. Data obtained from the online resource indicated that the calculated 7Q10 flow rate for this basin is 69 cubic feet per second (cfs). A copy of the Streamstats map and Streamstats gauging station report is provided as Attachment III

Based upon an estimated maximum flow rate of the discharge from the groundwater treatment system of 25 gpm, the dilution factor was calculated as:

Project No. 91-212738.10 Mr. Victor Alvarez USEPA Region 1 March 29, 2011

Page 3

Equation 1:	DF = (Qd + Qs)/Qd
Where:	 DF = DilutionFactor Qd = Maximum flow rate of the discharge in cfs Qs = Receiving water 7Q10 flow (cfs), where, 7Q10 = The minimum flow (cfs) for 7 consecutive days with a recurrence interval of 10 years
	Qd = 25 gpm x 0.00223 cfs/gpm = 0.0558 cfs
	DF = (0.0558 + 69)/(0.0558) $DF = 1,237.6$

The concentrations of arsenic and iron reported present in the untreated sample were compared to the column corresponding to a dilution factor of 1,237 (>100) in Appendix IV table. The discharge limits listed in the Appendix IV table are 540 μ g/L for arsenic and 5,000 μ g/L for iron. Based upon this information, arsenic should not be subject to monitoring requirements for this discharge, and iron should be subject to monitoring requirements. There is no permit effluent limit for chloride. Based upon the presence of chloride in the groundwater samples, chloride should be subject to monitoring requirements for this discharge.

Receiving Water Classification

ECS consulted the Massachusetts Department of Environmental Protection (MassDEP) Division of Water Pollution Control (http://www.mass.gov/dep/water/laws/tblfig.pdf) to determine the classification for the receiving waters. The list indicates that the Housatonic River is classified as Class B water due to warm water. Water in this segment of the Housatonic is considered impaired for aquatic life, fish consumption, primary and secondary contact, and aesthetics. Total Maximum Daily Loads (TMDL) for this segment of the Housatonic River include unknown toxicity, priority organics, thermal modifications, pathogens, and turbidity. The 2007 Housatonic River Watershed Water Quality Assessment Report for this segment of the Housatonic River is provided in Attachment IV.

Evaluation of Threatened or Endangered Species or Critical Habitat Located within Receiving Waters

According to Massachusetts Geographic Information Systems (MassGIS) online maps for the Natural Heritage Endangered Species Program (NHESP) (2008), a Priority Habitat of Rare Species and an Estimated Habitat of Rare Wildlife are located within at the proposed discharge area. A copy of the NHESP Map is provided as Attachment V. The area is designated as Priority Habitat (PH) 1508 and Estimated Habitat (EH) 941. Information regarding this Estimated and Priority Habitat has been requested from the Massachusetts Division of Fisheries and Wildlife and is pending. There are no Areas

Project No. 91-212738.10 Mr. Victor Alvarez USEPA Region 1 March 29, 2011

Page 4

of Critical Environmental Concern or Endangered Species known to exist within ¹/₂-mile of proposed discharge area.

Review of National Register of Historic Places

A listing of all Historic Places within the town of Lee was obtained from the Massachusetts Cultural Resources Information System (MACRIS) online database at http://mhc-macris.net/towns.aspx (accessed March 28, 2011). Copies of the MACRIS report for Main Street and Center Street are provided as Attachment VI. The database indicated the presence of several historic places located in close proximity to the Site and proposed discharge area. This project does involve new construction and the demolition or rehabilitation of existing structures and historic properties are not affected by the discharge or identified in the path of the discharges regulated by this permit, and are not identified where installation or construction of treatment systems or BMPs to control such discharges are planned.

Copies of this letter and supporting documentation have been forwarded to Mr. Richard Green at the Western Regional Office of the MassDEP and to Mr. Christopher Pompi, Superintendant of the Department of Public Works for the Town of Lee. Should you have any questions or concerns regarding the contents of this letter or the NOI for the RGP, please do not hesitate to contact the undersigned at (413) 789-3530.

Sincerely, ENVIRONMENTAL COMPLIANCE SERVICES, INC.

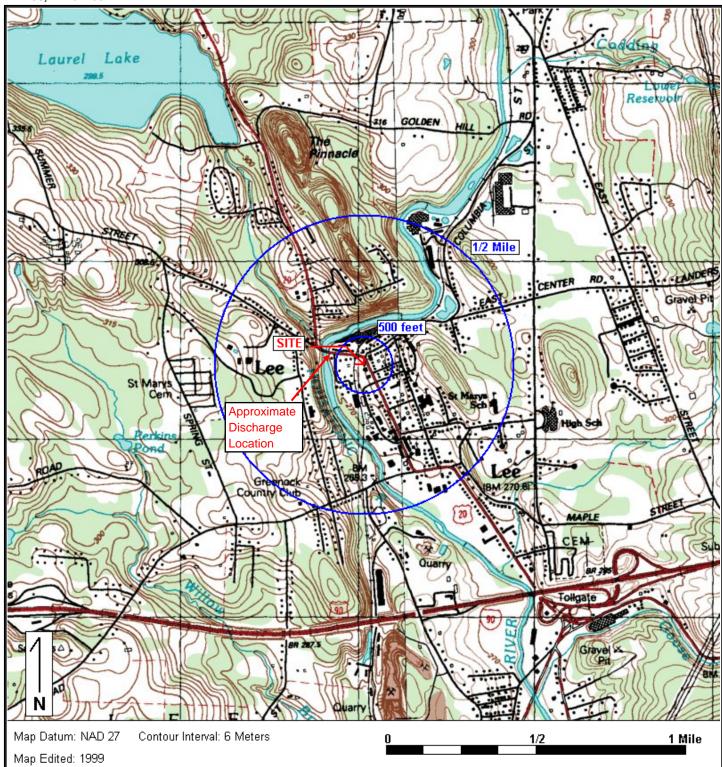
Allelarthy

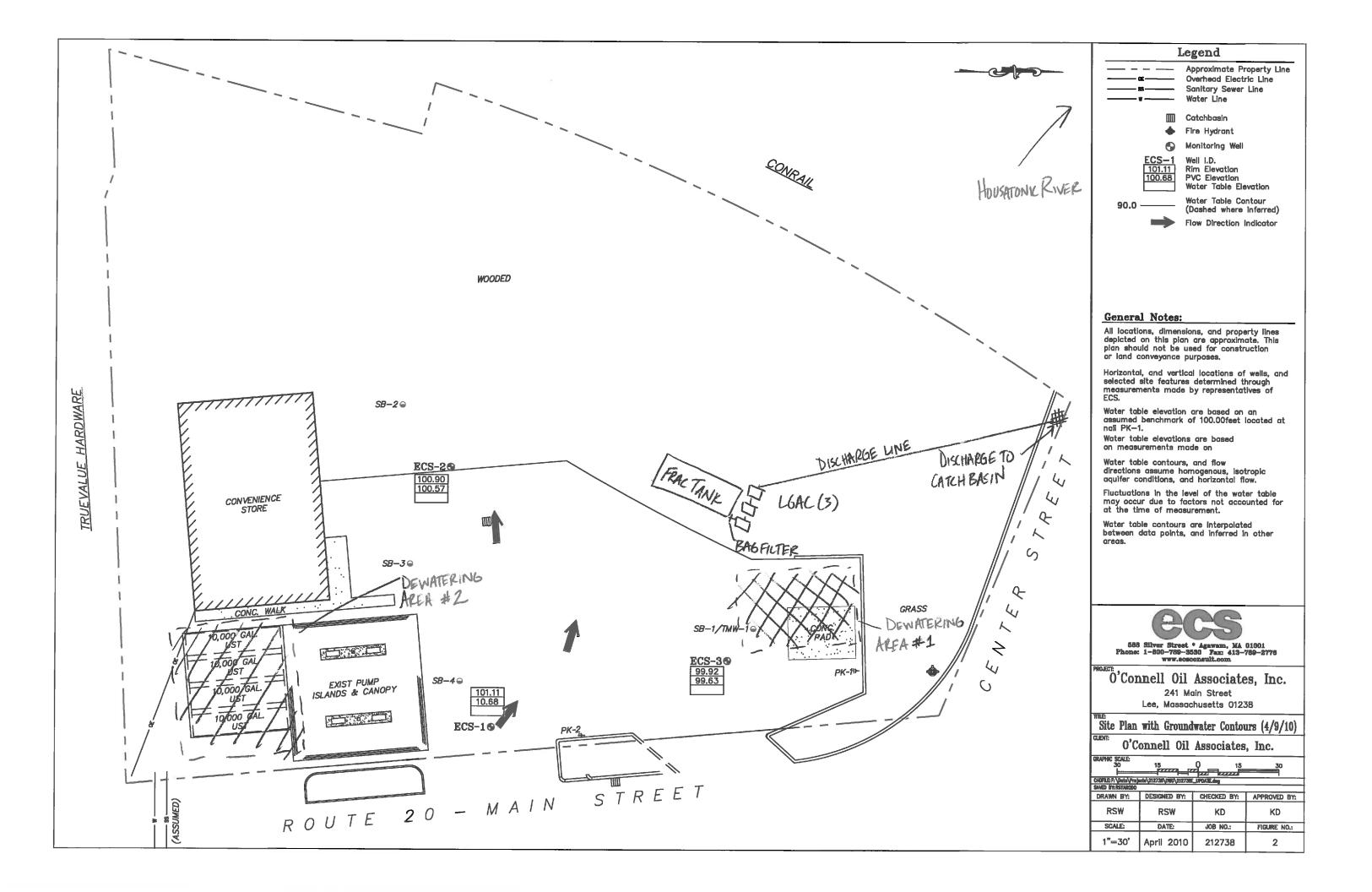
Lori A. McCarthy Project Manager

John J. Niedzielski, LSP Branch Manager

LAG/JJN/kab Attachments

Cc: R. Green, MassDEP, WERO (via eDEP)C. Pompi, Town of Lee Department of Public Works (via email)J. Sobon, O'Connell Oil Associates, Inc.


FIGURES


Environmental Compliance Services, Inc. 588 Silver Street Agawam, MA 01001 Phone 413.789.3530 Fax 413.789.2776 www.ecsconsult.com

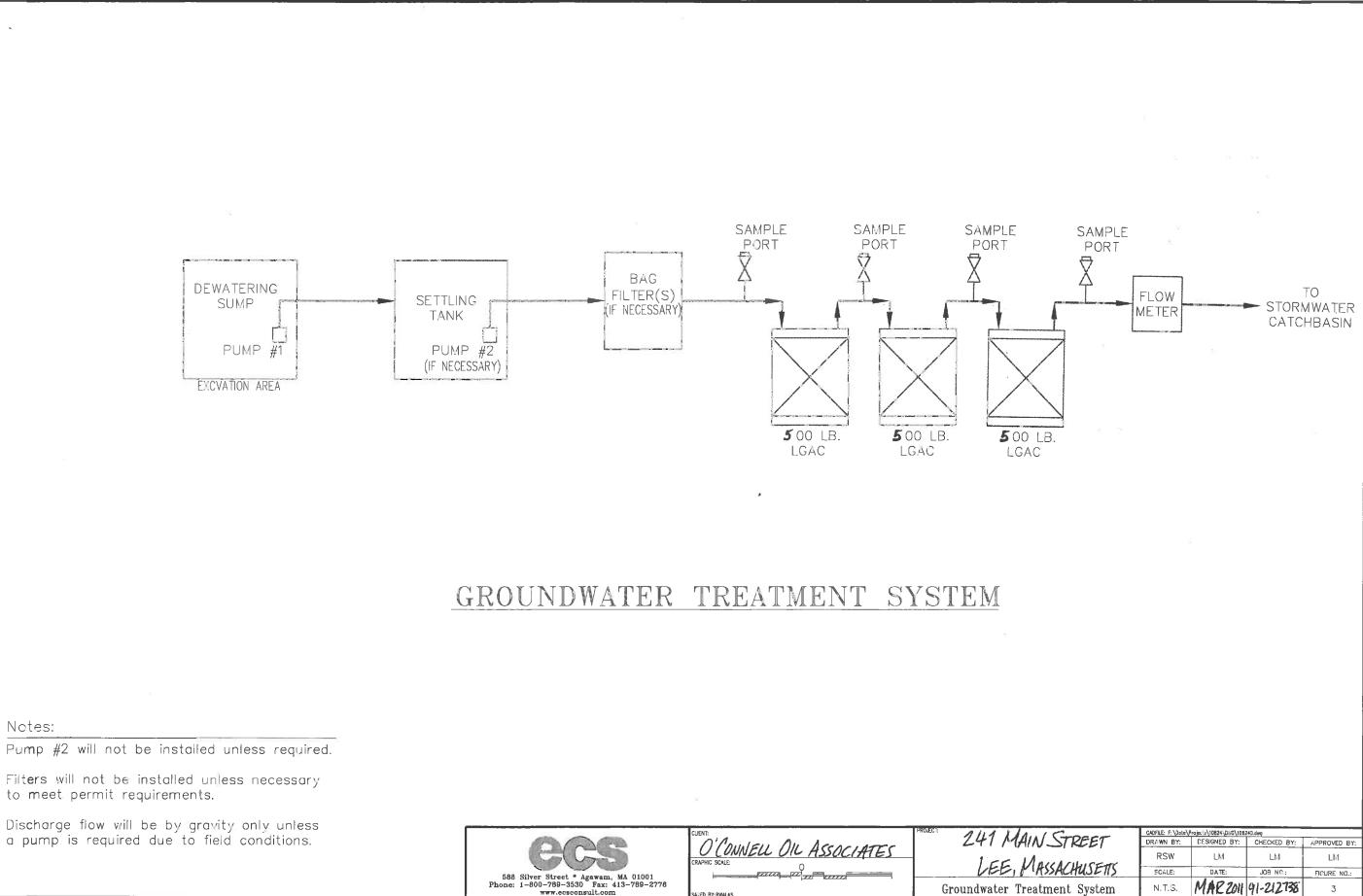

241 Main St, Lee, MA 241 Main St Lee, MA 01238

Figure 1: SITE LOCUS

Base Map: U.S. Geological Survey; Quadrangle Location: Stockbridge, MA Lat/Lon: 42° 18' 35" NORTH, 73° 15' 7" WEST - UTM Coordinates: 18 644071 EAST / 4685642 NORTH Generated By: Kevin Collins

to meet permit requirements.

588 Silver Street * Agawam, MA 01001 Phone: 1-800-789-3530 Fax: 413-789-2776 www.ecsconsult.com	CLENT: O'CONNELL OIL ASSOCIATES CRAPHIC SOALE CRAPHIC SOALE CRAPHIC CRAPHIC SOALE CRAPHIC SOALE CRAPHIC	Croundwater Treatm

TABLES

TABLE 1 **RESULTS OF ANALYSIS OF GROUNDWATER SAMPLES**

O'Connell Oil Associates 241 Main Street, Lee, Massachusetts

		ECS-1		ECS-3	
Method / Analyte	Units	Result	RDL	Result	RDL
EPA 1664 Rev. A					
Non-polar material (SGT-HEM)	mg/l	BRL	1	BRL	1
EPA 2007					

Wiethou / Milaryte	Onto	Result	KDL	Result	KDL
EPA 1664 Rev. A					
Non-polar material (SGT-HEM)	mg/l	BRL	1	BRL	1
EPA 200.7					
Silver	mg/l	BRL	0.005	BRL	0.005
Arsenic	mg/l	BRL	0.004	0.0111	0.004
Cadmium	mg/l	BRL	0.0025	BRL	0.0025
Chromium	mg/l	BRL	0.005	BRL	0.005
Copper	mg/l	BRL	0.005	BRL	0.005
Iron	mg/l	3.13	0.015	18.5	0.015
Nickel	mg/l	BRL	0.005	0.0138	0.005
Lead	mg/l	BRL	0.0075	BRL	0.0075
Antimony	mg/l	BRL	0.006	BRL	0.006
Selenium	mg/l	BRL	0.015	BRL	0.015
Zinc	mg/l	0.015	0.005	0.0174	0.005
EPA 245.1/7470A					
Mercury	mg/l	BRL	0.0002	BRL	0.0002
EPA 335.4 / SW846 9012A					
Cyanide (total)	mg/l	0.0806	0.005	0.0225	0.005

O'Connell Oil Associates 241 Main Street, Lee, Massachusetts

		ECS-1		ECS-3	
Method / Analyte	Units	Result	RDL	Result	RDL
EPA 504.1					
1,2-Dibromoethane (EDB)	μg/l	BRL	0.01	BRL	0.01
EPA 608					
Aroclor-1016	μg/l	BRL	0.065	BRL	0.065
Aroclor-1221	μg/l	BRL	0.065	BRL	0.065
Aroclor-1232	μg/l	BRL	0.065	BRL	0.065
Aroclor-1242	μg/l	BRL	0.065	BRL	0.065
Aroclor-1248	μg/l	BRL	0.065	BRL	0.065
Aroclor-1254	μg/l	BRL	0.065	BRL	0.065
Aroclor-1260	μg/l	BRL	0.065	BRL	0.065
Aroclor-1262	μg/l	BRL	0.065	BRL	0.065
Aroclor-1268	μg/l	BRL	0.065	BRL	0.065
EPA 625					
Acenaphthene	μg/l	BRL	5	BRL	5
Acenaphthylene	µg/l	BRL	5	BRL	5
Aniline	µg/l	BRL	5	BRL	5
Anthracene	μg/l	BRL	5	BRL	5
Azobenzene/Diphenyldiazine	µg/l	BRL	5	BRL	5
Benzidine	µg/l	BRL	5	BRL	5
Benzo (a) anthracene	µg/l	BRL	5	BRL	5
Benzo (a) pyrene	µg/l	BRL	5	BRL	5
Benzo (b) fluoranthene	μg/l	BRL	5	BRL	5
Benzo (g,h,i) perylene	µg/l	BRL	5	BRL	5
Benzo (k) fluoranthene	μg/l	BRL	5	BRL	5
Benzoic acid	µg/l	BRL	5	BRL	5

O'Connell Oil Associates

241 Main Street, Lee, Massachusetts

Results reported in milligram	s per liter (mg/L) or micrograms	s per liter (ug/L), as noted
results reported in minigran) of microgram	per mer (µg, b), us notea

	ECS-1 ECS-3				
		LC	51		
Method / Analyte	Units	Result	RDL	Result	RDL
EPA 625 (continued)					
Benzyl alcohol	μg/l	BRL	5	BRL	5
Bis(2-chloroethoxy)methane	μg/l	BRL	5	BRL	5
Bis(2-chloroethyl)ether	μg/l	BRL	5	BRL	5
Bis(2-chloroisopropyl)ether	μg/l	BRL	5	BRL	5
Bis(2-ethylhexyl)phthalate	μg/l	BRL	5	8.21	5
4-Bromophenyl phenyl ether	μg/l	BRL	5	BRL	5
Butyl benzyl phthalate	μg/l	BRL	5	BRL	5
Carbazole	μg/l	BRL	5	BRL	5
4-Chloro-3-methylphenol	μg/l	BRL	5	BRL	5
4-Chloroaniline	μg/l	BRL	5	BRL	5
2-Chloronaphthalene	μg/l	BRL	5	BRL	5
2-Chlorophenol	μg/l	BRL	5	BRL	5
4-Chlorophenyl phenyl ether	μg/l	BRL	5	BRL	5
Chrysene	μg/l	BRL	5	BRL	5
Dibenzo (a,h) anthracene	μg/l	BRL	5	BRL	5
Dibenzofuran	μg/l	BRL	5	BRL	5
1,2-Dichlorobenzene	μg/l	BRL	5	BRL	5
1,3-Dichlorobenzene	μg/l	BRL	5	BRL	5
1,4-Dichlorobenzene	μg/l	BRL	5	BRL	5
3,3´-Dichlorobenzidine	μg/l	BRL	5	BRL	5
2,4-Dichlorophenol	μg/l	BRL	5	BRL	5
Diethyl phthalate	μg/l	BRL	5	BRL	5
Dimethyl phthalate	μg/l	BRL	5	BRL	5
2,4-Dimethylphenol	μg/l	BRL	5	BRL	5

O'Connell Oil Associates

241 Main Street, Lee, Massachusetts

		EC	S-1	EC	CS-3	
Method / Analyte	Units	Result	RDL	Result	RDL	
EPA 625 (continued)						
Di-n-butyl phthalate	μg/l	BRL	5	BRL	5	
4,6-Dinitro-2-methylphenol	μg/l	BRL	5	BRL	5	
2,4-Dinitrophenol	μg/l	BRL	5	BRL	5	
2,4-Dinitrotoluene	µg/l	BRL	5	BRL	5	
2,6-Dinitrotoluene	μg/l	BRL	5	BRL	5	
Di-n-octyl phthalate	μg/l	BRL	5	BRL	5	
Fluoranthene	μg/l	BRL	5	BRL	5	
Fluorene	µg/l	BRL	5	BRL	5	
Hexachlorobenzene	μg/l	BRL	5	BRL	5	
Hexachlorobutadiene	µg/l	BRL	5	BRL	5	
Hexachlorocyclopentadiene	µg/l	BRL	5	BRL	5	
Hexachloroethane	μg/l	BRL	5	BRL	5	
Indeno (1,2,3-cd) pyrene	μg/l	BRL	5	BRL	5	
Isophorone	μg/l	BRL	5	BRL	5	
2-Methylnaphthalene	µg/l	BRL	5	BRL	5	
2-Methylphenol	μg/l	BRL	5	BRL	5	
3 & 4-Methylphenol	µg/l	BRL	10	BRL	10	
Naphthalene	µg/l	BRL	5	13.9	5	
2-Nitroaniline	μg/l	BRL	5	BRL	5	
3-Nitroaniline	µg/l	BRL	5	BRL	5	
4-Nitroaniline	µg/l	BRL	5	BRL	5	
Nitrobenzene	µg/l	BRL	5	BRL	5	
2-Nitrophenol	µg/l	BRL	5	BRL	5	
	-					

O'Connell Oil Associates 241 Main Street, Lee, Massachusetts

		ECS-1		ECS-3	
Method / Analyte	Units	Result	RDL	Result	RDL
EPA 625 (continued)					
4-Nitrophenol	μg/l	BRL	5	BRL	5
N-Nitrosodimethylamine	μg/l	BRL	5	BRL	5
N-Nitrosodi-n-propylamine	µg/l	BRL	5	BRL	5
N-Nitrosodiphenylamine	µg/l	BRL	5	BRL	5
Pentachlorophenol	μg/l	BRL	5	BRL	5
Phenanthrene	µg/l	BRL	5	BRL	5
Phenol	µg/l	BRL	5	BRL	5
Pyrene	μg/l	BRL	5	BRL	5
Pyridine	μg/l	BRL	5	BRL	5
1,2,4-Trichlorobenzene	µg/l	BRL	5	BRL	5
2,4,5-Trichlorophenol	µg/l	BRL	5	BRL	5
2,4,6-Trichlorophenol	µg/l	BRL	5	BRL	5
Hach 8167					
Fotal Residual Chlorine	mg/l	BRL	0.02	BRL	0.1
SM2540D					
Total Suspended Solids	mg/l	13	5	90	10
SW846 7196A/SM3500CrD					
Hexavalent Chromium	mg/l	BRL	0.005	BRL	0.025
EPA 300.0					
Chloride	mg/l	938	10	14000	1000

O'Connell Oil Associates

241 Main Street, Lee, Massachusetts

		EC	S-1	ECS-3	
Method / Analyte	Units	Result	RDL	Result	RDL
SW846 8260C					
1,1,2-Trichlorotrifluoroethane (Freon 113)	μg/l	BRL	5	BRL	5
Acetone	μg/l	BRL	50	BRL	50
Acrylonitrile	μg/l	BRL	2.5	BRL	2.5
Benzene	μg/l	8.8	5	17.1	5
Bromobenzene	μg/l	BRL	5	BRL	5
Bromochloromethane	μg/l	BRL	5	BRL	5
Bromodichloromethane	μg/l	BRL	2.5	BRL	2.5
Bromoform	μg/l	BRL	5	BRL	5
Bromomethane	µg/l	BRL	10	BRL	10
2-Butanone (MEK)	μg/l	BRL	50	BRL	50
n-Butylbenzene	μg/l	6.6	5	9.3	5
sec-Butylbenzene	μg/l	BRL	5	BRL	5
tert-Butylbenzene	μg/l	BRL	5	BRL	5
Carbon disulfide	μg/l	BRL	10	BRL	10
Carbon tetrachloride	μg/l	BRL	5	BRL	5
Chlorobenzene	μg/l	BRL	5	BRL	5
Chloroethane	μg/l	BRL	10	BRL	10
Chloroform	μg/l	BRL	5	BRL	5
Chloromethane	μg/l	BRL	10	BRL	10
2-Chlorotoluene	μg/l	BRL	5	BRL	5
4-Chlorotoluene	μg/l	BRL	5	BRL	5
1,2-Dibromo-3-chloropropane	μg/l	BRL	10	BRL	10
Dibromochloromethane	μg/l	BRL	2.5	BRL	2.5
1,2-Dibromoethane (EDB)	μg/l	BRL	2.5	BRL	2.5

O'Connell Oil Associates

241 Main Street, Lee, Massachusetts

Results reported in milligrams	ner liter (m	or micrograms	per liter (ug/L) as noted
Results reported in minigrams	per mer (m	g/L) of iniciograms	μ_{μ} μ_{μ

	ECS-1 E			EC	ECS-3	
Method / Analyte	Units	Result	RDL	Result	RDL	
SW846 8260C (Continued)						
Dibromomethane	μg/l	BRL	5	BRL	5	
1,2-Dichlorobenzene	μg/l	BRL	5	BRL	5	
1,3-Dichlorobenzene	μg/l	BRL	5	BRL	5	
1,4-Dichlorobenzene	μg/l	BRL	5	BRL	5	
Dichlorodifluoromethane (Freon12)	µg/l	BRL	10	BRL	10	
1,1-Dichloroethane	μg/l	BRL	5	BRL	5	
1,2-Dichloroethane	µg/l	BRL	5	BRL	5	
1,1-Dichloroethene	µg/l	BRL	5	BRL	5	
cis-1,2-Dichloroethene	μg/l	BRL	5	BRL	5	
trans-1,2-Dichloroethene	µg/l	BRL	5	BRL	5	
1,2-Dichloropropane	µg/l	BRL	5	BRL	5	
1,3-Dichloropropane	μg/l	BRL	5	BRL	5	
2,2-Dichloropropane	μg/l	BRL	5	BRL	5	
1,1-Dichloropropene	μg/l	BRL	5	BRL	5	
cis-1,3-Dichloropropene	µg/l	BRL	2.5	BRL	2.5	
trans-1,3-Dichloropropene	μg/l	BRL	2.5	BRL	2.5	
Ethylbenzene	µg/l	7.3	5	43.9	5	
Hexachlorobutadiene	µg/l	BRL	2.5	BRL	2.5	
2-Hexanone (MBK)	μg/l	BRL	50	BRL	50	
Isopropylbenzene	μg/l	5.6	5	7.2	5	
4-Isopropyltoluene	μg/l	BRL	5	BRL	5	
Methyl tert-butyl ether	μg/l	BRL	5	BRL	5	
4-Methyl-2-pentanone (MIBK)	μg/l	BRL	50	BRL	50	
Methylene chloride	µg/l	BRL	10	BRL	10	

O'Connell Oil Associates

241 Main Street, Lee, Massachusetts

Results reported in milligrams per liter (mg/L) or micrograms per liter (μ g/L), as noted					
	EC	S-1	EC	S-3	
Units	Result	RDL	Result	RDL	
μg/l	6.4	5	32.2	5	
μg/l	13.1	5	14.7	5	
μg/l	BRL	5	BRL	5	
μg/l	BRL	5	BRL	5	
μg/l	BRL	2.5	BRL	2.5	
μg/l	9.2	5	BRL	5	
μg/l	BRL	5	13.8	5	
μg/l	BRL	5	BRL	5	
μg/l	BRL	5	BRL	5	
μg/l	BRL	5	BRL	5	
μg/l	BRL	5	BRL	5	
μg/l	BRL	5	BRL	5	
μg/l	5.2	5	BRL	5	
μg/l	BRL	5	BRL	5	
μg/l	BRL	5	BRL	5	
μg/l	110	5	12	5	
μg/l	10.5	5	BRL	5	
μg/l	BRL	5	BRL	5	
μg/l	78.6	10	17.2	10	
μg/l	BRL	5	7.3	5	
μg/l	BRL	10	BRL	10	
μg/l	BRL	5	BRL	5	
μg/l	BRL	5	BRL	5	
	Units µg/l	μg/l 6.4 μg/l 13.1 μg/l BRL μg/l BRL </td <td>μg/l 6.4 5 μg/l 6.4 5 μg/l 13.1 5 μg/l BRL 5 μg/l BRL<!--</td--><td>μg/l 6.4 5 32.2 μg/l 6.4 5 32.2 μg/l 13.1 5 14.7 μg/l BRL 5 BRL μg/l BRL <</td></td>	μ g/l 6.4 5 μ g/l 6.4 5 μ g/l 13.1 5 μ g/l BRL 5 μ g/l BRL </td <td>μg/l 6.4 5 32.2 μg/l 6.4 5 32.2 μg/l 13.1 5 14.7 μg/l BRL 5 BRL μg/l BRL <</td>	μ g/l 6.4 5 32.2 μ g/l 6.4 5 32.2 μ g/l 13.1 5 14.7 μ g/l BRL 5 BRL μ g/l BRL <	

O'Connell Oil Associates

241 Main Street, Lee, Massachusetts

		EC	S-1	ECS-3	
Method / Analyte	Units	Result	RDL	Result	RDL
SW846 8260C (Continued)					
Ethyl tert-butyl ether	μg/l	BRL	5	BRL	5
Di-isopropyl ether	μg/l	BRL	5	BRL	5
Tert-Butanol / butyl alcohol	μg/l	361	50	BRL	50
1,4-Dioxane	μg/l	BRL	100	BRL	100
trans-1,4-Dichloro-2-butene	µg/l	BRL	25	BRL	25
Ethanol	μg/l	BRL	2000	BRL	2000

Results reported in milligrams per liter (mg/L) or micrograms per liter (μ g/L), as noted

BRL is Below Reporting Limit

RDL is Reportable Detection Limit

ATTACHMENT I NOI FOR THE RGP

B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit

1. General facility/site information.	Please	provide the	following	information	n about the site:
		P10	10110 1111		

a) Name of facility/site : O'Connell Oil - Lee 5		Facility/site mailing address:				
Location of facility/site : longitude: <mark>73.25179W</mark> latitude: <mark>42.309331N</mark>	Facility SIC code(s): 5541	Street:	241 Main Street			
b) Name of facility/site owner:		Town:	Lee			
Email address of facility/site owner: jsobon@oconnelloil.com Telephone no. of facility/site owner : (413) 4	199-4800	State: MA		Zip: 01238		County: Berkshire
Fax no. of facility/site owner:413-499-6072Address of owner (if different from site):		Owner is (check one): 1. Federal O 2. State/Tribal O 3. Private O 4. Other O if so, describe:				
Street: PO Box 1387, 545 Merrill Road						
Town: Pittsfield	State: MA	Zip: 01	201	County:	Berkshire	
c) Legal name of operator :	Operator tel	ephone r	no: 413-789-3530			
Environmental Compliance Services, Inc.	Operator fax	k no.: 413	-789-2776	Operato	r email: أبر	niedzielski@ecsconsult.com
Operator contact name and title: Lori McCarthy, Project Manager/John Niedzielski, Licensed Site Professional						
Address of operator (if different from owner):	Street: 588 Silver Street					
Town: Agawam	State: MA	Zip: 01	001	County:	Hampden	

 d) Check Y for "yes" or N for "no" for the following: 1. Has a prior NPDES permit exclusion been granted for the discharge? Y O N O, if Y, number: 2. Has a prior NPDES application (Form 1 & 2C) ever been filed for the discharge? Y O N O, if Y, date and tracking #: 3. Is the discharge a "new discharge" as defined by 40 CFR 122.2? Y O N O 4. For sites in Massachusetts, is the discharge covered under the Massachusetts Contingency Plan (MCP) and exempt from state permitting? Y O N O 				
 e) Is site/facility subject to any State permitting, license, or other action which is causing the generation of discharge? Y o N o, is is causing the generation of discharge? Y o N o, if Y, number: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Individual NPDES permit, Y o N o, if Y, number: <l< td=""></l<>				
	an Area of Critical Environmental Concern (ACEC)? Y <u>O</u> N <u>O</u>			
h) Based on the facility/site information and any historica discharge falls.	al sampling data, identify the sub-category into which the potential			
Activity Category	Activity Sub-Category			
I - Petroleum Related Site Remediation	 A. Gasoline Only Sites B. Fuel Oils and Other Oil Sites (including Residential Non-Business Remediation Discharges) C. Detrology Sites with Additional Contemination 			
II - Non Petroleum Site Remediation	 C. Petroleum Sites with Additional Contamination A. Volatile Organic Compound (VOC) Only Sites B. VOC Sites with Additional Contamination C. Primarily Heavy Metal Sites 			
III - Contaminated Construction Dewatering	 A. General Urban Fill Sites □ B. Known Contaminated Sites ⊠ 			

IV - Miscellaneous Related Discharges	A. Aquifer Pump Testing to Evaluate Formerly Contaminated Sites
	B. Well Development/Rehabilitation at Contaminated/Formerly
	Contaminated Sites
	C. Hydrostatic Testing of Pipelines and Tanks
	D. Long-Term Remediation of Contaminated Sumps and Dikes
	E. Short-term Contaminated Dredging Drain Back Waters (if not covered
	by 401/404 permit)

2. Discharge information. Please provide information about the discharge, (attaching additional sheets as necessary) including:

a) Describe the discharge activities for which the owner/applicant is seeking coverage:

Groundwater will be pumped from two excavation pits in order to allow for collection of assessment soil samples, removal of petroleum-impacted	
soils, and to facilitate the removal and installation of underground storage tank systems.	

b) Provide the following information about each discharge:

1) Number of discharge points: 2	2) What is the maximum and average flow rate of discharge (in cubic feet per second, ft ³ /s)? Max. flow 0.0558 Is maximum flow a design value ? Y O N O Average flow (include units) 0.0011 Is average flow a design value or estimate? estimate
	pt.6: lat;
4) If hydrostatic testing, total volume of the discharge (gals):	5) Is the discharge intermittent <u>o</u> or seasonal <u>O</u> ? Is discharge ongoing? Y <u>O</u> N <u>O</u>
c) Expected dates of discharg	e (mm/dd/yy): start Apr 12, 2011 end May 11, 2011
1. sources of intake water. 2.	g or flow schematic showing water flow through the facility including: contributing flow from the operation. 3. treatment units. and 4. discharge points and receiving
waters(s).	

3. Contaminant Information.

a) Based on the sub-category selected (See Appendix III), indicated whther each listed chemical is **believed present** or **believed absent** in the potential discharge. Attach additional Sheets as needed.

								Maximum daily	value	Average daily	value
Parameter*	CAS Number	<u>Believed</u> <u>Absent</u>	<u>Believed</u> <u>Present</u>	# of Samples	<u>Sample Type</u> (e.g., grab)	<u>Analytical</u> <u>Method Used</u> (method #)	<u>Minimum Level</u> (ML) of Test <u>Method</u>	concentration (ug/I)	<u>mass (kg)</u>	<u>concentration (ug/l)</u>	<u>mass (kg)</u>
1. Total Suspended Solids (TSS)			~	2	GRAB	SM2540D	5,000 ug/L	90,000	12.26	51,500	7.02
2. Total Residual Chlorine (TRC)		~		2	GRAB	HACH 8167	20 ug/L	ND	NA	ND	NA
3. Total Petroleum Hydrocarbons (TPH)		~		2	GRAB	1664A	1,000 ug/L	ND	NA	ND	NA
4. Cyanide (CN)	57125		~	2	GRAB	335.4	0.5 ug/L	80.6	0	51.6	0.007
5. Benzene (B)	71432		~	2	GRAB	8260B/C	5 ug/L	17.1	0.002	13.0	0.002
6. Toluene (T)	108883		~	2	GRAB	8260B/C	5 ug/L	13.8	0.002	8.2	0.001
7. Ethylbenzene (E)	100414		~	2	GRAB	8260B/C	5 ug/L	43.9	0.006	25.6	0.003
8. (m,p,o) Xylenes (X)	108883; 106423; 95476; 1330207		~	2	GRAB	8260B/C	10 ug/L	85.9	0.006	55.2	0.008
9. Total BTEX ²	n/a		~	2	GRAB	8260B/C	10 ug/L	161	0.016	102	0.014
10. Ethylene Dibromide (EDB) (1,2- dibromoethane) ³	106934	v		2	GRAB	504.1	0.01 ug/L	ND	NA	ND	NA
11. Methyl-tert-Butyl Ether (MtBE)	1634044	~		2	GRAB	8260B/C	5 ug/L	ND	NA	ND	NA
12. ter-Butyl Alcohol (TBA) (Tertiary-Butanol)	75650		7	2	GRAB	8260B/C	50 ug/L	361	0.05	193	0.03

* Numbering system is provided to allow cross-referencing to Effluent Limits and Monitoring Requirements by Sub--Category included in Appendix III, as well as the Test Methods and Minumum Levels associated with each parameter provided in Appendix VI.

² BTEX = SUM of Benzene, Toluene, Ethylbenzene, total Xylenes.

³ EDB is a groundwater contaminant at fuel spill and pesticide application sites in New England.

 Remediation General Permit
 Page 13 of 22

 Appendix V - NOI
 Page 13 of 22

			Maximum daily v	value	Average daily value						
Parameter*	<u>CAS Number</u>	<u>Believed</u> <u>Absent</u>	<u>Believed</u> <u>Present</u>	<u># of Samples</u>	<u>Sample Type</u> (e.g., grab)	<u>Analytical</u> <u>Method Used</u> (method #)	<u>Minimum Level</u> (ML) of Test <u>Method</u>	concentration (ug/I)	<u>mass (kg)</u>	<u>concentration (ug/l)</u>	<u>mass (kg)</u>
13. tert-Amyl Methyl											
Ether (TAME)	9940508	~		2	GRAB	8260B/C	5 ug/L	ND	NA	ND	NA
14. Naphthalene	91203		~	2	GRAB	8260B/C	5 ug/L	32.2	0.004	19.3	0.003
15. Carbon											
Tetrachloride	56235	~		2	GRAB	8260B/C	5 ug/L	ND	NA	ND	NA
16. 1,2 Dichlorobenzene (o- DCB)	95501	~		2	GRAB	8260B/C	5 ug/L	ND	NA	ND	NA
17. 1,3	33301	•		2	UIAD	8200B/C	J ug/L	ND	110	ND	INA
Dichlorobenzene (m- DCB)	541731	~		2	GRAB	8260B/C	5 ug/L	ND	NA	ND	NA
18. 1,4 Dichlorobenzene (p- DCB)	106467	۲		2	GRAB	8260B/C	5 ug/L	ND	NA	ND	NA
18a. Total											
dichlorobenzene		~		2	GRAB	8260B/C	5 ug/L	ND	NA	ND	NA
19. 1,1 Dichloroethane	75343	~		2	GRAB	8260B/C	5 ug/L	ND	NA	ND	NA
20. 1,2 Dichloroethane	107062	~		2	GRAB	8260B/C	5 ug/L	ND	NA	ND	NA
21. 1,1 Dichloroethene	75354	~		2	GRAB	8260B/C	5 ug/L	ND	NA	ND	NA
22. cis-1,2 Dichloroethene (DCE)	156592	~		2	GRAB	8260B/C	5 ug/L	ND	NA	ND	NA
23. Methylene Chloride	75092	~		2	GRAB	8260B/C	10 ug/L	ND	NA	ND	NA
24. Tetrachloroethene (PCE)	127184		~	2	GRAB	8260B/C	5 ug/L	9.2	0.001	5.9	0.001
25. 1,1,1 Trichlroethane (TCA)	71556	~		2	GRAB	8260B/C	5 ug/L	ND	NA	ND	NA
26. 1,1,2- Trichloroethane (TCA)	79005	~		2	GRAB	8260B/C	5 ug/L	ND	NA	ND	NA
27. Trichloroethene (TCE)	790016		~	2	GRAB	8260B/C	5 ug/L	5.2	0.001	3.9	0.001

Remediation General Permit

Page 14 of 22

Appendix V - NOI

								Maximum daily	<u>value</u>	Average daily value	
Parameter*	<u>CAS Number</u>	<u>Believed</u> <u>Absent</u>	<u>Believed</u> <u>Present</u>	<u># of Samples</u>	<u>Sample Type</u> (e.g., grab)	<u>Analytical</u> <u>Method Used</u> (method #)	<u>Minimum Level</u> (ML) of Test <u>Method</u>	concentration (ug/l)	<u>mass (kg)</u>	<u>concentration (ug/l)</u>	<u>mass (kg)</u>
28. Vinyl Chloride											
(Chloroethene)	75014	~		2	GRAB	8260 B/C	5 ug/L	ND	NA	ND	NA
29. Acetone	67641	~		2	GRAB	8260 B/C	50 ug/L	ND	NA	ND	NA
30. 1,4 Dioxane	123911	>		2	GRAB	8260 B/C	100 ug/L	ND	NA	ND	NA
31. Total Phenols	108952	~		2	GRAB	625	5 ug/L	ND	NA	ND	NA
32. Pentachlorophenol (PCP)	87865	~		2	GRAB	625	5 ug/L	ND	NA	ND	NA
(FCF) 33. Total Phthalates	87803			2	GRAD	025	5 ug/L	ND	NA	ND	NA NA
(Phthalate esters)		~		2	GRAB	625	E	ND	NA	ND	NA
(Pittilalate esters)				2	GRAB	625	5 ug/L	ND	NA	ND	NA
34. Bis (2-ethylhexyl) phthalate [di- (ethylhexyl) phthalate]	117817		v	2	GRAB	625	5 ug/L	8.21	0.001	5.36	0.0007
35. Total Group I Polycyclic Aromatic											
Hydrocarbons (PAH)		 ✓ 		2	GRAB	625	5 ug/L	ND	NA	ND	NA
a. Benzo(a) Anthracene	56553	~		2	GRAB	625	5 ug/L	ND	NA	ND	NA
b. Benzo(a) Pyrene	50328	>		2	GRAB	625	5 ug/L	ND	NA	ND	NA
c. Benzo(b) Fluoranthene	205992	~		2	GRAB	625	5 ug/L	ND	NA	ND	NA
d. Benzo(k)	203332	•		2	GIAD	025	Jug/L	ND		ND	114
Fluoranthene	207089	~		2	GRAB	625	5 ug/L	ND	NA	ND	NA
e. Chrysene	21801	~		2	GRAB	625	5 ug/L	ND	NA	ND	NA
f. Dibenzo (a,h)		· · · ·					0,				
anthracene	53703	~		2	GRAB	625	5 ug/L	ND	NA	ND	NA
g. Indeno (1,2,3-c,d)											
Pyrene	193395	~		2	GRAB	625	5 ug/L	ND	NA	ND	NA
36. Total Group II							_		1		
Polycyclic Aromatic											
Hydrocarbons (PAH)		~		2	GRAB	625	5 ug/L	ND	NA	ND	NA

Remediation General Permit Appendix V - NOI

Page 15 of 22

					Maximum daily v	value	Average daily	value			
Parameter*	<u>CAS Number</u>	<u>Believed</u> <u>Absent</u>	<u>Believed</u> <u>Present</u>	<u># of Samples</u>	<u>Sample Type</u> (e.g., grab)	Analytical Method Used (method #)	<u>Minimum Level</u> (ML) of Test <u>Method</u>	concentration (ug/I)	<u>mass (kg)</u>	<u>concentration (ug/l)</u>	<u>mass (kg)</u>
h. Acenaphthene	83329	~		2	GRAB	625	5 ug/L	ND	NA	ND	NA
i. Acenaphthylene	208968	<		2	GRAB	625	5 ug/L	ND	NA	ND	NA
j. Anthracene	120127	~		2	GRAB	625	5 ug/L	ND	NA	ND	NA
k. Benzo(g,h,i) Perylene	191242	~		2	GRAB	625	5 ug/L	ND	NA	ND	NA
I. Fluoranthene	206440	~		2	GRAB	625	5 ug/L	ND	NA	ND	NA
m. Fluorene	86737	<		2	GRAB	625	5 ug/L	ND	NA	ND	NA
n. Naphthalene	91203		~	2	GRAB	625	5 ug/L	13.9	0.002	8.2	0.001
o. Phenanthrene	85018	~		2	GRAB	625	5 ug/L	ND	NA	ND	NA
p. Pyrene	129000	~		2	GRAB	625	5 ug/L	ND	NA	ND	NA
37. Total Polychlorinated	85687; 84742; 117840; 84662; 131113;										
Biphenyls (PCBs)	117817.	~		2	GRAB	608	0.065 ug/L	ND	NA	ND	NA
38. Chloride	16887006		~	2	GRAB	300	10,000 ug/L	14,000,000	1,907	7,469,000	1,018
39. Antimony	7440360	~		2	GRAB	200.7	6 ug/L	ND	NA	ND	NA
40. Arsenic	7440382		~	2	GRAB	200.7	4 ug/L	11.1	0.002	6.55	0.001
41. Cadmium	7440439	~		2	GRAB	200.7	2.5 ug/L	ND	NA	ND	NA
42. Chromium III (trivalent)	16065831	~		0	NA	NA	NA	NA	NA	NA	NA
43. Chromium VI (hexavalent)	18540299	~		2	GRAB	7196A	5 ug/L	ND	NA	ND	NA
44. Copper	7440508	~		2	GRAB	200.7	5 ug/L	ND	NA	ND	NA
45. Lead	7439921	~		2	GRAB	200.7	7.5 ug/L	ND	NA	ND	NA
46. Mercury	7439976	~		2	GRAB	245.1	0.2 ug/L	ND	NA	ND	NA
47. Nickel	7440020		~	2	GRAB	200.7	5 ug/L	13.8	0.002	9.4	0.001
48. Selenium	7782492	~		2	GRAB	200.7	15 ug/L	ND	NA	ND	NA
49. Silver	7440224	~		2	GRAB	200.7	5 ug/L	ND	NA	ND	NA
50. Zinc	7440666		~	2	GRAB	200.7	5 ug/L	17.4	0.002	16.2	0.002
51. Iron	7439896		~	2	GRAB	200.7	15 ug/L	18,500	2.52	10,815	1.47
Other (describe):											

Remediation General Permit Appendix V - NOI

Page 16 of 22

					Sample	Analytical	<u>Minimum</u>	<u>Maximum dai</u>	ly value	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	<u>Believed</u> <u>Present</u>	<u># of</u> <u>Samples</u>	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (ML) of <u>Test</u> <u>Method</u>	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)

b) For discharges where **metals** are believed present, please fill out the following (attach results of any calculations):

Step 1: Do any of the metals in the influent exceed the effluent limits in Appendix III (i.e., the limits set at zero dilution)? Y \bigcirc N \bigcirc	If ves, which metals? arsenic, iron
Step 2: For any metals which exceed the Appendix III limits, calculate the dilution factor (DF) using the formula in Part I.A.3.c (step 2) of the NOI instructions or as determined by the State prior to the submission of this NOI. What is the dilution factor for applicable metals? Metal: arsenic DF 1,237 Metal: DF Metal: DF Etc. DF	Look up the limit calculated at the corresponding dilution factor in Appendix IV . Do any of the metals in the influent have the potential to exceed the corresponding effluent limits in Appendix IV (i.e., is the influent concentration above the limit set at the calculated dilution factor)? Y \bigcirc N \bigcirc If Y, list which metals: iron

4. Treatment system information. Please describe the treatment system using separate sheets as necessary, including:

a) A description of the treatment system, including a schematic of the proposed or existing treatment system:

The system will consist of submersible pumps that extract groundwater to a 21,000 gallon frac tank. Water from the Frac tank will be pumped through bag filters and subsequently through three 500 lb. liquid granular activated carbon units (LGAC) prior to discharge to a catch basin located in Center Street.

b) Identify each	Frac. tank 🗵	Air stripper 🗖	Oil/water separator	Equalization tanks	□ Bag filter 🗵	GAC filter 🗵
applicable treatment unit (check all that apply):	Chlorination	De- chlorination	Other (please describe):			

cfs

c) Proposed average and maximum the treatment system: Average flow rate of discharge ⁵ Design flow rate of treatment system	gpm N	lons per minute) fo Iaximum flow rate gpm	-	_	v rate (s) (gallons per minute) of gpm				
d) A description of chemical additives being used or planned to be used (attach MSDS sheets):									
None planned.									
5. Receiving surface water(s). Please provide information about the receiving water(s), using separate sheets as necessary:									
a) Identify the discharge pathway:	Direct to receiving water	Within facility (sewer)	Storm drain 🗵	Wetlands 	Other (describe):				
b) Provide a narrative description of	the discharge pa	athway, including	the name(s) of the	e receiving waters					
					1				
 c) Attach a detailed map(s) indicating the site location and location of the outfall to the receiving water: 1. For multiple discharges, number the discharges sequentially. 2. For indirect dischargers, indicate the location of the discharge to the indirect conveyance and the discharge to surface water The map should also include the location and distance to the nearest sanitary sewer as well as the locus of nearby sensitive receptors (based on USGS topographical mapping), such as surface waters, drinking water supplies, and wetland areas. 									
d) Provide the state water quality cla	ssification of th	e receiving water	3						

e) Provide the reported or calculated seven day-ten year low flow (7Q10) of the receiving water ⁶⁹ Please attach any calculation sheets used to support stream flow and dilution calculations.

f) Is the receiving water a listed 303(d) water quality impaired or limited water? Y O NO	_ If yes, for which pollutant(s)?
PCBs and algal growth	

Is there a final TMDL? Y O If yes, for which pollutant(s)? unknown toxicity, priority organics, thermal modifications, pathogens, and turbidity

6. ESA and NHPA Eligibility.

Please provide the following information according to requirements of Permit Parts I.A.4 and I.A.5 Appendices II and VII.

a) Using the instructions in Appendix VII and information on Appendix II, under which criterion listed in Part I.C are you eligible for coverage under this general permit?

 $A \ O B \ O C \ O D \ O E \ O F \ O$

b) If you selected Criterion D or F, has consultation with the federal services been completed? Y O N O Underway O

c) If consultation with U.S. Fish and Wildlife Service and/or NOAA Fisheries Service was completed, was a written concurrence finding that the discharge is "not likely to adversely affect" listed species or critical habitat received? Y O N O

d) Attach documentation of ESA eligibility as described in the NOI instructions and required by Appendix VII, Part I.C, Step 4.

e) Using the instructions in Appendix VII, under which criterion listed in Part II.C are you eligible for coverage under this general permit?

1 <u>O</u> 2 <u>O</u> 3 <u>O</u>

f) If Criterion 3 was selected, attach all written correspondence with the State or Tribal historic preservation officers, including any terms and conditions that outline measures the applicant must follow to mitigate or prevent adverse effects due to activities regulated by the RGP.

7. Supplemental information.

Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit.

Please see attached letter for supplemental information.

8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facility/Site Name: O'Connell Oil Associates, Lee 5
Operator signature: hou fullauthy
Printed Name & Title: Lori A. McCarthy, Project Manager
Date:03/28/2011

ATTACHMENT II LABORATORY REPORT AND CHAIN OF CUSTODY RECORD

Report Date: 29-Mar-11 14:08

Final ReportRe-Issued ReportRevised Report

SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY Laboratory Report

Environmental Compliance Services 588 Silver Street Agawam, MA 01001 Attn: Lori McCarthy

Project: O'Connell Oil Assoc - Lee, MA Project #: 212738

Laboratory ID	<u>Client Sample ID</u>	<u>Matrix</u>	Date Sampled	Date Received
SB25832-01	ECS-1	Ground Water	18-Mar-11 13:00	18-Mar-11 16:15
SB25832-02	ECS-3	Ground Water	18-Mar-11 14:00	18-Mar-11 16:15
SB25832-03	Trip	Deionized Water	18-Mar-11 00:00	18-Mar-11 16:15

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Africole Leja

Nicole Leja Laboratory Director

Spectrum Analytical holds certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please note that this report contains 42 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

CASE NARRATIVE:

The samples were received 1.7 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/-2.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

According to WSC-CAM 5/2009 Rev.1, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended recovery range, a range has been set based on historical control limits.

Some target analytes which are not listed as exceptions in the Summary of CAM Reporting Limits may exceed the recommended RL based on sample initial volume or weight provided, % moisture content, or responsiveness of a particular analyte to purge and trap instrumentation.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

EPA 608

Samples:

SB25832-02 ECS-3

The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.

Decachlorobiphenyl (Sr) [2C]

EPA 625

Calibration:

1102019

Analyte quantified by quadratic equation type calibration.

4-Nitrophenol

This affected the following samples:

1104837-BLK1 1104837-BS1 1104837-BSD1 ECS-1 ECS-3 S101130-ICV1 S102073-CCV1 S102190-CCV1

Laboratory Control Samples:

1104837 BS

2,4-Dinitrophenol percent recovery 16 (30-130) is outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

ECS-1 ECS-3

EPA 625

Laboratory Control Samples:

1104837	BS
---------	----

4,6-Dinitro-2-methylphenol percent recovery 14 (30-130) is outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

ECS-1

ECS-3

Hexachlorocyclopentadiene percent recovery 25 (40-140) is outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

ECS-1 ECS-3

Phenol percent recovery 28 (30-130) is outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

ECS-1 ECS-3

Samples:

S102073-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

4,6-Dinitro-2-methylphenol (37.6%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

4-Nitrophenol (55.3%)

This affected the following samples:

1104837-BLK1 1104837-BS1 1104837-BSD1

Hach 8167

Samples:

SB25832-02 ECS-3

The Reporting Limit has been raised to account for matrix interference.

Total Residual Chlorine

SW846 7196A/SM3500CrD

Spikes:

1104804-MS1 Source: SB25832-01

The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits.

Hexavalent Chromium

1104804-MSD1 Source: SB25832-01

The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits.

Hexavalent Chromium

Samples:

SW846 7196A/SM3500CrD

Samples:

SB25832-02 ECS-3

The Reporting Limit has been raised to account for matrix interference.

Hexavalent Chromium

SW846 8260C

Calibration:

1103016

Analyte quantified by quadratic equation type calibration.

1,1-Dichloroethane Acrylonitrile trans-1,2-Dichloroethene Vinyl chloride

This affected the following samples:

1104853-BLK1 1104853-BSD1 ECS-1 ECS-3 S101868-ICV1 S102041-CCV1

S101868-ICV1

Analyte percent recovery is outside individual acceptance criteria (70-130).

1,1-Dichloroethane (152%) Naphthalene (131%)

This affected the following samples:

1104853-BLK1 1104853-BS1 1104853-BSD1 ECS-1 ECS-3 S102041-CCV1

Laboratory Control Samples:

1104853 BS/BSD

1,1-Dichloroethane percent recoveries (135/117) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

ECS-1 ECS-3

Naphthalene percent recoveries (132/126) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

ECS-1 ECS-3

Samples:

S102041-CCV1

SW846 8260C

Samples:

S102041-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

Naphthalene (22.8%)

This affected the following samples:

1104853-BLK1
1104853-BS1
1104853-BSD1
ECS-1
ECS-3

SB25832-01 ECS-1

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SB25832-02 ECS-3

The Reporting Limits for this analysis are elevated due to sample foaming.

Sample Id ECS-1 SB25832-	lentification			<u>t Project #</u> 12738		<u>Matrix</u> Ground Wa		ection Date -Mar-11 13			<u>ceived</u> Mar-11	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds											
Volatile O	rganic Compounds by method SW846 5030 Water MS	,	GS1									
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	BRL		µg/l	5.0	5	SW846 8260C	21-Mar-11	22-Mar-11	JLG	1104853	i
67-64-1	Acetone	BRL		μg/l	50.0	5	"		"	"	"	
107-13-1	Acrylonitrile	BRL		μg/l	2.5	5	"		"	"	"	
71-43-2	Benzene	8.8		µg/l	5.0	5	"		"	"	"	
108-86-1	Bromobenzene	BRL		μg/l	5.0	5	"		"	"	"	
74-97-5	Bromochloromethane	BRL		µg/l	5.0	5		"	"	"	"	
75-27-4	Bromodichloromethane	BRL		µg/l	2.5	5		"	"	"	"	
75-25-2	Bromoform	BRL		µg/l	5.0	5				"	"	
74-83-9	Bromomethane	BRL		µg/l	10.0	5		"	"	"	"	
78-93-3	2-Butanone (MEK)	BRL		µg/l	50.0	5		"	"	"	"	
104-51-8	n-Butylbenzene	6.6		µg/l	5.0	5				"	"	
135-98-8	sec-Butylbenzene	BRL		μg/l	5.0	5		"	"	"		
98-06-6	tert-Butylbenzene	BRL		µg/l	5.0	5		"	"	"	"	
75-15-0	Carbon disulfide	BRL		µg/l	10.0	5			"	"		
56-23-5	Carbon tetrachloride	BRL		μg/l	5.0	5		"	"	"		
108-90-7	Chlorobenzene	BRL		µg/l	5.0	5		"	"	"	"	
75-00-3	Chloroethane	BRL		µg/l	10.0	5			"	"		
67-66-3	Chloroform	BRL		µg/l	5.0	5			"	"		
74-87-3	Chloromethane	BRL		µg/l	10.0	5		"	"	"	"	
95-49-8	2-Chlorotoluene	BRL		µg/l	5.0	5			"	"	"	
106-43-4	4-Chlorotoluene	BRL		µg/l	5.0	5			"	"		
96-12-8	1,2-Dibromo-3-chloropropane	BRL		µg/l	10.0	5			"	"		
124-48-1	Dibromochloromethane	BRL		µg/l	2.5	5			"	"	"	
106-93-4	1,2-Dibromoethane (EDB)	BRL		µg/l	2.5	5			"	"	"	
74-95-3	Dibromomethane	BRL		µg/l	5.0	5			"	"		
95-50-1	1,2-Dichlorobenzene	BRL		µg/l	5.0	5			"	"		
541-73-1	1,3-Dichlorobenzene	BRL		µg/l	5.0	5			"	"		
106-46-7	1,4-Dichlorobenzene	BRL		µg/l	5.0	5		"	"	"		
75-71-8	Dichlorodifluoromethane (Freon12)	BRL		µg/l	10.0	5		"	"	"	"	
75-34-3	1,1-Dichloroethane	BRL		µg/l	5.0	5		"	"	"	"	
107-06-2	1,2-Dichloroethane	BRL		µg/l	5.0	5		"	"	"		
75-35-4	1,1-Dichloroethene	BRL		µg/l	5.0	5		"	"	"	"	
156-59-2	cis-1,2-Dichloroethene	BRL		µg/l	5.0	5		"	"	"	"	
156-60-5	trans-1,2-Dichloroethene	BRL		µg/l	5.0	5		"	"	"	"	
78-87-5	1,2-Dichloropropane	BRL		µg/l	5.0	5		"	"	"	"	
142-28-9	1,3-Dichloropropane	BRL		µg/l	5.0	5		"	"	"	"	
594-20-7	2,2-Dichloropropane	BRL		µg/l	5.0	5	"	"		"	"	
563-58-6	1,1-Dichloropropene	BRL		µg/l	5.0	5	"	"		"	"	
10061-01-5	cis-1,3-Dichloropropene	BRL		µg/l	2.5	5	"	"	"	"	"	
10061-02-6	trans-1,3-Dichloropropene	BRL		µg/l	2.5	5	"	"	"	"	"	
100-41-4	Ethylbenzene	7.3		μg/l	5.0	5	"	"	"	"	"	
87-68-3	Hexachlorobutadiene	BRL		µg/l	2.5	5	"	"		"	"	
591-78-6	2-Hexanone (MBK)	BRL		µg/l	50.0	5	"	"	"	"	"	
98-82-8	Isopropylbenzene	5.6		µg/I	5.0	5	H	"	"	"	"	

<u>5811pie 10</u> ECS-1 SB25832-	lentification -01			<u>t Project #</u> 12738		<u>Matrix</u> Ground Wa		Collection Date/Time 18-Mar-11 13:00			<u>Received</u> 18-Mar-11	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile O	rganic Compounds											
	rganic Compounds by method SW846 5030 Water MS	3	GS1									
99-87-6	4-Isopropyltoluene	BRL		µg/l	5.0	5	SW846 8260C	21-Mar-11	22-Mar-11	JLG	1104853	5
634-04-4	Methyl tert-butyl ether	BRL		μg/l	5.0	5	"			"	"	
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		µg/l	50.0	5	"			"	"	
5-09-2	Methylene chloride	BRL		µg/l	10.0	5	"			"	"	
1-20-3	Naphthalene	6.4		μg/l	5.0	5	"			"	"	
03-65-1	n-Propylbenzene	13.1		μg/l	5.0	5				"		
00-42-5	Styrene	BRL		μg/l	5.0	5				"		
30-20-6	1,1,1,2-Tetrachloroethane	BRL		μg/l	5.0	5				"		
9-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	2.5	5						
27-18-4	Tetrachloroethene	9.2		μg/l	5.0	5				"		
08-88-3	Toluene	BRL		μg/l	5.0	5				"		
7-61-6	1,2,3-Trichlorobenzene	BRL		μg/l	5.0	5				"		
20-82-1	1,2,4-Trichlorobenzene	BRL		μg/l	5.0	5				"		
08-70-3	1,3,5-Trichlorobenzene	BRL		μg/l	5.0	5				"		
1-55-6	1,1,1-Trichloroethane	BRL		μg/l	5.0	5				"		
9-00-5	1,1,2-Trichloroethane	BRL		μg/l	5.0	5						
9-01-6	Trichloroethene	5.2		μg/l	5.0	5				"		
5-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/l	5.0	5				"		
6-18-4	1,2,3-Trichloropropane	BRL			5.0	5						
5-63-6	1,2,4-Trimethylbenzene	110		µg/l	5.0	5						
08-67-8	1,3,5-Trimethylbenzene	10.5		µg/l µg/l	5.0	5						
5-01-4	Vinyl chloride	BRL			5.0	5				"		
79601-23-1	-	78.6		µg/l	10.0	5				"		
5-47-6				µg/l	5.0					"		
09-99-9	o-Xylene	BRL		µg/l		5 5				"		
	Tetrahydrofuran	BRL		µg/l	10.0							
0-29-7	Ethyl ether	BRL		µg/l	5.0	5						
94-05-8	Tert-amyl methyl ether	BRL		µg/l	5.0	5						
37-92-3	Ethyl tert-butyl ether	BRL		µg/l	5.0	5						
08-20-3	Di-isopropyl ether	BRL		µg/l	5.0	5						
5-65-0	Tert-Butanol / butyl alcohol	361		µg/l	50.0	5						
23-91-1	1,4-Dioxane	BRL		µg/l	100	5						
10-57-6	trans-1,4-Dichloro-2-butene	BRL		µg/l	25.0	5						
4-17-5	Ethanol	BRL		µg/l	2000	5				"	"	
-	recoveries:											
60-00-4	4-Bromofluorobenzene	92			70-130 %			"		"		
037-26-5	Toluene-d8	97			70-130 %			"	"			
7060-07-0	1,2-Dichloroethane-d4	96			70-130 %		u u	"	"	"	"	
868-53-7	Dibromofluoromethane	92			70-130 %		"	"	"	"	"	
	natic/Aromatic Carbon Ranges by method VPH - EPA 5030B											
	C5-C8 Aliphatic Hydrocarbons	0.209		mg/l	0.0750	1	+MADEP VPH 5/2004 Rev. 1.1	21-Mar-11	21-Mar-11	MP	1104829	i
	C9-C12 Aliphatic Hydrocarbons	0.680		mg/l	0.0250	1	"	"	"	"	"	
	C9-C10 Aromatic Hydrocarbons	0.385		mg/l	0.0250	1		"		"		

ECS-1	Sample Identification ECS-1 SB25832-01		<u>Client Project #</u> 212738			<u>Matrix</u> Ground W		ection Date -Mar-11 13		<u>Received</u> 18-Mar-11		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	Organic Compounds											
	hatic/Aromatic Carbon Ranges by method VPH - EPA 5030B											
	Unadjusted C5-C8 Aliphatic Hydrocarbons	0.329		mg/l	0.0750	1	+MADEP VPH 5/2004 Rev. 1.1	21-Mar-11	21-Mar-11	MP	1104829)
	Unadjusted C9-C12 Aliphatic Hydrocarbons	1.06		mg/l	0.0250	1	"	"	"	"	"	
	<u>get Analytes</u> l by method VPH - EPA <u>5030B</u>											
71-43-2	Benzene	8.9		µg/l	5.0	1			"	"		
100-41-4	Ethylbenzene	9.0		μg/l	5.0	1			"	"		
1634-04-4	Methyl tert-butyl ether	BRL		μg/l	5.0	1			"	"		
91-20-3	Naphthalene	21.0		μg/l	5.0	1						
108-88-3	Toluene	BRL		μg/l	5.0	1			"	"		
179601-23-		95.4		μg/l	10.0	1	"		"	"		
95-47-6	o-Xylene	BRL		µg/l	5.0	1	"	"	"		"	
	recoveries:											
615-59-8	2,5-Dibromotoluene (FID)	124			70-130 %		n		"	"	"	
615-59-8	2,5-Dibromotoluene (PID)	121			70-130 %		n		"	"	"	
	ractable Organic Compounds											
106-93-4	1,2-Dibromoethane (EDB)	BRL		µg/l	0.0100	1	EPA 504.1	21-Mar-11	21-Mar-11	SM	1104877	
<u>Semivola</u> Prepared	tile Organic Compounds by GCMS tile Organic Compounds by EPA (by method SW846 3510C											
83-32-9	Acenaphthene	BRL		µg/l	5.00	1	EPA 625		23-Mar-11	MSL	1104837	
208-96-8	Acenaphthylene	BRL		µg/l	5.00	1	n	"		"	"	Х
62-53-3	Aniline	BRL		µg/l	5.00	1	n	"			"	
120-12-7	Anthracene	BRL		µg/l	5.00	1	"	"		"	"	Х
103-33-3	Azobenzene/Diphenyldiazine	BRL		µg/l	5.00	1	"	"	"	"	"	
92-87-5	Benzidine	BRL		µg/l	5.00	1		"	"	"	"	Х
56-55-3	Benzo (a) anthracene	BRL		µg/l	5.00	1			"	"		Х
50-32-8	Benzo (a) pyrene	BRL		µg/l	5.00	1	"		"	"		Х
205-99-2	Benzo (b) fluoranthene	BRL		µg/l	5.00	1	"		"	"	"	Х
191-24-2	Benzo (g,h,i) perylene	BRL		µg/l	5.00	1	"		"	"	"	Х
207-08-9	Benzo (k) fluoranthene	BRL		µg/l	5.00	1	"		"	"	"	Х
65-85-0	Benzoic acid	BRL		µg/l	5.00	1	"		"	"	"	
100-51-6	Benzyl alcohol	BRL		µg/l	5.00	1			"	"	"	
111-91-1	Bis(2-chloroethoxy)methane	BRL		µg/l	5.00	1	"			"	"	Х
111-44-4	Bis(2-chloroethyl)ether	BRL		µg/l	5.00	1	n	"	"	"	"	Х
108-60-1	Bis(2-chloroisopropyl)ether	BRL		µg/l	5.00	1	n	"		"	"	Х
117-81-7	Bis(2-ethylhexyl)phthalate	BRL		µg/l	5.00	1	n	"		"	"	Х
101-55-3	4-Bromophenyl phenyl ether	BRL		µg/l	5.00	1	n	"		"	"	Х
85-68-7	Butyl benzyl phthalate	BRL		µg/l	5.00	1	"	"	"	"	"	Х
86-74-8	Carbazole	BRL		µg/l	5.00	1	"	"	"	"	"	
59-50-7	4-Chloro-3-methylphenol	BRL		µg/l	5.00	1	"	"	"	"	"	Х
106-47-8	4-Chloroaniline	BRL		µg/l	5.00	1	u	"	"	"	"	
91-58-7	2-Chloronaphthalene	BRL		µg/l	5.00	1		"	"		"	Х
95-57-8		BRL										

Sample Io ECS-1	dentification			t Project #		Matrix		lection Date			<u>ceived</u>	
SB25832	-01		2	12738		Ground Wa	iter 18	8-Mar-11 13	5:00	18-	Mar-11	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by GCM	s										
	tile Organic Compounds by EPA by method SW846 3510C	<u> 625</u>										
7005-72-3	4-Chlorophenyl phenyl ether	BRL		µg/l	5.00	1	EPA 625	21-Mar-11	23-Mar-11	MSL	1104837	x
218-01-9	Chrysene	BRL		µg/l	5.00	1		"		"	"	Х
53-70-3	Dibenzo (a,h) anthracene	BRL		µg/l	5.00	1		"		"	"	Х
132-64-9	Dibenzofuran	BRL		µg/l	5.00	1		"		"	"	
95-50-1	1,2-Dichlorobenzene	BRL		µg/l	5.00	1		"		"	"	Х
541-73-1	1,3-Dichlorobenzene	BRL		µg/l	5.00	1	"	"	"	"		Х
106-46-7	1,4-Dichlorobenzene	BRL		µg/l	5.00	1		"		"	"	Х
91-94-1	3,3'-Dichlorobenzidine	BRL		µg/l	5.00	1	"	"		"	"	х
120-83-2	2,4-Dichlorophenol	BRL		µg/l	5.00	1	"	"		"		х
84-66-2	Diethyl phthalate	BRL		µg/l	5.00	1	"	"		"		х
131-11-3	Dimethyl phthalate	BRL		µg/l	5.00	1	"	"		"		х
105-67-9	2,4-Dimethylphenol	BRL		µg/l	5.00	1	"	"		"		х
84-74-2	Di-n-butyl phthalate	BRL		µg/l	5.00	1	"	"		"		х
534-52-1	4,6-Dinitro-2-methylphenol	BRL		µg/l	5.00	1	"	"		"		х
51-28-5	2,4-Dinitrophenol	BRL		µg/l	5.00	1		"		"		х
121-14-2	2,4-Dinitrotoluene	BRL		µg/l	5.00	1	"	"		"		х
606-20-2	2,6-Dinitrotoluene	BRL		μg/l	5.00	1	"	"		"		х
117-84-0	Di-n-octyl phthalate	BRL		μg/l	5.00	1	"	"		"		х
206-44-0	Fluoranthene	BRL		µg/l	5.00	1	"	"		"		х
86-73-7	Fluorene	BRL		μg/l	5.00	1	"	"		"		х
118-74-1	Hexachlorobenzene	BRL		μg/l	5.00	1	"	"		"		х
87-68-3	Hexachlorobutadiene	BRL		μg/l	5.00	1	"	"		"		х
77-47-4	Hexachlorocyclopentadiene	BRL		μg/l	5.00	1	"	"		"		х
67-72-1	Hexachloroethane	BRL		μg/l	5.00	1	"	"		"		х
193-39-5	Indeno (1,2,3-cd) pyrene	BRL		μg/l	5.00	1	"	"		"		х
78-59-1	Isophorone	BRL		μg/l	5.00	1	"	"		"		х
91-57-6	2-Methylnaphthalene	BRL		μg/l	5.00	1	"	"		"		
95-48-7	2-Methylphenol	BRL		μg/l	5.00	1	"	"		"		
108-39-4, 106-44-5	3 & 4-Methylphenol	BRL		µg/l	10.0	1	"	"	"	"	"	
91-20-3	Naphthalene	BRL		µg/l	5.00	1	"	"		"		х
88-74-4	2-Nitroaniline	BRL		µg/l	5.00	1		"		"		
99-09-2	3-Nitroaniline	BRL		µg/l	5.00	1		"		"		
100-01-6	4-Nitroaniline	BRL		μg/l	5.00	1	"	"		"		
98-95-3	Nitrobenzene	BRL		μg/l	5.00	1	"	"		"		х
88-75-5	2-Nitrophenol	BRL		μg/l	5.00	1	"	"		"		х
100-02-7	4-Nitrophenol	BRL		μg/l	5.00	1	"	"		"		х
62-75-9	N-Nitrosodimethylamine	BRL		μg/l	5.00	1	"	"		"		х
621-64-7	N-Nitrosodi-n-propylamine	BRL		μg/l	5.00	1	"			"	"	х
86-30-6	N-Nitrosodiphenylamine	BRL		μg/l	5.00	1	"			"	"	х
87-86-5	Pentachlorophenol	BRL		µg/l	5.00	1		"		"	"	x
85-01-8	Phenanthrene	BRL		μg/l	5.00	1		"		"	"	x
108-95-2	Phenol	BRL		μg/l	5.00	1		"		"	"	x
129-00-0	Pyrene	BRL		μg/l	5.00	1				"	"	x
110-86-1	Pyridine	BRL		µg/l	5.00	1	"	"	"	"		

Sample Id ECS-1 SB25832-	lentification 01			<u>t Project </u>		<u>Matrix</u> Ground W		ection Date -Mar-11 13			<u>eceived</u> Mar-11	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by GCMS											
	ile Organic Compounds by EPA 6 by method SW846 3510C	<u>25</u>										
120-82-1	1,2,4-Trichlorobenzene	BRL		µg/l	5.00	1	EPA 625	21-Mar-11	23-Mar-11	MSL	1104837	х
95-95-4	2,4,5-Trichlorophenol	BRL		µg/l	5.00	1	"	"				
88-06-2	2,4,6-Trichlorophenol	BRL		µg/l	5.00	1	"	"		"	"	х
Surrogate r	recoveries:											
321-60-8	2-Fluorobiphenyl	57			30-130 %		"	"				
367-12-4	2-Fluorophenol	49			15-110 %		"	"				
4165-60-0	Nitrobenzene-d5	63			30-130 %			"	"	"		
4165-62-2	Phenol-d5	35			15-110 %		"	"	"	"		
1718-51-0	Terphenyl-dl4	58			30-130 %		"	"	"	"		
118-79-6	2,4,6-Tribromophenol	67			15-110 %		"	"	"		"	
Semivolati	le Organic Compounds by GC											
	nated Biphenyls by EPA 608 by method SW846 3510C											
12674-11-2	Aroclor-1016	BRL		µg/l	0.0650	1	EPA 608	21-Mar-11	22-Mar-11	SM	1104828	х
11104-28-2	Aroclor-1221	BRL		µg/l	0.0650	1	"	"	"	"	"	х
11141-16-5	Aroclor-1232	BRL		µg/l	0.0650	1	"	"	"	"	"	х
53469-21-9	Aroclor-1242	BRL		µg/l	0.0650	1		"	"	"		х
12672-29-6	Aroclor-1248	BRL		µg/l	0.0650	1		"	"	"		х
11097-69-1	Aroclor-1254	BRL		µg/l	0.0650	1	"		"	"		х
11096-82-5	Aroclor-1260	BRL		µg/l	0.0650	1	"		"	"		х
37324-23-5	Aroclor-1262	BRL		µg/l	0.0650	1		"	"	"		
11100-14-4	Aroclor-1268	BRL		µg/l	0.0650	1	"	"			"	
Surrogate r	recoveries:											
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	49			30-150 %		"		"	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	36			30-150 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	73			30-150 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	86			30-150 %		"	"		"		
Extractabl	le Petroleum Hydrocarbons											
	Non-polar material (SGT-HEM)	BRL		mg/l	1.0	1	EPA 1664 Rev. A	21-Mar-11	23-Mar-11	JK	1104821	
Total Meta	als by EPA 200/6000 Series Methods											
	Preservation	Field Preserved		N/A		1	EPA 200/6000 methods	18-Mar-11	18-Mar-11	LA	1104762	
Total Meta	als by EPA 200 Series Methods											
7440-22-4	Silver	BRL		mg/l	0.0050	1	EPA 200.7	21-Mar-11	22-Mar-11	TBC	1104677	Х
7440-38-2	Arsenic	BRL		mg/l	0.0040	1		"	"	"	"	Х
7440-43-9	Cadmium	BRL		mg/l	0.0025	1	"	"	"	"	"	Х
7440-47-3	Chromium	BRL		mg/l	0.0050	1		"	"	"	"	Х
7440-50-8	Copper	BRL		mg/l	0.0050	1	"	"	"	"	"	Х
7439-89-6	Iron	3.13		mg/l	0.0150	1		"	"	"	"	Х
7439-97-6	Mercury	BRL		mg/l	0.00020	1	EPA 245.1/7470A	"	22-Mar-11	ARF	1104678	Х
7440-02-0	Nickel	BRL		mg/l	0.0050	1	EPA 200.7	"	22-Mar-11	TBC	1104677	Х
7439-92-1	Lead	BRL		mg/l	0.0075	1	"	"	"	"	"	Х
7440-36-0	Antimony	BRL		mg/l	0.0060	1	"	"	"	"	"	Х
7782-49-2	Selenium	BRL		mg/l	0.0150	1	"	"	23-Mar-11	"		Х

Sample Id ECS-1 SB25832-	lentification -01			<u>Project #</u> 2738		<u>Matri</u> Ground V	_	ection Date Mar-11 13			<u>ceived</u> Mar-11	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Met	als by EPA 200 Series Methods											
7440-66-6	Zinc	0.0150		mg/l	0.0050	1	EPA 200.7	21-Mar-11	22-Mar-11	TBC	1104677	Х
General C	hemistry Parameters											
16887-00-6	Chloride	938		mg/l	10.0	10	EPA 300.0	25-Mar-11	25-Mar-11	JAK	1105305	Х
18540-29-9	Hexavalent Chromium	BRL		mg/l	0.005	1	SW846 7196A/SM3500CrE	18-Mar-11) 17:15	18-Mar-11 17:16	GMA	1104804	
57-12-5	Cyanide (total)	0.0806		mg/l	0.00500	1	EPA 335.4 / SW846 9012A	3 23-Mar-11	24-Mar-11	eemon	1105012	Х
7782-50-5	Total Residual Chlorine	BRL	CIHT	mg/l	0.020	1	Hach 8167	18-Mar-11 18:15	18-Mar-11 18:15	GMA	1104810	Х
	Total Suspended Solids	13.0		mg/l	5.00	1	SM2540D	22-Mar-11	22-Mar-11	SJL	1104978	х

Sample Ic ECS-3 SB25832-	lentification			<u>t Project #</u> 12738		<u>Matrix</u> Ground Wa		ection Date 3-Mar-11 14			<u>ceived</u> Mar-11	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
			0					1				
Volatile O	rganic Compounds <u>rganic Compounds</u> by method SW846 5030 Water MS	2	R04									
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	BRL		µg/l	5.0	5	SW846 8260C	21-Mar-11	22-Mar-11	JLG	1104853	1
67-64-1	Acetone	BRL		µg/l	50.0	5	"	"		"	"	
107-13-1	Acrylonitrile	BRL		µg/l	2.5	5			"	"	"	
71-43-2	Benzene	17.1		µg/l	5.0	5			"	"	"	
108-86-1	Bromobenzene	BRL		µg/l	5.0	5		"	"	"	"	
74-97-5	Bromochloromethane	BRL		µg/l	5.0	5		"	"	"	"	
75-27-4	Bromodichloromethane	BRL		µg/l	2.5	5		"	"	"		
75-25-2	Bromoform	BRL		µg/l	5.0	5			"	"	"	
74-83-9	Bromomethane	BRL		µg/l	10.0	5			"	"	"	
78-93-3	2-Butanone (MEK)	BRL		µg/l	50.0	5	"	"		"	"	
104-51-8	n-Butylbenzene	9.3		µg/l	5.0	5		"	"	"	"	
135-98-8	sec-Butylbenzene	BRL		µg/l	5.0	5		"	"	"		
98-06-6	tert-Butylbenzene	BRL		µg/l	5.0	5		"	"	"	"	
75-15-0	Carbon disulfide	BRL		µg/l	10.0	5	"	"	"	"	"	
56-23-5	Carbon tetrachloride	BRL		µg/l	5.0	5	"	"	"	"	"	
108-90-7	Chlorobenzene	BRL		µg/l	5.0	5	"	"	"	"	"	
75-00-3	Chloroethane	BRL		µg/l	10.0	5		"	"	"	"	
67-66-3	Chloroform	BRL		µg/l	5.0	5		"	"	"	"	
74-87-3	Chloromethane	BRL		µg/l	10.0	5	"	"	"	"	"	
95-49-8	2-Chlorotoluene	BRL		µg/l	5.0	5		"	"	"	"	
106-43-4	4-Chlorotoluene	BRL		µg/l	5.0	5		"	"	"		
96-12-8	1,2-Dibromo-3-chloropropane	BRL		µg/l	10.0	5		"	"	"	"	
124-48-1	Dibromochloromethane	BRL		µg/l	2.5	5		"	"	"	"	
106-93-4	1,2-Dibromoethane (EDB)	BRL		µg/l	2.5	5		"	"	"	"	
74-95-3	Dibromomethane	BRL		µg/l	5.0	5	"	"	"	"		
95-50-1	1,2-Dichlorobenzene	BRL		µg/l	5.0	5		"	"	"		
541-73-1	1,3-Dichlorobenzene	BRL		µg/l	5.0	5	"	"	"	"		
106-46-7	1,4-Dichlorobenzene	BRL		µg/l	5.0	5	"	"	"	"	"	
75-71-8	Dichlorodifluoromethane (Freon12)	BRL		µg/l	10.0	5		"	"	"	"	
75-34-3	1,1-Dichloroethane	BRL		µg/l	5.0	5		"	"	"		
107-06-2	1,2-Dichloroethane	BRL		µg/l	5.0	5		"	"	"	"	
75-35-4	1,1-Dichloroethene	BRL		µg/l	5.0	5	"	"	"	"	"	
156-59-2	cis-1,2-Dichloroethene	BRL		µg/l	5.0	5		"	"	"	"	
156-60-5	trans-1,2-Dichloroethene	BRL		µg/l	5.0	5		"	"	"		
78-87-5	1,2-Dichloropropane	BRL		µg/l	5.0	5	"	"	"	"	"	
142-28-9	1,3-Dichloropropane	BRL		µg/l	5.0	5		"	"	"	"	
594-20-7	2,2-Dichloropropane	BRL		µg/l	5.0	5	"	"	"	"	"	
563-58-6	1,1-Dichloropropene	BRL		µg/l	5.0	5	"	"	"	"	"	
10061-01-5	cis-1,3-Dichloropropene	BRL		µg/l	2.5	5	"	"	"	"	"	
10061-02-6	trans-1,3-Dichloropropene	BRL		µg/l	2.5	5	"	"	"	"	"	
100-41-4	Ethylbenzene	43.9		µg/l	5.0	5	"	"	"	"	"	
87-68-3	Hexachlorobutadiene	BRL		µg/l	2.5	5	"	"	"	"	"	
591-78-6	2-Hexanone (MBK)	BRL		µg/l	50.0	5	"	"	"	"	"	
98-82-8	Isopropylbenzene	7.2		µg/l	5.0	5	"	"	"	"		

ECS-3 5B25832-	-02			<u>t Project #</u> 12738		<u>Matrix</u> Ground Wa		ection Date -Mar-11 14		<u>Received</u> 18-Mar-11		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile O	rganic Compounds											
/olatile O	rganic Compounds by method SW846 5030 Water MS	3	R04									
9-87-6	4-Isopropyltoluene	BRL		µg/l	5.0	5	SW846 8260C	21-Mar-11	22-Mar-11	JLG	1104853	5
634-04-4	Methyl tert-butyl ether	BRL		µg/l	5.0	5		"	"	"	"	
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		µg/l	50.0	5		"	"	"	"	
5-09-2	Methylene chloride	BRL		µg/l	10.0	5		"	"	"	"	
1-20-3	Naphthalene	32.2		µg/l	5.0	5		"	"	"	"	
03-65-1	n-Propylbenzene	14.7		µg/l	5.0	5		"		"		
00-42-5	Styrene	BRL		µg/l	5.0	5		"	"	"	"	
30-20-6	1,1,1,2-Tetrachloroethane	BRL		µg/l	5.0	5		"		"		
9-34-5	1,1,2,2-Tetrachloroethane	BRL		µg/l	2.5	5		"		"		
27-18-4	Tetrachloroethene	BRL		µg/l	5.0	5		"		"		
08-88-3	Toluene	13.8		μg/l	5.0	5	"	"		"	"	
7-61-6	1,2,3-Trichlorobenzene	BRL		µg/l	5.0	5		"		"		
20-82-1	1,2,4-Trichlorobenzene	BRL		μg/l	5.0	5				"		
08-70-3	1,3,5-Trichlorobenzene	BRL		μg/l	5.0	5				"		
1-55-6	1,1,1-Trichloroethane	BRL		μg/l	5.0	5		"		"		
9-00-5	1,1,2-Trichloroethane	BRL		μg/l	5.0	5		"		"		
9-01-6	Trichloroethene	BRL		μg/l	5.0	5		"		"		
5-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/l	5.0	5				"		
6-18-4	1,2,3-Trichloropropane	BRL		μg/l	5.0	5		"		"		
5-63-6	1,2,4-Trimethylbenzene	12.0		μg/l	5.0	5		"		"		
)8-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	5.0	5		"		"		
5-01-4	Vinyl chloride	BRL		μg/l	5.0	5		"		"		
79601-23-1	-	17.2		μg/l	10.0	5				"		
5-47-6	o-Xylene	7.3			5.0	5						
09-99-9	Tetrahydrofuran	BRL		µg/l µg/l	10.0	5				"		
0-29-7	Ethyl ether	BRL			5.0	5				"		
94-05-8	-	BRL		µg/l	5.0			"		"		
37-92-3	Tert-amyl methyl ether			µg/l		5		"				
	Ethyl tert-butyl ether	BRL		µg/l	5.0	5		"				
08-20-3	Di-isopropyl ether	BRL		µg/l	5.0	5						
5-65-0	Tert-Butanol / butyl alcohol	BRL		µg/l	50.0	5		"				
23-91-1	1,4-Dioxane	BRL		µg/l	100	5						
10-57-6	trans-1,4-Dichloro-2-butene	BRL		µg/l	25.0	5						
4-17-5	Ethanol	BRL		µg/l	2000	5						
-	recoveries:	07			70 /00							
60-00-4	4-Bromofluorobenzene	87			70-130 %							
037-26-5	Toluene-d8	99			70-130 %							
7060-07-0	1,2-Dichloroethane-d4	96			70-130 %							
868-53-7	Dibromofluoromethane	92			70-130 %		"	"	"	"	"	
	natic/Aromatic Carbon Ranges by method VPH - EPA 5030B											
	C5-C8 Aliphatic Hydrocarbons	0.744		mg/l	0.0750	1	+MADEP VPH 5/2004 Rev. 1.1	21-Mar-11	21-Mar-11	MP	1104829	
	C9-C12 Aliphatic Hydrocarbons	0.797		mg/l	0.0250	1	"	"	"	"	"	
	C9-C10 Aromatic Hydrocarbons	0.424		mg/l	0.0250	1		"		"		

Volatile Organ VPH Aliphatic Prepared by m Un Hy Un To 100-41-4 Ett 1634-04-4 Me 91-20-3 Na 108-88-3 To 179601-23-1 My Surrogate recov 615-59-8 2,5 615-59-8 2,5	method VPH - EPA 5030B enzene thylbenzene lethyl tert-butyl ether aphthalene oluene n,p-Xylene -Xylene	<i>Result</i> 0.864 1.22 20.5 52.4 BRL 56.4 21.1 18.7 7.6	Flag	Units mg/l mg/l µg/l µg/l µg/l	* <i>RDL</i> 0.0750 0.0250 5.0 5.0	Dilution 1 1	Method Ref. +MADEP VPH 5/2004 Rev. 1.1	Prepared 21-Mar-11 "	n	Analyst MP "	Batch 1104829 "	
VPH Aliphatic Prepared by m Hy Un Hy VPH Target A Prepared by m 71-43-2 Be 100-41-4 Ht 1634-04-4 91-20-3 Na 108-88-3 To 179601-23-1 m, 95-47-6 0-2 Surrogate recov 615-59-8 2,5 615-59-8 2,5	c/Aromatic Carbon Ranges method VPH - EPA 5030B Inadjusted C5-C8 Aliphatic lydrocarbons Inadjusted C9-C12 Aliphatic lydrocarbons Analytes method VPH - EPA 5030B enzene thylbenzene lethyl tert-butyl ether laphthalene oluene n,p-Xylene -Xylene	1.22 20.5 52.4 BRL 56.4 21.1 18.7		mg/l µg/l µg/l	0.0250	1	5/2004 Rev. 1.1	u	n			
Prepared by n Hy Un Hy Un Hy VPH Target A Prepared by n 71-43-2 Be 100-41-4 Ett 1634-04-4 91-20-3 Na 108-88-3 To 179601-23-1 m, 95-47-6 0-2 Surrogate recove 615-59-8 2,5	method VPH - EPA 5030B Inadjusted C5-C8 Aliphatic lydrocarbons Inadjusted C9-C12 Aliphatic lydrocarbons Analytes method VPH - EPA 5030B enzene thylbenzene lethyl tert-butyl ether laphthalene oluene n,p-Xylene -Xylene	1.22 20.5 52.4 BRL 56.4 21.1 18.7		mg/l µg/l µg/l	0.0250	1	5/2004 Rev. 1.1	u	n			
Un Hy Un Hy <u>VPH Target A</u> <u>Prepared by m</u> 71-43-2 Be 100-41-4 Ett 1634-04-4 Me 91-20-3 Na 108-88-3 To 179601-23-1 m, 95-47-6 o-> Surrogate recov 615-59-8 2,5	Inadjusted C5-C8 Aliphatic lydrocarbons Inadjusted C9-C12 Aliphatic lydrocarbons <u>Analytes</u> <u>method VPH - EPA 5030B</u> enzene thylbenzene lethyl tert-butyl ether laphthalene oluene n,p-Xylene -Xylene	1.22 20.5 52.4 BRL 56.4 21.1 18.7		mg/l µg/l µg/l	0.0250	1	5/2004 Rev. 1.1	u	n			
Hy VPH Targ∈t A Prepared by m 71-43-2 Be 100-41-4 Ett 1634-04-4 Me 91-20-3 Na 108-88-3 To 179601-23-1 m, 95-47-6 o-> 615-59-8 2,5 615-59-8 2,5	ydrocarbons <u>Analytes</u> <u>method VPH - EPA 5030B</u> enzene thylbenzene lethyl tert-butyl ether laphthalene oluene n,p-Xylene -Xylene	20.5 52.4 BRL 56.4 21.1 18.7		hð\J hð\J	5.0		"			u	u	
Prepared by n 71-43-2 Be 100-41-4 Ett 1634-04-4 Me 91-20-3 Na 108-88-3 To 179601-23-1 m, 95-47-6 o-> Surrogate record 615-59-8 2,5 615-59-8 2,5	method VPH - EPA 5030B enzene thylbenzene lethyl tert-butyl ether aphthalene oluene n,p-Xylene -Xylene	52.4 BRL 56.4 21.1 18.7		µg/l µg/l		1						
71-43-2 Be 100-41-4 Ett 1634-04-4 Me 91-20-3 Na 108-88-3 To 179601-23-1 m, 95-47-6 o-> Surrogate record 615-59-8 2,5 615-59-8 2,5	enzene thylbenzene lethyl tert-butyl ether laphthalene oluene n,p-Xylene -Xylene	52.4 BRL 56.4 21.1 18.7		µg/l µg/l		1						
100-41-4 Ett 1634-04-4 Me 91-20-3 Na 108-88-3 To 179601-23-1 m, 95-47-6 o-> Surrogate recove 615-59-8 2,5 615-59-8 2,5	thylbenzene lethyl tert-butyl ether laphthalene oluene n,p-Xylene -Xylene	52.4 BRL 56.4 21.1 18.7		µg/l µg/l			"					
1634-04-4 Me 91-20-3 Na 108-88-3 To 179601-23-1 m, 95-47-6 o-> Surrogate record 615-59-8 2,5 615-59-8 2,5	lethyl tert-butyl ether laphthalene oluene n,p-Xylene -Xylene	BRL 56.4 21.1 18.7		µg/l	5.0	1				"		
91-20-3 Na 108-88-3 To 179601-23-1 m, 95-47-6 o-2 Surrogate recover 615-59-8 2, 5	laphthalene oluene n,p-Xylene -Xylene	56.4 21.1 18.7			5.0	1				"		
108-88-3 To 179601-23-1 m, 95-47-6 o-> Surrogate recove 615-59-8 615-59-8 2,5	oluene n,p-Xylene -Xylene	21.1 18.7								"		
179601-23-1 m, 95-47-6 0-> Surrogate recov 615-59-8 2,5 615-59-8 2,5	n,p-Xylene -Xylene	18.7		µg/l	5.0	1					"	
95-47-6 0-> Surrogate recov 615-59-8 2,5 615-59-8 2,5	-Xylene			µg/l	5.0	1					"	
Surrogate recov 615-59-8 2,5 615-59-8 2,5	•	(,h		µg/l	10.0	1					"	
615-59-8 2,5 615-59-8 2,5	overies:			µg/l	5.0	1						
615-59-8 2,5												
, -	,5-Dibromotoluene (FID)	116			70-130 %			"	"	"	"	
Microextracta	,5-Dibromotoluene (PID)	125			70-130 %			"	"	"	"	
	able Organic Compounds											
106-93-4 1,2	,2-Dibromoethane (EDB)	BRL		µg/l	0.0100	1	EPA 504.1	21-Mar-11	21-Mar-11	SM	1104877	
Semivolatile O	Organic Compounds by GCMS											
	Organic Compounds by EPA	<u>625</u>										
	method SW846 3510C	551			= 00		554 005					
	cenaphthene	BRL		µg/l	5.00	1	EPA 625	21-Mar-11	23-Mar-11 "	MSL "	1104837	
	cenaphthylene	BRL		µg/l	5.00	1	"					Х
	niline	BRL		µg/l	5.00	1	"					
	nthracene	BRL		µg/l	5.00	1		"	"	"	"	Х
	zobenzene/Diphenyldiazine	BRL		µg/l	5.00	1		"	"	"	"	
92-87-5 Be	enzidine	BRL		µg/l	5.00	1	"	"	"	"	"	Х
56-55-3 Be	enzo (a) anthracene	BRL		µg/l	5.00	1	"	"	"	"	"	Х
50-32-8 Be	enzo (a) pyrene	BRL		µg/l	5.00	1		"		"		х
205-99-2 Be	enzo (b) fluoranthene	BRL		µg/l	5.00	1	"	"	"	"	"	Х
191-24-2 Be	enzo (g,h,i) perylene	BRL		µg/l	5.00	1	"	"	"	"	"	Х
207-08-9 Be	enzo (k) fluoranthene	BRL		µg/l	5.00	1	"	"		"	"	Х
65-85-0 Be	enzoic acid	BRL		µg/l	5.00	1	"	"		"	"	
100-51-6 Be	enzyl alcohol	BRL		µg/l	5.00	1		"		"		
111-91-1 Bis	is(2-chloroethoxy)methane	BRL		µg/l	5.00	1	"	"	"	"	"	Х
111-44-4 Bis	is(2-chloroethyl)ether	BRL		µg/l	5.00	1	"	"		"	"	х
108-60-1 Bis	is(2-chloroisopropyl)ether	BRL		µg/l	5.00	1	"	"		"	"	х
117-81-7 Bis	is(2-ethylhexyl)phthalate	8.21		µg/l	5.00	1	"	"		"	"	х
101-55-3 4-E	-Bromophenyl phenyl ether	BRL		µg/l	5.00	1	"	"		"	"	х
85-68-7 Bu	utyl benzyl phthalate	BRL		µg/l	5.00	1	"	"	"	"	"	Х
86-74-8 Ca	arbazole	BRL		μg/l	5.00	1	"	"		"	"	
59-50-7 4-0	-Chloro-3-methylphenol	BRL		μg/l	5.00	1	"	"		"	"	Х
	-Chloroaniline	BRL		μg/l	5.00	1		"		"	"	
	-Chloronaphthalene	BRL		μg/l	5.00	1	"	"		"	"	х
	-Chlorophenol	BRL		μg/l								

	dentification		Client	t Project #		Matrix	Coll	lection Date	/Time	Re	ceived	
ECS-3 SB25832	_02		2	12738		Ground Wa	iter 18	8-Mar-11 14	4:00	18-	Mar-11	
5625652	-02											
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by GCM	s										
	tile Organic Compounds by EPA by method SW846 3510C	<u>\ 625</u>										
7005-72-3	4-Chlorophenyl phenyl ether	BRL		µg/l	5.00	1	EPA 625	21-Mar-11	23-Mar-11	MSL	1104837	x
218-01-9	Chrysene	BRL		µg/l	5.00	1	"	"	"	"	"	Х
53-70-3	Dibenzo (a,h) anthracene	BRL		µg/l	5.00	1	"	"	"	"		Х
132-64-9	Dibenzofuran	BRL		µg/l	5.00	1	"	"	"	"	"	
95-50-1	1,2-Dichlorobenzene	BRL		µg/l	5.00	1	"	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	BRL		µg/l	5.00	1	"	"	"	"		Х
106-46-7	1,4-Dichlorobenzene	BRL		µg/l	5.00	1	"	"	"	"		Х
91-94-1	3,3'-Dichlorobenzidine	BRL		µg/l	5.00	1	"	"	"	"		Х
120-83-2	2,4-Dichlorophenol	BRL		µg/l	5.00	1	"	"	"	"		х
84-66-2	Diethyl phthalate	BRL		µg/l	5.00	1	"	"	"	"		х
131-11-3	Dimethyl phthalate	BRL		µg/l	5.00	1	"	"	"	"		х
105-67-9	2,4-Dimethylphenol	BRL		µg/l	5.00	1	"	"	"	"		х
84-74-2	Di-n-butyl phthalate	BRL		µg/l	5.00	1	"	"	"	"		х
534-52-1	4,6-Dinitro-2-methylphenol	BRL		µg/l	5.00	1	"	"	"	"		х
51-28-5	2,4-Dinitrophenol	BRL		µg/l	5.00	1		"	"	"		х
121-14-2	2,4-Dinitrotoluene	BRL		µg/l	5.00	1	"	"	"	"		х
606-20-2	2,6-Dinitrotoluene	BRL		µg/l	5.00	1		"	"	"		х
117-84-0	Di-n-octyl phthalate	BRL		µg/l	5.00	1	"	"	"	"		х
206-44-0	Fluoranthene	BRL		µg/l	5.00	1	"	"	"	"		х
86-73-7	Fluorene	BRL		μg/l	5.00	1	"	"	"	"		х
118-74-1	Hexachlorobenzene	BRL		μg/l	5.00	1	"	"	"	"		х
87-68-3	Hexachlorobutadiene	BRL		μg/l	5.00	1	"	"	"	"		х
77-47-4	Hexachlorocyclopentadiene	BRL		μg/l	5.00	1	"	"	"	"		х
67-72-1	Hexachloroethane	BRL		μg/l	5.00	1	"	"	"	"		х
193-39-5	Indeno (1,2,3-cd) pyrene	BRL		μg/l	5.00	1	"	"	"	"		х
78-59-1	Isophorone	BRL		μg/l	5.00	1		"	"			х
91-57-6	2-Methylnaphthalene	BRL		μg/l	5.00	1		"	"	"	"	
95-48-7	2-Methylphenol	BRL		μg/l	5.00	1	"	"	"	"		
108-39-4, 106-44-5	3 & 4-Methylphenol	BRL		µg/l	10.0	1	"	"	"	"	"	
91-20-3	Naphthalene	13.9		µg/l	5.00	1	"	"	"	"		х
88-74-4	2-Nitroaniline	BRL		µg/l	5.00	1		"	"	"		
99-09-2	3-Nitroaniline	BRL		µg/l	5.00	1	"	"	"	"		
100-01-6	4-Nitroaniline	BRL		μg/l	5.00	1	"	"	"	"		
98-95-3	Nitrobenzene	BRL		μg/l	5.00	1	"	"	"	"		х
88-75-5	2-Nitrophenol	BRL		μg/l	5.00	1	"	"	"	"		х
100-02-7	4-Nitrophenol	BRL		μg/l	5.00	1			"	"	"	х
62-75-9	N-Nitrosodimethylamine	BRL		μg/l	5.00	1	"	"	"	"		х
621-64-7	N-Nitrosodi-n-propylamine	BRL		μg/l	5.00	1	"		"	"	"	х
86-30-6	N-Nitrosodiphenylamine	BRL		μg/l	5.00	1	"		"	"	"	х
87-86-5	Pentachlorophenol	BRL		μg/l	5.00	1		"			"	x
85-01-8	Phenanthrene	BRL		μg/l	5.00	1		"			"	x
108-95-2	Phenol	BRL		μg/l	5.00	1				"	"	x
129-00-0	Pyrene	BRL		μg/l	5.00	1		"				x
110-86-1	Pyridine	BRL			5.00	1		"		"		~
. 10 00-1		DINL		µg/l	5.00	I						

Sample Id ECS-3 SB25832-	lentification 02			<u>t Project </u> 12738	_	<u>Matrix</u> Ground W		ection Date -Mar-11 14			<u>eceived</u> Mar-11	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by GCMS											
Semivolat	ile Organic Compounds by EPA 6. by method SW846 3510C	<u>25</u>										
120-82-1	1,2,4-Trichlorobenzene	BRL		µg/l	5.00	1	EPA 625	21-Mar-11	23-Mar-11	MSL	1104837	х
95-95-4	2,4,5-Trichlorophenol	BRL		μg/l	5.00	1	"	"	"			
88-06-2	2,4,6-Trichlorophenol	BRL		μg/l	5.00	1	"	"	"	"	"	х
Surrogate r	recoveries:											
321-60-8	2-Fluorobiphenyl	61			30-130 %		"	"	"		"	
367-12-4	2-Fluorophenol	55			15-110 %		"	"	"		"	
4165-60-0	Nitrobenzene-d5	67			30-130 %		"	"	"		"	
4165-62-2	Phenol-d5	41			15-110 %		"	"	"		"	
1718-51-0	Terphenyl-dl4	64			30-130 %		"	"	"			
118-79-6	2,4,6-Tribromophenol	77			15-110 %		"	"	"	"	"	
Semivolati	le Organic Compounds by GC											
	nated Biphenyls by EPA 608 by method SW846 3510C											
12674-11-2	Aroclor-1016	BRL		µg/l	0.0650	1	EPA 608	21-Mar-11	22-Mar-11	SM	1104828	х
11104-28-2	Aroclor-1221	BRL		µg/l	0.0650	1	"		"	"		х
11141-16-5	Aroclor-1232	BRL		µg/l	0.0650	1	"		"	"		х
53469-21-9	Aroclor-1242	BRL		µg/l	0.0650	1	"	"	"		"	х
12672-29-6	Aroclor-1248	BRL		µg/l	0.0650	1	"	"	"		"	х
11097-69-1	Aroclor-1254	BRL		µg/l	0.0650	1	"	"	"		"	х
11096-82-5	Aroclor-1260	BRL		µg/l	0.0650	1	"	"	"		"	х
37324-23-5	Aroclor-1262	BRL		µg/l	0.0650	1	"	"	"	"		
11100-14-4	Aroclor-1268	BRL		µg/l	0.0650	1	"				"	
Surrogate r	recoveries:											
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	56			30-150 %		"		"	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	42			30-150 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	51			30-150 %		"	"	"		"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	1690	S02		30-150 %		"	"	"		"	
Extractabl	le Petroleum Hydrocarbons											
	Non-polar material (SGT-HEM)	BRL		mg/l	1.0	1	EPA 1664 Rev. A	21-Mar-11	23-Mar-11	JK	1104821	
Total Meta	als by EPA 200/6000 Series Methods											
	Preservation	Field Prese	ervec	N/A		1	EPA 200/6000 methods	18-Mar-11	18-Mar-11	LA	1104762	
Total Meta	als by EPA 200 Series Methods											
7440-22-4	Silver	BRL		mg/l	0.0050	1	EPA 200.7	21-Mar-11	23-Mar-11	TBC	1104677	Х
7440-38-2	Arsenic	0.0111		mg/l	0.0040	1	"	"	"		"	Х
7440-43-9	Cadmium	BRL		mg/l	0.0025	1	"	"	23-Mar-11	"	"	Х
7440-47-3	Chromium	BRL		mg/l	0.0050	1	"	"	23-Mar-11	"	"	Х
7440-50-8	Copper	BRL		mg/l	0.0050	1	"	"	"		"	Х
7439-89-6	Iron	18.5		mg/l	0.0150	1	"	"	"		"	Х
7439-97-6	Mercury	BRL		mg/l	0.00020	1	EPA 245.1/7470A	"	22-Mar-11	ARF	1104678	Х
7440-02-0	Nickel	0.0138		mg/l	0.0050	1	EPA 200.7	"	23-Mar-11	TBC	1104677	Х
7439-92-1	Lead	BRL		mg/l	0.0075	1	"	"	"	"	"	Х
7440-36-0	Antimony	BRL		mg/l	0.0060	1	"	"	"		"	Х
7782-49-2	Selenium	BRL		mg/l	0.0150	1	"	"	23-Mar-11	"		х

Sample Id ECS-3 SB25832-	lentification 02			<u>Project #</u> 2738		<u>Matri</u> Ground V		ection Date -Mar-11 14			<u>ceived</u> Mar-11	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Meta	als by EPA 200 Series Methods											
7440-66-6	Zinc	0.0174		mg/l	0.0050	1	EPA 200.7	21-Mar-11	23-Mar-11	TBC	1104677	х
General C	hemistry Parameters											
16887-00-6	Chloride	14,000		mg/l	1000	1000	EPA 300.0	28-Mar-11	28-Mar-11	JAK	1105345	Х
18540-29-9	Hexavalent Chromium	BRL	R01	mg/l	0.025	1	SW846 7196A/SM3500CrE	18-Mar-11) 17:15	18-Mar-11 17:16	GMA	1104804	
57-12-5	Cyanide (total)	0.0225		mg/l	0.00500	1	EPA 335.4 / SW846 9012A	3 23-Mar-11	24-Mar-11	eemon	1105012	Х
7782-50-5	Total Residual Chlorine	BRL	R01,CIHT	mg/l	0.100	1	Hach 8167	18-Mar-11 18:15	18-Mar-11 18:15	GMA	1104810	Х
	Total Suspended Solids	90.0		mg/l	10.0	1	SM2540D	22-Mar-11	22-Mar-11	SJL	1104978	х

Trip SB25832-	03			<u>Project #</u> 12738	E	<u>Matrix</u> Deionized V		ection Date -Mar-11 00			<u>ceived</u> Mar-11	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds											
VPH Aliph	atic/Aromatic Carbon Ranges											
Prepared	by method VPH - EPA 5030B											
	C5-C8 Aliphatic Hydrocarbons	BRL		mg/l	0.0750	1	+MADEP VPH 5/2004 Rev. 1.1	21-Mar-11	21-Mar-11	MP	1104829	
	C9-C12 Aliphatic Hydrocarbons	BRL		mg/l	0.0250	1	"	"	"		"	
	C9-C10 Aromatic Hydrocarbons	BRL		mg/l	0.0250	1	"	"	"		"	
	Unadjusted C5-C8 Aliphatic Hydrocarbons	BRL		mg/l	0.0750	1	"		"	"	"	
	Unadjusted C9-C12 Aliphatic Hydrocarbons	BRL		mg/l	0.0250	1	n	"	"	"	"	
	<u>et Analytes</u> by method VPH - EPA 5030B											
71-43-2	Benzene	BRL		µg/l	5.0	1			"	"	"	
100-41-4	Ethylbenzene	BRL		µg/l	5.0	1			"	"	"	
1634-04-4	Methyl tert-butyl ether	BRL		µg/l	5.0	1			"	"	"	
91-20-3	Naphthalene	BRL		µg/l	5.0	1	"		"	"	"	
108-88-3	Toluene	BRL		µg/l	5.0	1	"		"	"	"	
179601-23-1	m,p-Xylene	BRL		µg/l	10.0	1	"		"	"	"	
95-47-6	o-Xylene	BRL		µg/l	5.0	1	"	"	"	"	"	
Surrogate r	recoveries:											
615-59-8	2,5-Dibromotoluene (FID)	100			70-130 %				"	"	"	
615-59-8	2,5-Dibromotoluene (PID)	97			70-130 %				"	"	"	

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1104829 - VPH - EPA 5030B										
Blank (1104829-BLK1)					Pre	epared & Ai	nalyzed: 21-	Mar-11		
C5-C8 Aliphatic Hydrocarbons	BRL		mg/l	0.0750						
C9-C12 Aliphatic Hydrocarbons	BRL		mg/l	0.0250						
C9-C10 Aromatic Hydrocarbons	BRL		mg/l	0.0250						
Unadjusted C5-C8 Aliphatic Hydrocarbons	BRL		mg/l	0.0750						
Unadjusted C9-C12 Aliphatic Hydrocarbons	BRL		mg/l	0.0250						
Benzene	BRL		µg/l	5.0						
Ethylbenzene	BRL		µg/l	5.0						
Methyl tert-butyl ether	BRL		µg/l	5.0						
Naphthalene	BRL		µg/l	5.0						
Toluene	BRL		μg/l	5.0						
m,p-Xylene	BRL		μg/l	10.0						
o-Xylene	BRL		μg/l	5.0						
2-Methylpentane	BRL		µg/l	5.0						
n-Nonane	BRL		μg/l	10.0						
n-Pentane	BRL		μg/l	10.0						
1,2,4-Trimethylbenzene	BRL		μg/l	5.0						
2,2,4-Trimethylpentane	BRL		μg/l	5.0						
n-Butylcyclohexane n-Decane	BRL		µg/l	5.0						
	BRL		µg/l	5.0						
Surrogate: 2,5-Dibromotoluene (FID)	50.5		µg/l		50.0		101	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	49.1		µg/l		50.0		98	70-130		
LCS (1104829-BS1)					Pre	epared & Ai	nalyzed: 21-	Mar-11		
C5-C8 Aliphatic Hydrocarbons	54.4		mg/l		60.0		91	70-130		
C9-C12 Aliphatic Hydrocarbons	64.4		mg/l		60.0		107	70-130		
C9-C10 Aromatic Hydrocarbons	21.3		mg/l		20.0		107	70-130		
Unadjusted C5-C8 Aliphatic Hydrocarbons	205		mg/l		200		102	70-130		
Unadjusted C9-C12 Aliphatic Hydrocarbons	85.8		mg/l		80.0		107	70-130		
Benzene	21.6		µg/l		20.0		108	70-130		
Ethylbenzene	21.9		µg/l		20.0		110	70-130		
Methyl tert-butyl ether	17.6		µg/l		20.0		88	70-130		
Naphthalene	22.3		µg/l		20.0		112	70-130		
Toluene	22.2		μg/l		20.0		111	70-130		
m,p-Xylene	44.3		μg/l		40.0		111	70-130		
o-Xylene	22.5		µg/l		20.0		112	70-130		
2-Methylpentane	22.2		µg/l		20.0		111	70-130		
n-Nonane	23.4		µg/l		20.0		117	70-130		
n-Pentane	21.3		μg/l		20.0		106	70-130		
1,2,4-Trimethylbenzene	21.0		μg/l		20.0		110	70-130		
2,2,4-Trimethylpentane	22.3		μg/l		20.0		112	70-130		
n-Butylcyclohexane	22.5		μg/l		20.0		112	70-130		
n-Decane	22.5		μg/l		20.0		115	70-130		
			-							
Surrogate: 2,5-Dibromotoluene (FID)	60.3		µg/l		50.0		121	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	57.6		µg/l		50.0		115	70-130		
LCS Dup (1104829-BSD1)						epared & Ai	nalyzed: 21-	<u>Mar-11</u>		
C5-C8 Aliphatic Hydrocarbons	65.0		mg/l		60.0		108	70-130	18	25
C9-C12 Aliphatic Hydrocarbons	63.7		mg/l		60.0		106	70-130	1	25
C9-C10 Aromatic Hydrocarbons	20.1		mg/l		20.0		100	70-130	6	25
Unadjusted C5-C8 Aliphatic Hydrocarbons	206		mg/l		200		103	70-130	0.9	25
Unadjusted C9-C12 Aliphatic Hydrocarbons	83.8		mg/l		80.0		105	70-130	2	25

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
• \/	robuit	1 145	0.110		Level	result	,	Linito	10.0	Linit
Batch 1104829 - VPH - EPA 5030B					D .			May 44		
LCS Dup (1104829-BSD1)						epared & A	nalyzed: 21		_	
Benzene	20.4		µg/l		20.0		102	70-130	6	25
Ethylbenzene	20.6		µg/l		20.0		103	70-130	6	25
Methyl tert-butyl ether	16.7		µg/l		20.0		84	70-130	5	25
Naphthalene	20.0		µg/l		20.0		100	70-130	11	25
Toluene	20.9		µg/l		20.0		104	70-130	6	25
m,p-Xylene	41.6		µg/l		40.0		104	70-130	6	25
o-Xylene	21.1		µg/l		20.0		106	70-130	6	25
2-Methylpentane	20.3		µg/l		20.0		101	70-130	9	25
n-Nonane	21.5		µg/l		20.0		108	70-130	9	25
n-Pentane	20.5		µg/l		20.0		102	70-130	4	25
1,2,4-Trimethylbenzene	20.5		µg/l		20.0		102	70-130	7	25
2,2,4-Trimethylpentane	20.8		µg/l		20.0		104	70-130	7	25
n-Butylcyclohexane	20.7		µg/l		20.0		104	70-130	8	25
n-Decane	20.8		µg/l		20.0		104	70-130	11	25
Surrogate: 2,5-Dibromotoluene (FID)	53.7		µg/l		50.0		107	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	51.4		µg/l		50.0		103	70-130		
atch 1104853 - SW846 5030 Water MS										
Blank (1104853-BLK1)					Pre	epared & A	nalyzed: 21	-Mar-11		
1,1,2-Trichlorotrifluoroethane (Freon 113)	BRL		µg/l	1.0						
Acetone	BRL		µg/l	10.0						
Acrylonitrile	BRL		µg/l	0.5						
Benzene	BRL		µg/l	1.0						
Bromobenzene	BRL		µg/l	1.0						
Bromochloromethane	BRL		µg/l	1.0						
Bromodichloromethane	BRL		µg/l	0.5						
Bromoform	BRL		µg/l	1.0						
Bromomethane	BRL		µg/l	2.0						
2-Butanone (MEK)	BRL		µg/l	10.0						
n-Butylbenzene	BRL		µg/l	1.0						
sec-Butylbenzene	BRL		µg/l	1.0						
tert-Butylbenzene	BRL		µg/l	1.0						
Carbon disulfide	BRL		µg/l	2.0						
Carbon tetrachloride	BRL		µg/l	1.0						
Chlorobenzene	BRL		µg/l	1.0						
Chloroethane	BRL		µg/l	2.0						
Chloroform	BRL		µg/l	1.0						
Chloromethane	BRL		µg/l	2.0						
2-Chlorotoluene	BRL		µg/l	1.0						
4-Chlorotoluene	BRL		µg/l	1.0						
1,2-Dibromo-3-chloropropane	BRL		µg/l	2.0						
Dibromochloromethane	BRL		µg/l	0.5						
1,2-Dibromoethane (EDB)	BRL		µg/l	0.5						
Dibromomethane	BRL		µg/l	1.0						
1,2-Dichlorobenzene	BRL		µg/l	1.0						
1,3-Dichlorobenzene	BRL		µg/l	1.0						
1,4-Dichlorobenzene	BRL		µg/l	1.0						
Dichlorodifluoromethane (Freon12)	BRL		µg/l	2.0						
1,1-Dichloroethane	BRL		µg/l	1.0						
1,2-Dichloroethane	BRL		μg/l	1.0						
1,1-Dichloroethene	BRL		μg/l	1.0						
ain 1.2 Dichlaraothana	RDI			1.0						

µg/l This laboratory report is not valid without an authorized signature on the cover page.

1.0

BRL

cis-1,2-Dichloroethene

A natuta(s)	Dogult	Floo	Linita	*אסע	Spike	Source	0/DEC	%REC	רום ק	RPD Limit
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 1104853 - SW846 5030 Water MS					_					
<u>Blank (1104853-BLK1)</u>					Pre	epared & Ar	nalyzed: 21-	Mar-11		
trans-1,2-Dichloroethene	BRL		µg/l	1.0						
1,2-Dichloropropane	BRL		µg/l	1.0						
1,3-Dichloropropane	BRL		µg/l	1.0						
2,2-Dichloropropane	BRL		µg/l	1.0						
1,1-Dichloropropene	BRL		µg/l	1.0						
cis-1,3-Dichloropropene	BRL		µg/l	0.5						
trans-1,3-Dichloropropene	BRL		µg/l	0.5						
Ethylbenzene	BRL		µg/l	1.0						
Hexachlorobutadiene	BRL		µg/l	0.5						
2-Hexanone (MBK)	BRL		µg/l	10.0						
Isopropylbenzene	BRL		µg/l	1.0						
4-Isopropyltoluene	BRL		µg/l	1.0						
Methyl tert-butyl ether	BRL		µg/l	1.0						
4-Methyl-2-pentanone (MIBK)	BRL		µg/l	10.0						
Methylene chloride	BRL		µg/l	2.0						
Naphthalene	BRL		µg/l	1.0						
n-Propylbenzene	BRL		µg/l	1.0						
Styrene	BRL		µg/l	1.0						
1,1,1,2-Tetrachloroethane	BRL		µg/l	1.0						
1,1,2,2-Tetrachloroethane	BRL		µg/l	0.5						
Tetrachloroethene	BRL		μg/l	1.0						
Toluene	BRL		μg/l	1.0						
1,2,3-Trichlorobenzene	BRL		μg/l	1.0						
1,2,4-Trichlorobenzene	BRL		μg/l	1.0						
1,3,5-Trichlorobenzene	BRL		μg/l	1.0						
1,1,1-Trichloroethane	BRL		μg/l	1.0						
1,1,2-Trichloroethane	BRL		μg/l	1.0						
Trichloroethene	BRL		μg/l	1.0						
Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0						
1,2,3-Trichloropropane	BRL		μg/l	1.0						
1,2,4-Trimethylbenzene	BRL		μg/l	1.0						
1,3,5-Trimethylbenzene	BRL		μg/l	1.0						
Vinyl chloride	BRL		μg/l	1.0						
m,p-Xylene	BRL		μg/i μg/l	2.0						
	BRL									
o-Xylene	BRL		µg/l	1.0						
Tetrahydrofuran			µg/l	2.0						
Ethyl ether	BRL		µg/l	1.0						
Tert-amyl methyl ether	BRL		µg/l	1.0						
Ethyl tert-butyl ether	BRL		µg/l	1.0						
Di-isopropyl ether	BRL		µg/l	1.0						
Tert-Butanol / butyl alcohol	BRL		µg/l	10.0						
1,4-Dioxane	BRL		µg/l	20.0						
trans-1,4-Dichloro-2-butene	BRL		µg/l	5.0						
Ethanol	BRL		µg/l	400						
Surrogate: 4-Bromofluorobenzene	46.6		µg/l		50.0		93	70-130		
Surrogate: Toluene-d8	49.1		µg/l		50.0		98	70-130		
Surrogate: 1,2-Dichloroethane-d4	52.3		µg/l		50.0		105	70-130		
Surrogate: Dibromofluoromethane	50.1		µg/l		50.0		100	70-130		
LCS (1104853-BS1)					Pre	epared & Ar	nalyzed: 21-	Mar-11		
1,1,2-Trichlorotrifluoroethane (Freon 113)	19.7		µg/l		20.0		99	70-130		
Acetone	25.2		µg/l		20.0		126	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1104853 - SW846 5030 Water MS										
LCS (1104853-BS1)					Pre	epared & Ar	nalyzed: 21	-Mar-11		
Acrylonitrile	22.6		µg/l		20.0		113	70-130		
Benzene	18.7		µg/l		20.0		93	70-130		
Bromobenzene	20.7		µg/l		20.0		104	70-130		
Bromochloromethane	20.1		µg/l		20.0		100	70-130		
Bromodichloromethane	20.2		µg/l		20.0		101	70-130		
Bromoform	22.7		µg/l		20.0		113	70-130		
Bromomethane	20.6		µg/l		20.0		103	70-130		
2-Butanone (MEK)	21.2		µg/l		20.0		106	70-130		
n-Butylbenzene	20.9		µg/l		20.0		105	70-130		
sec-Butylbenzene	22.8		µg/l		20.0		114	70-130		
tert-Butylbenzene	23.4		µg/l		20.0		117	70-130		
Carbon disulfide	22.2		µg/l		20.0		111	70-130		
Carbon tetrachloride	20.0		µg/l		20.0		100	70-130		
Chlorobenzene	19.8		µg/l		20.0		99	70-130		
Chloroethane	19.7		µg/l		20.0		99	70-130		
Chloroform	18.9		µg/l		20.0		94	70-130		
Chloromethane	22.2		µg/l		20.0		111	70-130		
2-Chlorotoluene	22.2		µg/l		20.0		111	70-130		
4-Chlorotoluene	21.5		µg/l		20.0		107	70-130		
1,2-Dibromo-3-chloropropane	21.1		µg/l		20.0		106	70-130		
Dibromochloromethane	21.3		µg/l		20.0		106	70-130		
1,2-Dibromoethane (EDB)	19.8		µg/l		20.0		99	70-130		
Dibromomethane	18.2		µg/l		20.0		91	70-130		
1,2-Dichlorobenzene	19.9		µg/l		20.0		99	70-130		
1,3-Dichlorobenzene	20.8		µg/l		20.0		104	70-130		
1,4-Dichlorobenzene	18.3		µg/l		20.0		92	70-130		
Dichlorodifluoromethane (Freon12)	17.8		µg/l		20.0		89	70-130		
1,1-Dichloroethane	27.0	QM9	µg/l		20.0		135	70-130		
1,2-Dichloroethane	18.4		µg/l		20.0		92	70-130		
1,1-Dichloroethene	19.6		µg/l		20.0		98	70-130		
cis-1,2-Dichloroethene	22.7		µg/l		20.0		114	70-130		
trans-1,2-Dichloroethene	25.9		µg/l		20.0		130	70-130		
1,2-Dichloropropane	17.9		µg/l		20.0		89	70-130		
1,3-Dichloropropane	18.5		µg/l		20.0		92	70-130		
2,2-Dichloropropane	17.9		µg/l		20.0		89	70-130		
1,1-Dichloropropene	18.3		µg/l		20.0		91	70-130		
cis-1,3-Dichloropropene	20.1		µg/l		20.0		101	70-130		
trans-1,3-Dichloropropene	20.3		µg/l		20.0		102	70-130		
Ethylbenzene	20.9		µg/l		20.0		105	70-130		
Hexachlorobutadiene	20.2		µg/l		20.0		101	70-130		
2-Hexanone (MBK)	20.7		µg/l		20.0		104	70-130		
lsopropylbenzene	21.4		µg/l		20.0		107	70-130		
4-Isopropyltoluene	20.3		µg/l		20.0		101	70-130		
Methyl tert-butyl ether	22.2		µg/l		20.0		111	70-130		
4-Methyl-2-pentanone (MIBK)	20.8		µg/l		20.0		104	70-130		
Methylene chloride	23.9		µg/l		20.0		120	70-130		
Naphthalene	26.5	QM9	µg/l		20.0		132	70-130		
n-Propylbenzene	21.8		µg/l		20.0		109	70-130		
Styrene	22.5		µg/l		20.0		112	70-130		
1,1,1,2-Tetrachloroethane	21.2		µg/l		20.0		106	70-130		
1,1,2,2-Tetrachloroethane	20.8		µg/l		20.0		104	70-130		
Tetrachloroethene	18.9		µg/l		20.0		94	70-130		

This laboratory report is not valid without an authorized signature on the cover page.

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 1104853 - SW846 5030 Water MS										
LCS (1104853-BS1)					Pre	epared & Ar	nalyzed: 21-	-Mar-11		
Toluene	18.5		µg/l		20.0		92	70-130		
1,2,3-Trichlorobenzene	22.5		μg/l		20.0		112	70-130		
1,2,4-Trichlorobenzene	22.2		μg/l		20.0		111	70-130		
1,3,5-Trichlorobenzene	20.0		μg/l		20.0		100	70-130		
1,1,1-Trichloroethane	19.7		μg/l		20.0		99	70-130		
1,1,2-Trichloroethane	19.5		μg/l		20.0		97	70-130		
Trichloroethene	18.4		µg/l		20.0		92	70-130		
Trichlorofluoromethane (Freon 11)	19.6		μg/l		20.0		98	70-130		
1,2,3-Trichloropropane	20.5		μg/l		20.0		102	70-130		
1,2,4-Trimethylbenzene	23.4		μg/l		20.0		117	70-130		
1,3,5-Trimethylbenzene	22.6		μg/l		20.0		113	70-130		
Vinyl chloride	22.7		μg/l		20.0		114	70-130		
m,p-Xylene	43.9		μg/l		40.0		110	70-130		
o-Xylene	22.4		μg/l		20.0		112	70-130		
Tetrahydrofuran	20.8		µg/l		20.0		104	70-130		
Ethyl ether	20.7		μg/l		20.0		104	70-130		
Tert-amyl methyl ether	21.6		μg/l		20.0		108	70-130		
Ethyl tert-butyl ether	19.6		µg/l		20.0		98	70-130		
Di-isopropyl ether	24.5		μg/l		20.0		122	70-130		
Tert-Butanol / butyl alcohol	202		μg/l		200		101	70-130		
1,4-Dioxane	221		μg/l		200		111	70-130		
trans-1,4-Dichloro-2-butene	16.3		μg/l		20.0		81	70-130		
Ethanol	463		μg/l		400		116	70-130		
Surrogate: 4-Bromofluorobenzene	52.4		μg/l		50.0		105	70-130		
Surrogate: Toluene-d8	49.3		μg/i μg/l		50.0 50.0		99	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.5				50.0 50.0		99 97	70-130		
Surrogate: Dibromofluoromethane	48.4		µg/l µg/l		50.0 50.0		97 97	70-130 70-130		
-	40.4		μg/i							
LCS Dup (1104853-BSD1) 1,1,2-Trichlorotrifluoroethane (Freon 113)	17.0					epared & Ar	nalyzed: 21		10	25
	17.9		µg/l		20.0		90	70-130	10	25
Acetone	21.9		µg/l		20.0		110	70-130	14	50 05
Acrylonitrile	22.4		µg/l		20.0		112	70-130	1	25
Benzene	18.6		µg/l		20.0		93	70-130	0.6	25
Bromobenzene	18.6		µg/l		20.0		93	70-130	11	25
Bromochloromethane	18.8		µg/l		20.0		94	70-130	7	25
Bromodichloromethane	19.6		µg/l		20.0		98	70-130	3	25
Bromoform	21.8		µg/l		20.0		109	70-130	4	25
Bromomethane	19.6		µg/l		20.0		98	70-130	5	50
2-Butanone (MEK)	17.6		µg/l		20.0		88	70-130	18	50
n-Butylbenzene	20.4		µg/l		20.0		102	70-130	2	25
sec-Butylbenzene	21.2		µg/l		20.0		106	70-130	7	25
tert-Butylbenzene	21.1		µg/l		20.0		106	70-130	11	25
Carbon disulfide	20.7		µg/l		20.0		103	70-130	7	25
Carbon tetrachloride	19.2		µg/l		20.0		96	70-130	5	25
Chlorobenzene	18.7		µg/l		20.0		94	70-130	6	25
Chloroethane	17.8		µg/l		20.0		89	70-130	10	50
Chloroform	18.6		µg/l		20.0		93	70-130	1	25
Chloromethane	23.4		µg/l		20.0		117	70-130	5	25
2-Chlorotoluene	21.6		µg/l		20.0		108	70-130	3	25
4-Chlorotoluene	20.6		µg/l		20.0		103	70-130	4	25
1,2-Dibromo-3-chloropropane	22.2		µg/l		20.0		111	70-130	5	25
Dibromochloromethane	20.6		µg/l		20.0		103	70-130	3	50

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1104853 - SW846 5030 Water MS										
LCS Dup (1104853-BSD1)					Pre	epared & Ai	nalyzed: 21-	-Mar-11		
1,2-Dibromoethane (EDB)	19.8		µg/l		20.0		99	70-130	0.3	25
Dibromomethane	18.1		µg/l		20.0		90	70-130	0.4	25
1,2-Dichlorobenzene	19.2		µg/l		20.0		96	70-130	3	25
1,3-Dichlorobenzene	19.4		µg/l		20.0		97	70-130	7	25
1,4-Dichlorobenzene	18.0		µg/l		20.0		90	70-130	2	25
Dichlorodifluoromethane (Freon12)	16.9		µg/l		20.0		84	70-130	5	50
1,1-Dichloroethane	23.4		µg/l		20.0		117	70-130	14	25
1,2-Dichloroethane	19.0		µg/l		20.0		95	70-130	3	25
1,1-Dichloroethene	17.3		µg/l		20.0		86	70-130	13	25
cis-1,2-Dichloroethene	19.3		µg/l		20.0		97	70-130	16	25
trans-1,2-Dichloroethene	24.2		μg/l		20.0		121	70-130	7	25
1,2-Dichloropropane	18.3		μg/l		20.0		91	70-130	2	25
1,3-Dichloropropane	19.0		μg/l		20.0		95	70-130	3	25
2,2-Dichloropropane	17.0		µg/l		20.0		85	70-130	5	25
1,1-Dichloropropene	18.0		µg/l		20.0		90	70-130	2	25
cis-1,3-Dichloropropene	20.0		μg/l		20.0		100	70-130	0.7	25
trans-1,3-Dichloropropene	20.3		µg/l		20.0		102	70-130	0.05	25
Ethylbenzene	19.8		μg/l		20.0		99	70-130	6	25
Hexachlorobutadiene	17.6		μg/l		20.0		88	70-130	14	50
2-Hexanone (MBK)	21.9		μg/l		20.0		109	70-130	5	25
Isopropylbenzene	19.7		μg/l		20.0		98	70-130	8	25
4-Isopropyltoluene	19.7		μg/l		20.0		98	70-130	4	25
Methyl tert-butyl ether	21.7		μg/i μg/l		20.0		90 108	70-130	2	25
4-Methyl-2-pentanone (MIBK)	21.7				20.0		100	70-130	8	50
Methylene chloride	22.4		µg/l		20.0		112	70-130	8	25
-			µg/l							
Naphthalene	25.2		µg/l		20.0		126	70-130	5	25
n-Propylbenzene	20.9		µg/l		20.0		104	70-130	5	25
Styrene	21.3		µg/l		20.0		107	70-130	5	25
1,1,1,2-Tetrachloroethane	20.3		µg/l		20.0		102	70-130	4	25
1,1,2,2-Tetrachloroethane	21.0		µg/l		20.0		105	70-130	1	25
Tetrachloroethene	17.2		µg/l		20.0		86	70-130	9	25
Toluene	17.6		µg/l		20.0		88	70-130	5	25
1,2,3-Trichlorobenzene	21.0		µg/l		20.0		105	70-130	7	25
1,2,4-Trichlorobenzene	21.1		µg/l		20.0		106	70-130	5	25
1,3,5-Trichlorobenzene	19.5		µg/l		20.0		98	70-130	2	25
1,1,1-Trichloroethane	18.2		µg/l		20.0		91	70-130	8	25
1,1,2-Trichloroethane	19.4		µg/l		20.0		97	70-130	0.4	25
Trichloroethene	18.0		µg/l		20.0		90	70-130	2	25
Trichlorofluoromethane (Freon 11)	17.6		µg/l		20.0		88	70-130	11	50
1,2,3-Trichloropropane	20.8		µg/l		20.0		104	70-130	1	25
1,2,4-Trimethylbenzene	21.6		µg/l		20.0		108	70-130	8	25
1,3,5-Trimethylbenzene	21.0		µg/l		20.0		105	70-130	7	25
Vinyl chloride	22.5		µg/l		20.0		113	70-130	1	25
m,p-Xylene	41.1		µg/l		40.0		103	70-130	7	25
o-Xylene	21.3		µg/l		20.0		107	70-130	5	25
Tetrahydrofuran	22.3		µg/l		20.0		111	70-130	7	25
Ethyl ether	19.3		µg/l		20.0		97	70-130	7	50
Tert-amyl methyl ether	22.3		µg/l		20.0		112	70-130	3	25
Ethyl tert-butyl ether	20.6		µg/l		20.0		103	70-130	5	25
Di-isopropyl ether	20.6		µg/l		20.0		103	70-130	17	25
Tert-Butanol / butyl alcohol	204		μg/l		200		102	70-130	0.9	25
1,4-Dioxane	212		μg/l		200		106	70-130	5	25

This laboratory report is not valid without an authorized signature on the cover page.

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1104853 - SW846 5030 Water MS										
LCS Dup (1104853-BSD1)					Pre	epared & Ar	nalyzed: 21-	Mar-11		
trans-1,4-Dichloro-2-butene	16.1		µg/l		20.0		80	70-130	1	25
Ethanol	437		µg/l		400		109	70-130	6	30
Surrogate: 4-Bromofluorobenzene	51.7		µg/l		50.0		103	70-130		
Surrogate: Toluene-d8	49.6		µg/l		50.0		99	70-130		
Surrogate: 1,2-Dichloroethane-d4	50.4		µg/l		50.0		101	70-130		
Surrogate: Dibromofluoromethane	49.3		µg/l		50.0		99	70-130		

Microextractable O	rganic Compoun	ds - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1104877 - General Preparation SVOC										
<u>Blank (1104877-BLK1)</u>					Pre	epared & Ar	nalyzed: 21	-Mar-11		
1,2-Dibromoethane (EDB)	BRL		µg/l	0.0100						
LCS (1104877-BS1)					Pre	epared & Ar	nalyzed: 21-	-Mar-11		
1,2-Dibromoethane (EDB)	0.226		µg/l	0.0100	0.200		113	50-150		
LCS Dup (1104877-BSD1)					Pre	epared & Ar	nalyzed: 21-	-Mar-11		
1,2-Dibromoethane (EDB)	0.223		µg/l	0.0100	0.200		112	50-150	1	50

Semivolatile	Organic	Com	pounds b	y GCMS	- Quality	Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
atch 1104837 - SW846 3510C		Ŭ								
Blank (1104837-BLK1)					Pre	epared & Ar	nalyzed: 21	-Mar-11		
Acenaphthene	BRL		µg/l	5.00	<u></u>		,			
Acenaphthylene	BRL		μg/l	5.00						
Aniline	BRL		μg/l	5.00						
Anthracene	BRL		μg/l	5.00						
Azobenzene/Diphenyldiazine	BRL		μg/l	5.00						
Benzidine	BRL		μg/l	5.00						
Benzo (a) anthracene	BRL		μg/l	5.00						
Benzo (a) pyrene	BRL		μg/l	5.00						
Benzo (b) fluoranthene	BRL		μg/l	5.00						
Benzo (g,h,i) perylene	BRL		μg/l	5.00						
Benzo (k) fluoranthene	BRL		μg/l	5.00						
Benzoic acid	BRL		μg/l	5.00						
Benzyl alcohol	BRL		μg/l	5.00						
Bis(2-chloroethoxy)methane	BRL		μg/l	5.00						
Bis(2-chloroethyl)ether	BRL		μg/l	5.00						
Bis(2-chloroisopropyl)ether	BRL		µg/l	5.00						
Bis(2-ethylhexyl)phthalate	BRL		μg/l	5.00						
4-Bromophenyl phenyl ether	BRL		µg/l	5.00						
Butyl benzyl phthalate	BRL		μg/l	5.00						
Carbazole	BRL		µg/l	5.00						
4-Chloro-3-methylphenol	BRL		μg/l	5.00						
4-Chloroaniline	BRL		µg/l	5.00						
2-Chloronaphthalene	BRL		μg/l	5.00						
2-Chlorophenol	BRL		µg/l	5.00						
4-Chlorophenyl phenyl ether	BRL		μg/l	5.00						
Chrysene	BRL		μg/l	5.00						
Dibenzo (a,h) anthracene	BRL		µg/l	5.00						
Dibenzofuran	BRL		μg/l	5.00						
1,2-Dichlorobenzene	BRL		µg/l	5.00						
1,3-Dichlorobenzene	BRL		μg/l	5.00						
1,4-Dichlorobenzene	BRL		µg/l	5.00						
3,3´-Dichlorobenzidine	BRL		µg/l	5.00						
2,4-Dichlorophenol	BRL		µg/l	5.00						
Diethyl phthalate	BRL		μg/l	5.00						
Dimethyl phthalate	BRL		µg/l	5.00						
2,4-Dimethylphenol	BRL		μg/l	5.00						
Di-n-butyl phthalate	BRL		μg/l	5.00						
4,6-Dinitro-2-methylphenol	BRL		µg/l	5.00						
2,4-Dinitrophenol	BRL		μg/l	5.00						
2,4-Dinitrotoluene	BRL		μg/l	5.00						
2,6-Dinitrotoluene	BRL		µg/l	5.00						
Di-n-octyl phthalate	BRL		μg/l	5.00						
Fluoranthene	BRL		µg/l	5.00						
Fluorene	BRL		μg/l	5.00						
Hexachlorobenzene	BRL		μg/l	5.00						
Hexachlorobutadiene	BRL		μg/l	5.00						
Hexachlorocyclopentadiene	BRL		μg/l	5.00						
Hexachloroethane	BRL		μg/l	5.00						
Indeno (1,2,3-cd) pyrene	BRL		μg/l	5.00						
Isophorone	BRL		μg/l	5.00						
2-Methylnaphthalene	BRL		μg/l	5.00						
2-Methylphenol	BRL		μg/l	5.00						

Semivolatile Organic Compounds by GCMS - Quality Contro	Semivolatile	Organic	Com	oounds b	y GCMS	5 -	Quality	Control
---	--------------	---------	-----	----------	--------	-----	---------	---------

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
	Result	1 105	Units		LUVEI	result	, UNEC	LIIIIIS	<i>D</i>	L11111(
Batch 1104837 - SW846 3510C					D.	unared ^a	aluzod: 01	Mar 11		
Blank (1104837-BLK1)	881			40.0	Pre	-pared & Ar	nalyzed: 21-	ividi - 1 1		
3 & 4-Methylphenol	BRL		µg/l	10.0 5.00						
Naphthalene	BRL		µg/l	5.00						
2-Nitroaniline	BRL		µg/l	5.00						
3-Nitroaniline	BRL		µg/l	5.00						
4-Nitroaniline	BRL		µg/l	5.00						
Nitrobenzene	BRL		µg/l	5.00						
2-Nitrophenol	BRL		µg/l	5.00						
4-Nitrophenol	BRL		µg/l	5.00						
N-Nitrosodimethylamine	BRL		µg/l	5.00						
N-Nitrosodi-n-propylamine	BRL		µg/l	5.00						
N-Nitrosodiphenylamine	BRL		µg/l	5.00						
Pentachlorophenol	BRL		µg/l	5.00						
Phenanthrene	BRL		µg/l	5.00						
Phenol	BRL		µg/l	5.00						
Pyrene	BRL		µg/l	5.00						
Pyridine	BRL		µg/l	5.00						
1,2,4-Trichlorobenzene	BRL		µg/l	5.00						
2,4,5-Trichlorophenol	BRL		µg/l	5.00						
2,4,6-Trichlorophenol	BRL		µg/l	5.00						
Surrogate: 2-Fluorobiphenyl	29.8		µg/l		50.0		60	30-130		
Surrogate: 2-Fluorophenol	23.2		µg/l		50.0		46	15-110		
Surrogate: Nitrobenzene-d5	32.6		µg/l		50.0		65	30-130		
Surrogate: Phenol-d5	15.5		µg/l		50.0		31	15-110		
Surrogate: Terphenyl-dl4	29.2		µg/l		50.0		58	30-130		
Surrogate: 2,4,6-Tribromophenol	31.2		µg/l		50.0		62	15-110		
LCS (1104837-BS1)					Pre	pared & Ar	nalyzed: 21-	Mar-11		
Acenaphthene	28.6		µg/l	5.00	50.0		57	40-140		
Acenaphthylene	28.0		µg/l	5.00	50.0		56	40-140		
Aniline	34.8		µg/l	5.00	50.0		70	40-140		
Anthracene	30.1		µg/l	5.00	50.0		60	40-140		
Azobenzene/Diphenyldiazine	32.7		µg/l	5.00	50.0		65	40-140		
Benzidine	12.2		µg/l	5.00	50.0		24	0-140		
Benzo (a) anthracene	30.3		µg/l	5.00	50.0		61	40-140		
Benzo (a) pyrene	30.4		µg/l	5.00	50.0		61	40-140		
Benzo (b) fluoranthene	29.2		µg/l	5.00	50.0		58	40-140		
Benzo (g,h,i) perylene	28.1		µg/l	5.00	50.0		56	40-140		
Benzo (k) fluoranthene	33.3		µg/l	5.00	50.0		67	40-140		
Benzoic acid	14.2		µg/l	5.00	50.0		28	17.4-130		
Benzyl alcohol	27.2		µg/l	5.00	50.0		54	40-140		
Bis(2-chloroethoxy)methane	24.1		µg/l	5.00	50.0		48	40-140		
Bis(2-chloroethyl)ether	25.5		µg/l	5.00	50.0		51	40-140		
Bis(2-chloroisopropyl)ether	33.4		µg/I	5.00	50.0		67	40-140		
Bis(2-ethylhexyl)phthalate	33.4		µg/l	5.00	50.0		67	40-140		
4-Bromophenyl phenyl ether	26.9		µg/l	5.00	50.0		54	40-140		
Butyl benzyl phthalate	29.7		µg/l	5.00	50.0		59	40-140		
Carbazole	31.1		μg/l	5.00	50.0		62	40-130		
4-Chloro-3-methylphenol	29.8		μg/l	5.00	50.0		60	30-130		
4-Chloroaniline	34.0		μg/l	5.00	50.0		68	40-140		
2-Chloronaphthalene	27.4		μg/l	5.00	50.0		55	40-140		
2-Chlorophenol	26.8		μg/l	5.00	50.0		54	30-130		
4-Chlorophenyl phenyl ether	28.3		µg/l	5.00	50.0		57	40-140		

Semivolatile	Organic (Compour	ds by	GCMS -	Quality	Control

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 1104837 - SW846 3510C										
LCS (1104837-BS1)					Pre	epared & Ar	nalyzed: 21-	Mar-11		
Chrysene	29.9		µg/l	5.00	50.0		60	40-140		
Dibenzo (a,h) anthracene	27.8		μg/l	5.00	50.0		56	40-140		
Dibenzofuran	28.0		μg/l	5.00	50.0		56	40-140		
1,2-Dichlorobenzene	26.6		μg/l	5.00	50.0		53	40-140		
1,3-Dichlorobenzene	25.8		μg/l	5.00	50.0		52	40-140		
1,4-Dichlorobenzene	26.0		μg/l	5.00	50.0		52	40-140		
3,3'-Dichlorobenzidine	26.9		μg/l	5.00	50.0		54	40-140		
2,4-Dichlorophenol	26.5		µg/l	5.00	50.0		53	30-130		
Diethyl phthalate	28.9		µg/l	5.00	50.0		58	40-140		
Dimethyl phthalate	27.0		μg/l	5.00	50.0		54	40-140		
2,4-Dimethylphenol	25.6		µg/l	5.00	50.0		51	30-130		
Di-n-butyl phthalate	30.5		μg/l	5.00	50.0		61	40-140		
4,6-Dinitro-2-methylphenol	7.14	QC2	µg/l	5.00	50.0		14	30-130		
2,4-Dinitrophenol	7.89	QC2	μg/l	5.00	50.0		16	30-130		
2,4-Dinitrotoluene	31.5		μg/l	5.00	50.0		63	40-140		
2,6-Dinitrotoluene	31.9		µg/l	5.00	50.0		64	40-140		
Di-n-octyl phthalate	35.4		μg/l	5.00	50.0		71	40-140		
Fluoranthene	29.6		µg/l	5.00	50.0		59	40-140		
Fluorene	28.0		µg/l	5.00	50.0		56	40-140		
Hexachlorobenzene	28.3		µg/l	5.00	50.0		57	40-140		
Hexachlorobutadiene	21.7		µg/l	5.00	50.0		43	40-140		
Hexachlorocyclopentadiene	12.6	QC2	µg/l	5.00	50.0		25	40-140		
Hexachloroethane	25.7		µg/l	5.00	50.0		51	40-140		
Indeno (1,2,3-cd) pyrene	26.7		µg/l	5.00	50.0		53	40-140		
Isophorone	28.5		µg/l	5.00	50.0		57	40-140		
2-Methylnaphthalene	28.2		µg/l	5.00	50.0		56	40-140		
2-Methylphenol	27.9		µg/l	5.00	50.0		56	40-140		
3 & 4-Methylphenol	26.8		µg/l	10.0	50.0		54	40-140		
Naphthalene	26.1		µg/l	5.00	50.0		52	40-140		
2-Nitroaniline	32.6		µg/l	5.00	50.0		65	40-140		
3-Nitroaniline	35.7		µg/l	5.00	50.0		71	40-140		
4-Nitroaniline	35.1		µg/l	5.00	50.0		70	40-140		
Nitrobenzene	29.0		µg/l	5.00	50.0		58	40-140		
2-Nitrophenol	24.3		µg/l	5.00	50.0		49	30-130		
4-Nitrophenol	37.2		µg/l	5.00	50.0		74	30-130		
N-Nitrosodimethylamine	23.7		µg/l	5.00	50.0		47	40-140		
N-Nitrosodi-n-propylamine	30.2		µg/l	5.00	50.0		60	40-140		
N-Nitrosodiphenylamine	32.1		µg/l	5.00	50.0		64	40-140		
Pentachlorophenol	23.3		µg/l	5.00	50.0		47	30-130		
Phenanthrene	29.2		µg/l	5.00	50.0		58	40-140		
Phenol	13.8	QC2	µg/l	5.00	50.0		28	30-130		
Pyrene	31.1		µg/l	5.00	50.0		62	40-140		
Pyridine	20.8		µg/l	5.00	50.0		42	40-140		
1,2,4-Trichlorobenzene	24.4		µg/l	5.00	50.0		49	40-140		
2,4,5-Trichlorophenol	27.1		µg/l	5.00	50.0		54	30-130		
2,4,6-Trichlorophenol	24.6		µg/l	5.00	50.0		49	30-130		
Surrogate: 2-Fluorobiphenyl	27.2		µg/l		50.0		54	30-130		
Surrogate: 2-Fluorophenol	20.9		µg/l		50.0		42	15-110		
Surrogate: Nitrobenzene-d5	30.3		µg/l		50.0		61	30-130		
Surrogate: Phenol-d5	14.7		µg/l		50.0		29	15-110		
Surrogate: Terphenyl-dl4	29.4		µg/l		50.0		59	30-130		

Semivolatile	Organic Co	ompounds by	GCMS - 0	Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
• • • •	Result	1 105	Cinto	KDL	Level	Result	JUILL	Liillitä	NI D	
Batch 1104837 - SW846 3510C <u>LCS (1104837-BS1)</u>					Pre	enared & A	nalyzed: 21	-Mar-11		
Surrogate: 2,4,6-Tribromophenol	30.8		µg/l		50.0		62	15-110		
LCS Dup (1104837-BSD1)						epared & Ai	nalyzed: 21			
Acenaphthene	30.0		µg/l	5.00	50.0		60	40-140	5	20
Acenaphthylene	29.6		µg/l	5.00	50.0		59	40-140	5	20
Aniline	30.8		µg/l	5.00	50.0		62	40-140	12	20
Anthracene	31.2		µg/l	5.00	50.0		62	40-140	4	20
Azobenzene/Diphenyldiazine	34.4		µg/l	5.00	50.0		69	40-140	5	20
Benzidine	10.7		µg/l	5.00	50.0		21	0-140	12	20
Benzo (a) anthracene	31.0		µg/l	5.00	50.0		62	40-140	2	20
Benzo (a) pyrene	30.7		µg/l	5.00	50.0		61	40-140	0.9	20
Benzo (b) fluoranthene	29.8		µg/l	5.00	50.0		60	40-140	2	20
Benzo (g,h,i) perylene	28.2		µg/l	5.00	50.0		56	40-140	0.4	20
Benzo (k) fluoranthene	30.4		µg/l	5.00	50.0		61	40-140	9	20
Benzoic acid	15.0		µg/l	5.00	50.0		30	17.4-130	5	20
Benzyl alcohol	27.5		µg/l	5.00	50.0		55	40-140	0.9	20
Bis(2-chloroethoxy)methane	26.6		µg/l	5.00	50.0		53	40-140	10	20
Bis(2-chloroethyl)ether	25.8		µg/l	5.00	50.0		52	40-140	1	20
Bis(2-chloroisopropyl)ether	34.9		µg/l	5.00	50.0		70	40-140	4	20
Bis(2-ethylhexyl)phthalate	33.7		µg/l	5.00	50.0		67	40-140	1	20
4-Bromophenyl phenyl ether	28.5		µg/l	5.00	50.0		57	40-140	6	20
Butyl benzyl phthalate	30.4		µg/l	5.00	50.0		61	40-140	2	20
Carbazole	32.5		µg/l	5.00	50.0		65	40-130	4	20
4-Chloro-3-methylphenol	30.7		µg/l	5.00	50.0		61	30-130	3	20
4-Chloroaniline	30.8		µg/l	5.00	50.0		62	40-140	10	20
2-Chloronaphthalene	29.4		µg/l	5.00	50.0		59	40-140	7	20
2-Chlorophenol	27.8		µg/l	5.00	50.0		56	30-130	3	20
4-Chlorophenyl phenyl ether	30.6		µg/l	5.00	50.0		61	40-140	8	20
Chrysene	30.5		µg/l	5.00	50.0		61	40-140	2	20
Dibenzo (a,h) anthracene	27.3		µg/l	5.00	50.0		55	40-140	2	20
Dibenzofuran	30.4		µg/l	5.00	50.0		61	40-140	8	20
1,2-Dichlorobenzene	27.8		µg/l	5.00	50.0		56	40-140	5	20
1,3-Dichlorobenzene	26.4		µg/l	5.00	50.0		53	40-140	2	20
1,4-Dichlorobenzene	26.5		µg/l	5.00	50.0		53	40-140	2	20
3,3'-Dichlorobenzidine	26.2		µg/l	5.00	50.0		52	40-140	3	20
2,4-Dichlorophenol	28.0		μg/l	5.00	50.0		56	30-130	5	20
Diethyl phthalate	30.5		μg/l	5.00	50.0		61	40-140	5	20
Dimethyl phthalate	29.0		μg/l	5.00	50.0		58	40-140	7	20
2,4-Dimethylphenol	25.8		μg/l	5.00	50.0		52	30-130	0.8	20
Di-n-butyl phthalate	31.1		μg/l	5.00	50.0		62	40-140	2	20
4,6-Dinitro-2-methylphenol	8.59	QC2	μg/l	5.00	50.0		17	30-130	18	20
2,4-Dinitrophenol	9.02	QC2	μg/l	5.00	50.0		18	30-130	13	20
2,4-Dinitrotoluene	33.8		μg/l	5.00	50.0		68	40-140	7	20
2,6-Dinitrotoluene	34.1		μg/l	5.00	50.0		68	40-140	7	20
Di-n-octyl phthalate	37.4		μg/l	5.00	50.0		75	40-140	5	20
Fluoranthene	30.1		μg/l	5.00	50.0		60	40-140	2	20
Fluorene	29.4		μg/l	5.00	50.0		59	40-140 40-140	5	20
Hexachlorobenzene	28.9		μg/i μg/l	5.00	50.0		58	40-140	2	20
Hexachlorobutadiene	28.9			5.00	50.0 50.0		50 44	40-140 40-140	2	20
	13.7	QC2	µg/l	5.00	50.0 50.0		44 27	40-140 40-140	3 9	20
Hexachlorocyclopentadiene		QU2	µg/l							
	26.5		µg/l	5.00	50.0		53	40-140	3	20
Indeno (1,2,3-cd) pyrene	26.1		µg/l	5.00	50.0		52	40-140	2	20

Semivolatile Organic Compounds by GCMS - Quality Control

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1104837 - SW846 3510C										
LCS Dup (1104837-BSD1)					Pre	epared & A	nalyzed: 21	-Mar-11		
Isophorone	29.8		µg/l	5.00	50.0		60	40-140	4	20
2-Methylnaphthalene	29.6		µg/l	5.00	50.0		59	40-140	5	20
2-Methylphenol	28.4		µg/l	5.00	50.0		57	40-140	2	20
3 & 4-Methylphenol	27.2		µg/l	10.0	50.0		54	40-140	1	20
Naphthalene	27.5		µg/l	5.00	50.0		55	40-140	5	20
2-Nitroaniline	34.7		µg/l	5.00	50.0		69	40-140	6	20
3-Nitroaniline	34.4		µg/l	5.00	50.0		69	40-140	4	20
4-Nitroaniline	36.2		µg/l	5.00	50.0		72	40-140	3	20
Nitrobenzene	29.9		µg/l	5.00	50.0		60	40-140	3	20
2-Nitrophenol	25.8		µg/l	5.00	50.0		52	30-130	6	20
4-Nitrophenol	36.8		µg/l	5.00	50.0		74	30-130	1	20
N-Nitrosodimethylamine	23.5		µg/l	5.00	50.0		47	40-140	0.8	20
N-Nitrosodi-n-propylamine	31.6		µg/l	5.00	50.0		63	40-140	4	20
N-Nitrosodiphenylamine	33.5		µg/l	5.00	50.0		67	40-140	4	20
Pentachlorophenol	25.0		µg/l	5.00	50.0		50	30-130	7	20
Phenanthrene	29.9		µg/l	5.00	50.0		60	40-140	3	20
Phenol	14.0	QC2	µg/l	5.00	50.0		28	30-130	1	20
Pyrene	31.9		µg/l	5.00	50.0		64	40-140	2	20
Pyridine	18.1	QC2	µg/l	5.00	50.0		36	40-140	14	20
1,2,4-Trichlorobenzene	25.3		µg/l	5.00	50.0		51	40-140	3	20
2,4,5-Trichlorophenol	29.2		µg/l	5.00	50.0		58	30-130	7	20
2,4,6-Trichlorophenol	25.8		µg/l	5.00	50.0		52	30-130	5	20
Surrogate: 2-Fluorobiphenyl	29.1		µg/l		50.0		58	30-130		
Surrogate: 2-Fluorophenol	21.1		µg/l		50.0		42	15-110		
Surrogate: Nitrobenzene-d5	31.7		µg/l		50.0		63	30-130		
Surrogate: Phenol-d5	14.5		µg/l		50.0		29	15-110		
Surrogate: Terphenyl-dl4	29.9		µg/l		50.0		60	30-130		
Surrogate: 2,4,6-Tribromophenol	32.6		µg/l		50.0		65	15-110		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
atch 1104828 - SW846 3510C										
Blank (1104828-BLK1)					Pre	epared: 21-	Mar-11 An	alyzed: 22-M	<u>1ar-11</u>	
Aroclor-1016	BRL		µg/l	0.200						
Aroclor-1016 [2C]	BRL		µg/l	0.200						
Aroclor-1221	BRL		µg/l	0.200						
Aroclor-1221 [2C]	BRL		µg/l	0.200						
Aroclor-1232	BRL		µg/l	0.200						
Aroclor-1232 [2C]	BRL		µg/l	0.200						
Aroclor-1242	BRL		µg/l	0.200						
Aroclor-1242 [2C]	BRL		µg/l	0.200						
Aroclor-1248	BRL		µg/l	0.200						
Aroclor-1248 [2C]	BRL		µg/l	0.200						
Aroclor-1254	BRL		µg/l	0.200						
Aroclor-1254 [2C]	BRL		µg/l	0.200						
Aroclor-1260	BRL		µg/l	0.200						
Aroclor-1260 [2C]	BRL		µg/l	0.200						
Aroclor-1262	BRL		µg/l	0.200						
Aroclor-1262 [2C]	BRL		µg/l	0.200						
Aroclor-1268	BRL		µg/l	0.200						
Aroclor-1268 [2C]	BRL		µg/l	0.200						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.176		µg/l		0.200		88	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.205		µg/l		0.200		103	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.243		µg/l		0.200		122	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.267		µg/l		0.200		134	30-150		
LCS (1104828-BS1)					Pre	epared: 21-	Mar-11 An	alyzed: 22-M	<u>1ar-11</u>	
Aroclor-1016	2.18		µg/l	0.200	2.50		87	50-114		
Aroclor-1016 [2C]	2.26		µg/l	0.200	2.50		91	50-114		
Aroclor-1260	2.31		µg/l	0.200	2.50		92	40-127		
Aroclor-1260 [2C]	2.30		µg/l	0.200	2.50		92	40-127		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.187		µg/l		0.200		94	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.207		µg/l		0.200		104	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.254		µg/l		0.200		127	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.266		µg/l		0.200		133	30-150		
LCS Dup (1104828-BSD1)					Pre	pared: 21-	Mar-11 An	alyzed: 22-M	<u>1ar-11</u>	
Aroclor-1016	2.28		µg/l	0.200	2.50		91	50-114	4	20
Aroclor-1016 [2C]	2.15		µg/l	0.200	2.50		86	50-114	5	20
Aroclor-1260	2.50		µg/l	0.200	2.50		100	40-127	8	20
Aroclor-1260 [2C]	2.24		µg/l	0.200	2.50		89	40-127	3	2
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.189		µg/l		0.200		94	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.196		µg/l		0.200		98	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.282		µg/l		0.200		141	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.252		µg/l		0.200		126	30-150		

Extractable Petroleum Hydrocarbons - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1104821 - SW846 3510C										
<u>Blank (1104821-BLK1)</u>					Pre	epared: 21-I	Mar-11 An	alyzed: 23-M	lar-11	
Non-polar material (SGT-HEM)	BRL		mg/l	1.0						
LCS (1104821-BS1)					Pre	epared: 21-I	Mar-11 An	alyzed: 23-M	<u>1ar-11</u>	
Non-polar material (SGT-HEM)	41.2		mg/l		48.6		85	83-101		

Total Metals by EPA	200 Series Methods -	Ouality Control

manu bernet Fing find state find find <th <="" find<="" th=""><th></th><th></th><th></th><th colspan="2"></th><th colspan="3">Spika Source</th><th>%REC</th><th></th><th>RPD</th></th>	<th></th> <th></th> <th></th> <th colspan="2"></th> <th colspan="3">Spika Source</th> <th>%REC</th> <th></th> <th>RPD</th>						Spika Source			%REC		RPD
ZincBRmgl0.0050NickelBRImgl0.0050NickelBRImgl0.0050SiennumBRImgl0.0050SiennumBRImgl0.0050SiennumBRImgl0.0050CorporBRImgl0.0050CorporBRImgl0.0050CorporBRImgl0.0050CorporBRImgl0.0050CorporBRImgl0.0050CorporBRImgl0.0050CorporBRImgl0.0050CorporBRImgl0.0050Sternum128mgl0.0050Sternum128mgl0.0050Nickel128mgl0.0050Antinony128mgl0.0050Antinony129mgl0.0050Sternum129mgl0.0050Corpor128mgl0.0150Sternum129mgl0.020Antinony129mgl0.020Corpor129mgl0.020Sternum120mgl0.020Sternum120mgl0.020Corpor129mgl0.020Antinony129mgl0.020Corpor129mgl0.020Sternum120mgl0.020Sternum120mgl0.020<	Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC		RPD	Limit	
Bank 1104277-814.1)ZincBRImgl0.0050LuddBRImgl0.0050NokelBRImgl0.0050StemiumBRImgl0.0150StemiumBRImgl0.0050StemiumBRImgl0.0050StemiumBRImgl0.0050CooperBRImgl0.0050CooperBRImgl0.0050CooperBRImgl0.0050CooperBRImgl0.0050CooperBRImgl0.0050CooperBRImgl0.0050CooperBRImgl0.0050CooperBRImgl0.0050CooperBRImgl0.0050Stemium120mgl0.0050125Nokel128mgl0.0050125108Astimony129mgl0.0050125108Astimony120mgl0.0050125108Astimony120mgl0.0050125108Astimony120mgl0.0050125108Astimony120mgl0.0050125108Astimony120mgl0.0050125108Astimony120mgl0.0050125108Astimony120mgl0.0050125108Astimony120mgl0.0050125108Astimony </td <td>Batch 1104677 - EPA 200 Series</td> <td></td>	Batch 1104677 - EPA 200 Series											
ZincBRLmp10.0050LaadBRLmp40.0050MotedBRLmp40.0050IronBRLmp40.0050SheriumBRLmp40.0050AtimonyBRLmp40.0050CopporBRLmp40.0050CommunBRLmp40.0050CommunBRLmp10.0050CommunBRLmp10.0050AranencBRLmp10.0050Costfort/F3851Emeritim120mp40.0150Cestfort/F385112810085-115Laad131mp10.00501.2510085-115Laad132mp40.00501.2510185-115Laad133mp40.00501.2510885-115Laad130mp40.00501.2510485-115Cortonur133mp40.00501.2510485-115Cortonur130mp40.00501.2510485-115Cortonur133mp40.00501.2510485-115Cortonur134mp40.00501.2510485-115Cortonur134mp40.00501.2510485-115Cortonur134mp40.00501.2510485-115Cortonur134mp40.00501.258R.11070-130Cortonur134m						Pre	epared: 21-	<u>Mar</u> -11 /	Analyzed: 22-M	<u>lar-1</u> 1		
LeadBRL mg10.0075NickelBRL mg10.0050SeleniumBRLmg10.0050SeleniumBRLmg10.0050SilverBRLmg10.0050SilverBRLmg10.0050CadminumBRLmg10.0050CadminumBRLmg10.0050CadminumBRLmg10.0050SilverBRLmg10.0050CadminumBRLmg10.0050Selenium128mg10.01501.25Selenium128mg10.00501.25Selenium128mg10.00501.25108Selenium129mg10.00501.25108Arinnony127mg10.00501.25108Arinnony128mg10.00501.25110Arinnony129mg10.00501.25110Arinnony129mg10.00501.25110Arinnony127mg10.00501.25110Arinnony127mg10.00501.25110Arinnony127mg10.00501.25110Arinnony127mg10.00501.25110Arinnony127mg10.00501.25110Arinnony127mg10.00501.25110Arinnony127mg10.00501.25110 <td></td> <td>BRL</td> <td></td> <td>ma/l</td> <td>0.0050</td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td>		BRL		ma/l	0.0050	<u> </u>						
Neelengl0.050ionBRImpl0.050SeleniumBRImpl0.000AhimonyBRImpl0.000CopoprBRImpl0.000ChromumBRImpl0.000ChromumBRImpl0.000ChromumBRImpl0.000ChromumBRImpl0.000AhanoBRImpl0.000ChromumBRImpl0.000ChromumBRImpl0.000ChromumBRImpl0.000ChromumBRImpl0.000Chromum120mpl0.000Chromum128mpl0.000Nokel128mpl0.000Ladd128mpl0.000Ahimony128mpl0.000Silver129mpl0.000Animony128mpl0.000Silver129mpl0.000Copoper124mpl0.000Chromum126mpl0.000Chromum128mpl0.000Chromum129mpl0.000Chromum129mpl0.000Copoper124mpl0.000Chromum126mpl0.000Chromum121mpl0.000Chromum121mpl0.000Chromum124mpl0.000Chromum124mpl				-								
Iron SeleniumBRL mglmgl 0.0150VVVSeleniumBRL mgl0.0150VVVSilverBRL CoperMgl0.0050VVVChromburn CadmburnBRL Cadmburn0.0050VVVVAnenic CadmburnBRL Cadmburn0.0050VVVVVAnenic CadmburnBRL Cadmburn0.00501.25VVVVVSelenium Nickel1.20 CadmburnMgl0.01501.251.058.5115VV<				-								
SeleniumBRLmgi0.0150AutinoryBRLmgi0.0050GopperBRLmgi0.0050CopperBRLmgi0.0050CadmiumBRLmgi0.0050CadmiumBRLmgi0.0050CastinorBRLmgi0.0050CastinorBRLmgi0.01501.25Castinor1.20mgi0.01501.251.06Selenium1.20mgi0.00501.251.01Nickel1.31mgi0.00501.251.01Nickel1.33mgi0.00501.251.01Antmory1.20mgi0.00501.251.01Antmory1.33mgi0.00501.251.01Selenium1.30mgi0.00501.251.01Antmory1.21mgi0.00501.251.01Antmory1.23mgi0.00501.251.01Selenium1.33mgi0.00501.251.01Antmory1.27mgi0.00501.251.01Antmory1.27mgi0.00501.251.017.0130Capper1.34mgi0.00501.25BRL107.0130Antmory1.27mgi0.00501.25BRL107.0130Capper1.34mgi0.00501.25BRL107.0130Capper1.34mgi0.0050<				-								
Animony SilverBRL BRLmg10.0060SilverBRLmg10.0050CopperBRLmg10.0050ChromiunBRLmg10.0050ArsenicBRLmg10.0050Silverian120mg10.01501.251.0Silverian1.20mg10.01501.251.0Silverian1.21mg10.01501.251.0Nickal1.31mg10.00501.251.0Arimony1.27mg10.00601.251.0Arimony1.27mg10.00601.251.01Arimony1.27mg10.00601.251.08Arimony1.27mg10.00601.251.08Arimony1.28mg10.00501.251.08Arimony1.28mg10.00501.251.08Arimony1.28mg10.00501.251.08Arimony1.28mg10.00501.251.08Arimony1.24mg10.00501.251.08Arimony1.24mg10.00501.251.08Arimony1.24mg10.00501.251.081.63Arimony1.24mg10.00501.251.081.63Arimony1.24mg10.00501.251.081.63Arimony1.24mg10.00501.251.081.63Ar				-								
Silver BRL mgl 0.0590 Copper BRL mgl 0.0590 Chomium BRL mgl 0.0050 Cadmium BRL mgl 0.0050 Cadmium BRL mgl 0.0050 Senci mgl 0.0150 1.25 1.0 8.5115 Steinium 1.20 mgl 0.0050 1.25 1.01 8.5115 Icon 1.31 mgl 0.0050 1.25 1.01 8.5115 Autmony 1.27 mgl 0.0050 1.25 1.01 8.5115 Capper 1.36 mgl 0.0050 1.25 1.01 8.5115 Capper 1.30 mgl 0.0050 1.25 1.01 8.5115 Capper 1.38 mgl 0.0050 1.25 1.01 8.5115 Capper 1.38 mgl 0.0050 1.25 1.01 8.5115 Capper 1.34 mgl 0.0050 1.25 8.6115 1.15 Capper 1.34 mgl												
Copper Chronium Chronium Chronium CateniumBRL RL mgR0.0050 V V V V SeleniumDescription SeleniumDescription SeleniumDescription SeleniumDescription SeleniumDescription SeleniumSelenium Catenium <th< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	-											
ChemiumBRLmgl0.005CadinumBRLmgl0.002AvancicBRLmgl0.001Selenium120mgl0.01501.25USSelenium120mgl0.01501.2510085-115Nickel1.31mgl0.00501.2510085-115Lead1.34mgl0.00501.2510085-115Lead1.36mgl0.00501.2510085-115Since1.35mgl0.00501.2510085-115Since1.36mgl0.00501.2510085-115Since1.30mgl0.00501.2510085-115Since1.30mgl0.00501.2510085-115Since1.30mgl0.00501.2510085-115Since1.30mgl0.00501.2510085-115Copper1.30mgl0.00501.2510085-115Charming1.32mgl0.00501.2510085-115Netel1.31mgl0.00501.2510085-115Charming1.32mgl0.00501.258RL10170-130Selenium1.27mgl0.00501.258RL10170-130Charming1.33mgl0.00501.258RL10370-130Charming1.34mgl0.0050				-								
Cadmium BPL mgl 0.0025 Arsenic DB Mgl 0.0059 L25 BB BS-L15 Sternium 1.20 mgl 0.0150 1.25 98 85-L15 Iron 1.38 mgl 0.0150 1.25 98 85-L15 Lead 1.36 mgl 0.0075 1.25 108 85-L15 Lead 1.36 mgl 0.0070 1.25 108 85-L15 Antmony 1.27 mgl 0.0050 1.25 108 85-L15 Arsenic 1.29 mgl 0.0050 1.25 108 85-L15 Copper 1.33 mgl 0.0050 1.25 108 85-L15 Copper 1.33 mgl 0.0050 1.25 108 85-L15 Copper 1.33 mgl 0.0050 1.25 108 85-L15 Antmony 1.27 mgl 0.0057 1.25 BRL 101 70-130 Lead 1.27 mgl 0.0075 1.25 BRL </td <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				-								
AreanicFirstFirstFirstSelenium1300.01501.251085-115Nickel1.310.01501.251085-115Nickel1.310.01601.251085-115Arimony1.270.00601.251085-115Arimony1.270.00601.251085-115Arimony1.280.00501.251085-115Silver1.300.00501.251085-115Silver1.300.00501.251085-115Copper1.380.0170.00501.251085-115Copper1.380.0190.00501.251085-115Copper1.380.0190.00501.251085-115Copper1.380.0190.00501.251085-115Copper1.340.0101.250.0188670-130Animony1.270.0191.250.0189670-130Animony1.270.0191.250.0189670-130Animony1.270.0191.250.0189670-130Copper1.410.0190.0501.250.0189670-130Copper1.410.0190.0501.250.0189670-130Commun1.310.01501.250.0189670-130Commun1.310.0101.25 <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				-								
List 114477-851) Prepared: 21-Mar.1 Aminover, 22-Mar.1 Selentum 1.20 mgl 0.0150 1.25 10 85-115 Nickel 1.31 mgl 0.0050 1.25 105 85-115 Lead 1.36 mgl 0.0075 1.25 101 85-115 Antimory 1.27 mgl 0.0060 1.25 103 85-115 Antimory 1.29 mgl 0.0040 1.25 100 85-115 Silver 1.36 mgl 0.0050 1.25 100 85-115 Copper 1.38 mgl 0.0050 1.25 100 85-115 Cadmium 1.38 mgl 0.0050 1.25 100 85-115 Cadmium 1.38 mgl 0.0055 1.25 100 85-115 Cadmium 1.33 mgl 0.0055 1.25 8RL 101 70-130 Nickel 1.27 mgl 0.0055 1.25				-								
Selenium 1.20 mgl 0.0150 1.25 96 85-115 Iron 1.31 mgl 0.0150 1.25 100 85-115 Lada 1.31 mgl 0.0050 1.25 100 85-115 Antimony 1.27 mgl 0.0060 1.25 101 85-115 Antimony 1.27 mgl 0.0060 1.25 100 85-115 Antimony 1.30 mgl 0.0060 1.25 100 85-115 Silver 1.30 mgl 0.0050 1.25 100 85-115 Copper 1.38 mgl 0.0050 1.25 100 85-115 Zadmium 1.33 mgl 0.0050 1.25 100 85-115 Antimony 1.27 mgl 0.0057 1.25 BRL 101 70-130 Cadmium 1.27 mgl 0.0050 1.25 BRL 100 70-130 Kotel 1.21		BRL		mg/i	0.0040	_						
Iron1.38mg10.01501.251085.115Nickel1.36mg10.00751.2510585.115Antmony1.27mg10.00801.2510185.115Zinc1.35mg10.00801.2510185.115Zinc1.30mg10.00801.2510485.115Silver1.30mg10.00801.2510485.115Corper1.38mg10.00801.2510485.115Corper1.38mg10.00801.2510685.115Corper1.38mg10.00801.2510685.115Zinc1.33mg10.00801.250.11685.115Antmony1.27mg10.00801.258R.11070.130Antmony1.27mg10.00801.258R.11070.130Antmony1.27mg10.01501.258R.11070.130Iced1.21mg10.01501.258R.11070.130Selenium1.21mg10.00501.258R.11070.130Selenium1.33mg10.00501.258R.11070.130Corper1.41mg10.00501.258R.11070.130Selenium1.33mg10.00501.258R.11070.130Corper1.41mg10.00501.25<							epared: 21-			<u>lar-11</u>		
Nickel1.31mg10.0051.2510585-115Lead1.36mg10.0051.2510985-115Antimony1.27mg10.00601.2510385-115Arsenic1.29mg10.00501.2510485-115Chromium1.36mg10.00501.2510985-115Copper1.38mg10.00501.2510985-115Cadmium1.33mg10.00501.2510985-115Cadmium1.33mg10.00501.2510185-115Cadmium1.33mg10.00501.250.015010670-130Antimony1.27mg10.00501.258RL10170-130Lead1.27mg10.00501.258RL10170-130Nickel1.21mg10.00501.258RL10170-130Nickel1.21mg10.00501.258RL10170-130Nickel1.21mg10.00501.258RL10170-130Nickel1.21mg10.00501.258RL10170-130Nickel1.21mg10.00501.258RL10370-130Nickel1.21mg10.00501.258RL10170-130Nickel1.21mg10.00501.258RL10170-130Nickel1.21mg												
Lead1.36mg/l0.00751.2510185-115Antimony1.27mg/l0.00601.2510185-115Zinc1.29mg/l0.00601.2510385-115Silver1.30mg/l0.00501.2510485-115Chromium1.36mg/l0.00501.2510485-115Copper1.38mg/l0.00501.2510685-115Cadmium1.33mg/l0.00501.2510685-115Antimony1.27mg/l0.00501.25BRL10170-130Antimony1.27mg/l0.00501.25BRL10170-130Antimony1.27mg/l0.00501.25BRL10170-130Itck1.27mg/l0.00501.25BRL10170-130Antimony1.27mg/l0.00501.25BRL10170-130Itck1.27mg/l0.00501.25BRL10170-130Itck1.33mg/l0.00501.25BRL1070-130Itck1.33mg/l0.00501.25BRL1070-130Itck1.33mg/l0.00501.25BRL1070-130Itck1.33mg/l0.00501.25BRL1070-130Itck1.33mg/l0.00501.25BRL1070-130Itck1.34												
Antimony 1.27 mg/l 0.0060 1.25 101 85-115 Zine 1.36 mg/l 0.0050 1.25 108 85-115 Arsenic 1.20 mg/l 0.0050 1.25 104 85-115 Silver 1.30 mg/l 0.0050 1.25 104 85-115 Copper 1.36 mg/l 0.0050 1.25 106 85-115 Cadmium 1.38 mg/l 0.0050 1.25 106 85-115 Cadmium 1.33 mg/l 0.0050 1.25 0.0150 106 70-130 Antimony 1.27 mg/l 0.0075 1.25 BRL 101 70-130 Nickel 1.21 mg/l 0.0075 1.25 BRL 101 70-130 Nickel 1.21 mg/l 0.0050 1.25 BRL 101 70-130 Regenium 1.26 mg/l 0.0150 1.25 BRL 100 70-130 Selenium 1.25 mg/l 0.025 1.25 B	Nickel			mg/l		1.25		105	85-115			
Zinc 1,35 mgl 0,0050 1,25 108 85-115 Arsenic 1,29 mgl 0,0040 1,25 104 85-115 Silver 1,30 mgl 0,0050 1,25 104 85-115 Chornium 1,36 mgl 0,0050 1,25 109 85-115 Cadmium 1,38 mgl 0,0050 1,25 100 85-115 Matrix Spike (1104677-MS1) Secres B2582201 Perser: 21-Mar.11 Malve 22-Mar.11 70-130 Matrix Spike (1104677-MS1) 1,27 mgl 0,0050 1,25 BRL 101 70-130 Lead 1,21 mgl 0,0075 1,25 BRL 101 70-130 Nickel 1,21 mgl 0,0150 1,25 BRL 101 70-130 Selenium 1,23 mgl 0,0150 1,25 BRL 101 70-130 Copper 1,41 mgl 0,0150 1,25 BRL 101 70-130 Selenium 1,33 mgl 0,0150 1,25<		1.36		mg/l	0.0075	1.25		109	85-115			
Asenic 1.29 mg/l 0.0040 1.25 1.03 85-115 Silver 1.30 mg/l 0.0050 1.25 1.04 85-115 Chromium 1.36 mg/l 0.0050 1.25 1.08 85-115 Copper 1.33 mg/l 0.0050 1.25 1.06 85-115 Matrix Spike (1104577-MS1) Source: SB2582-00 Prepared: 21-Mar.11 Analyzed: 22-Mar.11 70-130 Zinc mg/l 0.0060 1.25 BRL 1.01 70-130 Antimony 1.27 mg/l 0.0060 1.25 BRL 1.01 70-130 Iven 1.27 mg/l 0.0050 1.25 BRL 1.01 70-130 Iven 1.21 mg/l 0.0150 1.25 BRL 1.01 70-130 Kolekel 1.21 mg/l 0.0150 1.25 BRL 1.00 70-130 Kolekel 1.23 mg/l 0.0150 1.25 BRL 1.01 70-130 Kolekel 1.33 mg/l 0.0050	Antimony	1.27		mg/l	0.0060	1.25		101	85-115			
Silver 1.30 mg/l 0.0050 1.25 1.04 85-115 Copper 1.38 mg/l 0.0050 1.25 1.09 85-115 Cadmium 1.33 mg/l 0.0050 1.25 1.09 85-115 Matrix Spike (1104677-MS1) Source: SB2582201 Prepared: 21-Mar-11 Analyzed: 22-Mar-11 Zine 1.34 mg/l 0.0050 1.25 0.0150 1.06 70-130 Antimony 1.27 mg/l 0.0050 1.25 BRL 101 70-130 Lead 1.27 mg/l 0.0050 1.25 0.018 96 70-130 Kickel 1.21 mg/l 0.0050 1.25 BRL 101 70-130 Selenium 1.26 mg/l 0.0150 1.25 BRL 100 70-130 Copper 1.41 mg/l 0.050 1.25 BRL 101 70-130 Cadmium 1.23 mg/l 0.0050 1.25 BRL 102 70-130 Cadmium 1.28 mg/l 0.0050	Zinc	1.35		mg/l	0.0050	1.25		108	85-115			
Chromium 1.36 mg/l 0.0050 1.25 109 85-115 Capper 1.33 mg/l 0.0050 1.25 106 85-115 Matrix Spike (1104677-MS1) Source: SB22832-01 Penerd: 21-Mar-11 Analyzed: 22-Mar-11 Antimony 1.27 mg/l 0.0060 1.25 BRL 101 70-130 Lead 1.27 mg/l 0.0060 1.25 BRL 101 70-130 Nickel 1.21 mg/l 0.0050 1.25 BRL 101 70-130 Kickel 1.21 mg/l 0.0150 1.25 BRL 101 70-130 Kickel 1.21 mg/l 0.0150 1.25 BRL 100 70-130 Kickel 1.26 mg/l 0.0150 1.25 BRL 100 70-130 Capper 1.31 mg/l 0.0050 1.25 BRL 100 70-130 Cadmium 1.31 mg/l 0.0050 1.25 BRL 10 70-130 Storer 1.33 mg/l	Arsenic	1.29		mg/l	0.0040	1.25		103	85-115			
Copper 1.38 mg/l 0.0050 1.25 110 85-115 Definition 1.33 mg/l 0.0025 1.25 106 85-115 Metrix Spike (1104677-MS1) Source: SB25822-01 Prepared: 21-Mar:11 Analyzed: 22-Mar:11 Analyzed: 22-Mar:11 Antimony 1.27 mg/l 0.0060 1.25 BRL 101 70-130 Lead 1.27 mg/l 0.0050 1.25 BRL 101 70-130 Nickel 1.21 mg/l 0.0050 1.25 BRL 100 70-130 Stelenium 1.26 mg/l 0.0150 1.25 BRL 100 70-130 Copper 1.41 mg/l 0.0050 1.25 BRL 103 70-130 Chromium 1.33 mg/l 0.0050 1.25 BRL 100 70-130 Chromium 1.33 mg/l 0.0050 1.25 BRL 100 70-130 Stelenium 1.25 mg/l	Silver	1.30		mg/l	0.0050	1.25		104	85-115			
Cadmium 1.33 mg/l 0.0025 1.25 106 85-115 Matrix Spike (1104577-MS1) Source: SB25832-01 Prepared: 21-Mar-11 Analyzed: 22-Mar-11 Zine 1.34 mg/l 0.0050 1.25 0.150 106 70-130 Antimony 1.27 mg/l 0.0050 1.25 BRL 101 70-130 Lead 1.27 mg/l 0.0050 1.25 0.018 96 70-130 Nickel 1.21 mg/l 0.0050 1.25 BRL 100 70-130 Copper 1.41 mg/l 0.0050 1.25 BRL 100 70-130 Cadmium 1.33 mg/l 0.0050 1.25 BRL 100 70-130 Cadmium 1.33 mg/l 0.0050 1.25 BRL 100 70-130 Silver 1.33 mg/l 0.0050 1.25 BRL 100 70-130 Silver 1.34 mg/l 0.0050 </td <td>Chromium</td> <td>1.36</td> <td></td> <td>mg/l</td> <td>0.0050</td> <td>1.25</td> <td></td> <td>109</td> <td>85-115</td> <td></td> <td></td>	Chromium	1.36		mg/l	0.0050	1.25		109	85-115			
Matrix Spike (1104677-MS1) Surve: BZE3832-01 Prepared: 21-Main 1 Anilyzed: 22-Main 1 Zinc 1.34 mg/l 0.0050 1.25 0.0150 1.06 70-130 Antimony 1.27 mg/l 0.0060 1.25 BRL 101 70-130 Lead 1.27 mg/l 0.0050 1.25 BRL 101 70-130 Nickel 1.21 mg/l 0.0150 1.25 0.0118 96 70-130 Selenium 4.51 mg/l 0.0150 1.25 BRL 100 70-130 Copper 1.41 mg/l 0.0050 1.25 BRL 106 70-130 Chromium 1.31 mg/l 0.0050 1.25 BRL 105 70-130 Silver 1.33 mg/l 0.0050 1.25 BRL 100 70-130 Silver 1.33 mg/l 0.0050 1.25 BRL 107 70-130 <	Copper	1.38		mg/l	0.0050	1.25		110	85-115			
Zinc 1.34 mg/l 0.0050 1.25 0.0150 106 70-130 Antimony 1.27 mg/l 0.0050 1.25 BRL 101 70-130 Lead 1.27 mg/l 0.0050 1.25 BRL 101 70-130 Nickel 1.21 mg/l 0.0050 1.25 3.13 110 70-130 Selenium 1.26 mg/l 0.0150 1.25 BRL 100 70-130 Copper 1.41 mg/l 0.0050 1.25 BRL 100 70-130 Chromium 1.33 mg/l 0.0050 1.25 BRL 100 70-130 Cadmium 1.33 mg/l 0.0050 1.25 BRL 100 70-130 Silver 1.33 mg/l 0.0050 1.25 BRL 100 70-130 Silver 1.33 mg/l 0.0050 1.25 BRL 100 85-115 Silver 1.	Cadmium	1.33		mg/l	0.0025	1.25		106	85-115			
Zinc 1.34 mg/l 0.0050 1.25 0.0150 106 70-130 Antimony 1.27 mg/l 0.0060 1.25 BRL 101 70-130 Lead 1.27 mg/l 0.0050 1.25 BRL 101 70-130 Nickel 1.21 mg/l 0.0050 1.25 BRL 100 70-130 Iron 4.51 mg/l 0.0150 1.25 BRL 100 70-130 Selenium 1.26 mg/l 0.0150 1.25 BRL 102 70-130 Copper 1.41 mg/l 0.0050 1.25 BRL 105 70-130 Chromlum 1.33 mg/l 0.0050 1.25 BRL 107 70-130 Silver 1.33 mg/l 0.0050 1.25 BRL 107 70-130 Solver 1.25 mg/l 0.0050 1.25 BRL 107 85-115 Solver 1.0104677-PS1 Solver mg/l 0.0050 1.25 BRL 102 85-115 <td>Matrix Spike (1104677-MS1)</td> <td></td> <td></td> <td>Source: SE</td> <td>B25832-01</td> <td>Pre</td> <td>epared: 21-</td> <td>Mar-11</td> <td>Analyzed: 22-M</td> <td>lar-11</td> <td></td>	Matrix Spike (1104677-MS1)			Source: SE	B25832-01	Pre	epared: 21-	Mar-11	Analyzed: 22-M	lar-11		
Antimony 1.27 mg/l 0.0060 1.25 BRL 101 70-130 Lead 1.27 mg/l 0.0075 1.25 BRL 101 70-130 Nickel 1.21 mg/l 0.0050 1.25 0.0018 96 70-130 Iron 4.51 mg/l 0.0150 1.25 BRL 100 70-130 Selenium 1.26 mg/l 0.0150 1.25 BRL 113 70-130 Copper 1.41 mg/l 0.0050 1.25 BRL 105 70-130 Chromlum 1.31 mg/l 0.0050 1.25 BRL 105 70-130 Cadmin 1.25 mg/l 0.0050 1.25 BRL 107 70-130 Silver 1.33 mg/l 0.0050 1.25 BRL 107 70-130 Cadmin 1.25 mg/l 0.0050 1.25 BRL 107 85-115 Solver (1104677-PS1) Solver (1104677-PS1) Former (12000000000000000000000000000000000000		1.34				1.25	0.0150	106	70-130			
Lead 1.27 mg/l 0.0075 1.25 BRL 101 70-130 Nickel 1.21 mg/l 0.0050 1.25 0.0018 96 70-130 Iron 4.51 mg/l 0.0150 1.25 BRL 100 70-130 Selenium 1.26 mg/l 0.0050 1.25 BRL 103 70-130 Copper 1.33 mg/l 0.0040 1.25 0.0038 106 70-130 Chromium 1.31 mg/l 0.0050 1.25 BRL 103 70-130 Chromium 1.31 mg/l 0.0025 1.25 BRL 100 70-130 Silver 1.33 mg/l 0.0050 1.25 BRL 107 70-130 Iron 4.50 mg/l 0.0050 1.25 BRL 107 70-130 Iron 4.50 mg/l 0.0150 1.25 BRL 101 85-115 Iron 4.50 mg/l 0.0050 1.25 BRL 102 85-115 S	Antimony	1.27		-			BRL		70-130			
Nickel 1.21 mg/l 0.0050 1.25 0.0118 96 70-130 Iron 4.51 mg/l 0.0150 1.25 3.13 110 70-130 Selenium 1.26 mg/l 0.0150 1.25 BRL 100 70-130 Copper 1.41 mg/l 0.0050 1.25 BRL 113 70-130 Arsenic 1.33 mg/l 0.0040 1.25 0.0038 106 70-130 Chromium 1.31 mg/l 0.0050 1.25 BRL 100 70-130 Cadmium 1.25 mg/l 0.0055 1.25 BRL 107 70-130 Selenium 1.25 mg/l 0.0050 1.25 BRL 107 70-130 Selenium 1.27 mg/l 0.0150 1.25 BRL 102 85-115 Iron 4.50 mg/l 0.0150 1.25 0.018 98 85-115 Selenium	-			-								
Iron 4.51 mg/l 0.0150 1.25 3.13 1.10 70-130 Selenium 1.26 mg/l 0.0150 1.25 BRL 100 70-130 Copper 1.41 mg/l 0.0050 1.25 BRL 113 70-130 Arsenic 1.33 mg/l 0.0040 1.25 BRL 105 70-130 Chromium 1.31 mg/l 0.0050 1.25 BRL 105 70-130 Cadmium 1.25 mg/l 0.0050 1.25 BRL 100 70-130 Silver 1.33 mg/l 0.0050 1.25 BRL 107 70-130 Post Spike (1104677-PS1) Source: SB2582-01 Prepared: 21-Mar-11< Analyzed: 22-Mar-11				-								
Selenium 1.26 mg/l 0.0150 1.25 BRL 100 70-130 Copper 1.41 mg/l 0.0050 1.25 BRL 113 70-130 Arsenic 1.33 mg/l 0.0040 1.25 BRL 113 70-130 Chromium 1.31 mg/l 0.0050 1.25 BRL 105 70-130 Cadmium 1.25 mg/l 0.0050 1.25 BRL 100 70-130 Cadmium 1.25 mg/l 0.0050 1.25 BRL 107 70-130 Silver 1.33 mg/l 0.0050 1.25 BRL 107 70-130 Post Spike (1104677-PS1) Experime State 107 70-130 70-130 Iron 4.50 mg/l 0.0150 1.25 BRL 102 85-115 Selenium 1.27 mg/l 0.0150 1.25 BRL 103 85-115 Selenium 1.29 <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				-								
Copper 1.41 mg/l 0.0050 1.25 BRL 113 70-130 Arsenic 1.33 mg/l 0.0040 1.25 0.0038 106 70-130 Chromium 1.31 mg/l 0.0050 1.25 BRL 105 70-130 Cadmium 1.25 mg/l 0.0025 1.25 BRL 100 70-130 Silver 1.33 mg/l 0.0050 1.25 BRL 107 70-130 Post Spike (1104677-PS1) Source: SB25832-01 Prepared: 21-Mar-11 Analyzed: 22-Mar-11 Iron 4.50 mg/l 0.0150 1.25 BRL 102 85-115 Selenium 1.27 mg/l 0.0150 1.25 BRL 102 85-115 Zinc 1.36 mg/l 0.0050 1.25 BRL 103 85-115 Lead 1.22 mg/l 0.0050 1.25 BRL 102 85-115 Copper 1.44 mg/l				-								
Arsenic 1.33 mg/l 0.0040 1.25 0.0038 106 70-130 Chromium 1.31 mg/l 0.0050 1.25 BRL 105 70-130 Cadmium 1.25 mg/l 0.0025 1.25 BRL 100 70-130 Silver 1.33 mg/l 0.0050 1.25 BRL 107 70-130 Post Spike (1104677-PS1) Source: SB25832-01 Preparet: 21-Mar-11 Analyzed: 22-Mar-11 Iron 4.50 mg/l 0.0150 1.25 BRL 102 85-115 Selenium 1.27 mg/l 0.0150 1.25 0.0150 107 85-115 Zinc 1.36 mg/l 0.0050 1.25 0.0150 107 85-115 Nickel 1.22 mg/l 0.0050 1.25 BRL 103 85-115 Copper 1.44 mg/l 0.0050 1.25 BRL 106 85-115 Gadmium 1.33 mg/l 0.0050 1.25 BRL 101 85-115 Copper <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				-								
Chromium 1.31 mg/l 0.0050 1.25 BRL 105 70-130 Cadmium 1.25 mg/l 0.0025 1.25 BRL 100 70-130 Silver 1.33 mg/l 0.0050 1.25 BRL 107 70-130 Post Spike (1104677-PS1) Source: SB2582-01 Perparet: 21-Mar-11 Analyzed: 22-Mar-11 Iron 4.50 mg/l 0.0150 1.25 BRL 102 85-115 Selenium 1.27 mg/l 0.0150 1.25 0.0150 107 85-115 Zinc 1.36 mg/l 0.0050 1.25 0.0118 98 85-115 Nickel 1.22 mg/l 0.0050 1.25 BRL 102 85-115 Copper 1.44 mg/l 0.0050 1.25 BRL 102 85-115 Cadmium 1.33 mg/l 0.0050 1.25 BRL 101 85-115 Gadmium 1.36 mg/l <td></td>												
Cadmium 1.25 mg/l 0.0025 1.25 BRL 100 70-130 Silver 1.33 mg/l 0.0050 1.25 BRL 107 70-130 Post Spike (1104677-PS1) Source: SB25832-01 Prepared: 21-Mar-11 Analyzed: 22-Mar-11 Iron 4.50 mg/l 0.0150 1.25 BRL 102 85-115 Selenium 1.27 mg/l 0.0150 1.25 BRL 102 85-115 Zinc 1.36 mg/l 0.0050 1.25 BRL 103 85-115 Antimony 1.29 mg/l 0.0050 1.25 BRL 103 85-115 Lead 1.28 mg/l 0.0050 1.25 BRL 102 85-115 Copper 1.44 mg/l 0.0050 1.25 BRL 101 85-115 Gadmium 1.26 mg/l 0.0050 1.25 BRL 101 85-115 Gadmium 1.26 mg/l				-								
Silver 1.33 mg/l 0.0050 1.25 BRL 107 70-130 Post Spike (1104677-PS1) Tepared: 21-Mar.11 Analyzed: 22-Mar.11 Iron 4.50 mg/l 0.0150 1.25 3.13 109 85-115 Selenium 1.27 mg/l 0.0150 1.25 BRL 102 85-115 Zinc 1.36 mg/l 0.0050 1.25 BRL 103 85-115 Antimony 1.29 mg/l 0.0060 1.25 BRL 103 85-115 Lead 1.28 mg/l 0.0050 1.25 BRL 102 85-115 Copper 1.44 mg/l 0.0050 1.25 BRL 102 85-115 Cadmium 1.33 mg/l 0.0050 1.25 BRL 101 85-115 Silver 1.36 mg/l 0.0050 1.25 BRL 101 85-115 Copper 1.44 mg/l 0.0050 1.25 BRL 101 85-115 Silver 1.36 mg/				-								
Post Spike (1104677-PS1) Source: SB25832-01 Prepared: 21-Mar-11 Analyzed: 22-Mar-11 Iron 4.50 mg/l 0.0150 1.25 3.13 109 85-115 Selenium 1.27 mg/l 0.0150 1.25 BRL 102 85-115 Zinc 1.36 mg/l 0.0050 1.25 BRL 102 85-115 Antimony 1.29 mg/l 0.0050 1.25 BRL 103 85-115 Lead 1.22 mg/l 0.0050 1.25 BRL 103 85-115 Copper 1.44 mg/l 0.0050 1.25 BRL 102 85-115 Cadmium 1.33 mg/l 0.0050 1.25 BRL 102 85-115 Silver 1.34 mg/l 0.0050 1.25 BRL 101 85-115 Cadmium 1.33 mg/l 0.0025 1.25 BRL 101 85-115 Silver 1.36 mg/l				-								
Iron 4.50 mg/l 0.0150 1.25 3.13 109 85-115 Selenium 1.27 mg/l 0.0150 1.25 BRL 102 85-115 Zinc 1.36 mg/l 0.0050 1.25 BRL 102 85-115 Antimony 1.29 mg/l 0.0060 1.25 BRL 103 85-115 Nickel 1.22 mg/l 0.0050 1.25 BRL 102 85-115 Lead 1.28 mg/l 0.0050 1.25 BRL 102 85-115 Copper 1.44 mg/l 0.0050 1.25 BRL 105 85-115 Cadmium 1.33 mg/l 0.0050 1.25 BRL 106 85-115 Arsenic 1.35 mg/l 0.0050 1.25 BRL 101 85-115 Silver 1.36 mg/l 0.0050 1.25 BRL 101 85-115 Silver 1.36 mg/l 0.0050 1.25 BRL 109 85-115 B		1.33		-								
Selenium 1.27 ng/l 0.0150 1.25 BRL 102 85-115 Zinc 1.36 mg/l 0.0050 1.25 0.0150 107 85-115 Antimony 1.29 mg/l 0.0060 1.25 BRL 103 85-115 Nickel 1.22 mg/l 0.0050 1.25 0.0180 98 85-115 Lead 1.28 mg/l 0.0050 1.25 BRL 102 85-115 Copper 1.44 mg/l 0.0050 1.25 BRL 106 85-115 Cadmium 1.33 mg/l 0.0050 1.25 BRL 101 85-115 Arsenic 1.35 mg/l 0.0050 1.25 BRL 101 85-115 Silver 1.36 mg/l 0.0050 1.25 BRL 101 85-115 Silver 1.36 mg/l 0.0050 1.25 BRL 101 85-115 Silver 1.36 mg/l 0.0050 1.25 BRL 109 85-115										lar-11		
Zinc 1.36 ng/l 0.0050 1.25 0.0150 107 85-115 Antimony 1.29 ng/l 0.0060 1.25 BRL 103 85-115 Nickel 1.22 ng/l 0.0050 1.25 0.018 98 85-115 Lead 1.28 ng/l 0.0050 1.25 BRL 102 85-115 Copper 1.44 ng/l 0.0050 1.25 BRL 115 85-115 Chromium 1.33 ng/l 0.0050 1.25 BRL 106 85-115 Cadmium 1.26 ng/l 0.0025 1.25 BRL 101 85-115 Silver 1.36 ng/l 0.0050 1.25 BRL 101 85-115 Back 1104678 - EPA200/SW7000 Series 1.36 ng/l 0.0050 1.25 BRL 109 85-115 Blank (1104678-BLK1) Erepared: 21-Mar-11 Mercury BRL ng/l 0.0020 1.25 BRL 109 85-115				-								
Antimony 1.29 mg/l 0.0060 1.25 BRL 103 85-115 Nickel 1.22 mg/l 0.0050 1.25 0.0018 98 85-115 Lead 1.28 mg/l 0.0050 1.25 BRL 102 85-115 Copper 1.44 mg/l 0.0050 1.25 BRL 115 85-115 Chromium 1.33 mg/l 0.0050 1.25 BRL 106 85-115 Cadmium 1.26 mg/l 0.0025 1.25 BRL 101 85-115 Silver 1.36 mg/l 0.0050 1.25 BRL 101 85-115 Batch 1104678 - EPA200/SW7000 Series 1.36 mg/l 0.0050 1.25 BRL 109 85-115 Mercury BRL 1.36 mg/l 0.0050 1.25 BRL 109 85-115 Bath 1.36 mg/l 0.0050 1.25 BRL 109 85-115 Bath 1.36 mg/l 0.0050 1.25 BRL 109				-								
Nickel 1.22 mg/l 0.0050 1.25 0.0018 98 85-115 Lead 1.28 mg/l 0.0075 1.25 BRL 102 85-115 Copper 1.44 mg/l 0.0050 1.25 BRL 115 85-115 Chromium 1.33 mg/l 0.0050 1.25 BRL 106 85-115 Cadmium 1.26 mg/l 0.0050 1.25 BRL 101 85-115 Arsenic 1.35 mg/l 0.0040 1.25 0.0038 107 85-115 Silver 1.36 mg/l 0.0050 1.25 BRL 109 85-115 Bach 1104678 - EPA200/SW7000 Series Erepared: 21-Mar-11 _ Analyzed: 22-Mar-11 Mercury BRL mg/l 0.0020 500000 500000 500000 500000				-								
Lead 1.28 mg/l 0.0075 1.25 BRL 102 85-115 Copper 1.44 mg/l 0.0050 1.25 BRL 115 85-115 Chromium 1.33 mg/l 0.0050 1.25 BRL 106 85-115 Cadmium 1.26 mg/l 0.0025 1.25 BRL 101 85-115 Arsenic 1.35 mg/l 0.0040 1.25 0.0038 107 85-115 Silver 1.36 mg/l 0.0050 1.25 BRL 109 85-115 Batch 1104678 - EPA200/SW7000 Series Erepared: 21-Mar-11 Mercury BRL mg/l 0.0020 1.25 BRL 109 85	•			mg/l		1.25						
Copper 1.44 mg/l 0.0050 1.25 BRL 115 85-115 Chromium 1.33 mg/l 0.0050 1.25 BRL 106 85-115 Cadmium 1.26 mg/l 0.0025 1.25 BRL 101 85-115 Arsenic 1.35 mg/l 0.0040 1.25 0.0038 107 85-115 Silver 1.36 mg/l 0.0050 1.25 BRL 109 85-115 Batch 1104678 - EPA200/SW7000 Series Erepared: 21-Mar-11 Mercury BRL mg/l 0.0020 1.25 BRL 109 85-115	Nickel	1.22		mg/l	0.0050	1.25	0.0018	98	85-115			
Chromium 1.33 mg/l 0.0050 1.25 BRL 106 85-115 Cadmium 1.26 mg/l 0.0025 1.25 BRL 101 85-115 Arsenic 1.35 mg/l 0.0040 1.25 0.0038 107 85-115 Silver 1.36 mg/l 0.0050 1.25 BRL 109 85-115 Batch 1104678 - EPA200/SW7000 Series Prepared: 21-Mar-11 Prepared: 21-Mar-11 Mercury BRL mg/l 0.0020 1.25 BRL 109 85-115	Lead	1.28		mg/l	0.0075	1.25	BRL	102	85-115			
Cadmium 1.26 mg/l 0.0025 1.25 BRL 101 85-115 Arsenic 1.35 mg/l 0.0040 1.25 0.0038 107 85-115 Silver 1.36 mg/l 0.0050 1.25 BRL 109 85-115 Batch 1104678 - EPA200/SW7000 Series Prepared: 21-Mar-11 Mercury BRL mg/l 0.0020	Copper	1.44		mg/l	0.0050	1.25	BRL	115	85-115			
Arsenic 1.35 mg/l 0.0040 1.25 0.0038 107 85-115 Silver 1.36 mg/l 0.0050 1.25 BRL 109 85-115 Blank (1104678-BLK1) Prepared: 21-Mar-11 Analyzed: 22-Mar-11 Mercury BRL mg/l 0.00020	Chromium	1.33		mg/l	0.0050	1.25	BRL	106	85-115			
Silver 1.36 mg/l 0.0050 1.25 BRL 109 85-115 Batch 1104678 - EPA200/SW7000 Series Prepared: 21-Mar-11 Analyzed: 22-Mar-11 Blank (1104678-BLK1) Prepared: 21-Mar-11 Analyzed: 22-Mar-11 Mercury BRL mg/l 0.00020	Cadmium	1.26		mg/l	0.0025	1.25	BRL	101	85-115			
Blank (1104678 - EPA200/SW7000 Series Prepared: 21-Mar-11 Analyzed: 22-Mar-11 Mercury BRL mg/l 0.00020	Arsenic	1.35		mg/l	0.0040	1.25	0.0038	107	85-115			
Blank (1104678-BLK1) Prepared: 21-Mar-11 Analyzed: 22-Mar-11 Mercury BRL mg/l 0.00020	Silver	1.36		mg/l	0.0050	1.25	BRL	109	85-115			
Blank (1104678-BLK1) Prepared: 21-Mar-11 Analyzed: 22-Mar-11 Mercury BRL mg/l 0.00020	Batch 1104678 - EPA200/SW7000 Series											
Mercury BRL mg/l 0.00020						Pr	enared: 21-	Mar-11	analyzed: 22-M	lar-11		
		RDI		ma/l	0 00020	<u>r 10</u>	-puicu. 21-					
LCS (1104678-BS1) Prepared: 21-Mar-11 Analyzed: 22-Mar-11	-	DIXE		ing/i	0.00020	-						
	<u>LUS (11046/8-BS1)</u>					Pre	epared: 21-	iviar-11 /	analyzed: 22-N	<u>iar-11</u>		

Total Metals by EPA	200 Series Methods -	Ouality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1104678 - EPA200/SW7000 Series										
LCS (1104678-BS1)					Pre	epared: 21-	Mar-11 A	nalyzed: 22-M	<u>ar-11</u>	
Mercury	0.00491		mg/l	0.00020	0.00500		98	85-115		
Duplicate (1104678-DUP1)			Source: SI	B25832-01	Pre	pared: 21-	Mar-11 A	nalyzed: 22-M	<u>ar-11</u>	
Mercury	BRL		mg/l	0.00020		BRL				20
Matrix Spike (1104678-MS1)			Source: SI	B25832-02	Pre	pared: 21-	Mar-11 A	nalyzed: 22-M	<u>ar-11</u>	
Mercury	0.00556		mg/l	0.00020	0.00500	BRL	111	80-120		
Post Spike (1104678-PS1)			Source: SI	B25832-02	Pre	epared: 21-	Mar-11 A	nalyzed: 22-M	ar-11	
Mercury	0.00572		mg/l	0.00020	0.00500	BRL	114	85-115		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	1	.PD imit
Batch 1104804 - General Preparation						
Blank (1104804-BLK1)					Prepared & Analyzed: 18-Mar-11	
Hexavalent Chromium	BRL		mg/l	0.005		
LCS (1104804-BS1)					Prepared & Analyzed: 18-Mar-11	
Hexavalent Chromium	0.052		mg/l	0.005	0.0500 104 80-120	
Duplicate (1104804-DUP1)			Source: SI	B25832-01	Prepared & Analyzed: 18-Mar-11	
Hexavalent Chromium	BRL		mg/l	0.005		20
Matrix Spike (1104804-MS1)			Source: SI	B25832-01	Prepared & Analyzed: 18-Mar-11	
Hexavalent Chromium	0.040	QM9	mg/l	0.005	0.0500 BRL 80 85-115	
Matrix Spike Dup (1104804-MSD1)			Source: SI	B25832-01	Prepared & Analyzed: 18-Mar-11	
Hexavalent Chromium	0.039	QM9	mg/l	0.005		20
Reference (1104804-SRM1)			0		Prepared & Analyzed: 18-Mar-11	
Hexavalent Chromium	0.025		mg/l	0.005	0.0248 101 85-115	
Batch 1104810 - General Preparation						
Blank (1104810-BLK1)					Prepared & Analyzed: 18-Mar-11	
Total Residual Chlorine	BRL		mg/l	0.020		
LCS (1104810-BS1)	DICE		mg/i	0.020	Prepared & Analyzed: 18-Mar-11	
Total Residual Chlorine	0.049		mg/l	0.020	0.0500 98 90-110	
	0.040					
Duplicate (1104810-DUP1) Total Residual Chlorine	BRL		Source: SI	0.020	Prepared & Analyzed: 18-Mar-11 BRL	20
	DRL		mg/l			20
Matrix Spike (1104810-MS1)	0.040		Source: SI		Prepared & Analyzed: 18-Mar-11 0.0500 BRL 92 80-120	
Total Residual Chlorine	0.046		mg/l	0.020		
Matrix Spike Dup (1104810-MSD1)	0.047		Source: SI		Prepared & Analyzed: 18-Mar-11	~~
Total Residual Chlorine	0.047		mg/l	0.020		20
Reference (1104810-SRM1)	0.407			0.000	Prepared & Analyzed: 18-Mar-11	
Total Residual Chlorine	0.137		mg/l	0.020	0.139 98 85-115	
Batch 1104978 - General Preparation						
Blank (1104978-BLK1)					Prepared & Analyzed: 22-Mar-11	
Total Suspended Solids	BRL		mg/l	5.00		
Blank (1104978-BLK2)	221			=	Prepared & Analyzed: 22-Mar-11	
Total Suspended Solids	BRL		mg/l	5.00		
<u>LCS (1104978-BS1)</u>					Prepared & Analyzed: 22-Mar-11	
Total Suspended Solids	84.0		mg/l	10.0	82.0 102 90-110	
LCS (1104978-BS2)					Prepared & Analyzed: 22-Mar-11	
Total Suspended Solids	90.0		mg/l	10.0	82.0 110 90-110	
Batch 1105012 - General Preparation						
<u>Blank (1105012-BLK1)</u>					Prepared: 23-Mar-11 Analyzed: 24-Mar-11	
Cyanide (total)	BRL		mg/l	0.00500		
<u>Blank (1105012-BLK2)</u>					Prepared: 23-Mar-11 Analyzed: 24-Mar-11	
Cyanide (total)	BRL		mg/l	0.00500		
LCS (1105012-BS1)					Prepared: 23-Mar-11 Analyzed: 24-Mar-11	
Cyanide (total)	0.297		mg/l	0.00500	0.300 99 90-110	
LCS (1105012-BS2)					Prepared: 23-Mar-11 Analyzed: 24-Mar-11	
Cyanide (total)	0.288		mg/l	0.00500	0.300 96 90-110	
Reference (1105012-SRM1)					Prepared: 23-Mar-11 Analyzed: 24-Mar-11	
Cyanide (total)	0.175		mg/l	0.00500	0.184 95 64.56-134.7 8	
Batch 1105305 - General Preparation						
<u>Blank (1105305-BLK1)</u>					Prepared & Analyzed: 25-Mar-11	
Chloride	BRL		mg/l	1.00		

This laboratory report is not valid without an authorized signature on the cover page.

* Reportable Detection Limit BRL = Below Reporting Limit

General Chemistry Parameters - Quality Control

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 1105305 - General Preparation										
Blank (1105305-BLK2)					Pre	epared & Ai	nalyzed: 25	-Mar-11		
Chloride	BRL		mg/l	1.00						
Reference (1105305-SRM1)					Pre	epared & Ai	nalyzed: 25-	-Mar-11		
Chloride	25.3		mg/l	1.00	25.0		101	90-110		
Reference (1105305-SRM2)					Prepared & Analyzed: 25-Mar-11					
Chloride	25.4		mg/l	1.00	25.0		102	90-110		
Batch 1105345 - General Preparation										
Blank (1105345-BLK1)					Pre	epared & Ai	nalyzed: 28-	<u>-Mar-11</u>		
Chloride	BRL		mg/l	1.00						
Duplicate (1105345-DUP1)			Source: SE	325832-02	Pre	epared & Ai	nalyzed: 28-	-Mar-11		
Chloride	14000		mg/l	1000		14000			0.07	20
<u>Matrix Spike (1105345-MS1)</u>			Source: SE	325832-02	Pre	epared & Ai	nalyzed: 28-	-Mar-11		
Chloride	17700		mg/l	1000	4000	14000	94	90-110		
Matrix Spike Dup (1105345-MSD1)			Source: SE	<u>325832-02</u>	Pre	epared & Ai	nalyzed: 28-	-Mar-11		
Chloride	17700		mg/l	1000	4000	14000	94	90-110	0.2	20
Reference (1105345-SRM1)					Pre	epared & Ai	nalyzed: 28	-Mar-11		
Chloride	25.3		mg/l	1.00	25.0		101	90-110		

Volatile Organic Compounds - CCV Evaluation Report

nalyte(s)	Average RF	CCRF	% D	Limit	
atch S102054					
Calibration Check (S102054-CCV1)					
Benzene	223138.6	236097.4	5.8	25	
Ethylbenzene	150757.4	160910.2	6.7	25	
Methyl tert-butyl ether	37810.33	37444.56	-1.0	25	
Naphthalene	117531.8	112179.9	-4.6	25	
Toluene	186755.2	199417.9	6.8	25	
m,p-Xylene	175810	186753.7	6.2	25	
o-Xylene	151959.6	161534.9	6.3	25	
2-Methylpentane	38256.03	42303.72	10.6	25	
n-Nonane	28212.85	32047.74	13.6	25	
n-Pentane	35528.69	40803.02	14.8	25	
1,2,4-Trimethylbenzene	141201.2	148889.8	5.4	25	
2,2,4-Trimethylpentane	37351.85	41657.42	11.5	25	
n-Butylcyclohexane	30946.78	32743.84	5.8	25	
n-Decane	22744.81	25702.2	13.0	25	

Notes and Definitions

- GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range.
- QC2 Analyte out of acceptance range in QC spike but no reportable concentration present in sample.
- QM9 The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits.
- R01 The Reporting Limit has been raised to account for matrix interference.
- R04 The Reporting Limits for this analysis are elevated due to sample foaming.
- S02 The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.
- BRL Below Reporting Limit Analyte NOT DETECTED at or above the reporting limit
- dry Sample results reported on a dry weight basis
- NR Not Reported
- RPD Relative Percent Difference
- CIHT The method for residual chlorine indicates that samples should be analyzed immediately. 40 CFR 136 specifies a holding time of 15 minutes from sampling to analysis. Therefore all aqueous residual chlorine samples not analyzed in the field are considered out of hold time at the time of sample receipt.

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

Interpretation of Total Petroleum Hydrocarbon Report

Petroleum identification is determined by comparing the GC fingerprint obtained from the sample with a library of GC fingerprints obtained from analyses of various petroleum products. Possible match categories are as follows:

Gasoline - includes regular, unleaded, premium, etc. Fuel Oil #2 - includes home heating oil, #2 fuel oil, and diesel Fuel Oil #4 - includes #4 fuel oil Fuel Oil #6 - includes #6 fuel oil and bunker "C" oil Motor Oil - includes virgin and waste automobile oil Ligroin - includes mineral spirits, petroleum naphtha, vm&p naphtha Aviation Fuel - includes kerosene, Jet A and JP-4 Other Oil - includes lubricating and cutting oil, and silicon oil

At times, the unidentified petroleum product is quantified using a calibration that most closely approximates the distribution of compounds in the sample. When this occurs, the result is qualified as *TPH (Calculated as).

Laboratory Control Sample (LCS): A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification</u>: The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor Kimberly Wisk Nicole Leja Rebecca Merz The following outlines the condition of all VPH samples contained within this report upon laboratory receipt.

Matrices	Deionized Water Ground Water		
Containers	✓ Satisfactory		
Sample Preservative	Aqueous (acid preserved)	N/A ✓ pH≤2 pH>2	
	Soil or Sediment	✓ N/A Samples not received in Methanol Samples received in Methanol: covering soil/sediment not covering soil/sediment	ml Methanol/g soil 1:1 +/-25% Other
		Samples received in air-tight container	
Temperature	✓ Received on ice	e Received at $4 \pm 2 ^{\circ}\text{C}$ \checkmark Other: 1.7°C	

Were all QA/QC procedures followed as required by the VPH method? Yes

Were any significant modifications made to the VPH method as specified in section 11.3? No *see below

Were all performance/acceptance standards for required QA/QC procedures achieved? Yes

* Yes, if PID and FID surrogate recoveries are listed as n/a, then that sample was run via GCMS using all QC criteria specified in the method

I attest that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Authorized by:

Aliole Leja

Nicole Leja Laboratory Director

MassDEP Analytical Protocol Certification Form

Labo	ratory Name: Sp	ectrum Analytical, Inc.		Project #: 21273	38		
Proje	ect Location: O'C	onnell Oil Assoc - Lee,	MA	RTN:			
This f	form provides ce	ertifications for the follo	wing data set:	SB25832-01 through SB2	25832-03		
Matr	ices: Deionized Ground W						
CAM	[Protocol						
	260 VOC Am II A	✓ 7470/7471 Hg CAM III B	✓ MassDEP VPH CAM IV A	8081 Pesticides CAM V B	✓ 7196 Hex Cr CAM VI B	MassDEP APH CAM IX A	
	270 SVOC AM II B	7010 Metals CAM III C	MassDEP EPH CAM IV B	8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VOC CAM IX B	
	010 Metals AM III A	6020 Metals CAM III D	8082 PCB CAM V A	9014 Total Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B		
		Affirmative response	s to questions A through		umptive Certainty" status		
A Were all samples received in a condition consistent with those described on the Chain of Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?							
В	Were the analyti protocol(s) follo		sociated QC requirements	specified in the selected	CAM	✓ Yes No	
С	Were all required corrective actions and analytical response actions specified in the selected CAM votocol(s) implemented for all identified performance standard non-conformances?						
D			all the reporting requirements for the Acquisition and	-	· · · · ·	✓ Yes No	
Е			Was each method conduct the complete analyte list re	-		✓ Yes NoYes No	
F			nd performance standard iding all "No" responses to			✓ Yes No	
		Responses to que	stions G, H and I below a	re required for "Presum	ptive Certainty" status		
G	Were the reporti	ing limits at or below all	CAM reporting limits spe	ecified in the selected CA	M protocol(s)?	Yes 🖌 No	
		at achieve "Presumptive C n 310 CMR 40. 1056 (2)(k		cessarily meet the data usa	bility and representativeness		
Н	Were all QC per	formance standards spe	cified in the CAM protoco	ol(s) achieved?		Yes 🖌 No	
I	Were results rep	orted for the complete a	nalyte list specified in the	selected CAM protocol(s)?	Yes 🖌 No	
All ne	gative responses ar	re addressed in a case nari	ative on the cover page of the	his report.		•	
	0,	1 1	lties of perjury that, based u cal report is, to the best of m		4	0	
					Nicole Leja	-	
					Laboratory Director Date: 3/29/2011		

11 Almgren Drive • Agawam, Massachusetts 01001 • 413-789-9018 • Fax 413-789-4076 • www.spectrum-analytical.com

	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
		4
Relinquished by:	Image Image <td< td=""><td></td></td<>	
Received by:	$\begin{array}{c c c c c c c c c c c c c c c c c c c $)
$\frac{d by:}{3/18}$	X Total Suspender Soliveds X Total Suspender Soliveds X Total Rush TATs Samples dis ODR 1 Chlorine X Total Cranide	
5/11 16 215	S 8 3 2 Special Handling: Special Handling: Rush TAT - 7 to 10 business days Rush TAT - Date Needed: All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes. Samples disposed of after 60 days unless otherwise instructed. CA Reporting Notes: (check if needed) Provide CT DPH RCP Report Provide CT DPH RCP Report OAReporting Level State specific reporting standards: State specific reporting standards:	

Appendix and the second state of th						Ambient C	Iced 🗆	Condition upon receipt:
All controls of the section of the sectin of the section of the section of the						•	•	EDD Format
Image: CHAIN OF CUSTODY RECORD Special Handling: Note treatment New Tor. Image:		Ma	articles	Star (1		A E-mail to
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Received by.	Relinquished by:			_	when available to (Fax results
Sector and the construction of the construction o								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	chient							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Silver, Zinc, iron							
Standard TAT - 7 to 10 bisines Apport To: CHAIN OF CUSTODY RECORD Invalut recovery Special Handling: Data TAT - 7 to 10 bisines Report To: CAS - Agg CT Invoice To: CAS - Agg CT Special Handling: Data TAT - 7 to 10 bisines Report To: CAS - Agg CT Invoice To: CAS - Agg CT Special Handling: Data TAT - 7 to 10 bisines Report To: CAS - Agg CT Invoice To: CAS - Agg CT Special Handling: Data TAT - 7 to 10 bisines Report To: CAS - Agg CT Invoice To: CAS - Agg CT Special Handling: Data TAT - 7 to 10 bisines Invoice To: CAS - Agg CT Invoice To: CAS - Agg CT Special Handling: Data TAT - 7 to 10 bisines Invoice To: CAS - Agg CT Invoice To: CAS - Agg CT Special Handling: Data TAT - 0 to 0 bisines Invoice To: CAS - Agg CT Invoice To: CAS - Agg CT Special Handling: Data TAT - 0 to 0 bisines Invoice To: CAS - Agg CT Invoice To: CAS - Agg CT Special Handling: Data TAT - 0 to 0 bisines Invoice To: CAS - Agg CT Invoice To: CAS - Agg CT Data: Data TAT - 0 to 0 bisines Invoice To: CAS - Agg	64							
Survey CHAIN OF CUSTODY RECORD Page 2 of 2 Special Handling: Special Handling: Page 2 of 2 Special						-		
Stream CHAIN OF CUSTODY RECORD Special Handling: sumples disposed of after 60 days Page 2 of 2 Special Handling: recreation water recreation of the second of the sec	Cadmium, Chromium,			q	<u> </u>	1	Ecs-3	2 02
Sample Id: Date: Time: Type Time: Time: Time: Type Time:	Antroments	1		5	1.00	3-12-1)	Ecs-1	51320
SPECTRUMANATURELING: CHAIN OF CUSTODY RECORD Standard SPECTRUMANATURELING: Page 2 of 2 Number of 2 <t< td=""><td>State specific reporting standards:</td><td>Çh<i>ro</i> Eotgl</td><td># of V # of A # of C</td><td>Туре</td><td></td><td>Date:</td><td>Sample Id:</td><td>Lab Id:</td></t<>	State specific reporting standards:	Çh <i>ro</i> Eotgl	# of V # of A # of C	Туре		Date:	Sample Id:	Lab Id:
SWE Surface Water Surface Surface Water Surface Surfac	Other	miu Me	/OA Amber Clear		-	Composite		-
CHAIN OF CUSTODY RECORD Standard PECTRUM ANALYTICAL, INC. Page 2 of 2 PECTRUM ANALYTICAL, INC. Page 2 of 2 Perming Invoice To: COMPARECORD Page 2 of 2 Samples display MANUSCRICE Invoice To: COMPARECORD Samples display Main 24-hou Samples display Otherwise in Senander Invoice To: COMPARECORD Samples display Invoice To: COMPARECORD Standard Samples display Invoice To: COMPARECORD Standard Samples display Invoice To: COMPARECORD Standard Samples display Invoice To: Compare Invoice To: Compare Standard Samples display Standard Standard	Provide MA DEP MCP CAM Report Provide CT DPH RCP Report QA/QC Reporting Level		Vials r Glass Glass	Air	No.	IS		
Image: Augustic Market Forming Image: August Market Ma	Check if needed)	Analyses:	Containers:	scorbic Acid	11		⁼ H ₂ SO ₄ 9=	_ م
PECTRUM ANALYTICAL INC. Page 2 of 2 PECTRUM ANALYTICAL INC. Page 2 of 2 Perturber Page 2 of 2 HANDAGE Invoice To: £CD - Accurate Eventor Site Name: 0 co Location: Macin Location: Macin	P			9.O. No.:		rthy		Project Mgr.:
PECTRUM ANALYTICAL, INC. CHAIN OF CUSTODY RECORD Page 2 of 2 HANDBATE FERMINGEY Invoice To: ECS - Acquiring Invoice To: ECS - Acquiring Invoice To: ECS - Acquiring Site Name:	Lee	ma						
PECTRUM ANALYTICAL.INC. Fouring HANBATECHNOLOGY ANDRATECHNOLOGY Formula HANBATECHNOLOGY Formula HANBATECHNOLOGY Invoice To: ECS - Accurated Project No.:	0.7	0						
CHAIN OF CUSTODY RECORD	2738	0.1	5-Agewan	L .		(m)	SUS-Agawa	1
	Special Handling: andard TAT - 7 to 10 business days ish TAT - Date Needed: TATs subject to laboratory approval. .24-hour notification needed for rushes. ples disposed of after 60 days unless rwise instructed.	ORD D	USTODY I	IN OF (CHA		RUM ANALYTICAL, INC. Featuring NIBAT TECHNOLOGY	Spec

11 Almgren Drive

• Agawam, Massachusetts 01001 • 413-789-9018 • Fax 413-789-4076 • www.spectrum-analytical.com

Condition upon receipt: Unced Ambient	Fax results when available to () Fax results when available to () EDD Format	Les Trip V	95932 Les-1 3-17-11	Lab Id: Sample Id: Date:	r SO=Soil	1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 7=CH ₃ OH 8= NaHSO ₄ 9=	Project Mgr.: Loci Macachty		Report To: <u>Bes Again</u>	SPECTRUM ANALYTICAL, INC, Faunting HANIBAL TECHNOLOGY
PC III +		Яm	11 1200	e: Time:	WW=Wastewater SL=Sludge A=Air X3=	5=NaOH 6=Ascorbic Acid	P.O. No.:		Invoice To:	CHAIN OF CUSTODY REC
	Re STES B		6 60	Type Matrix Preserv	ative	ic Acid	0.:		e To: <u>Le</u> ÀS	OF CL
	Relinquished by:	~	44	# of VO	A Vials ber Glass	Containers:	RQN: _		-Agriwain	
		×	N W N N N N	# of Plas	stic	ners:	6003			DY RI
	Received by:		××××××××××××××××××××××××××××××××××××××	82601 TPH EDB POB3	1664 504.1 60B	Analyses:	Sampler(s):	Location: Marin	Site Name:	CORD
			XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Total	inspended indes Residual lorine janide	-	Sherre	ST Lee	CONNELL OF	Standard TAT - 7 Rush TAT - Date All TATs subject Min. 24-hour notifica otherwise instructed.
	Date: Time: /18/11/16/15	(Ar	TONT FAX 312511	□ Other	Chrovide MA DEP MCP CAM Report Provide CT DPH RCP Report OA/QC Reporting Level Astandard ON QC	QA Reporting Notes: (check if needed)		State: MA		S 8 3 2 Special Handling: Special Handling: Standard TAT - 7 to 10 business days Standard TAT - Date Needed: All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes. Samples disposed of after 60 days unless otherwise instructed.

ATTACHMENT III STREAMSTATS GAUGING STATION REPORT AND MAP

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category: Site Information Geographic Area: United States

• GO

News updated March, 2011

USGS 01197500 HOUSATONIC RIVER NEAR GREAT BARRINGTON, MA

Available data for this site SUMMARY OF ALL AVAILABLE DATA

GO

Stream Site

DESCRIPTION:

Latitude 42°13'55", Longitude 73°21'19" NAD27 Berkshire County, Massachusetts, Hydrologic Unit 01100005 Drainage area: 282 square miles Contributing drainage area: 282 square miles, Datum of gage: 683.04 feet above NGVD29.

AVAILABLE DATA:

Data Type	Begin Date	End Date	Count
Real-time	Prev	ious 12/ -	20 days -
Daily Data			
Discharge, cubic feet per second	1913- 05-17	2011- 03-27	35744
Gage height, feet	1992- 10-01	2011- 03-27	20014
Daily Statistics			
Discharge, cubic feet per second	1913- 05-17	2009- 09-30	35201
Gage height, feet	2000- 10-01	2009- 09-30	3228
Monthly Statistics			
Discharge, cubic feet per second	1913- 05	2009- 09	

Gage height, feet	2000- 10	2009- 09	
Annual Statistics			
Discharge, cubic feet per second	1913	2009	
Gage height, feet	2001	2009	
Peak streamflow	1914- 03-28	2008- 03-09	95
Field measurements		2011- 03-07	157
Field/Lab water-quality samples		1996- 04-01	668
Additional Data Sources	Begin Date	End Date	Count
Instantaneous-Data Archive **offsite**	1990- 10-01	2006- 09-30	502757
Annual Water-Data Report (pdf) **offsite**	2005	2009	5

OPERATION:

Record for this site is maintained by the USGS Massachusetts Water Science Center

Email questions about this site to <u>Massachusetts Water Science</u> <u>Center Water-Data Inquiries</u>

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: NWIS Site Information for USA: Site Inventory URL: http://waterdata.usgs.gov/nwis/inventory?

Page Contact Information: USGS Water Data Support Team Page Last Modified: 2011-03-28 15:58:32 EDT 1.49 1.47 nadww01

StreamStats Data-Collection Station Report

USGS Station Number01197500Station NameHOUSATONIC RIVER NEAR GREAT BARRINGTON, MA

Click here to link to available data on NWIS-Web for this site.

Descriptive Information

Station Type Regulated?	Gaging Station, continuous record True
Period of Record	1913-present
Remarks	Low flow is regulated by powerplants. High flow is slightly affected by retarding reservoir since 1973.
Latitude (degrees NAD83)	42.23203306
Longitude (degrees NAD83)	-73.35483278
Hydrologic unit code	01100005
Local Basin	2-Housatonic
County	003-Berkshire
MCD	26815-Great Barrington town
Directions to station	Highway bridge

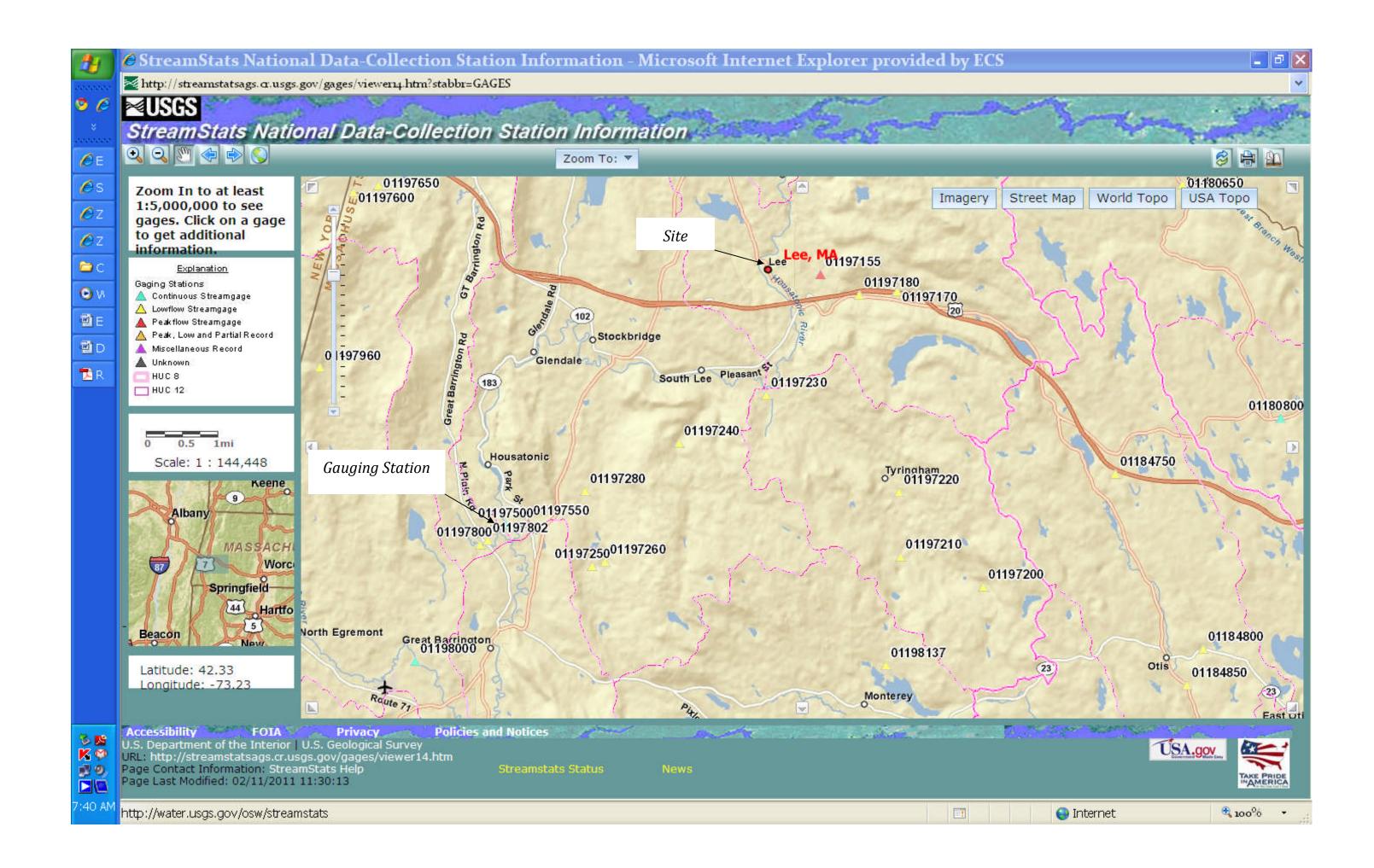
Physical Characteristics

Characteristic Name	Value	Units	Citation Number
Area_of_Lakes_and_Ponds	1.94	square miles	<u>30</u>
Contributing_Drainage_Area	280.000	square miles	<u>47</u>
Drainage_Area	282	square miles	<u>30</u>
Main_Channel_Length	49.700	miles	<u>47</u>
Mean_Basin_Elevation	1430	feet	<u>30</u>
Mean_Basin_Slope_ft_per_mi	16.5	feet per mi	<u>30</u>
Percent_Forest	65.000	percent	<u>47</u>

Streamflow Statistics

Statistic Name	Value	Units	Citatior Numbe
Peak-Flow Statistics			
100_Year_Peak_Flood	11800	cubic feet per second	<u>12</u>
2_Year_Peak_Flood	3680.00	cubic feet per second	<u>47</u>
200_Year_Peak_Flood	13500.0	cubic feet per second	<u>47</u>
5_Year_Peak_Flood	5340.00	cubic feet per second	<u>47</u>
500_Year_Peak_Flood	16300	cubic feet per second	<u>12</u>
Log_Mean_of_Annual_Peaks	2.04	Log base 10	<u>12</u>
Log_Skew_of_Annual_Peaks	0.45	Log base 10	<u>12</u>
Log_STD_of_Annual_Peaks	0.18	Log base 10	<u>12</u>
Mean_Annual_Flood	3870	cubic feet per second	<u>12</u>
Systematic_peak_years	80	years	<u>12</u>
WRC_Mean	3.5810	Log base 10	<u>47</u>
WRC_Skew	0.4830	Log base 10	<u>47</u>
WRC_STD	0.1810	Log base 10	<u>47</u>
Flood-Volume Statistics			
7_Day_10_Year_Maximum	3990.00	cubic feet per second	<u>47</u>
7_Day_2_Year_Maximum	2440.00	cubic feet per second	<u>47</u>
7_Day_50_Year_Maximum	5290.00	cubic feet per second	<u>47</u>
Low-Flow Statistics			
7_Day_10_Year_Low_Flow	69	cubic feet per second	<u>25</u>
7_Day_2_Year_Low_Flow	106	cubic feet per second	<u>25</u>
7_Day_20_Year_Low_Flow	58.400	cubic feet per second	<u>47</u>
Low_flow_years	65.000	years	<u>47</u>
Flow-Duration Statistics			
1_Percent_Duration	2824.1	cubic feet per second	<u>41</u>
10_Percent_Duration	1140	cubic feet per second	<u>41</u>
15_Percent_Duration	904	cubic feet per second	<u>01</u>
2_Percent_Duration	2290	cubic feet per second	<u>01</u>
20_Percent_Duration	745	cubic feet per second	<u>41</u>

25_Percent_Duration	634	cubic feet per second	41
3_Percent_Duration	1960	cubic feet per second	<u>01</u>
30_Percent_Duration	544	cubic feet per second	<u>41</u>
35_Percent_Duration	472	cubic feet per second	<u>01</u>
40_Percent_Duration	421	cubic feet per second	<u>41</u>
45_Percent_Duration	370	cubic feet per second	
5_Percent_Duration	1590	cubic feet per second	<u>01</u> <u>41</u>
50_Percent_Duration	335	cubic feet per second	<u>41</u>
55_Percent_Duration	298	cubic feet per second	
	298		<u>01</u>
60_Percent_Duration		cubic feet per second	<u>41</u>
65_Percent_Duration	240	cubic feet per second	<u>01</u>
7_Percent_Duration	1380	cubic feet per second	<u>01</u>
70_Percent_Duration	214	cubic feet per second	<u>41</u>
75_Percent_Duration	190	cubic feet per second	<u>41</u>
80_Percent_Duration	168	cubic feet per second	<u>41</u>
85_Percent_Duration	149	cubic feet per second	<u>01</u>
90_Percent_Duration	125	cubic feet per second	<u>41</u>
93_Percent_Duration	112	cubic feet per second	<u>01</u>
95_Percent_Duration	100	cubic feet per second	<u>41</u>
97_Percent_Duration	85.0	cubic feet per second	<u>01</u>
98_Percent_Duration	75.0	cubic feet per second	<u>01</u>
99_Percent_Duration	57	cubic feet per second	<u>41</u>
Annual Flow Statistics			
Daily_flow_years	66.000	years	<u>31</u>
Mean_Annual_Flow	530.000	cubic feet per second	<u>31</u>
Stand_Dev_of_Mean_Annual_Flow	136.000	cubic feet per second	<u>31</u>
Monthly Flow Statistics			
April_Mean_Flow	1277.00	cubic feet per second	<u>31</u>
April_STD	508.000	cubic feet per second	<u>31</u>
August_Mean_Flow	243.000	cubic feet per second	<u>31</u>
August_STD	172.000	cubic feet per second	<u>31</u>
December_Mean_Flow	522.000	cubic feet per second	<u>31</u>
December_STD	305.000	cubic feet per second	<u>31</u>
February_Mean_Flow	478.000	cubic feet per second	<u>31</u>
February_STD	245.000	cubic feet per second	<u>31</u>
January_Mean_Flow	517.000	cubic feet per second	<u>31</u>
January_STD	302.000	cubic feet per second	<u>31</u>
July_Mean_Flow	279.000	cubic feet per second	<u>31</u>
July_STD	205.000	cubic feet per second	<u>31</u>
June_Mean_Flow	409.000	cubic feet per second	<u>31</u>
June_STD	256.000	cubic feet per second	<u>31</u>


	000.000		~
March_Mean_Flow	930.000	cubic feet per second	<u>31</u>
March_STD	445.000	cubic feet per second	<u>31</u>
May_Mean_Flow	694.000	cubic feet per second	<u>31</u>
May_STD	270.000	cubic feet per second	<u>31</u>
November_Mean_Flow	457.000	cubic feet per second	<u>31</u>
November_STD	338.000	cubic feet per second	<u>31</u>
October_Mean_Flow	280.000	cubic feet per second	<u>31</u>
October_STD	207.000	cubic feet per second	<u>31</u>
September_Mean_Flow	272.000	cubic feet per second	<u>31</u>
September_STD	245.000	cubic feet per second	<u>31</u>
General Flow Statistics			
Average_daily_streamflow	523.829	cubic feet per second	<u>41</u>
Maximum_daily_flow	11100	cubic feet per second	<u>41</u>
Minimum_daily_flow	1	cubic feet per second	<u>41</u>
Std_Dev_of_daily_flows	572.578	cubic feet per second	<u>41</u>
Base Flow Statistics			
Average_BFI_value	0.523	dimensionless	<u>42</u>
Number_of_years_to_compute_BFI	90	years	<u>42</u>
Std_dev_of_annual_BFI_values	0.082	dimensionless	<u>42</u>
Precipitation Statistics			
24_Hour_2_Year_Precipitation	2.8000	inches	47
Mean_Annual_Precipitation	46.700	inches	47
Climate Characteristics			
Mean_Annual_Snowfall	65.000	inches	47
Temperature Statistics			
Mean_Min_January_Temperature	12.000	degrees F	<u>47</u>

Citations

Citation Number	Citation Name and URL
01	Bent, G.C., 1999, Streamflow, Base Flow, and Ground-Water Recharge in the Housatonic River Basin, Western Massachusetts and Parts of Eastern New York and Northwestern Connecticut: U.S. Geological Survey Water-Resources Investigations Report 98-4232, 68 p.
12	Murphy, P.J., 2001, Evaluation of mixed-population flood-frequency analysis: American Society of Civil Engineers, Journal of Hydrologic Engineering, v. 6, no. 1, p. 62-70
25	Wandle, S.W., Jr., and Lippert, R.G., 1984, Gazetteer of Hydrologic Characteristics of Streams in MassachusettsHousatonic River Basin: U.S.

Geological Survey Water-Resources Investigations Report 84-4285

- 30 Imported from NWIS file
- 31 Imported from Basin Characteristics file
- 41 Wolock, D.M., 2003, Flow characteristics at U.S. Geological Survey streamgages in the conterminous United States: U.S. Geological Survey Open-File Report 03-146, digital data set
- 42 Wolock, D.M., 2003, Base-flow index grid for the conterminous United States: U.S. Geological Survey Open-File Report 03-263, digital data set
- 47 Wandle, S.W., Jr., 2003, Estimating peak discharges of small, rural streams in Massachusetts: U.S. Geological Survey Water-Supply Paper 2215, 26 p.

ATTACHMENT IV

HOUSATONIC RIVER WATERSHED WATER QUALITY ASSESSMENT REPORT (SEGMENT MA21-19)

HOUSATONIC RIVER (SEGMENT MA21-19)

Location: Outlet of Woods Pond, Lee/Lenox, to the Risingdale impoundment dam, Great Barrington. Segment Length: 19.9 miles. Classification: Class B, Warm Water Fishery

Based on the last evaluation of water quality conditions, this segment is listed in Category 5 of the 2004 Integrated List of Waters. This segment was assessed as impaired and requires TMDLs for unknown toxicity, priority organics, thermal modifications, pathogens, and turbidity (MassDEP 2005a).

Risingdale Impoundment (MA21121) will no longer be reported on as a lake segment since the retention time of this 41 acre waterbody was estimated at less than 1 day; it will be considered a run of the river impoundment (McVoy 2006). The retention time estimate was based on the annual historical mean discharge from two stream gages in the Housatonic River Basin (01197500 and 01197000) and the normal storage volume of the dam reported by MA DCR in their Massachusetts Dam Safety Program Database (Socolow *et al.* 2004 and MA DCR 2002).

Through the River Instream Flow Stewards (RIFLS) program, HVA has monitored the water level in Beartown Brook, a tributary to this segment, in Lee (RIFLS 2006). Trout and crayfish were documented in the brook. HVA also deployed a temperature logger in the brook.

WMA WATER WITHDRAWALS (APPENDIX J)

Schweitzer-Mauduit International, Inc (10215002/9P210215002) Mead Westvaco formerly Mead Corporation – Specialty Paper Division (10215001/9P10215001) Two sources listed, Housatonic River and Beartown Brook Cranwell Conference Center (V10215202) Lane Construction Company (9P210215004) Lee Water Department (10215003/9P210215003)

NPDES SURFACE WATER DISCHARGES (APPENDIX J)

Lenox Wastewater Treatment Plant (MA0100935) Schweitzer-Mauduit International, Inc (MA0005371) Oldcastle Architectural Products Group (MAR05A083) Lee WWTP (MA0100153) MW Custom Papers, Inc.– Laurel Mill (MA0001716) MW Custom Papers, Inc.– Willow Mill (MA0001848) Stockbridge Wastewater Treatment Plant (MA0101087)

FERC

Willow Mill Hydroelectric Project FERC No. 2985

The Willow Mill Hydroelectric Project is owned and operated by MeadWestvaco Corporation and has an existing FERC license, which was issued on May 1, 1981 and has an expiration date of April 30, 2011. MeadWestvaco Corporation intends to submit an Application for a New License by April 30, 2009. In order to expedite the licensing process, the MeadWestvaco Corporation submitted a Pre-Application Document and Notice of Intent for a new FERC license in April 2006. Comments by resource agencies and stakeholders on the Pre-Application Document and Notice of Intent will result in data gathered from fieldwork and those study results will be incorporated into the license application.

Glendale Hydroelectric Project (P-2801).

The Glendale Project is owned and operated by Littleville Power Company, Inc. (LPC), a subsidiary of Enel North America, Inc. (Enel). LPC is preparing an application to the FERC for a new federal license. The existing license, which was issued on November 23, 1979, has an expiration date of October 31, 2009. LPC must file its application with FERC on or before October 31, 2007. The following information is excerpted from the Initial Consultation Document (ICD) for the Glendale Hydroelectric Project (LPC 2005).

A FERC preliminary permit was issued to Fox River Paper Co. to operate the Risingdale Dam (Project Number 12528). The facility is authorized to generate 1100 kW. The permit was issued in December 2004 and expires in November 2007. Multiple preliminary permits have been granted for this site dating

back to 1985. A preliminary permit is issued to allow a project proponent time to study the feasibility of a project and determine if it is economically viable. It is anticipated that this permittee will apply for a license in the winter of 2008 and the project should be online by 2010. The operator plans to continue the project in run-of-river mode. Environmental and engineering studies are projected to be finished in 2006. The HVA has submitted comments requesting minimum flow requirements and that recreational access for the public is allowed. MassDEP and the US Department of the Interior also submitted comments to FERC concerning this project including its impact on the cleanup of PCBs associated with the General Electric site and impacts to fish and wildlife (FERC 2006).

USE ASSESSMENT

AQUATIC LIFE USE

Habitat and Flow

DWM performed habitat assessments at three stations on this segment of the Housatonic River (Appendix C) in September 2002.

Station HT19A was adjacent to Crescent Mills – Crystal Street in Lenox, MA, downstream from the Woods Pond dam and the Lenox WWTP discharge. The total habitat score for Station HT19A was 162 out of 200. Habitat was limited by a narrow riparian zone. Filamentous green algal coverage within the reach was extensive (95%). Canopy coverage was estimated to be 0% (Appendix G). The dominant algal genera were *Rhizoclonium* sp., *Tabellaria* sp., *and Cocconeis* sp.

Station HT19C was downstream from power lines that cross Tyringham Road and 185 meters downstream from the Lee WWTP outfall in Lee. The total habitat score was 172 out of 200. Aquatic macrophytes were present in 25% of the reach, and were comprised almost entirely of the rooted submerged plants milfoil (*Myriophyllum* sp.) and Coontail (*Ceratophyllum* sp.). Also present, though sparse, was free floating Duckweed (*Lemna* sp.). Canopy cover was reported as 0%, while green filamentous algae covered 50% of the reach (Appendix G). The dominant algal genera were *Rhizoclonium* sp. and *Cocconeis* sp. Also notable were patches of sewage fungus near and downstream of the Lee WWTP outfall.

Station HT19E was located 145 meters downstream from the Springfield Terminal Railroad Bridge, and 1,940 meters downstream of the Glendale Dam in Stockbridge. The total habitat score for station HT19E was 185 out of 200. There was no canopy cover at this station. Aquatic macrophytes (*Myriophyllum* sp.) were sparse. Algal coverage was dense and dominated by thin-film green algae (100% within reach coverage) (Appendix G).

According to FERC records available online (FERC 2006), the Glendale Project has operated as run-ofriver and met the minimum flow requirement of 10 cfs at the dam in 2002, 2003, and 2004. No fish passage facilities are currently required at this project. When requested the licensee is required to install fish passage facilities. It should also be noted that a flow study in the bypass reach of the Glendale Hydroelectric Project was conducted in the summer/fall 2006 (Smith 2006). The study results in the form of habitat versus flow relationships for each evaluation species (an In-stream Flow Incremental Methodology – IFIM evaluation that included brown trout, fallfish, and longnose dace) should provide a basis for making future recommendations on in-stream flow in the bypass reach, as well as serve as a decision making tool that will allow the FERC to balance in-stream flow and energy generation needs at the Project (Smith 2006).

Biology

DWM biologists collected chlorophyll *a* samples from Stations 19C and 19E on July 31st and September 25th 2002 (Appendix G). Chlorophyll *a* levels measured on these dates at stations 19C and 19E were between 1.5 and 3.7 mg/m³. These are low chlorophyll *a* levels.

MA DFG conducted fish population sampling by barge, boat or backpack electroshocking within this segment of the Housatonic River at 18 sites between 2002 and 2004 (Richards 2006). Thirteen of these sites were located in Lee and five were located in Stockbridge. Sampling consisted of nine sites sampled in 2002, seven in 2003, and two in 2004. A total of 3,623 fish representing 24 species were observed at these 18 sites collectively, including: 1,662 rock bass, 419 smallmouth bass, 310 longnose dace, 303 white sucker, 262 bluntnose minnow, 210 brown trout (53-530mm), 84 bluegill, 59 common shiner, 57 blacknose dace, 43 common carp, 32 black crappie, 31 largemouth bass, 30 creek chub, 22 brook trout

(66-200mm), 21 fallfish, 21 pumpkinseed, 18 banded killifish, 16 brown bullhead, 12 golden shiner, 4 yellow perch, 3 northern pike, 2 tesselated darter, 1 chain pickerel, and 1 spottail shiner. Brown trout were observed at 13 of the 18 sites, while the 22 brook trout observed were all captured at one site. Although the fish assemblage was dominated by macrohabitat generalist species, the presence of 9 fluvial specialist/dependent species (though often represented by few individuals) is indicative of adequate water and habitat quality and a stable flow regime. The fish community was dominated by species tolerant to pollution, however two pollution intolerant species were present (brown and brook trout).

DWM sampled the benthic macroinvertebrate community at three sites along this segment of the Housatonic River (stations HT19A, HT19C, and HT19E) (Appendix C). The RBP III analysis of the benthic community in the river downstream from the Woods Pond dam and the Lenox WWTP discharge ((Station HT19A) indicated this station was slightly impacted when compared to the reference station on the mainstem river in Stockbridge (Station HT19E).

The RBP III analysis of the benthic community in the river downstream from the Lee WWTP outfall (Station HT19C) was found to be slightly impacted when compared to the mainstem reference (Station HT19E).

A reference station on the mainstem Housatonic River in Stockbridge (Station HT19E) was chosen that represented least impacted conditions and a healthy community (Appendix C). When compared to the reference station on the East Branch Housatonic River (Station EB01B) the benthic community at this site indicated the benthos were non-impacted.

<u>Toxicity</u>

Ambient

The Lenox WWTP staff collected water from the Housatonic River at the Foot Bridge at Woods Pond upstream from Outfall #001 for use as dilution water in the whole effluent toxicity tests. Between March 2002 and March 2006 (n=17), survival of *C. dubia* exposed (48 hours) to the river water ranged from 90 to 100% and survival of *P. promelas* exposed (48 hours) to the river water ranged from 95 to 100% (TOXTD database).

The Schweitzer-Mauduit staff collected water from the Housatonic River, approximately 100 yards upstream of the Columbia Mill Dam behind the Columbia WWTF (Columbia Street, Lee), for use as dilution water in the facility's whole effluent toxicity tests (Ryan 2005). River water is collected further upstream (approximately 1300 feet upstream of the Columbia Mill Dam at the Golden Hill Bridge) when snow and ice conditions are present. Between September 2000 and March 2006 (n=25), survival of *C. dubia* exposed (7-day) to the river water ranged from 80 to 100% (TOXTD database).

The Town of Lee has contracted the services of a private laboratory to conduct toxicity sampling and analysis of the WWTP effluent. The contracted laboratory personnel collected river water approximately 75 to 100 feet upstream of Outfall# 001 for use as dilution water in the whole effluent toxicity tests (Zerbato 2005). Between February 2000 and March 2006 (n=23), survival of *C. dubia* exposed (48 hours) to the river water ranged from 90 to 100% (TOXTD database).

The MW Custom Papers staff collected river water approximately 150 feet upstream of the Laurel Mill outfall at a point near the process water intake for use as dilution water in the facility's whole effluent toxicity tests (Grant 2005). Between October 2000 and April 2006 (n=23), survival of *C. dubia* exposed (7-day) to the river water ranged from 90 to 100% (TOXTD database). Between October 2000 and June 2005 survival of *P. promelas* exposed (7-day) to the river water ranged from 18 to 98% and survival was less than 75% in 17 of the 19 test events (TOXTD database). It should be noted that as of June 2005 the facility is no longer required to perform tests using *P. promelas*.

The MW Custom Papers staff collected river water approximately 3000 feet upstream of the Willow Mill outfall at the Meadow Street Bridge for use as dilution water for the Willow Mill WWTF's whole effluent toxicity tests. Between October 2000 and January 2006 (n=22), survival of *C. dubia* exposed (7-day) to the river water ranged from 80 to 100% (TOXTD database). During the same time period, survival of *P.*

promelas exposed (7-day) to the river water ranged from 8 to 98% and survival was less than 75% in 16 of the 22 test events (TOXTD database).

The Town of Stockbridge has contracted the services of a private laboratory to conduct toxicity sampling and analysis. The contracted laboratory personnel collected water from the Housatonic River approximately 30 feet upstream of Outfall # 001 for use as dilution water in the whole effluent toxicity tests (Campetti 2005). Between October 2004 and October 2005, survival of *C. dubia* exposed (48-hour) to the river water was between 90 and 100% (n=3), and survival of *P. promelas* was 100% (n=3) (TOXTD database).

Effluent

Between March 2002 and March 2006, acute whole effluent toxicity tests were conducted on the Lenox WWTP effluent using *C. dubia* and *P. promelas*. The LC₅₀s were all >100% (n=17) for each species, with the exception of one invalid *C. dubia* test (TOXTD database).

Between September 2000 and March 2006, twenty-five whole effluent toxicity tests were conducted on the Schweitzer-Mauduit WWTP effluent using the test organism *C. dubia*. The LC₅₀s ranged from 35 to 100% effluent with three test events (December 2001, 71%; June 2002, 37%; and March 2004, 35%) failing to meet the permit limit of LC₅₀ 100% effluent. C-NOEC's ranged from 6.25 to 100% effluent with only one event (March 2005, 6.25% effluent) failing to meet the permit limit of \geq 14% effluent (TOXTD database). However, in the 7-day chronic renewal, test organisms are sequentially exposed to three separate composite effluent samples collected over the course of the test. Thus, it is possible to observe acute effluent toxicity soon after effluent renewals during the chronic test. In 20 of the 25 toxicity tests there was evidence of some chronic toxicity. Of these 20 tests, acute toxicity was manifested in 8 tests, 6 of which were conducted during the month of March (2001-2006).

Between February 2000 and March 2006 twenty-three whole effluent toxicity tests were conducted on the Lee WWTF effluent using *C. dubia* as a test species. The LC_{50} 's were all $\geq 100\%$ (TOXTD database). This facility is in the process of being upgraded.

Between October 2000 and April 2006 twenty-three whole effluent toxicity tests using *C. dubia* were conducted on the effluent from the MW Custom Papers WWTF at Laurel Mill. The LC₅₀ results were all \geq 100%. When *P. promelas* were used as test organisms (November 2000 through April 2005 n=19 test events) the LC₅₀ results were all \geq 100% (TOXTD database). For the 21 valid chronic tests using *C. dubia*, the C-NOEC results ranged from 6.25 to 100% effluent. C-NOEC results using *P. promelas* ranged from 25 to 100% effluent (n=17 valid tests using lab water as diluent). These data indicate that whole effluent acute and chronic toxicity in this discharge has been vastly reduced compared to data reported between July 1995 and September 2000.

Between October 2000 and January 2006 whole effluent toxicity tests were conducted on the effluent (Outfall #001) from the MW Custom Papers WWTF at Willow Mill using *C. dubia* (*n*=22) and *P. promelas* (n=22). The LC₅₀ results from the *C. dubia* tests were all \geq 100%, except for one test event (January 2002, 71% effluent). The LC₅₀ results using *P. promelas* were all \geq 100% (TOXTD database). C-NOEC results using *C. dubia* ranged from 12.5 to 100% effluent. C-NOEC results using *P. promelas* ranged from <6.25 to 100% effluent (n=21 valid tests using lab water as diluent). The C-NOEC was <6.25% effluent for three of these tests (January 2002, January 2003, and April 2003). It should be noted that whole effluent acute and chronic toxicity in this discharge has been vastly reduced since the upgrades to the treatment plant were completed in 1998.

Whole effluent toxicity tests were conducted on the Stockbridge WWTP effluent between October 2004 and October 2005 using *C. dubia* and *P. promelas* as test organisms. The LC_{50} s for both test organisms were \geq 100% effluent (n=3) (TOXTD database).

Chemistry-water

DWM sampled the water quality of this segment of the Housatonic River at three stations in 2002. Station 19A was located ~360 feet upstream from Valley St. and downstream from the Lenox WWTP discharge. Station 19C was located ~300 feet downstream from Lee WWTP in Lee. Station 19E was located

upstream from railroad bridge, east of Rte. 183 in Stockbridge. *In-situ* sampling was conducted to measure dissolved oxygen, temperature, pH, and conductivity during pre-dawn hours.

Water quality conditions at Station 19A generally met criteria. High phosphorous concentrations were recorded on 3 of 4 visits (concentrations ranging from 0.04 to 0.19 mg/L).

Water quality conditions at Station 19C were generally poor (low DO/saturation, extremely high concentrations of both total phosphorous and ammonia-nitrogen). Two of the five ammonia-nitrogen measurements were above toxic levels (4.48 and 5.72 mg/L). Total phosphorous levels at Station 19C were 2 to 5 times higher than levels measured upstream at 19A. However, water quality data collected downstream from the Lee treatment plant at Station 19C were collected on the same bank as the effluent discharge. Despite being 300 feet below the outfall, it is likely that these samples are not representative of a fully mixed effluent at this point in the river. [Note: The concentration of ammonia in the Lee WWTP effluent reported by the facility in their monthly discharge monitoring reports (DMRs) between May and September 2002 ranged from 7.7 to 22 mg/L. The monthly average concentration measured was 6.3 mg/L. The total phosphorus concentrations in the Schweitzer-Mauduit WWTP effluent reported by the facility is approximately four times greater than the Lee WWTP effluent.]

Continuous *in-situ* temperature monitoring was conducted from the 25th of July through the 28th of August, 2002, behind HVA offices on Route 102 in Lee (Appendix H). In-stream temperatures ranged from 19.2-27.0 °C. The mean temperature over this 35-day period was 22.3 °C.

USGS also collected discrete water samples from the Housatonic River near Glendale on 18 September 2003 (USGS 2006b). Water quality collected by USGS at this station was similar to conditions observed by DWM at Station 19E in 2002. Phosphorous was recorded as 0.05 mg/L.

Water quality conditions at Station 19E generally met criteria, with the exception of high phosphorous levels collected on 3 of 4 visits.

Chemistry- sediment

Blasland, Bouck & Lee, Inc. and Quantitative Environmental Analysis, LLC. prepared a 2003 report for the General Electric Company detailing the extent of PCB contamination in Housatonic River sediments (BBL 2003). This report was based upon sediment cores collected by the EPA and BBL/GE between 1997 and 2002. Study reaches 7 and 8 as described in this report are located within Segment MA21-19. Study Reach 7 is defined as the river section from downstream of Woods Pond Dam to the upstream extent of Rising Pond. Study Reach 8 is defined as Rising Pond from its upstream extent to the Risingdale impoundment dam.

Concentrations of PCBs and total organic carbon (TOC) measured in the top 6 inches of sediment within reaches of this segment of the Housatonic River are summarized below (BBL 2003 as summarized by Poach and Kurpaska 2006). The numbers (n) of cores analyzed to produce the results appear in parentheses after the reach designation.

Reach	Sediment	PCB Conce	entration in 0 - 6	inch layer (mg/kg)
(n)	Min	Max	Mean	Median
7 (198)	ND	38	1.8	0.28
8 (25)	ND	11	2.7	2.2
Reach	Sedime	nt TOC Cor	centration in 0	- 6 inch layer (%)
(n)	Min	Max	Mean	Median
7 (173)	ND	19	2.1	1.8
8 (27)	ND	5.3	2.4	2.4

36

Since minimum TOC levels were listed as non-detectable, the median TOC concentrations were used to calculate the S-EL and make this a conservative estimate of the level of PCB toxicity. The mean PCB sediment concentrations within these reaches did not exceed the PCB S-EL. Maximum PCB sediment concentrations did not exceed the total PCB S-EL based upon the maximum TOC levels (Persaud et al 1993).

Chemistry- fish tissue

Weston Solutions, Inc. prepared a 2004 report for the Army Corps of Engineers and the U.S. Environmental Protection Agency detailing the extent of PCB contamination in fish tissue from fish caught in the Housatonic River (Weston 2004). This report is based upon fish collected by the EPA between 1998 and 2002. Reaches 7 and 8 are located within Segment MA 21-19.

Concentrations of PCB in fish collected from reaches within Housatonic River Segment 21-19 appear below (Weston 2004 as summarized by Poach and Kurpaska 2006). The numbers of fish analyzed to produce the results appear in parentheses after the fish name.

Composite concentrations of PCB in young of the year fish in 2002							
	Young of Year tPCB (µg/kg w/w)						
Reach	Min	Max	Fish Sampled				
7	2,000	4,200	largemouth bass (7), bluegill (3), pumpkinseed (4)				
Whole body	Whole body concentrations of PCB in fish						
Segment Whole Body tPCB (μg/kg w/w)							
Reach	Min	Max	Fish Sampled				
8	12,800	41,500	largemouth bass (14)				
Composite of	Composite concentrations of PCB in fish						
Segment	Segment Composite tPCB (µg/kg w/w)						
Reach	Min	Max	Fish Sampled				
8	8,080	11,200	largemouth bass (5), pumpkinseed (5), yellow perch (5)				

All of the whole fish samples analyzed for total PCB exceeded (by between 4 and 83 times) the NAS/NAE guideline for the protection of fish eating wildlife (500µg/kg wet weight).

The Aquatic Life Use is assessed as impaired for this reach based upon high levels of PCB contamination in whole fish exceeding the NAS/NAE guideline for the protection of fish eating wildlife. PCB contamination of surficial sediments was greatly reduced within this reach when compared to sediments upstream. Water quality data indicate nutrient enrichment affects in the upper half of this reach (the upper 9.2 miles). Nutrient inputs from point sources (municipal and industrial) and non-point source runoff exacerbated by impoundments and other upstream sources all likely contribute to this condition. Although the RBP III analyses of benthic communities at three stations in this reach show either slight or no impacts and fish communities appear normal for a warm water fish community, the frequent poor survival of P. promelas exposed to river water upstream from the MW Custom Papers WWTF Laurel Mill and Willow Mill is of concern. Acute and/or chronic whole effluent toxicity has been greatly reduced in the MW Custom Papers WWTF Laurel and Willow Mill effluents, although it is still occasionally present. Whole effluent toxicity in the Schweitzer-Mauduit WWTP effluent is also of concern.

FISH CONSUMPTION

Weston Solutions, Inc. prepared a 2005 report for the Army Corps of Engineers and the U.S. Environmental Protection Agency detailing the extent of PCB contamination in fish fillets from fish caught in the Housatonic River. The mean total PCB concentrations in fish fillets collected in Rising Pond were reported as follows: bass 3.8, bullhead 4.5, perch 8.2, and sunfish 2.9 mg/kg wet weight (Weston 2005).

In 1982 the Massachusetts Department of Public Health (MA DPH) issued a fish consumption advisory for the Housatonic River because of PCB contamination associated with the General Electric site. The MA

DPH advisory recommends: "The general public should not consume any fish, frogs, or turtles from Housatonic River in the towns of Dalton, Pittsfield, Lenox, Lee, Stockbridge, Great Barrington, and Sheffield".

Due to the MA DPH site-specific fish consumption advisory the *Fish Consumption Use* is assessed as impaired for the entire 19.9 miles of this segment because of PCB levels in edible fish tissue.

PRIMARY CONTACT RECREATION, SECONDARY CONTACT RECREATION AND AESTHETICS

DWM collected fecal coliform bacteria samples from this segment of the Housatonic River at water quality stations 19A, 19C, and 19E (Appendix B). The geometric mean of five samples collected at the upstream station, 19A, was 77 cfu/100mL. One bacteria sample did exceed 400 cfu/mL (1300 cfu/mL). Further downstream at Station 19C (300 feet below the Lee WWTP), the geometric mean of five samples was 979 cfu/100mL. Three samples collected at this station exceeded 400 cfu/mL. None of the five samples collected at the most downstream station, 19E, exceeded 70 cfu/mL.

HVA volunteers conducted a shoreline survey within this segment of the Housatonic River from the dam at Woods Pond in Lenox to the Willow Mill Dam in South Lee in May of 2001. At the impoundment created by the Schweitzer-Mauduit dam, the river was described as weedy with occasional patches of milfoil. Multiple stormwater pipes were noted. The majority of this segment was described as beautiful with few signs of human disturbance (HVA 2001).

DWM biologists noted moderate to dense filamentous green and brown algae covered the rock substrates at Station 19A (~360 feet upstream from Valley St. and downstream from the Lenox WWTP discharge) (MassDEP 2002b). DWM personnel also made field observations during the surveys conducted between May and September 2002. At Station 19A water clarity was generally clear and no scum was noted. Generally, no water odor was noted, but on two occasion an odor was recorded (septic and chlorine, respectively. With the exception of one occasion where trash was noted, objectionable deposits were not noted (MassDEP 2002a).

There was a "septic" odor coming from the water at Station 19C (~300 feet downstream from Lee WWTP in Lee), and dense algal growth on both the submerged plants and rocks (MassDEP 2002b). No objectionable deposits or scum were noted, but a septic water odor was noted on all occasions. Water clarity was generally clear (MassDEP 2002a).

HVA volunteers also conducted a shoreline survey of the Housatonic River from the Willow Mill Dam in South Lee to the Risingdale dam in Great Barrington in May of 2002 (HVA 2002a). Volunteers noted that immediately downstream from the Willow Mill Dam riffles and pools contain heavy algae growth. A grey slippery clay-like material was observed in weeds below two pipes in the same areas. Red and blue stains were seen below the mill on the river bottom soil. Garbage was noted in isolated areas throughout the segment.

Above the Glendale Dam there was an influx of duckweed. An "alluvial fan of sand" was deposited at a stormwater pipe outfall from Route 183. Algae and an oily sheen were noted in the cove just downstream from the discharge. Numerous other pipes were also reported. Overall, however, this section was described as attractive and appeared to be healthy (HVA 2002a).

The river moves swiftly at Station 19E (upstream from the Railroad bridge, east of Rte. 183 in Stockbridge). The water had a slightly musty odor and moderate amounts of filamentous green algae covered many of the rocks (MassDEP 2002b). Water clarity was generally clear and no scums were noted. Generally, no objectionable deposits were noted, but on two occasions slight deposits of trash were observed. Out of ten visits, on three occasions a musty odor was recorded and on one occasion a pulp mill smell was recorded (MassDEP 2002a).

Weston Solutions, Inc. prepared a 2005 report entitled "Human Health Risk Assessment GE/Housatonic River Site, Rest of River" for the U.S. EPA and U.S. Army Corps of Engineers (Weston 2005). In this study, total hazard index values calculated for reasonable maximum exposure to sediment within Housatonic River reach 7, located within segment MA21-19, were shown to fall below the EPA non-

cancer hazard level of 1.0. Total hazard index values calculated for the central tendency exposure to sediment within this segment were all less than the EPA non-cancer hazard level of 1.0.

The *Primary Contact Recreation*, *Secondary Contact Recreation* and *Aesthetics* uses are assessed as impaired for the upper 9.2 mile reach of this segment, based primarily upon the excess algal growth observed in the river. It is BPJ that the high bacteria counts measured at Station 19C, though concerning, are not representative of the entire river in that section and most likely reflect the Lee WWTP effluent quality. The *Primary Contact Recreation*, *Secondary Contact Recreation* and *Aesthetics* uses are assessed as support downstream from the Willow Mill dam (the lower 10.7 miles of this segment). This is based upon the water quality, lack of elevated bacteria counts, acceptable cancer risk assessment values, and field observations of DWM personnel and HVA volunteers.

Designated Uses		Status	
Aquatic Life		IMPAIRED Cause: PCBs in whole fish and sediment, elevated total phosphorus in upper 9.2 miles of segment Source: inappropriate waste disposal from General Electric Site for PCB contamination Suspected source: Nutrient inputs from point sources (municipal and industrial) and non-point source runoff exacerbated by impoundments and other upstream sources	
Fish Consumption		IMPAIRED Cause: PCBs Source: inappropriate waste disposal from General Electric Site	
Primary Contact		IMPAIRED Upper 9.2 mile reach Cause: Objectionable algal growth Source: Unknown Suspected source: Nutrient inputs from point sources (municipal and industrial) and non-point source runoff exacerbated by impoundments and other upstream sources SUPPORT lower 10.7 mile reach	
Secondary Contact		IMPAIRED Upper 9.2 mile reach Cause: Objectionable algal growth Source: Unknown Suspected source: Nutrient inputs from point sources (municipal and industrial) and non-point source runoff exacerbated by impoundments and other upstream sources SUPPORT lower 10.7 mile reach	
Aesthetics	WAr	IMPAIRED Upper 9.2 mile reach Cause: Objectionable algal growth Source: Unknown Suspected source: Nutrient inputs from point sources (municipal and industrial) and non-point source runoff exacerbated by impoundments and other upstream sources SUPPORT lower 10.7 mile reach	

HOUSATONIC RIVER (Segment MA21-19) Use Summary

RECOMMENDATIONS

Stressors resulting in the "slightly impacted" conditions observed at Station 19A in 2002 likely can be traced to the effects from Woods Pond and, potentially, the Lenox WWTP. While the extensive wetlands in Woods Pond may be a natural condition, upstream / downstream water quality monitoring should be performed to determine if any effect is occurring as a result of the operation of the Lenox WWTP.

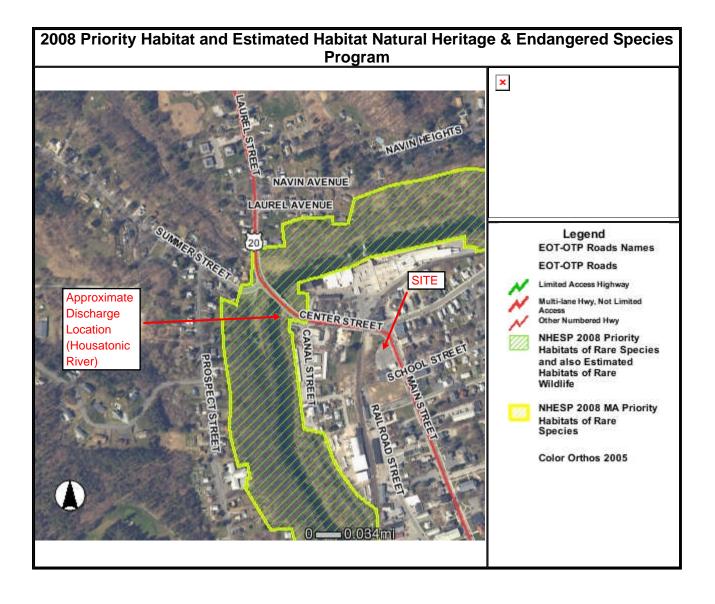
More benthic community study is needed, with more locations (particularly bracketing the NPDES discharges and potential nonpoint sources), to determine if the benthic community is indeed slightly or

non-impacted as the three 2002 stations indicate. Consider bracketing more of the point source discharges with water quality stations to define nutrient inputs into the system (total phosphorous loads especially).

More bacteria sampling stations (both banks, and farther down) are required downstream from Lee to better evaluate uses within that stretch of the river.

The Lee WWTP effluent does not appear to be readily mixing with the river water as evidenced by the poor water quality observed at Station 19C. Investigate mixing zone of discharge under various flow conditions and how far downstream this condition may persist.

Investigate the correlation between the discharge from the Lee WWTP and/or run-off from the town of Lee and the impairment of the benthic community at Station 19C.


Evaluate the results of the flow study in the bypass reach of the Glendale Hydroelectric Project and make appropriate recommendations to protect aquatic life in the bypass reach of the project.

Because of the frequency of the reduced survival of *P. promelas* in the Housatonic River downstream from the Lee WWTP discharge, additional in-stream studies (ambient chronic toxicity testing) should be conducted. If significant chronic toxicity is detected, determine cause(s) and source(s) of in-stream toxicity.

Investigate the sources/causes of the chronic and acute toxicities observed in the Schweitzer-Mauduit WWTP effluent, particularly during the month of March.

ATTACHMENT V

NHESP 2008 ESTIMATED HABITAT FOR RARE WILDLIFE AND PRIORITY HABITATS FOR STATE-PROTECTED RARE SPECIES MAP

ATTACHMENT VI MACRIS DATABASE SEARCH RESULTS

Massachusetts Cultural Resource Information System

MACRIS Search Results

Search Criteria: Town(s): Lee; Street Name: Center; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

lnv. No.	Property Name	Street	Town	Year
LEE.902	Center Street Bridge	Center St	Lee	1925
LEE.923	Teddy Bear Park Memorial	Center St	Lee	1996
LEE.185	Norton, Thomas Block	85 Center St	Lee	1902
LEE.62	Fish, W. T. House	118 Center St	Lee	1840
LEE.186	Sparks, A. C. House	145 Center St	Lee	1840
LEE.187	Richmond, Henry N. House	159 Center St	Lee	1840

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Lee; Street Name: Main; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No.	Property Name	Street	Town	Year
LEE.173	Hurlbut Paper Company Office Building	Main St	Lee	1825
LEE.917	Boulder To World War I Heroes, The	Main St	Lee	1921
LEE.920	Davis, Joseph - Burt, Thomas Monument	Main St	Lee	
LEE.1	Wellington, Smith House	3 Main St	Lee	1830
LEE.2	Park Building	15 Main St	Lee	1914
LEE.13	Memorial Town Hall	32 Main St	Lee	1874
LEE.3	Porter, William House	33 Main St	Lee	1817
LEE.12	Baird and Benton Block	40 Main St	Lee	1875
LEE.4	Pease Block - Pease Drugstore	43 Main St	Lee	1850
LEE.5	Lee National Bank	47 Main St	Lee	1835
LEE.11	Phelan Block	50 Main St	Lee	1916
LEE.10	Oman Block - Oman Drugstore	52 Main St	Lee	1880
LEE.9	Morey Block	56 Main St	Lee	1879
LEE.6	Northrup Block	57 Main St	Lee	1856
LEE.19	Gleaner Block	61 Main St	Lee	1894
LEE.8	Baird Block	62 Main St	Lee	1857
LEE.20	Quackenbush Building	63 Main St	Lee	1876
LEE.21	Dolan Block	71 Main St	Lee	1856
LEE.22	Markham Block	73 Main St	Lee	1898
LEE.24	Graham, R. F. House	93 Main St	Lee	1897
LEE.23	Markham, George House	95 Main St	Lee	1894
LEE.7	Lee Library	100 Main St	Lee	1907
LEE.31	Rambo, Jane House	117 Main St	Lee	1907
LEE.25	Thatcher, Eliel House	119 Main St	Lee	1830
LEE.32	Bossidy, Patrick Block	124-130 Main St	Lee	1869
LEE.33	Saint Mary's Roman Catholic Church	129 Main St	Lee	1856
LEE.26	Heaphy, Thomas Block	139 Main St	Lee	1879
Tuesday, Ma	rch 29, 2011			Page 1 of 2

Inv. No.	Property Name	Street	Town	Year
LEE.27	Heebner, Edmund House	145 Main St	Lee	1859
LEE.34	Gibbs, Nathan House	150 Main St	Lee	1841
LEE.28	Wakefield, Chester House	151 Main St	Lee	1830
LEE.29	Bassett, Nathaniel House	171 Main St	Lee	1827
LEE.35	Rogers, Edward House	176 Main St	Lee	1897
LEE.36	Bean, Benjamin House	184 Main St	Lee	1840
LEE.30	Lee Central Fire Station	195 Main St	Lee	1912
LEE.37		196 Main St	Lee	1840
LEE.56	Saint Mary's Parochial School	199 Main St	Lee	1885
LEE.38	Davis, William House	208 Main St	Lee	1830
LEE.39	Heaphy House	218 Main St	Lee	1840
LEE.45	Platner, George House	223 Main St	Lee	1833
LEE.40		232 Main St	Lee	1850
LEE.41	Little - Tristany House	238 Main St	Lee	1850
LEE.42	Casey, J. H. House	244 Main St	Lee	1896
LEE.43	Casey Block	252 Main St	Lee	1897
LEE.44	Nolan Block	264 Main St	Lee	1914