

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Region 1 5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

CERTIFIED MAIL RETURN RECEIPT REQUESTED

JUN 28 2011

Patrick D. Corcoran License Site Professional EnviroTrack Ltd. 2 Merchant Street, Suite 2 Sharon, MA 02067

Re: Authorization to discharge under the Remediation General Permit (RGP) – MAG910000. Hess Petroleum Retail Station#21224 site located at 468 West Street, Amherst Massachusetts, Hampshire County; Authorization # MAG910493

Dear Mr. Corcoran:

Based on the review of a Notice of Intent (NOI) submitted on behalf of Hess Corporation by your firm EnviroTrac, for the site referenced above, the U.S. Environmental Protection Agency (EPA) hereby authorizes you, as the named Operator, to discharge in accordance with the provisions of the RGP at that site. Your authorization number is listed above.

The checklist enclosed with this RGP authorization indicates the pollutants which you are required to monitor. Also indicated on the checklist are the effluent limits, test methods and minimum levels (MLs) for each pollutant. Please note that the checklist does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of this permit, including influent and effluent monitoring, narrative water quality standards, record keeping, and reporting requirements, found in Parts I and II, and Appendices I – VIII of the RGP. See EPA's website for the complete RGP and other information at: http://www.epa.gov/region1/npdes/mass.html#dgp.

Please note the enclosed checklist includes parameters that you have marked believed present.

Also, please note that the metals included on the checklist are dilution dependent pollutants and subject to limitations based on selected dilution ranges and technology-based ceiling limitations. For each parameter the dilution factor 53 for this site is within a dilution range greater than fifty to one hundred (>50-100) established in the RGP. (See the RGP Appendix IV for Massachusetts facilities). Therefore, the limits for arsenic of 500ug/L and iron of 5,000ug/L are required to achieve permit compliance at your site.

Finally, please note the checklist of pollutants attached to this authorization is subject to a recertification if the operations at the site result in a discharge lasting longer than six months. A recertification can be submitted to EPA within six (6) to twelve (12) months of operations in accordance with the 2010 RGP regulations.

This general permit and authorization to discharge will expire on September 9, 2015. You have reported that this project will terminate on 07/31/2011. If for any reason the discharge terminates sooner or at the reported time, you are required to submit a Notice of Termination (NOT) to the attention of the contact person indicated below within 30 days of project completion.

Thank you in advance for your cooperation in this matter. Please contact Victor Alvarez at 617-918-1572 or Alvarez. Victor@epa.gov, if you have any questions.

Sincerely,

David M. Webster, Chief Industrial Permits Branch

Enclosure

cc: Kathleen Keohane, MassDEP

2010 Remediation General Permit Summary of Monitoring Parameters^[1]

NPDES Authorization Number:		MAG910493 - New			
Authorization Issued:	June,				
Facility/Site Name:		branded Petroleum Retail Station#21224			
Facility/Site Address:		Vest Street Amherst, MA 01002-2965, Hampshire County			
racinty/ Site Address.	Email	address of owner: mmatric@hess.com			
Legal Name of Operator:		EnviroTrack Ltd.			
Operator contact name, title, and Address:		Patrick D. Corcoran, LSP, 2 Merchant Street Ste. 2, Sharon, MA 02067			
		Email:Patrick@envirotrack.com			
Estimated Date of Com	pletion	: 07/31/2011			
Category and Sub-Category:		Category I. Petroleum Related Sites. Sub-category A. Gasolir Only Sites.			
Receiving Water:		Plum Brook to Fort River			

Monitoring & Limits are applicable if checked. All samples are to be collected as grab samples

	<u>Parameter</u>	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
√_	Total Suspended Solids (TSS)	30 milligrams/liter (mg/L) **, 50 mg/L for hydrostatic testing **, Me#60.2/ML5ug/L
	Total Residual Chlorine (TRC)	Freshwater = 11 ug/L ** Saltwater = 7.5 ug/L **/ Me#330.5/ML 20ug/L
✓	Total Petroleum Hydrocarbons (TPH)	5.0 mg/L/ Me# 1664A/ML 5.0mg/L
	4. Cyanide (CN) 2,3	Freshwater = 5.2 ug/l ** Saltwater = 1.0 ug/L **/ Me#335.4/ML 10ug/L
√	5. Benzene (B)	5ug/L /50.0 ug/L for hydrostatic testing only/ Me#8260C/ML 2 ug/L
	6. Toluene (T)	(limited as ug/L total BTEX)/ Me#8260C/ ML 2ug/L
- 4	7. Ethylbenzene (E)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L
	8. (m,p,o) Xylenes (X)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L
√	9. Total Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) ⁴	100 ug/L/ Me#8260C/ ML 2ug/L

	<u>Parameter</u>	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **,
		in that case it will be a Monthly Average Limit)
	10. Ethylene Dibromide (EDB) (1,2- Dibromoethane)	0.05 ug/l/ Me#8260C/ ML 10ug/L
V	11. Methyl-tert-Butyl Ether (MtBE)	70.0 ug/l/Me#8260C/ML 10ug/L
/	12.tert-Butyl Alcohol (TBA) (TertiaryButanol)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
	13. tert-Amyl Methyl Ether (TAME)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
	14. Naphthalene ⁵	20 ug/L /Me#8260C/ML 2ug/L
	15. Carbon Tetrachloride	4.4 ug/L /Me#8260C/ ML 5ug/L
	16. 1,2 Dichlorobenzene (o-DCB)	600 ug/L /Me#8260C/ ML 5ug/L
Ð	17. 1,3 Dichlorobenzene (m-DCB)	320 ug/L /Me#8260C/ ML 5ug/L
	18. 1,4 Dichlorobenzene (p-DCB)	5.0 ug/L /Me#8260C/ ML 5ug/L
	18a. Total dichlorobenzene	763 ug/L - NH only /Me#8260C/ ML 5ug/l
	19. 1,1 Dichloroethane (DCA)	70 ug/L /Me#8260C/ ML 5ug/L
	20. 1,2 Dichloroethane (DCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
	21. 1,1 Dichloroethene (DCE)	3.2 ug/L/Me#8260C/ ML 5ug/L
	22. cis-1,2 Dichloroethene (DCE)	70 ug/L/Me#8260C/ ML 5ug/L
vdi	23. Methylene Chloride	4.6 ug/L/Me#8260C/ ML 5ug/L
	24. Tetrachloroethene (PCE)	5.0 ug/L/Me#8260C/ ML 5ug/L
98	25. 1,1,1 Trichloro-ethane (TCA)	200 ug/L/Me#8260C/ ML 5ug/L
	26. 1,1,2 Trichloro-ethane (TCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
is.	27. Trichloroethene (TCE)	5.0 ug/L /Me#8260C/ ML 5ug/L
	28. Vinyl Chloride (Chloroethene)	2.0 ug/L /Me#8260C/ ML 5ug/L
	29. Acetone	Monitor Only(ug/L)/Me#8260C/ML 50ug/I
. I	30. 1,4 Dioxane	Monitor Only /Me#1624C/ML 50ug/L
R	31. Total Phenols	300 ug/L Me#420.1&420.2/ML 2 ug/L/ Me# 420.4 /ML 50ug/L
()O	32. Pentachlorophenol (PCP)	1.0 ug/L /Me#8270D/ML 5ug/L,Me#604 &625/ML 10ug/L
ψ	33. Total Phthalates (Phthalate esters) ⁶	3.0 ug/L ** /Me#8270D/ML 5ug/L, Me#606/ML 10ug/L& Me#625/ML 5ug/L
V	34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	6.0 ug/L /Me#8270D/ML 5ug/L,Me#606/ML 10ug/L & Me#625/ML 5ug/L
	35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)	10.0 ug/L
	a. Benzo(a) Anthracene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L

	aldminimal him	Effluent Limit/Method#/ML				
	在"人生的。我们是1663	(All Effluent Limits are shown as Daily				
	<u>Parameter</u>	Maximum Limit, unless denoted by a **				
	nd indicates the	in that case it will be a Monthly Average				
	reaching representative and a second	Limit)				
	b. Benzo(a) Pyrene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L,				
	(4), 1), 2	Me#610/ML 5ug/L& Me#625/ML 5ug/L				
	c. Benzo(b)Fluoranthene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L,				
		Me#610/ML 5ug/L& Me#625/ML 5ug/L				
	d. Benzo(k)Fluoranthene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L,				
12.50		Me#610/ML 5ug/L& Me#625/ML 5ug/L				
	e. Chrysene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L,				
		Me#610/ML 5ug/L& Me#625/ML 5ug/L				
	f. Dibenzo(a,h)anthracene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L,				
-		Me#610/ML 5ug/L& Me#625/ML 5ug/L				
	g. Indeno(1,2,3-cd) Pyrene 7	0.0038 ug/L /Me#8270D/ML 5ug/L,				
		Me#610/ML 5ug/L& Me#625/ML5ug/L				
	36. Total Group II Polycyclic	100 ug/L				
	Aromatic Hydrocarbons (PAH)					
	h. Acenaphthene	X/Me#8270D/ML 5ug/L,Me#610/ML				
Mark H		5ug/L & Me#625/ML 5ug/L				
	i. Acenaphthylene	X/Me#8270D/ML 5ug/L,Me#610/ML				
		5ug/L & Me#625/ML 5ug/L				
	j. Anthracene	X/Me#8270D/ML 5ug/L,Me#610/ML				
_		5ug/L & Me#625/ML 5ug/L				
	k. Benzo(ghi) Perylene	X/Me#8270D/ML 5ug/L,Me#610/ML				
	(5)	5ug/L & Me#625/ML 5ug/L				
	I. Fluoranthene	X/Me#8270D/ML 5ug/L,Me#610/ML				
-		5ug/L & Me#625/ML 5ug/L				
	m. Fluorene	X/Me#8270D/ML 5ug/L,Me#610/ML				
		5ug/L & Me#625/ML 5ug/L				
	n. Naphthalene ⁵	20 ug/l / Me#8270/ML 5ug/L, Me#610/MI				
		5ug/L & Me#625/ML 5ug/L				
	o. Phenanthrene	X/Me#8270D/ML 5ug/L,Me#610/ML				
	TO MINISTER IN STREET THE PERSON OF THE PERS	5ug/L & Me#625/ML 5ug/L				
	p. Pyrene	X/Me#8270D/ML5ug/L,Me#610/ML 5ug/L				
-		& Me#625/ML 5ug/L				
	37. Total Polychlorinated	0.000064 ug/L/Me# 608/ ML 0.5 ug/L				
./	Biphenyls (PCBs) 8, 9					
٧	38. Chloride	Monitor only/Me# 300.0/ ML 0.1ug/L				

	Metal parameter	Total Recoverable Metal Limit @ H 10 = 50 mg/l CaCO3 for discharges in Massachusetts (ug/l) 11/12	
511		Freshwater	4 (a) (242 k) 40 (4024 f
	39. Antimony	5.6/ML 10	N CONSIST THE PROPERTY OF
\checkmark	40. Arsenic **	500/ML20	STREET NEW YORK

	JEL Emerit Limits are shown as Dariy HA) To you be shown denoted by the particular case it will be a Monthly Avelage (4mit), Limit, Li	001119/1000	O H 10 =	Minimum level=ML
	Metal parameter	Freshwater		
	41. Cadmium **	0.2/ML10	inexacus Elife	Decase a
	42. Chromium III (trivalent) **	48.8/ML15		
	43. Chromium VI (hexavalent) **	11.4/ML10	marou/9(1	d. Benzél
	44. Copper **	5.2/ML15	1	a. Classina
	45. Lead **	1.3/ML20		
	46. Mercury **	0.9/ML0.2	(tage (t.s.)	aaradiQ d
	47. Nickel **	29/ML20		
	48. Selenium **	5/ML20	11.2.3 cm	Original Light
	49. Silver	1.2/ML10	II suame	
	50. Zinc **	66.6/ML15	Sauras enhaut	Local Control of the
/	51. Iron	5,000/ML	20	

	Other Parameters	<u>Limit</u>
/	52. Instantaneous Flow	Site specific in CFS
\checkmark	53. Total Flow	Site specific in CFS
√	54. pH Range for Class A & Class B Waters in MA	6.5-8.3; 1/Month/Grab ¹³
	55. pH Range for Class SA & Class SB Waters in MA	6.5-8.3; 1/Month/Grab ¹³
	56. pH Range for Class B Waters in NH	6.5-8; 1/Month/Grab ¹³
	57. Daily maximum temperature - Warm water fisheries	83°F; 1/Month/Grab ¹⁴
	58. Daily maximum temperature - Cold water fisheries	68°F; 1/Month/Grab ¹⁴
	59. Maximum Change in Temperature in MA - Any Class A water body	1.5°F; 1/Month/Grab ¹⁴
	60. Maximum Change in Temperature in MA - Any Class B water body- Warm Water	5°F; 1/Month/Grab ¹⁴
	61. Maximum Change in Temperature in MA – Any Class B water body - Cold water and Lakes/Ponds	3°F; 1/Month/Grab ¹⁴
	62. Maximum Change in Temperature in MA – Any Class SA water body - Coastal	1.5°F; 1/Month/Grab ¹⁴
	63. Maximum Change in Temperature in MA – Any Class SB water body - July to September	1.5°F; 1/Month/Grab ¹⁴
	64. Maximum Change in Temperature in MA –Any Class SB water body - October to June	4°F; 1/Month/Grab ¹⁴

Footnotes:

¹ Although the maximum values for TRC are 11ug/l and 7.5 ug/l for freshwater, and saltwater respectively, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., Method 330.5, 20 ug/l).

² Limits for cyanide are based on EPA's water quality criteria expressed as micrograms per liter. There is currently no EPA approved test method for free cyanide. Therefore, total cyanide must be reported.

Although the maximum values for cyanide are 5.2 ug/l and 1.0 ug/l for freshwater and saltwater, respectively, the compliance limits are equal to the minimum level

(ML) of the Method 335.4 as listed in Appendix VI (i.e., 10 ug/l).

⁴ BTEX = sum of Benzene, Toluene, Ethylbenzene, and total Xylenes. ⁵ Naphthalene can be reported as both a purgeable (VOC) and extractable (SVOC) organic compound. If both VOC and SVOC are analyzed, the highest value must be used unless the QC criteria for one of the analyses is not met. In such cases, the

value from the analysis meeting the QC criteria must be used.

⁶ The sum of individual phthalate compounds(not including the #34, Bis (2-Ethylhexyl) Phthalate . The compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measurement of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁷ Although the maximum value for the individual PAH compounds is 0.0038 ug/l, the compliance limits are equal to the minimum level (ML) of the test method used as

listed in Appendix VI.

In the November 2002 WQC, EPA has revised the definition of Total PCBs for aquatic life as total PCBs is the sum of all homologue, all isomer, all congener, or all "Oroclor analyses."Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measure of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁹Although the maximum value for total PCBs is 0.000064 ug/l, the compliance limit is equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., 0.5 ug/l for Method 608 or 0.00005 ug/l when Method 1668a is approved).

Hardness. Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc are

Hardness Dependent.

11 For a Dilution Factor (DF) from 1 to 5, metals limits are calculated using DF times the base limit for the metal. See Appendix IV. For example, iron limits are calculated using DF x 1,000ug/L (the iron base limit). Therefore DF is 1.5, the iron limit will be 1,500 ug/L; DF 2, then iron limit =1,000 x 2 =2,000 ug/L., etc. not to exceed the DF=5.

Minimum Level (ML) is the lowest level at which the analytical system gives a recognizable signal and acceptable calibration point for the analyte. The ML represents the lowest concentration at which an analyte can be measured with a known level of confidence. The ML is calculated by multiplying the laboratorydetermined method detection limit by 3.18 (see 40 CFR Part 136, Appendix B).

pH sampling for compliance with permit limits may be performed using field methods as provided for in EPA test Method 150.1.

Temperature sampling per Method 170.1

June 14, 2011

United States Environmental Protection Agency RGP – NOI Processing 1 Congress Street Boston, Massachusetts 02114-2023

Re: Remediation General Permit (RGP) – Notice of Intent (NOI)

Hess-branded Petroleum Retail Station #21224

468 West Street

Amherst, Massachusetts 01002-2965

MassDEP RTN 1-18197

To Whom It May Concern:

At the request of Hess Corporation (Hess), EnviroTrac Ltd (EnviroTrac) is submitting the attached Remediation General Permit (RGP) – Notice of Intent (NOI) for the above-referenced location, referred to as the site. The NOI form is included as Attachment A. The site is currently a Hess-branded retail petroleum station. Temporary construction dewatering is required to facilitate the repair or replacement of an underground storage tank (UST). Based on gauging of monitoring wells at the site, the depth to groundwater is 1 to 5 feet below ground surface (bgs). Excavation to approximately 4 feet bgs is required for the UST repair or replacement. The locations of the site and discharge receiving water (Plum Brook) are depicted on **Figure 1**. A site sketch, which depicts the existing site features and the catch basin which represents the proposed discharge point, is attached as **Figure 2**.

During construction dewatering, groundwater will be pumped from the excavation into a fractionation tank for settlement, and then treated through two bag filters (arranged in series), a greensand filter, two 700-pound liquid phase carbon units (arranged in series), and two cartridge filter (arranged in series). A schematic drawing is included as **Figure 3**. The treated effluent will be discharged via the catch basin to the north of the site property, which discharges to a swale located approximately 250 feet north of the site. The swale drains to Plum Brook, a tributary of the Fort River. The design flow of the treatment system is 50 gallons per minute (50 gpm), and the average discharge rate of treated groundwater is anticipated to be 30 gpm.

On November 8, 2010, February 9, 2011, May 13, 2011 and June 7, 2011, groundwater samples were obtained from an on-site monitoring well. Based on data collected in November 2010, concentrations of extractable petroleum hydrocarbons meet RGP effluent limitations. Based on analytical data collected on February 9, May 13 and June 6, 2011, total suspended solids (TSS), chloride, benzene, methyl tert butyl ether (MTBE), tert butyl alcohol (TBA), butyl benzyl phthalate, bis (2-ethylhexyl phthalate), arsenic, and iron were detected. Compounds reported at concentrations exceeding the applicable Effluent Limitations published in Appendix

III of the RGP for Discharges in Massachusetts included TSS and iron. Analytical data is summarized in **Table 1**. The laboratory analytical reports for May and June 2011 supporting this submittal are included in **Attachment B**.

Plum Brook and the Fort River are both located in a National Heritage & Endangered Species Program Estimated Rare Wetland Habitat associated with the dwarf wedge mussel. Therefore, as specified in the RGP, a consultation with the U.S. Fish and Wildlife Service was conducted. The U.S. Fish and Wildlife Service determined that given the distance between the treated discharge and the Fort River, adverse effects are not anticipated and further consultation is not required. According to the National Park Service's National Register Information System (NRIS) (http://www.nr.nps.gov/), the nearest listed historical site is the Baird House located on Shays Street, approximately one half-mile north of the site. The Massachusetts Historical Commission's Massachusetts Cultural Resource Information System (MACRIS) (http://www.sec.state.ma.us/mhc/) listed more than 900 sites in Amherst. The nearest Massachusetts-listed site, Aaron Merrick House at 441 West Street, is located approximately 200 feet northwest of the site. Based on the distances to the site, the discharge will not likely adversely affect the historical sites. Copies of the U.S. Fish and Wildlife determination letter, NRIS, and MACRIS listings are included in Attachment C.

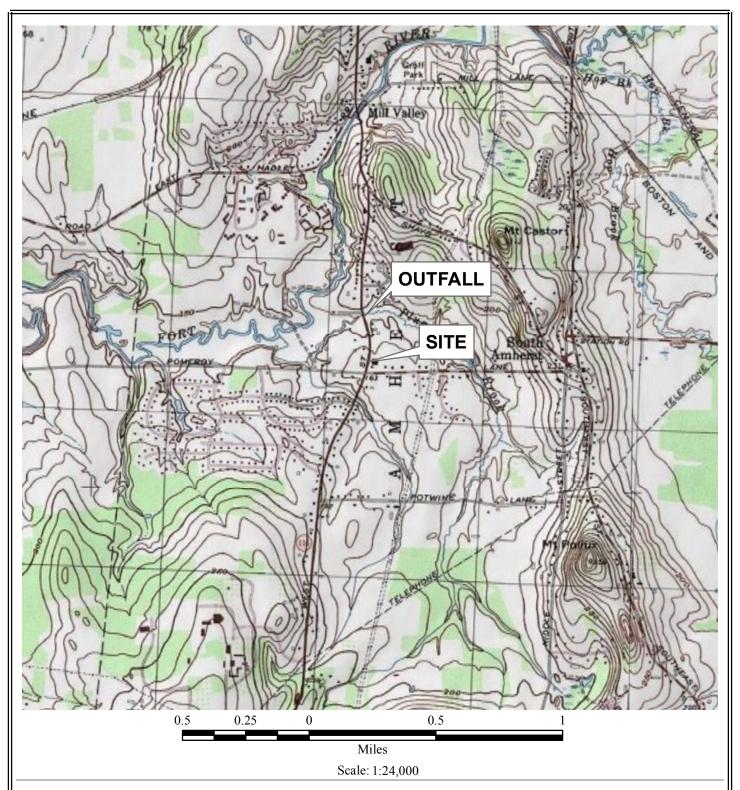
The excavation and dewatering will be conducted as an Immediate Response Action (IRA) in accordance with provisions of the Massachusetts Contingency Plan (MCP) as set forth at 310 CMR 40.0424. Therefore, completion and submittal of Massachusetts Department of Environmental Protection (MassDEP) Application Form BRPWM 12 or payment of a fee to the Commonwealth of Massachusetts for the proposed discharge are not required.

If you have any questions or require further information, please contact the undersigned at (781) 793-0074.

Sincerely, EnviroTrac Ltd.

Patrick D. Corcoran, LSP Senior Project Manager

cc.: MassDEP Western Regional Office


Stephanie O'Keeffe, Chair, City of Amherst Select Board

City of Amherst Conservation Commission

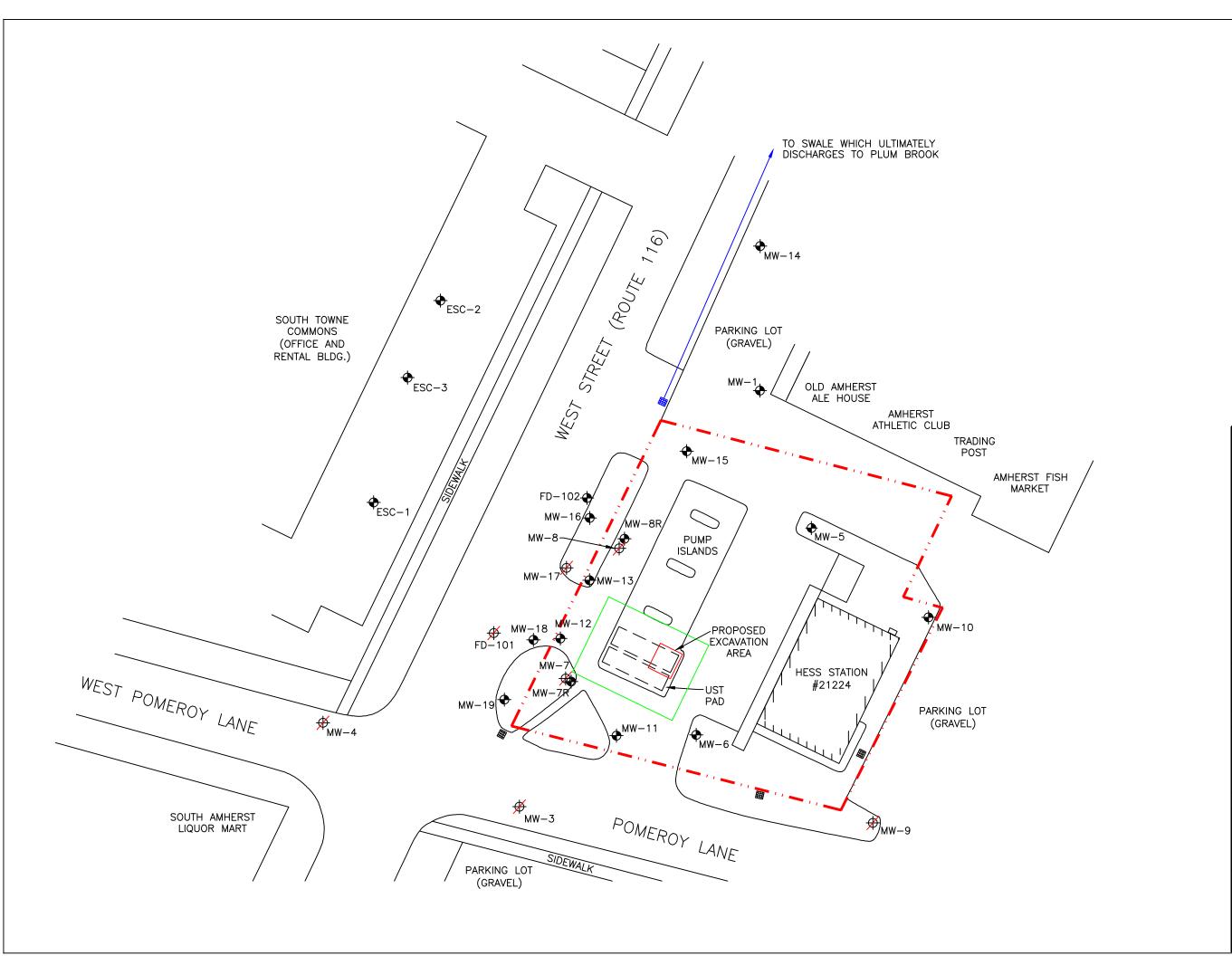
M. Matri, Hess

FIGURES

Hess Station #21224 468 West Street Amherst, MA 01002-2965

FIGURE 1

Latitude/Longitude:


42° 20' 30" North 72° 20' 34" North

SITE LOCUS MAP UNITED STATES GEOLOGICAL SURVEY MT. HOLYOKE AND BELCHERTOWN, MA QUADRANGLES

Contour Interval: 10 ft.

BASED ON FIGURE ENTITLED "SITE PLAN,"
DELTA CONSULTANTS, DATED 11/23/06.
ALL LOCATIONS APPROXIMATE.
NOT FOR CONSTRUCTION PURPOSES.

LEGEND:

→ = MONITORING WELL

■ = CATCH BASIN

= PROPOSED DISCHARGE LOCATION

PROPERTY LINE (APPROX.)

DISPOSAL SITE (APPROX.)

DRAWN BY: PDC

DRAWING DATE: 05/25/2011

DRAWING TITLE

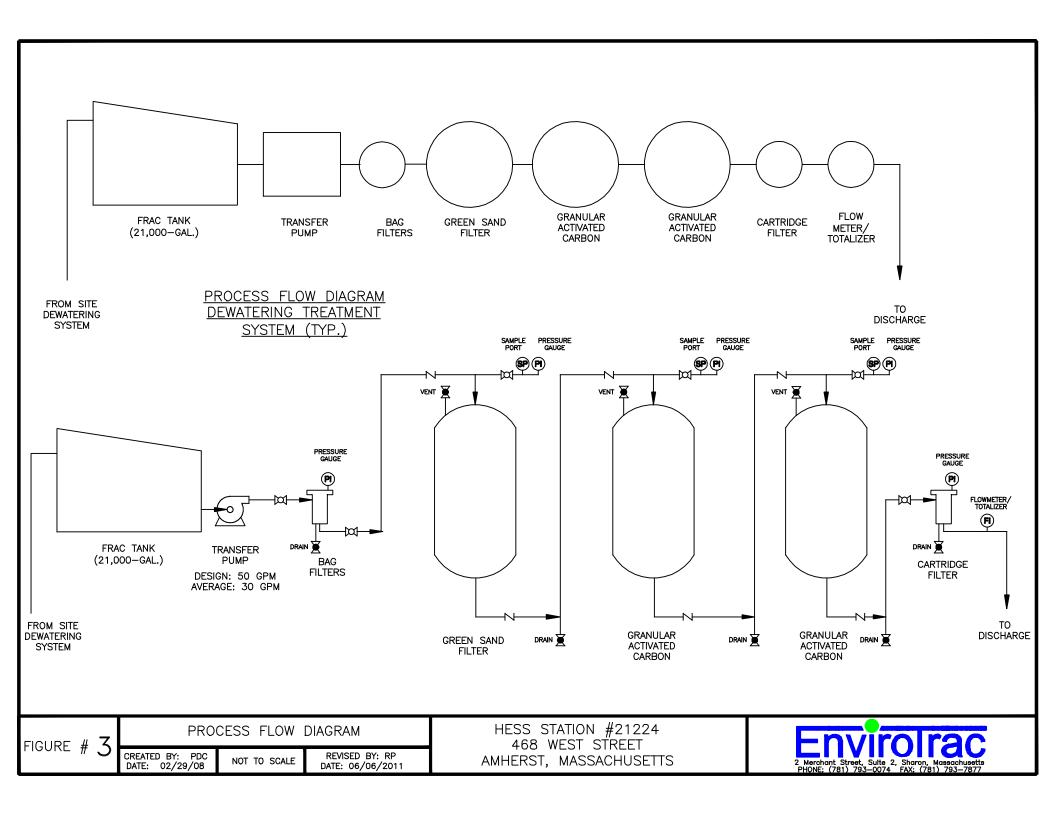

SITE PLAN

FIGURE:

PROJECT NAME

HESS STATION #21224 468 WEST STREET AMHERST, MASSACHUSETTS

TABLE

TABLE 1 SUMMARY OF GROUNDWATER ANALYTICAL DATA

Hess Station #21224 468 West Street Amherst, Massachusetts

		RGP				
Sample ID	11/08/2010	02/09/2011	05/13/2011	06/07/2011	Discharge Limit	
Volatile Organic Compounds (μg/L)						
C5-C8 Aliphatics	<50	<50			NE	
C9-C12 Aliphatics	<50	<50			NE	
C9-C10 Aromatics	<50	<50			NE	
Benzene	2.2	4.7	3.8		5	
Toluene	<2.0	<2.0	<1.0		NE	
Ethylbenzene	<2.0	<2.0	<1.0		NE	
Xylenes	<4.0	<4.0	<1.0		NE	
Total BTEX	2.2	4.7	3.8		100	
Naphthalene	<3.0	<3.0			20	
Acetone			<5.0		NE	
2-Butanone			<5.0		NE	
1,2,4-Trimethylbenzene			<5.0		NE	
Methyl tert butyl ether	12.3	8.4	4.0		70.0	
Tert butyl alcohol			733		NE	
Butyl benzyl phthalate			7.1		NE	
bis(2-ethylhexyl)phthalate			2.8		6.0	
All other VOCs			ND		NE	
Extractable Petroleum Hydrocarbo	ns (ua/L)					
C9-C18 Aliphatics	<110				NE	
C19-C36 Aliphatics	<110				NE	
C11-C22 Aromatics	<110				NE	
Acenaphthene	<0.12				NE NE	
Acenaphthylene	<0.12				NE NE	
Anthracene	<0.12				NE NE	
Benzo(g,h,i)perylene	<0.12				NE NE	
(6: 1).						
Fluoranthene	<0.12				NE NE	
Fluorene	<0.12		-		NE NE	
Phenanthrene	<0.059		-		NE NE	
Pyrene	<0.12				NE	
Total Group II PAHs	ND				100	
Benzo(a)anthracene	<0.059				0.0038	
Benzo(a)pyrene	<0.12				0.0038	
Benzo(b)fluoranthene	< 0.059				0.0038	
Benzo(k)fluoranthene	<0.12				0.0038	
Chrysene	<0.12				0.0038	
Dibenzo(a,h)anthracene	<0.12				0.0038	
Indeno(1,2,3-cd)pyrene	<0.12				0.0038	
2-Methylnaphthalene	<0.24				NE	
1,2-Dibromoethane	< 0.016		<2.0		0.05	
Γotal Metals (μg/L)						
Iron		l	12,400		5,000	
Lead			<5.0		8.5	
Zinc			<20		85.6	
Arsenic			9.5		36.0	
		<u> </u>	3.0		50.0	
General Chemistry (mg/L)	T	ı	4.400		NE	
Chloride			4,100		NE NE	
Total Suspended Solids			35.0		30	
Total Residual Chlorine				<0.050	11	

NOTES:

RGP is Remediation General Permit

PAHs is Polycyclic Aromatic Hydrocarbons

mg/L is milligrams per liter

μg/L is micrograms per liter

< Indicates that the compound was not detected at the laboratory detection limit listed.

ND is not detected

NE is not established

Group II PAHs include: acenaphthene, acenaphthylene, anthracene, benzo(g,h,i)perylene,

fluoranthene, fluorene, phenanthrene, and pyrene

ATTACHMENT A

B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit

1. General facility/site information. Please provide the following information about the site:

a) Name of facility/site :	Facility/site mailing address:					
Location of facility/site : longitude: latitude:	Facility SIC code(s):	Street:				
b) Name of facility/site owner:		Town:				
Email address of facility/site owner:		State:	Zip:	County:		
Telephone no. of facility/site owner :						
Fax no. of facility/site owner:		Owner is (check one): 1. Federal 2. State/Tribal 3. Private 4. Other if so, describe:				
Address of owner (if different from site):						
Street:						
Town:	Γown: State:		County:			
c) Legal name of operator :	Operator tele	ephone no:				
	Operator fax	x no.:	Operator email:			
Operator contact name and title:						
Address of operator (if different from Street: owner):						
Town:	State:	Zip:	County:			

d) Check Y for "yes" or N for "no" for the following: 1. Has a prior NPDES permit exclusion been granted for the discharge? Y N, if Y, number: 2. Has a prior NPDES application (Form 1 & 2C) ever been filed for the discharge? Y N, if Y, date and tracking #: 3. Is the discharge a "new discharge" as defined by 40 CFR 122.2? Y N 4. For sites in Massachusetts, is the discharge covered under the Massachusetts Contingency Plan (MCP) and exempt from state permitting? Y N							
e) Is site/facility subject to any State permitting, license, or other action which is causing the generation of discharge? Y N If Y, please list: 1. site identification # assigned by the state of NH or MA: 2. permit or license # assigned: 3. state agency contact information: name, location, and telephone number:	f) Is the site/facility covered by any other EPA permit, including: 1. Multi-Sector General Permit? Y N, if Y, number: 2. Final Dewatering General Permit? Y N, if Y, number: 3. EPA Construction General Permit? Y N, if Y, number: 4. Individual NPDES permit? Y N, if Y, number: 5. any other water quality related individual or general permit? Y N, if Y, number:						
g) Is the site/facility located within or does it discharge to	an Area of Critical Environmental Concern (ACEC)? Y N						
h) Based on the facility/site information and any historica discharge falls.	al sampling data, identify the sub-category into which the potential						
Activity Category	Activity Sub-Category						
I - Petroleum Related Site Remediation	A. Gasoline Only Sites B. Fuel Oils and Other Oil Sites (including Residential Non-Business Remediation Discharges) C. Petroleum Sites with Additional Contamination						
II - Non Petroleum Site Remediation	A. Volatile Organic Compound (VOC) Only Sites B. VOC Sites with Additional Contamination C. Primarily Heavy Metal Sites						
III - Contaminated Construction Dewatering	A. General Urban Fill Sites B. Known Contaminated Sites						

IV - Miscellaneous Related Disc	charges	B. Well Development/RehabContaminated SitesC. Hydrostatic Testing of PipD. Long-Term RemediationE. Short-term Contaminated	Evaluate Formerly Contaminated Sites pilitation at Contaminated/Formerly pelines and Tanks of Contaminated Sumps and Dikes Dredging Drain Back Waters (if not covered
		by 401/404 permit)	
2. Discharge information.	Please provide information	about the discharge, (attachi	ng additional sheets as necessary) including
a) Describe the discharge acti	ivities for which the owner/ap	oplicant is seeking coverage	:
b) Provide the following info	rmation about each discharge	2:	
1) Number of discharge			charge (in cubic feet per second, ft ³ /s)?
points:		s maximum flow a design va	alue? YNow a design value or estimate?
	<u> </u>	·	ow a design value of estimate:
3) Latitude and longitude of e pt.1: lat long	<u> </u>		
pt.3: latlong			
pt.5: latlong	g; pt.6: lat	long	;
pt.7: latlong	; pt.8: lat	long	; etc.
4) If hydrostatic testing,			
total volume of the	Is discharge ongoing? Y	N	
discharge (gals):	(111)		
c) Expected dates of discharg			
d) Please attach a line drawin			and 4. discharge points and receiving
waters(s).	continuing now nom the o	peranon, 3. treatment units,	and 4. discharge points and receiving
· · · · · · · · · · · · · · · · · · ·			

3. Contaminant information.

a) Based on the sub-category selected (see Appendix III), indicate whether each listed chemical is believed present or believed absent in the potential discharge. Attach additional sheets as needed.

						Analytical	<u>Minimum</u>	Maximum daily value		Average daily value	
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Sample Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
1. Total Suspended Solids (TSS)											
2. Total Residual Chlorine (TRC)											
3. Total Petroleum Hydrocarbons (TPH)											
4. Cyanide (CN)	57125										
5. Benzene (B)	71432										
6. Toluene (T)	108883										
7. Ethylbenzene (E)	100414										
8. (m,p,o) Xylenes (X)	108883; 106423; 95476; 1330207										
9. Total BTEX ²	n/a										
10. Ethylene Dibromide (EDB) (1,2-Dibromoethane) ³	106934										
11. Methyl-tert-Butyl Ether (MtBE)	1634044										
12. tert-Butyl Alcohol (TBA) (Tertiary-Butanol)	75650										

^{*} Numbering system is provided to allow cross-referencing to Effluent Limits and Monitoring Requirements by Sub-Category included in Appendix III, as well as the Test Methods and Minimum Levels associated with each parameter provided in Appendix VI.

² BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes.
³ EDB is a groundwater contaminant at fuel spill and pesticide application sites in New England.

					Sample	Analytical	Minimum	Maximum dai	ly value	Average daily	<u>value</u>
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
13. tert-Amyl Methyl Ether (TAME)	9940508										
14. Naphthalene	91203										
15. Carbon Tetrachloride	56235										
16. 1,2 Dichlorobenzene (o-DCB)	95501										
17. 1,3 Dichlorobenzene (m-DCB)	541731										
18. 1,4 Dichlorobenzene (p-DCB)	106467										
18a. Total dichlorobenzene											
19. 1,1 Dichloroethane (DCA)	75343										
20. 1,2 Dichloroethane (DCA)	107062										
21. 1,1 Dichloroethene (DCE)	75354										
22. cis-1,2 Dichloroethene (DCE)	156592										
23. Methylene Chloride	75092										
24. Tetrachloroethene (PCE)	127184										
25. 1,1,1 Trichloro-ethane (TCA)	71556										
26. 1,1,2 Trichloro-ethane (TCA)	79005										
27. Trichloroethene (TCE)	79016										

					Sample	Analytical	<u>Minimum</u>	Maximum dai	<u>ly value</u>	Average daily	<u>value</u>
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
28. Vinyl Chloride (Chloroethene)	75014										
29. Acetone	67641										
30. 1,4 Dioxane	123911										
31. Total Phenols	108952										
32. Pentachlorophenol (PCP)	87865										
33. Total Phthalates (Phthalate esters) ⁴											
34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	117817										
35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)											
a. Benzo(a) Anthracene	56553										
b. Benzo(a) Pyrene	50328										
c. Benzo(b)Fluoranthene	205992										
d. Benzo(k)Fluoranthene	207089										
e. Chrysene	21801										
f. Dibenzo(a,h)anthracene	53703										
g. Indeno(1,2,3-cd) Pyrene	193395										
36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)											

⁴The sum of individual phthalate compounds.

					Comple	Analytical	Minimum	Maximum dai	ly value	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Sample Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
h. Acenaphthene	83329										
i. Acenaphthylene	208968										
j. Anthracene	120127										
k. Benzo(ghi) Perylene	191242										
1. Fluoranthene	206440										
m. Fluorene	86737										
n. Naphthalene	91203										
o. Phenanthrene	85018										
p. Pyrene	129000										
	85687; 84742; 117840; 84662;										
37. Total Polychlorinated Biphenyls (PCBs)	131113; 117817.										
38. Chloride	16887006										
39. Antimony	7440360										
40. Arsenic	7440382										
41. Cadmium	7440439										
42. Chromium III (trivalent)	16065831										
43. Chromium VI (hexavalent)	18540299										
44. Copper	7440508										
45. Lead	7439921										
46. Mercury	7439976										
47. Nickel	7440020										
48. Selenium	7782492										
49. Silver	7440224										
50. Zinc	7440666										
51. Iron	7439896										
Other (describe):											

		Sample Analytical Min		Minimum	<u>Maximum daily v</u>		Average daily value					
	<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
Ī												

b) For discharges where **metals** are believed present, please fill out the following (attach results of any calculations):

Step 1: Do any of the metals in the influent exceed the effluent limits in Appendix III (i.e., the limits set at zero dilution)? YN	If yes, which metals?
Step 2: For any metals which exceed the Appendix III limits, calculate the dilution factor (DF) using the formula in Part I.A.3.c (step 2) of the NOI instructions or as determined by the State prior to the submission of this NOI. What is the dilution factor for applicable metals? Metal: DF: Metal: DF: Metal: DF: Metal: DF: Etc.	Look up the limit calculated at the corresponding dilution factor in Appendix IV. Do any of the metals in the influent have the potential to exceed the corresponding effluent limits in Appendix IV (i.e., is the influent concentration above the limit set at the calculated dilution factor)? Y N If Y, list which metals:

4. Treatment system information. Please describe the treatment system using separate sheets as necessary, including:

a) A description of the	treatment systen	n, including a scho	ematic of the proposed or exis	sting treatment system:		
b) Identify each	Frac. tank	Air stripper	Oil/water separator	Equalization tanks	Bag filter	GAC filter
applicable treatment unit (check all that apply):	Chlorination	De- chlorination	Other (please describe):	Equalization tanks	Dag Inter	GAC IIIICI

c) Proposed average and maximum flow rates (gallons per minute) for the discharge and the design flow rate (s) (gallons per minute) of the treatment system: Average flow rate of discharge gpm									
d) A description of chemical additives being used or planned to be used (attach MSDS sheets):									
5. Receiving surface water(s). Please provide information about the receiving water(s), using separate sheets as necessary:									
a) Identify the discharge pathway:	Direct to receiving water	Within facility (sewer)	Storm drain		Other (describe):				
b) Provide a narrative description of	the discharge p	athway, including	the name(s) of the	e receiving waters	:				
 For multiple discharges, number t For indirect dischargers, indicate t The map should also include the local 	 c) Attach a detailed map(s) indicating the site location and location of the outfall to the receiving water: 1. For multiple discharges, number the discharges sequentially. 2. For indirect dischargers, indicate the location of the discharge to the indirect conveyance and the discharge to surface water. The map should also include the location and distance to the nearest sanitary sewer as well as the locus of nearby sensitive receptors (based on USGS topographical mapping), such as surface waters, drinking water supplies, and wetland areas. 								
d) Provide the state water quality cla	ssification of th	e receiving water_							
e) Provide the reported or calculated seven day-ten year low flow (7Q10) of the receiving watercfs Please attach any calculation sheets used to support stream flow and dilution calculations.									
f) Is the receiving water a listed 303(d) water quality impaired or limited water? Y If yes, for which pollutant(s)?									
Is there a final TMDL? Y N	If yes, for w	hich pollutant(s)?							

6. ESA and NHPA Eligibility.

Please provide the following information according to requirements of Permit Parts I.A.4 and I.A.5 Appendices II and VII.

a) Using the instructions in Appendix VII and information on Appendix II, under which criterion listed in Part I.C are you eligible for coverage under this general permit? A B C D E F
b) If you selected Criterion D or F, has consultation with the federal services been completed? Y N Underway
c) If consultation with U.S. Fish and Wildlife Service and/or NOAA Fisheries Service was completed, was a written concurrence finding that the discharge is "not likely to adversely affect" listed species or critical habitat received? Y N
d) Attach documentation of ESA eligibility as described in the NOI instructions and required by Appendix VII, Part I.C, Step 4.
e) Using the instructions in Appendix VII, under which criterion listed in Part II.C are you eligible for coverage under this general permit? 1 2 3
f) If Criterion 3 was selected, attach all written correspondence with the State or Tribal historic preservation officers, including any terms and conditions that outline measures the applicant must follow to mitigate or prevent adverse effects due to activities regulated by the RGP.
7. Supplemental information.
Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit.

8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facility/Site Name:	Hess Petroleum Retail Station #21224, 468 West Street, Amherst, MA
Operator signature:	Paula De
Printed Name &Title	Patrick D. Corcoran, LSP; Senior Project Manager
Date: 06/14/2011	

<u>Remediation General Permit – Notice of Intent</u> Maximum Daily Value and Dilution Factor Calculations

Maximum Daily Value

To calculate the maximum daily value in kilograms of each parameter believed to be present the following formula was used:

0.072 MGD * concentration of parameter in mg/L * 8.34 = kg

Example:

Total BTEX:

0.072 MGD * 0.047 mg/L * 8.34 = 1.28E-3 kg

Dilution Factor

To calculate the dilution factor the following formula was used:

DF = (Qd +Qs)/Qd where: Qd = Maximum flow rate of discharge in cubic feet per second (cfs)

Qs = Receiving water 7Q10 flow in cfs

DF = (0.1115 cfs + 5.8 cfs) / 0.1115 cfs = 53.02

Note: The 7Q10 of the Fort River at Amherst, MA was obtained from the USGS Water Quality Annual Statistic for Massachusetts at Gage # 01171300 Fort River near Amherst, MA. The lowest average monthly discharge of 5.8 cfs was taken from the year (1981) with the lowest average yearly discharge between 1967 and 1996.

ATTACHMENT B

12/16/10

Technical Report for

EnviroTrac

Hess:#21224 468 West St Amherst MA

Accutest Job Number: M95681

Sampling Date: 11/08/10

Report to:

EnviroTrac

patrickc@envirotrac.com

ATTN: Patrick Corcoran

Total number of pages in report: 69

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Kristen Blanchard 508-481-6200

Certifications: MA (M-MA136,SW846 NELAC) CT (PH-0109) NH (250210) RI (00071) ME (MA00136) FL (E87579) NY (11791) NJ (MA926) PA (6801121) ND (R-188) CO MN (11546AA) NC (653) IL (002337) ISO 17025:2005 (L2235) This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Lab Director

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	5
Section 3: Sample Results	8
3.1: M95681-1: MW-1	9
3.2: M95681-1F: MW-1	13
3.3: M95681-2: MW-4	14
3.4: M95681-2F: MW-4	16
3.5: M95681-3: MW-5	17
3.6: M95681-3F: MW-5	19
3.7: M95681-4: MW-7R	20
3.8: M95681-4F: MW-7R	26
3.9: M95681-5: MW-8R	27
3.10: M95681-5F: MW-8R	33
3.11: M95681-6: MW-11	34
3.12: M95681-6F: MW-11	38
3.13: M95681-7: MW-12	39
3.14: M95681-7F: MW-12	43
3.15: M95681-8: MW-13	44
3.16: M95681-8F: MW-13	47
3.17: M95681-9: MW-14	48
3.18: M95681-10: MW-19	49
3.19: M95681-11: FD-102	50
Section 4: Misc. Forms	51
4.1: Parameter Certifications (MA)	52
4.2: Chain of Custody	53
4.3: MCP Form	55
4.4: EPH Form	56
4.5: VPH Form	61

Job No:

M95681

Sample Summary

EnviroTrac

Hess:#21224 468 West St Amherst MA

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
M95681-1	11/08/10	15:30 RSD	T 11/08/10	AQ	Ground Water	MW-1
M95681-1F	11/08/10	15:30 RSD	T 11/08/10	AQ	Groundwater Filtered	MW-1
M95681-2	11/08/10	10:10 RSD	T 11/08/10	AQ	Ground Water	MW-4
M95681-2F	11/08/10	10:10 RSD	T 11/08/10	AQ	Groundwater Filtered	MW-4
M95681-3	11/08/10	09:55 RSD	T 11/08/10	AQ	Ground Water	MW-5
M95681-3F	11/08/10	09:55 RSD	T 11/08/10	AQ	Groundwater Filtered	MW-5
M95681-4	11/08/10	10:57 RSD	T 11/08/10	AQ	Ground Water	MW-7R
M95681-4F	11/08/10	10:57 RSD	T 11/08/10	AQ	Groundwater Filtered	MW-7R
M95681-5	11/08/10	14:00 RSD	T 11/08/10	AQ	Ground Water	MW-8R
M95681-5F	11/08/10	14:00 RSD	T 11/08/10	AQ	Groundwater Filtered	MW-8R
M95681-6	11/08/10	12:47 RSD	T 11/08/10	AQ	Ground Water	MW-11
M95681-6F	11/08/10	12:47 RSD	T 11/08/10	AQ	Groundwater Filtered	MW-11
M95681-7	11/08/10	11:40 RSD	T 11/08/10	AQ	Ground Water	MW-12

Sample Summary (continued)

EnviroTrac

Hess:#21224 468 West St Amherst MA

Job No: M95681

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
M95681-7F	11/08/10	11:40 RSDT	11/08/10	AQ	Groundwater Filtered	MW-12
M95681-8	11/08/10	12:15 RSDT	11/08/10	AQ	Ground Water	MW-13
M95681-8F	11/08/10	12:15 RSDT	11/08/10	AQ	Groundwater Filtered	MW-13
M95681-9	11/08/10	13:30 RSDT	11/08/10	AQ	Ground Water	MW-14
M95681-10	11/08/10	14:05 RSDT	11/08/10	AQ	Ground Water	MW-19
M95681-11	11/08/10	11:00 RSDT	11/08/10	AQ	Ground Water	FD-102

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: EnviroTrac Job No M95681

Site: Hess:#21224 468 West St Amherst MA Report Date 12/16/2010 11:58:49 AM

11 Sample(s) were collected on 11/08/2010 and were received at Accutest on 11/08/2010 properly preserved, at 1 Deg. C and intact. These Samples received an Accutest job number of M95681. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Extractables by GCMS By Method SW846 8270C BY SIM

Matrix AO Batch ID: OP23271

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- Sample(s) M95702-6AMS, M95702-6AMSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- RPD(s) for MSD for Benzo(g,h,i)perylene, Dibenzo(a,h)anthracene, Indeno(1,2,3-cd)pyrene are outside control limits for sample OP23271-MSD. High RPD due to possible matrix interference and/or sample non-homogeneity.
- Initial calibration verification standard MSF2461-ICV2461 for Acenaphthylene exceed 30% Difference.
- Only PAHs requested.
- Continuing calibration check standard MSF2443-CC2401 for Benzo[k]fluoranthene exceed 20% Difference. This check standard met MCP criteria.
- Quadratic regression is employed for compound Indeno[1,2,3-cd]pyrene, Dibenz[a,h]anthracene, Benzo[g,h,i]perylene, 2-Methylnaphthalene from Initial calibration standard MSF2401-ICC2401.

Volatiles by GC By Method EPA 504

Matrix AQ Batch ID: OP23261

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- Sample(s) M95397-26MS, M95397-26MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

Volatiles by GC By Method MADEP VPH REV 1.1

Matrix AQ Batch ID: GAB3373

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

Matrix AQ Batch ID: GAB3377

- All samples were analyzed within the recommended method holding time.
- Sample(s) M95665-4MS, M95665-4MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- Matrix Spike Recovery(s) for Ethylbenzene, m,p-Xylene, o-Xylene are outside control limits. Outside control limits due to high level in sample relative to spike amount.
- M95665-4MS for 2,5-Dibromotoluene: Outside control limits due to possible matrix interference.

Volatiles by GC By Method SW846 8015

Matrix AQ Batch ID: GBA882

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M95681-8DUP were used as the QC samples indicated.

Extractables by GC By Method MADEP EPH REV 1.1

Matrix AO

Batch ID: OP23359

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Only EPH range reported.
- M95681-4 through M95681-7 for 1-Chlorooctadecane: Outside control limits due to possible matrix interference. Confirmed by refractionation.
- OP23359-BS for C11-C22 Aromatics (Unadj.): Aromatic breakthrough (naphthalene and/or 2-methylnaphthalene) exceeded 5% method limit. Results confirmed by refractionation.

Metals By Method SW846 6010B

Matrix AQ

Batch ID: MP16228

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M95639-3DUP, M95639-3MS, M95639-3SDL were used as the QC samples for metals.
- Matrix Spike Recovery(s) for Iron, Manganese are outside control limits. Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.
- Only selected metals requested.

Wet Chemistry By Method ASTM516-90,02

Matrix AQ

Batch ID: GN33463

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M95593-3DUP, M95593-3MS were used as the QC samples for Sulfate.

Matrix AQ

Batch ID: GN33499

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M95708-1DUP, M95708-1MS were used as the QC samples for Sulfate.

Wet Chemistry By Method EPA 353.2

Matrix AQ Batch ID: GP12252

- All samples were distilled within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M95681-5MS, M95681-5DUP were used as the QC samples for Nitrogen, Nitrite.
- RPD(s) for Duplicate for Nitrogen, Nitrite are outside control limits for sample GP12252-D1. RPD acceptable due to low duplicate and sample concentrations.

Matrix AQ Batch ID: GP12305

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M95680-2DUP, M95680-2MS were used as the QC samples for Nitrogen, Nitrate + Nitrite.

Matrix AQ Batch ID: R27706

■ M95681-2 for Nitrogen, Nitrate: Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Matrix AO Batch ID: R27707

M95681-3 for Nitrogen, Nitrate: Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Matrix AQ Batch ID: R27708

M95681-5 for Nitrogen, Nitrate: Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Matrix AQ Batch ID: R27709

M95681-8 for Nitrogen, Nitrate: Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Matrix AQ Batch ID: R27714

M95681-4 for Nitrogen, Nitrate: Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Wet Chemistry By Method SM21 2320B

Matrix AO

Batch ID: GN33476

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M95680-2DUP, M95680-2MS were used as the QC samples for Alkalinity, Total as CaCO3.

Wet Chemistry By Method SM21 4500 S F

Matrix AQ

Batch ID: GN33391

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M95681-2MS, M95681-3DUP were used as the QC samples for Sulfide.

Matrix AQ

Batch ID: GN33404

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M95680-2DUP, M95680-2MS were used as the QC samples for Sulfide.

The Accutest Laboratories of New England certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Accutest Laboratories of NE, Laboratory Director or assignee as verified by the signature on the cover page has authorized the release of this report(M95681).

Sample Results	
Report of Analysis	

Client Sample ID: MW-1

 Lab Sample ID:
 M95681-1
 Date Sampled:
 11/08/10

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/10

 Method:
 SW846 8270C BY SIM SW846 3510C
 Percent Solids:
 n/a

Project: Hess:#21224 468 West St Amherst MA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 F51207.D 1 12/01/10 PR 11/11/10 OP23271 MSF2462

Run #2

Initial Volume Final Volume

Run #1 800 ml 1.0 ml

Run #2

BN PAH List

CAS No.	Compound	Result	RL	Units Q
83-32-9	Acenaphthene	ND	0.13	ug/l
208-96-8	Acenaphthylene	ND	0.13	ug/l
120-12-7	Anthracene	ND	0.13	ug/l
56-55-3	Benzo(a)anthracene	ND	0.063	ug/l
50-32-8	Benzo(a)pyrene	ND	0.13	ug/l
205-99-2	Benzo(b)fluoranthene	ND	0.063	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	0.13	ug/l
207-08-9	Benzo(k)fluoranthene	ND	0.13	ug/l
218-01-9	Chrysene	ND	0.13	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	0.13	ug/l
206-44-0	Fluoranthene	ND	0.13	ug/l
86-73-7	Fluorene	ND	0.13	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.13	ug/l
91-57-6	2-Methylnaphthalene	ND	0.25	ug/l
91-20-3	Naphthalene	ND	0.13	ug/l
85-01-8	Phenanthrene	ND	0.063	ug/l
129-00-0	Pyrene	ND	0.13	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	83%		30-130%
321-60-8	2-Fluorobiphenyl	86%		30-130%
1718-51-0	Terphenyl-d14	84%		30-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Report of Analysis

Client Sample ID: MW-1 Lab Sample ID: M9568

Lab Sample ID:M95681-1Date Sampled:11/08/10Matrix:AQ - Ground WaterDate Received:11/08/10Method:MADEP VPH REV 1.1Percent Solids:n/a

Project: Hess:#21224 468 West St Amherst MA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 AB61407.D 1 11/16/10 WS n/a n/a GAB3373

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

MA-VPH List

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	2.0	ug/l
100-41-4	Ethylbenzene	ND	2.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	ug/l
91-20-3	Naphthalene	ND	3.0	ug/l
108-88-3	Toluene	ND	2.0	ug/l
	m,p-Xylene	ND	2.0	ug/l
95-47-6	o-Xylene	ND	2.0	ug/l
	C5- C8 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C12 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C10 Aromatics (Unadj.)	ND	50	ug/l
	C5- C8 Aliphatics	ND	50	ug/l
	C9- C12 Aliphatics	ND	50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
615-59-8	2,5-Dibromotoluene	88%		70-130%
615-59-8	2,5-Dibromotoluene	82%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 $N = \ Indicates \ presumptive \ evidence \ of \ a \ compound$

Report of Analysis

Client Sample ID: MW-1

 Lab Sample ID:
 M95681-1
 Date Sampled:
 11/08/10

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/10

 Method:
 EPA 504
 EPA 504
 Percent Solids:
 n/a

Run#1

Project: Hess:#21224 468 West St Amherst MA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 YZ62177.D 1 11/13/10 SL 11/10/10 OP23261 GYZ2643

Run# 2

Limits

Run #2

Run #1 33.5 ml Final Volume 2.0 ml

Surrogate Recoveries

Run #2

CAS No.

CAS No. Compound Result RL Units Q

106-93-4 1,2-Dibromoethane ND 0.016 ug/l

460-00-4 Bromofluorobenzene (S) 96% 59-170% 460-00-4 Bromofluorobenzene (S) 94% 59-170%

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Report of Analysis

Client Sample ID: MW-1 Lab Sample ID:

M95681-1 **Date Sampled:** 11/08/10 Matrix: **Date Received:** 11/08/10 AQ - Ground Water Method: MADEP EPH REV 1.1 SW846 3510C Percent Solids: n/a

Project: Hess:#21224 468 West St Amherst MA

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** GBI96 Run #1 BI2562.D 1 12/05/10 JD 11/18/10 OP23359

Run #2

Initial Volume Final Volume

Run #1 850 ml 2.0 ml

Run #2

Extractable TPHC Ranges

CAS No.	S No. Compound		RL	Units Q
	C11-C22 Aromatics (Unadj.)	ND	120	ug/l
	C9-C18 Aliphatics	ND	120	ug/l
	C19-C36 Aliphatics	ND	120	ug/l
	C11-C22 Aromatics	ND	120	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
84-15-1	o-Terphenyl	82%		40-140%
321-60-8	2-Fluorobiphenyl	100%		40-140%
3386-33-2	1-Chlorooctadecane	46%		40-140%
580-13-2	2-Bromonaphthalene	86%		40-140%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: MW-1

Lab Sample ID:M95681-1FDate Sampled:11/08/10Matrix:AQ - Groundwater FilteredDate Received:11/08/10Percent Solids:n/a

Project: Hess:#21224 468 West St Amherst MA

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	< 5.0	5.0	ug/l	1	11/10/10	11/11/10 DA	SW846 6010B ¹	SW846 3010A ²

Page 1 of 1

Client Sample ID: MW-4

 Lab Sample ID:
 M95681-2
 Date Sampled:
 11/08/10

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/10

 Method:
 SW846 8015
 Percent Solids:
 n/a

Project: Hess:#21224 468 West St Amherst MA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 GBA14236.D 1 11/10/10 AF n/a GBA882

Run #2

CAS No. Compound Result RL Units Q

74-82-8 Methane 171 0.30 ug/l

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Client Sample ID: MW-4

Lab Sample ID:M95681-2Date Sampled:11/08/10Matrix:AQ - Ground WaterDate Received:11/08/10Percent Solids:n/a

Project: Hess:#21224 468 West St Amherst MA

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as CaCO3	214	5.0	mg/l	1	11/18/10	SA	SM21 2320B
Nitrogen, Nitrate ^a	0.67	0.11	mg/l	1	11/20/10 11:29	CF	EPA 353.2
Nitrogen, Nitrate + Nitrite	0.69	0.10	mg/l	1	11/20/10 11:29	CF	EPA 353.2
Nitrogen, Nitrite	0.019	0.010	mg/l	1	11/09/10 16:24	MC	EPA 353.2
Sulfate	35.4	5.0	mg/l	1	11/17/10	BF	ASTM516-90,02
Sulfide	< 2.0	2.0	mg/l	1	11/10/10	BF	SM21 4500 S F

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

SiS Page 1 of 1

Client Sample ID: MW-4

Lab Sample ID:M95681-2FDate Sampled:11/08/10Matrix:AQ - Groundwater FilteredDate Received:11/08/10Percent Solids:n/a

Project: Hess:#21224 468 West St Amherst MA

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	6830	100	ug/l	1	11/10/10	11/11/10 DA	SW846 6010B ¹	SW846 3010A ²
Lead	< 5.0	5.0	ug/l	1	11/10/10	11/11/10 DA	SW846 6010B ¹	SW846 3010A ²
Manganese	1240	15	ug/l	1	11/10/10	11/11/10 DA	SW846 6010B ¹	SW846 3010A ²

Report of Analysis

Client Sample ID: MW-5

Lab Sample ID: M95681-3 **Date Sampled:** 11/08/10 Matrix: **Date Received:** 11/08/10 AQ - Ground Water Method: SW846 8015 Percent Solids: n/a

Project: Hess:#21224 468 West St Amherst MA

File ID DF **Prep Date Prep Batch Analytical Batch** Analyzed By Run #1 GBA14235.D 1 11/10/10 AF n/an/a **GBA882**

Run #2

CAS No. Compound Result RLUnits Q

74-82-8 Methane 24.1 0.30 ug/l

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-5

Lab Sample ID:M95681-3Date Sampled:11/08/10Matrix:AQ - Ground WaterDate Received:11/08/10Percent Solids:n/a

Project: Hess:#21224 468 West St Amherst MA

Page 1 of 1

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as CaCO3	123	5.0	mg/l	1	11/18/10	SA	SM21 2320B
Nitrogen, Nitrate ^a	< 0.11	0.11	mg/l	1	11/20/10 11:30	CF	EPA 353.2
Nitrogen, Nitrate + Nitrite	< 0.10	0.10	mg/l	1	11/20/10 11:30	CF	EPA 353.2
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	11/09/10 16:25	MC	EPA 353.2
Sulfate	13.5	5.0	mg/l	1	11/17/10	BF	ASTM516-90,02
Sulfide	< 2.0	2.0	mg/l	1	11/10/10	BF	SM21 4500 S F

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Report of Analysis

Client Sample ID: MW-5

Lab Sample ID:M95681-3FDate Sampled:11/08/10Matrix:AQ - Groundwater FilteredDate Received:11/08/10Percent Solids:n/a

Project: Hess:#21224 468 West St Amherst MA

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	753	100	ug/l	1	11/10/10	11/11/10 DA		SW846 3010A ²
Lead	< 5.0	5.0	ug/l	1	11/10/10	11/11/10 DA	SW846 6010B ¹	SW846 3010A ²
Manganese	11500	15	ug/l	1	11/10/10	11/11/10 DA	SW846 6010B ¹	SW846 3010A ²

Report of Analysis

Client Sample ID: MW-7R

Lab Sample ID: M95681-4 **Date Sampled:** 11/08/10 Matrix: AQ - Ground Water **Date Received:** 11/08/10 Method: SW846 8270C BY SIM SW846 3510C Percent Solids: n/a

Project: Hess:#21224 468 West St Amherst MA

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** Run #1 F51208.D 1 12/01/10 PR 11/11/10 OP23271 MSF2462

Run #2

Initial Volume Final Volume

Run #1 870 ml 1.0 ml

Run #2

BN PAH List

CAS No.	Compound	Result	RL	Units Q
83-32-9	Acenaphthene	ND	0.11	ug/l
208-96-8	Acenaphthylene	ND	0.11	ug/l
120-12-7	Anthracene	ND	0.11	ug/l
56-55-3	Benzo(a)anthracene	ND	0.057	ug/l
50-32-8	Benzo(a)pyrene	ND	0.11	ug/l
205-99-2	Benzo(b)fluoranthene	ND	0.057	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	0.11	ug/l
207-08-9	Benzo(k)fluoranthene	ND	0.11	ug/l
218-01-9	Chrysene	ND	0.11	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	0.11	ug/l
206-44-0	Fluoranthene	ND	0.11	ug/l
86-73-7	Fluorene	ND	0.11	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.11	ug/l
91-57-6	2-Methylnaphthalene	ND	0.23	ug/l
91-20-3	Naphthalene	ND	0.11	ug/l
85-01-8	Phenanthrene	ND	0.057	ug/l
129-00-0	Pyrene	ND	0.11	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	81%		30-130%
321-60-8	2-Fluorobiphenyl	80%		30-130%
1718-51-0	Terphenyl-d14	74%		30-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-7R

Lab Sample ID:M95681-4Date Sampled:11/08/10Matrix:AQ - Ground WaterDate Received:11/08/10Method:MADEP VPH REV 1.1Percent Solids:n/a

Project: Hess:#21224 468 West St Amherst MA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 AB61408.D 1 11/17/10 WS n/a n/a GAB3373

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

MA-VPH List

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	2.0	ug/l
100-41-4	Ethylbenzene	ND	2.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	4.4	1.0	ug/l
91-20-3	Naphthalene	ND	3.0	ug/l
108-88-3	Toluene	ND	2.0	ug/l
	m,p-Xylene	ND	2.0	ug/l
95-47-6	o-Xylene	ND	2.0	ug/l
	C5- C8 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C12 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C10 Aromatics (Unadj.)	ND	50	ug/l
	C5- C8 Aliphatics	ND	50	ug/l
	C9- C12 Aliphatics	ND	50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
615-59-8	2,5-Dibromotoluene	94%		70-130%
615-59-8	2,5-Dibromotoluene	87%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

of Analysis Page 1 of 1

Client Sample ID: MW-7R

Lab Sample ID:M95681-4Date Sampled:11/08/10Matrix:AQ - Ground WaterDate Received:11/08/10Method:EPA 504EPA 504Percent Solids:n/a

Project: Hess:#21224 468 West St Amherst MA

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1YZ62178.D111/13/10SL11/10/10OP23261GYZ2643

Run #2

Run #1 33.8 ml Final Volume 2.0 ml

Run #2

CAS No. Compound RLUnits Q Result 106-93-4 1,2-Dibromoethane ND 0.016 ug/1 CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits 460-00-4 Bromofluorobenzene (S) 116% 59-170% 460-00-4 Bromofluorobenzene (S) 109% 59-170%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: MW-7R

 Lab Sample ID:
 M95681-4
 Date Sampled:
 11/08/10

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/10

 Method:
 SW846 8015
 Percent Solids:
 n/a

Project: Hess:#21224 468 West St Amherst MA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 GBA14234.D 1 11/10/10 AF n/a GBA882

Run #2

CAS No. Compound Result RL Units Q

74-82-8 Methane 7.94 0.30 ug/l

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: MW-7R

Lab Sample ID: M95681-4 **Date Sampled:** 11/08/10 **Matrix:** AQ - Ground Water **Date Received:** 11/08/10 Method: MADEP EPH REV 1.1 SW846 3510C Percent Solids: n/a

Project: Hess:#21224 468 West St Amherst MA

File ID **Prep Date Analytical Batch** DF Analyzed By **Prep Batch** Run #1 BI2563.D 1 12/05/10 JD 11/18/10 OP23359 GBI96

Run #2

Final Volume Initial Volume

Run #1 900 ml 2.0 ml

Run #2

Extractable TPHC Ranges

CAS No. Compound		Result	RL	Units ()
	C11-C22 Aromatics (Unadj.)	ND	110	ug/l	
	C9-C18 Aliphatics	ND	110	ug/l	
	C19-C36 Aliphatics	ND	110	ug/l	
	C11-C22 Aromatics	ND	110	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
84-15-1	o-Terphenyl	91%		40-1409	%
321-60-8	2-Fluorobiphenyl	111%		40-1409	%
3386-33-2	1-Chlorooctadecane	16% ^a		40-1409	%
580-13-2	2-Bromonaphthalene	105%		40-1409	%

(a) Outside control limits due to possible matrix interference. Confirmed by refractionation.

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: MW-7R

Lab Sample ID:M95681-4Date Sampled:11/08/10Matrix:AQ - Ground WaterDate Received:11/08/10Percent Solids:n/a

Project: Hess:#21224 468 West St Amherst MA

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as CaCO3	176	5.0	mg/l	1	11/18/10	SA	SM21 2320B
Nitrogen, Nitrate ^a	7.6	0.51	mg/l	1	11/20/10 11:43	CF	EPA 353.2
Nitrogen, Nitrate + Nitrite	7.7	0.50	mg/l	5	11/20/10 11:43	CF	EPA 353.2
Nitrogen, Nitrite	0.087	0.010	mg/l	1	11/09/10 16:27	MC	EPA 353.2
Sulfate	27.4	5.0	mg/l	1	11/20/10	SA	ASTM516-90,02
Sulfide	< 2.0	2.0	mg/l	1	11/11/10	BF	SM21 4500 S F

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Page 1 of 1

Client Sample ID: MW-7R

Lab Sample ID:M95681-4FDate Sampled:11/08/10Matrix:AQ - Groundwater FilteredDate Received:11/08/10Percent Solids:n/a

Project: Hess:#21224 468 West St Amherst MA

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	< 100	100	ug/l	1	11/10/10	11/11/10 DA	SW846 6010B ¹	SW846 3010A ²
Lead	< 5.0	5.0	ug/l	1	11/10/10	11/11/10 DA	SW846 6010B ¹	SW846 3010A ²
Manganese	3570	15	ug/l	1	11/10/10	11/11/10 DA	SW846 6010B ¹	SW846 3010A ²

Client Sample ID: MW-8R Lab Sample ID: M95681-

 Lab Sample ID:
 M95681-5
 Date Sampled:
 11/08/10

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/10

 Method:
 SW846 8270C BY SIM SW846 3510C
 Percent Solids:
 n/a

Project: Hess:#21224 468 West St Amherst MA

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1F51209.D112/01/10PR11/11/10OP23271MSF2462

Run #2

Initial Volume Final Volume

Run #1 850 ml 1.0 ml

Run #2

BN PAH List

CAS No.	Compound	Result	RL	Units Q	
83-32-9	Acenaphthene	ND	0.12	ug/l	
208-96-8	Acenaphthylene	ND	0.12	ug/l	
120-12-7	Anthracene	ND	0.12	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.059	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.12	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.059	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.12	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.12	ug/l	
218-01-9	Chrysene	ND	0.12	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.12	ug/l	
206-44-0	Fluoranthene	ND	0.12	ug/l	
86-73-7	Fluorene	ND	0.12	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.12	ug/l	
91-57-6	2-Methylnaphthalene	ND	0.24	ug/l	
91-20-3	Naphthalene	ND	0.12	ug/l	
85-01-8	Phenanthrene	ND	0.059	ug/l	
129-00-0	Pyrene	ND	0.12	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
4165-60-0	Nitrobenzene-d5	80%		30-130%	
321-60-8	2-Fluorobiphenyl	78%		30-130%	
1718-51-0	Terphenyl-d14	77%		30-130%	

 $ND = \ Not \ detected$

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Ć.

Page 1 of 1

Client Sample ID: MW-8R Lab Sample ID:

M95681-5 **Date Sampled:** 11/08/10 Matrix: **Date Received:** 11/08/10 AQ - Ground Water Method: MADEP VPH REV 1.1 Percent Solids: n/a

Project: Hess:#21224 468 West St Amherst MA

File ID DF **Prep Date Prep Batch Analytical Batch** Analyzed By Run #1 AB61409.D 1 11/17/10 WS n/an/a GAB3373

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

MA-VPH List

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	2.0	ug/l
100-41-4	Ethylbenzene	ND	2.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	21.2	1.0	ug/l
91-20-3	Naphthalene	ND	3.0	ug/l
108-88-3	Toluene	ND	2.0	ug/l
	m,p-Xylene	ND	2.0	ug/l
95-47-6	o-Xylene	ND	2.0	ug/l
	C5- C8 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C12 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C10 Aromatics (Unadj.)	ND	50	ug/l
	C5- C8 Aliphatics	ND	50	ug/l
	C9- C12 Aliphatics	ND	50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
615-59-8	2,5-Dibromotoluene	102%		70-130%
615-59-8	2,5-Dibromotoluene	95%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-8R

 Lab Sample ID:
 M95681-5
 Date Sampled:
 11/08/10

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/10

 Method:
 EPA 504
 EPA 504
 Percent Solids:
 n/a

Project: Hess:#21224 468 West St Amherst MA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 YZ62179.D 1 11/13/10 SL 11/10/10 OP23261 GYZ2643

Report of Analysis

Run #2

Run #1 33.0 ml Final Volume 2.0 ml

Run #2

CAS No. Compound Result RLUnits Q 106-93-4 1,2-Dibromoethane ND 0.016 ug/1 CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits 460-00-4 Bromofluorobenzene (S) 115% 59-170% 460-00-4 Bromofluorobenzene (S) 88% 59-170%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-8R

Lab Sample ID:

Page 1 of 1

Report of Analysis

Date Sampled: 11/08/10

Percent Solids: n/a

Date Received: 11/08/10

Project: Hess:#21224 468 West St Amherst MA

AQ - Ground Water

M95681-5

SW846 8015

File ID DF **Prep Date Prep Batch Analytical Batch** Analyzed By Run #1 GBA14233.D 1 11/10/10 AF n/an/a **GBA882**

Run #2

Matrix:

Method:

CAS No. Compound Result RLUnits Q

74-82-8 Methane 17.8 0.30 ug/l

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-8R Lab Sample ID:

M95681-5 **Date Sampled:** 11/08/10 **Matrix:** AQ - Ground Water **Date Received:** 11/08/10 Method: MADEP EPH REV 1.1 SW846 3510C Percent Solids: n/a

Project: Hess:#21224 468 West St Amherst MA

File ID **Prep Date Analytical Batch** DF Analyzed By **Prep Batch** Run #1 BI2564.D 1 12/05/10 JD 11/18/10 OP23359 GBI96

Run #2

Final Volume Initial Volume

Run #1 890 ml 2.0 ml

Run #2

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	Units Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	ND ND ND ND	110 110 110 110	ug/l ug/l ug/l ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
84-15-1 321-60-8 3386-33-2 580-13-2	o-Terphenyl 2-Fluorobiphenyl 1-Chlorooctadecane 2-Bromonaphthalene	66% 104% 27% ^a 92%		40-140% 40-140% 40-140% 40-140%

(a) Outside control limits due to possible matrix interference. Confirmed by refractionation.

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: MW-8R Lab Sample ID: M95681-5

Date Sampled: 11/08/10 Matrix: **Date Received:** 11/08/10 AQ - Ground Water

Percent Solids: n/a

Project: Hess:#21224 468 West St Amherst MA

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as CaCO3	464	5.0	mg/l	1	11/18/10	SA	SM21 2320B
Nitrogen, Nitrate ^a	0.52	0.11	mg/l	1	11/20/10 11:35	CF	EPA 353.2
Nitrogen, Nitrate + Nitrite	0.53	0.10	mg/l	1	11/20/10 11:35	CF	EPA 353.2
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	11/09/10 16:22	MC	EPA 353.2
Sulfate	64.8	10	mg/l	2	11/20/10	SA	ASTM516-90,02
Sulfide	< 2.0	2.0	mg/l	1	11/11/10	BF	SM21 4500 S F

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Client Sample ID: MW-8R

Lab Sample ID:M95681-5FDate Sampled:11/08/10Matrix:AQ - Groundwater FilteredDate Received:11/08/10Percent Solids:n/a

Project: Hess:#21224 468 West St Amherst MA

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	< 100	100	ug/l	1		11/11/10 DA	4	SW846 3010A ²
Lead	< 5.0	5.0	ug/l	1	11/10/10	11/11/10 da	SW846 6010B ¹	SW846 3010A ²
Manganese	11300	15	ug/l	1	11/10/10	11/11/10 DA	SW846 6010B ¹	SW846 3010A ²

Page 1 of 1

Client Sample ID: MW-11

Lab Sample ID: M95681-6 **Date Sampled:** 11/08/10 Matrix: AQ - Ground Water **Date Received:** 11/08/10 Method: SW846 8270C BY SIM SW846 3510C Percent Solids: n/a

Hess:#21224 468 West St Amherst MA **Project:**

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** Run #1 F51210.D 1 12/01/10 PR 11/11/10 OP23271 MSF2462

Run #2

Initial Volume Final Volume

Run #1 820 ml 1.0 ml

Run #2

BN PAH List

83-32-9 Acenaphthene ND 0.12 ug/l	
208-96-8 Acenaphthylene ND 0.12 ug/l	
120-12-7 Anthracene ND 0.12 ug/l	
56-55-3 Benzo(a)anthracene ND 0.061 ug/l	
50-32-8 Benzo(a)pyrene ND 0.12 ug/l	
205-99-2 Benzo(b)fluoranthene ND 0.061 ug/l	
191-24-2 Benzo(g,h,i)perylene ND 0.12 ug/l	
207-08-9 Benzo(k)fluoranthene ND 0.12 ug/l	
218-01-9 Chrysene ND 0.12 ug/l	
53-70-3 Dibenzo(a,h)anthracene ND 0.12 ug/l	
206-44-0 Fluoranthene ND 0.12 ug/l	
86-73-7 Fluorene ND 0.12 ug/l	
193-39-5 Indeno(1,2,3-cd)pyrene ND 0.12 ug/l	
91-57-6 2-Methylnaphthalene ND 0.24 ug/l	
91-20-3 Naphthalene ND 0.12 ug/l	
85-01-8 Phenanthrene ND 0.061 ug/l	
129-00-0 Pyrene ND 0.12 ug/l	
CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	8
4165-60-0 Nitrobenzene-d5 80% 30-130)%
321-60-8 2-Fluorobiphenyl 78% 30-130	
1718-51-0 Terphenyl-d14 83% 30-130	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-11

Lab Sample ID: M95681-6 **Date Sampled:** 11/08/10 Matrix: **Date Received:** 11/08/10 AQ - Ground Water Method: MADEP VPH REV 1.1 Percent Solids: n/a

Project: Hess:#21224 468 West St Amherst MA

File ID DF **Prep Date Prep Batch Analytical Batch** Analyzed By Run #1 AB61466.D 1 11/19/10 WS n/a n/a GAB3377

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

MA-VPH List

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	2.0	ug/l
100-41-4	Ethylbenzene	ND	2.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	6.3	1.0	ug/l
91-20-3	Naphthalene	ND	3.0	ug/l
108-88-3	Toluene	ND	2.0	ug/l
	m,p-Xylene	ND	2.0	ug/l
95-47-6	o-Xylene	ND	2.0	ug/l
	C5- C8 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C12 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C10 Aromatics (Unadj.)	ND	50	ug/l
	C5- C8 Aliphatics	ND	50	ug/l
	C9- C12 Aliphatics	ND	50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
615-59-8	2,5-Dibromotoluene	90%		70-130%
615-59-8	2,5-Dibromotoluene	83%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-11

 Lab Sample ID:
 M95681-6
 Date Sampled:
 11/08/10

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/10

 Method:
 EPA 504
 EPA 504
 Percent Solids:
 n/a

Project: Hess:#21224 468 West St Amherst MA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 YZ62180.D 1 11/13/10 SL 11/10/10 OP23261 GYZ2643

Run #2

Run #1 32.2 ml Final Volume 2.0 ml

Bromofluorobenzene (S)

Run #2

460-00-4

CAS No. Compound Result RLUnits Q 106-93-4 1,2-Dibromoethane ND 0.016 ug/1 CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits 460-00-4 Bromofluorobenzene (S) 86% 59-170%

76%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

59-170%

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Client Sample ID: MW-11 Lab Sample ID:

M95681-6 **Date Sampled:** 11/08/10 **Matrix:** AQ - Ground Water **Date Received:** 11/08/10 Method: MADEP EPH REV 1.1 SW846 3510C Percent Solids: n/a

Project: Hess:#21224 468 West St Amherst MA

File ID **Prep Date Analytical Batch** DF Analyzed By **Prep Batch** Run #1 BI2565.D 1 12/05/10 JD 11/18/10 OP23359 GBI96

Run #2

Final Volume Initial Volume

Run #1 900 ml 2.0 ml

Run #2

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	Units Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	ND ND ND ND	110 110 110 110	ug/l ug/l ug/l ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
84-15-1 321-60-8 3386-33-2 580-13-2	o-Terphenyl 2-Fluorobiphenyl 1-Chlorooctadecane 2-Bromonaphthalene	73% 99% 33% ^a 84%		40-140% 40-140% 40-140% 40-140%

(a) Outside control limits due to possible matrix interference. Confirmed by refractionation.

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: MW-11

Lab Sample ID:M95681-6FDate Sampled:11/08/10Matrix:AQ - Groundwater FilteredDate Received:11/08/10Percent Solids:n/a

Project: Hess:#21224 468 West St Amherst MA

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	< 5.0	5.0	ug/l	1	11/10/10	11/11/10 DA	SW846 6010B ¹	SW846 3010A ²

Report of Analysis

Client Sample ID: MW-12

Lab Sample ID: M95681-7 **Date Sampled:** 11/08/10 Matrix: AQ - Ground Water **Date Received:** 11/08/10 Method: SW846 8270C BY SIM SW846 3510C Percent Solids: n/a

Project: Hess:#21224 468 West St Amherst MA

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** Run #1 F51211.D 1 12/01/10 PR 11/11/10 OP23271 MSF2462

Run #2

Final Volume Initial Volume

Run #1 850 ml 1.0 ml

Run #2

BN PAH List

CAS No.	Compound	Result	RL	Units	Q
83-32-9	Acenaphthene	ND	0.12	ug/l	
208-96-8	Acenaphthylene	ND	0.12	ug/l	
120-12-7	Anthracene	ND	0.12	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.059	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.12	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.059	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.12	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.12	ug/l	
218-01-9	Chrysene	ND	0.12	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.12	ug/l	
206-44-0	Fluoranthene	ND	0.12	ug/l	
86-73-7	Fluorene	ND	0.12	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.12	ug/l	
91-57-6	2-Methylnaphthalene	ND	0.24	ug/l	
91-20-3	Naphthalene	ND	0.12	ug/l	
85-01-8	Phenanthrene	ND	0.059	ug/l	
129-00-0	Pyrene	ND	0.12	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	;
4165-60-0	Nitrobenzene-d5	75%		30-130)%
321-60-8	2-Fluorobiphenyl	73%		30-130)%
1718-51-0	Terphenyl-d14	70%		30-130)%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: MW-12

Lab Sample ID:M95681-7Date Sampled:11/08/10Matrix:AQ - Ground WaterDate Received:11/08/10Method:MADEP VPH REV 1.1Percent Solids:n/a

Project: Hess:#21224 468 West St Amherst MA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 AB61467.D 1 11/19/10 WS n/a n/a GAB3377

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

MA-VPH List

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	2.2	2.0	ug/l
100-41-4	Ethylbenzene	ND	2.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	12.3	1.0	ug/l
91-20-3	Naphthalene	ND	3.0	ug/l
108-88-3	Toluene	ND	2.0	ug/l
	m,p-Xylene	ND	2.0	ug/l
95-47-6	o-Xylene	ND	2.0	ug/l
	C5- C8 Aliphatics (Unadj.)	55.2	50	ug/l
	C9- C12 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C10 Aromatics (Unadj.)	ND	50	ug/l
	C5- C8 Aliphatics	ND	50	ug/l
	C9- C12 Aliphatics	ND	50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
615-59-8	2,5-Dibromotoluene	94%		70-130%
615-59-8	2,5-Dibromotoluene	87%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-12

 Lab Sample ID:
 M95681-7
 Date Sampled:
 11/08/10

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/10

 Method:
 EPA 504
 EPA 504
 Percent Solids:
 n/a

Project: Hess:#21224 468 West St Amherst MA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 YZ62181.D 1 11/13/10 SL 11/10/10 OP23261 GYZ2643

Run #2

Run #1 33.4 ml Final Volume 2.0 ml

Bromofluorobenzene (S)

Run #2

460-00-4

CAS No. Compound Result RLUnits Q 106-93-4 1,2-Dibromoethane ND 0.016 ug/1 Run# 2 CAS No. **Surrogate Recoveries** Run#1 Limits 460-00-4 Bromofluorobenzene (S) 95% 59-170%

86%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

59-170%

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: MW-12

Lab Sample ID: M95681-7 **Date Sampled:** 11/08/10 **Matrix:** AQ - Ground Water **Date Received:** 11/08/10 Method: MADEP EPH REV 1.1 SW846 3510C Percent Solids: n/a

Project: Hess:#21224 468 West St Amherst MA

File ID **Prep Date Analytical Batch** DF Analyzed By **Prep Batch** Run #1 BI2566.D 1 12/05/10 JD 11/18/10 OP23359 GBI96

Run #2

Final Volume Initial Volume

Run #1 880 ml 2.0 ml

Run #2

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	Units Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	ND ND ND ND	110 110 110 110	ug/l ug/l ug/l ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
84-15-1 321-60-8 3386-33-2 580-13-2	o-Terphenyl 2-Fluorobiphenyl 1-Chlorooctadecane 2-Bromonaphthalene	82% 119% 37% ^a 108%		40-140% 40-140% 40-140% 40-140%

(a) Outside control limits due to possible matrix interference. Confirmed by refractionation.

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: MW-12

Lab Sample ID:M95681-7FDate Sampled:11/08/10Matrix:AQ - Groundwater FilteredDate Received:11/08/10Percent Solids:n/a

Project: Hess:#21224 468 West St Amherst MA

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	< 5.0	5.0	ug/l	1	11/10/10	11/11/10 DA	SW846 6010B ¹	SW846 3010A ²

Page 1 of 1

Client Sample ID: MW-13

Lab Sample ID:M95681-8Date Sampled:11/08/10Matrix:AQ - Ground WaterDate Received:11/08/10Method:MADEP VPH REV 1.1Percent Solids:n/a

Project: Hess:#21224 468 West St Amherst MA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 AB61468.D 1 11/19/10 WS n/a n/a GAB3377

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

MA-VPH List

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	2.0	ug/l
100-41-4	Ethylbenzene	24.6	2.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	437	1.0	ug/l
91-20-3	Naphthalene	ND	3.0	ug/l
108-88-3	Toluene	ND	2.0	ug/l
	m,p-Xylene	13.3	2.0	ug/l
95-47-6	o-Xylene	ND	2.0	ug/l
	C5- C8 Aliphatics (Unadj.)	724	50	ug/l
	C9- C12 Aliphatics (Unadj.)	292	50	ug/l
	C9- C10 Aromatics (Unadj.)	161	50	ug/l
	C5- C8 Aliphatics	286	50	ug/l
	C9- C12 Aliphatics	92.4	50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
615-59-8	2,5-Dibromotoluene	97%		70-130%
615-59-8	2,5-Dibromotoluene	90%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Client Sample ID: MW-13

Lab Sample ID: M95681-8 **Date Sampled:** 11/08/10 Matrix: **Date Received:** 11/08/10 AQ - Ground Water Method: SW846 8015 Percent Solids: n/a

Project: Hess:#21224 468 West St Amherst MA

File ID DF **Prep Date Prep Batch Analytical Batch** Analyzed By Run #1 GBA14231.D 1 11/10/10 AF n/an/a **GBA882**

Run #2

CAS No. Compound Result RLUnits Q

74-82-8 Methane 310 0.30 ug/l

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-13

 Lab Sample ID:
 M95681-8
 Date Sampled:
 11/08/10

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/10

Percent Solids: n/a

Project: Hess:#21224 468 West St Amherst MA

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as CaCO3	317	5.0	mg/l	1	11/18/10	SA	SM21 2320B
Nitrogen, Nitrate ^a	0.30	0.11	mg/l	1	11/20/10 11:36	CF	EPA 353.2
Nitrogen, Nitrate + Nitrite	0.31	0.10	mg/l	1	11/20/10 11:36	CF	EPA 353.2
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	11/09/10 16:30	MC	EPA 353.2
Sulfate	62.2	25	mg/l	5	11/20/10	SA	ASTM516-90,02
Sulfide	< 2.0	2.0	mg/l	1	11/11/10	BF	SM21 4500 S F

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Page 1 of 1

Client Sample ID: MW-13

Lab Sample ID:M95681-8FDate Sampled:11/08/10Matrix:AQ - Groundwater FilteredDate Received:11/08/10Percent Solids:n/a

Project: Hess:#21224 468 West St Amherst MA

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	7080	100	ug/l	1	11/10/10	11/11/10 DA	SW846 6010B ¹	SW846 3010A ²
Lead	< 5.0	5.0	ug/l	1	11/10/10	11/11/10 DA	SW846 6010B ¹	SW846 3010A ²
Manganese	5070	15	ug/l	1	11/10/10	11/11/10 DA	SW846 6010B ¹	SW846 3010A ²

(1) Instrument QC Batch: MA12427(2) Prep QC Batch: MP16228

Page 1 of 1

Client Sample ID: MW-14

Lab Sample ID:M95681-9Date Sampled:11/08/10Matrix:AQ - Ground WaterDate Received:11/08/10Method:MADEP VPH REV 1.1Percent Solids:n/a

Project: Hess:#21224 468 West St Amherst MA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 AB61469.D 1 11/19/10 WS n/a n/a GAB3377

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

MA-VPH List

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	2.0	ug/l
100-41-4	Ethylbenzene	ND	2.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	ug/l
91-20-3	Naphthalene	ND	3.0	ug/l
108-88-3	Toluene	ND	2.0	ug/l
	m, p-Xylene	ND	2.0	ug/l
95-47-6	o-Xylene	ND	2.0	ug/l
	C5- C8 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C12 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C10 Aromatics (Unadj.)	ND	50	ug/l
	C5- C8 Aliphatics	ND	50	ug/l
	C9- C12 Aliphatics	ND	50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
615-59-8	2,5-Dibromotoluene	86%		70-130%
615-59-8	2,5-Dibromotoluene	80%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Client Sample ID: MW-19

 Lab Sample ID:
 M95681-10
 Date Sampled:
 11/08/10

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/10

 Method:
 MADEP VPH REV 1.1
 Percent Solids:
 n/a

Project: Hess:#21224 468 West St Amherst MA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 AB61470.D 1 11/19/10 WS n/a n/a GAB3377

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

MA-VPH List

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	2.0	ug/l
100-41-4	Ethylbenzene	ND	2.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	5.2	1.0	ug/l
91-20-3	Naphthalene	ND	3.0	ug/l
108-88-3	Toluene	ND	2.0	ug/l
	m, p-Xylene	ND	2.0	ug/l
95-47-6	o-Xylene	ND	2.0	ug/l
	C5- C8 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C12 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C10 Aromatics (Unadj.)	ND	50	ug/l
	C5- C8 Aliphatics	ND	50	ug/l
	C9- C12 Aliphatics	ND	50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
615-59-8	2,5-Dibromotoluene	87%		70-130%
615-59-8	2,5-Dibromotoluene	82%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 $N = \ \ Indicates \ presumptive \ evidence \ of \ a \ compound$

Page 1 of 1

Client Sample ID: FD-102

Lab Sample ID:M95681-11Date Sampled:11/08/10Matrix:AQ - Ground WaterDate Received:11/08/10Method:MADEP VPH REV 1.1Percent Solids:n/a

Project: Hess:#21224 468 West St Amherst MA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 AB61471.D 1 11/19/10 WS n/a n/a GAB3377

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

MA-VPH List

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	2.0	ug/l
100-41-4	Ethylbenzene	ND	2.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	ug/l
91-20-3	Naphthalene	ND	3.0	ug/l
108-88-3	Toluene	ND	2.0	ug/l
	m,p-Xylene	ND	2.0	ug/l
95-47-6	o-Xylene	ND	2.0	ug/l
	C5- C8 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C12 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C10 Aromatics (Unadj.)	ND	50	ug/l
	C5- C8 Aliphatics	ND	50	ug/l
	C9- C12 Aliphatics	ND	50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
615-59-8	2,5-Dibromotoluene	84%		70-130%
615-59-8	2,5-Dibromotoluene	80%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Certification Exceptions
- Parameter Certifications (MA)
- Chain of Custody
- MCP Form
- EPH Form
- VPH Form

Page 1 of 1

Parameter Certifications

Job Number: M95681

Account: ENVTRAC EnviroTrac

Project: Hess:#21224 468 West St Amherst MA

The following parameters included in this report are certified by the state of MA.

		ā
		ř
		-

Parameter	CAS#	Method	Mat	Certification Status
1,2-Dibromoethane	106-93-4	EPA 504	AQ	Accutest is certified for this parameter.
Alkalinity, Total as CaCO3		SM21 2320B	AQ	Accutest is certified for this parameter.
Nitrogen, Nitrate	14797-55-8	EPA 353.2	AQ	Accutest is certified for this parameter.
Nitrogen, Nitrate + Nitrite		EPA 353.2	AQ	Accutest is certified for this parameter.
Sulfate	14808-79-8	ASTM516-90,02	AQ	Accutest is certified for this parameter.

4

	CUTEST.		CH	IAIN 95 TECHNO	OLOGY CE	NTER	WES	T•.	BUILD	OI	Y	•			ST JOE	3 #: DTE #:				M9	5681
_	Laboratories				08-481-62					53			1								
	CLIENT INFORMATION	13.0 %			ILITY INF								ANAL'	TICA	L IN	FORM	AATK	ON			MATRIX CODES
ADDRESS	irec Ltd. verdont St. Swings Ton MA Ozor Tich Corcoran		LOCATION PROJECT		20e51	, <u>М</u>	S (A				PH	EDB	PAHA	PS+MM	10	1 5	N. Frage	+ Sulfiale	Alterinity as (403		DW - DRINKING WATER GW - GROUND WATER WW - WASTE WATER SO - SOIL SL - SLUDGE OI - OIL
	° 781-753-0074		FAX #	781-	753	7	87	7			2		7 Z	3	Bolloes	7)	بو	416	7	LIQ - OTHER LIQUID
1				OLLECTION					ESER	VATION	14	7		3	38	1	7.	J		₹	SOL - OTHER SOLID
ACCUTEST SAMPLE #	FIELD ID / POINT OF COLLECT	TION	DATE	TIMÉ	SAMPLED BY:	MATRIX	# OF	₽	H H	H2SO4	1			D'xology	Á	Dita	N.trite	S	Tota	_	LAB USE ONLY
~]	MW-1		11/8/10	330,_	eyor	ഗ്ര	9	X	X	X	×	*	< ×		×						
- 2,F	M0-4			100-	T)	\Box	5	\mathbf{h}	××	×				×		>	X	>	χ	Х	
-31f	MW-5			955-			5		Χ×	×				×		×	×	1 1		×	
-41F	MW-7R			1057-		П	14	\prod	××	×	×	×.	××	· ×	>	×	≺	×	X	×	
-5/1	MW ER			200			14		××	×	×	×	××	\ <u>×</u>	Y	×	X	¥	X	×	
-6,E	MW-12			1247		Ш	٩	Ш	×	×	×	>	××	1	×						
-71F	μω-12			1140-		Ш	9	$\ $	×	×	\times	\vee	$\times \mid \times$		×						
-81F	MW-13]	1215		Ш	マ	Ш	××	×	×			×		×	У	×	×	×	
-9	MM-IA			130			2	Ш			×										
-10	μω-19			205		Ш	2	Ш	$\perp \downarrow$												LGA, CLA, SA,
-11	€D-107		1	1(00~	1	₩	2	4			$ \times $		ļ								3N3
/ D	ATA TURNAROUND INFORMATION	Part of the	11 71 - 681 11 - 12 - 13 - 13 - 13 1 - 17 - 18	DATA DEI	IVERABL	E INF	ORM/	TIO	N					T	CON	MEN	TS/H	REMA	RKS		
☐ 7 DAYS ☐ 48 HOUR ☐ OTHER ☐ 14 DAY TURNA	EMERGENCY		□ DISK	MERCIAL "E DELIVERAL	BLE	Re	por l	-		_	-B	:(1 i 35 0l Uve	(Eno 10e0 1 15 L	ndr ner	rec	any	ires Gl	ر. ر. ا	ج (ر ولما ج	fill fue	tredprortspresen
	A SAMPLE CUSTODY	Y MUST BE	DOCUMENT	ED BELOW	EACH TII	VE SA	MPLE	6 C	HANG	z nossi	ÉSION	. IÑCL	UDING	COL	IRIER	DEL	WER	iΥ.]	1	11.63	Prince of
1. RELINQUISHED B	SAMPLER OATE TIME: 10	1. E RECEIVED B	¥;		RELIP	IQUISHE	BY BY:	5	th	1		F 17	10		ED BY:		4		_	_	Simple and the Prince
3.	BY: DATE TIME:	3.	γ-		4.		_				-		4		/						
5.	DATE TIME:	5.	11.	•	SEAL	<u> </u>					PRI	ESERVI	WHERE	APPLI	CABLE			ON	ICE L		0.4,1.0 C

M95681: Chain of Custody

Page 1 of 2

No. 1345

MCP Analytical Services Request Form	es Request Form		
Attach to Chain-of-Custody Form for Data Set	y Form for Data Set		
Client Name: EnviroTrac Ltd.	Project Name: Hess # 21224 Amherst		
Project Location: 468 West Street, Amhers? M	MCP RTN ¹ : 1-0786		
Applicable Samples: All			
General Questions:			
is MCP Presumptive Certainty status being requested for the referenced data set?? ** Laboratory must use approved MCP Analytical Protocols	enced data set*?	(Yes?)	So
Were all samples that comprise this data set collected in appropriate containers as specified in WSC-CAM-VII A, Appendix VII A-1 for requested analytes?	rte containers as specified in	(%)	å
Were all samples preserved as specified in WSC-CAM-VII A, Appendix VII A-1 for requested analytes?	endix VII A-1 for requested	(Yes)	S _S
Were all samples placed in a cooler with loe?		(SO)	Š.
Are any of the soll/sediment samples in the data set preserved by freezing or freezing $(<-7^\circ\mathbb{C})$ by the laboratory (within 48 hours of the time of collection)?	freezing or do any require offection)?	Yes	(S)
Should the laboratory report the standard CAM analyte list for the requested analytical protocols?	requested analytical protocols?	(%)	No3
Should protocol-specific CAM reporting limits be used for all requested aqueous samples? If lower reporting limits are required, please specify. GW-1/GW-2/GW-3 Standards	all requested aqueous samples? GW-I/GW-2/GW-3 Standards	(S)	8
Should protocol-specific CAM reporting limits be used for all requested soil/sediment samples? If lower reporting limits are required, please specify. NA	sted soil/sediment samples?	Yes	S.
Are Metrix Spikes (MS) or MS Duplicates required for this data sel? Has adequate sample volume been provided for the MS/MSD? Have the samples which require MS or MS Duplicate analysis been identified?	? n identified?	Yes ⁴ Yes Yes	% % % %
Are any of the samples in the data set characterized as "drinking water" as described in WSC-CAM-VIA, Section 2.57	rater" as described in WSC-CAM-		
if YES, samples identified as "drinking water" must be analyzed using MCP Analytical Methods and require the reporting of Tentatively Identified Compounds (TICs), if GCIMS analyses requested.	using MCP Analytical Methods and GC/MS analyses requested.	Yes	Š
Are Field Duplicate Samples provided and identified for all "drinking water" samples"? " Analysis required only if a farget analyte is detected above the RL in the original sample. Are Trip Blanks provided and identified for all "drinking water" samples submitted for VOCs and VPH	g water's samples'? he RL in the original sample, ples submitted for VOCs and VPH	Yes	8
م. " Analysis required only if a target analyte is detected above the RL in any of the associated " ammoles.	he RL in any of the associated	Yes	N _o
Is any atternative, supplemental or non-routine QC required for this data set? (Please specify)	data set? (Please specify)	Yes	(2)
MCP Release Tracking Number, as applicable. Laboratory must use approved MCP Analytical Methods. Affach modified analytical Methods. Affach modified analytical flag include non-routine analytics). Samples that require MS and/or MSD analysis should be designated on the COC. Data user responsible for providing the laboratory with adequate sample volume to prepare MS/MSD samples. Attached description of alternative, supplemental or non-youtine QC that is required.	n the COC. Data user responsible for plas plas it is required.	providing th	Q
Signature FF Signature	Date ///	8/10	

M95681: Chain of Custody Page 2 of 2

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

Exhibit VII A-2: MassDEP Analytical Protocol Certification Form

Laboratory Name: Accutest Laboratories of New England Project #: M95681	
Project Location: MADEP RTN None Hess:#21224 468 West St Amherst MA	
This form provides certifications for the following data set: list Laboratory Sample ID Numbers(s) M95681-1,M95681-10,M95681-11,M95681-1F,M95681-2F,M95681-2F,M95681-3,M95681-3F M95681-4,M95681-4F,M95681-5F,M95681-6F,M95681-6F,M95681-7F,M95681-7F,M95681-9 M95681-8,M95681-8F Test method: Refer to case narrative.	
Matrices: Groundwater/Surface Water (X) Soil/Sediment () Drinking Water () Air () Other	()
CAM Protocol (check all that apply below):	
8260 VOC () 7470/7471 Hg () MassDEP VPH (X) 8081 Pesticides () 7196 Hex Cr () Mass DEP AF	н ()
CAM IIA CAM III B CAM IV A CAM V B CAM VI B CAM IX A 8270 SVOC (X) 7010 Metals () MassDEP EPH (X) 8151 Herbicides () 8330 Explosives () TO-15 VOI CAM II B CAM III C CAM IV B CAM V C CAM VIII A CAM IX B	()
6010 Metals (X) 6020 Metals () 8082 PCB () 9014 Total () 6860 Perchlorate () CAM III A CAM III D CAM V A CAM VI A CAM VI A	
Affirmative Responses to Questions A Through F are required for "Presumptive Certainty status	
Were all samples received in a condition consistent with those described on the Chain-of Custody, Properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	No
	No
Were all required corrective actions and analytical response actions specified in the selected CAM c protocol(s) implemented for all identified performance standard non-conformances? Yes	No
Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	No
VPH, EPH, APH, and TO-15 only: a. VPH, EPH, and APH Methods only: Was each method conducted without significant Yes modification(s)? (Refer to the individual method(s) for a list of significant modifications).	No
	No No
F and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	NO
Responses to questions G, H, and I below is required for "Presumptive Certainty" status	
G Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocols	No ¹
Data User Note: Data that achieve "Presumptive Certainty" status may not necessarily meet the data useability and representativeness requirements described in 310 CMR 40.1056(2)(k) and WSC-07-350.	
H Were all QC performance standards specified in the CAM protocol(s) achieved?	No 1
I Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	No ¹
I the undersigned, attest under the pains and penalties of perjury that, based upon my personal	
inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.	
Signature: Position: Laboratory Director	
Printed Name: Reza Tand Date: 12/16/2010	

B. 8 4 1 1	A		0."	0 - 1' 1	0.11		
Matrix	Aqueous	✓	Soil 🗌	Sediment	Other		
Containers	Satisfactory	✓ B	Broken 🗌	Leaking			
Aqueous Preservati	ive N/A	□ p	H <= 2 ✓	pH > 2			
Temperature	Received or	ı lce	Receive	ed at 4 Deg. C	Other	✓	Rec'd at 1.0 deg C.
Extraction Method	SW846 351	0C					
Method for Ranges:	MADEP EPH REV 1	.1	Client ID:	MW-1	L	ab ID:	M95681-1
Method for Targets:	MADEP EPH REV 1	.1	Date Collected:	11/8/2010	Date Rec	eived:	11/8/2010
EPH Surrogate Stds.	Aliphatic: 1-Chloroo	ctadecane	Date Extracted	d: First Da	te Run:		Last Date Run:
3	Aromatic: o-Terphen		11/18/2010	12/5/	2010		N/A
EPH Fractionation	2-Fluorobiphenyl	•	% Solids:	Low D	lution:		High Dilution:
Surrogate Standards.	2-Bromonaphthalene		N/A	1			N/A
Unadjusted Ranges		CAS#	<u>Units</u>	Result	RDL	Q	
C11 C22 Aromotics	(Upodi)		/1	ND A	120		

Adjusted Ranges			
C9-C18 Aliphatics	ug/l	ND ^A	120
C19-C36 Aliphatics	ug/l	ND ^A	120
C11-C22 Aromatics	ug/l	ND ^c	120
Surrogate Recoveries			Acceptance Range
1-Chlorooctadecane	%	46	40-140 %
1-Chlorooctadecane o-Terphenyl	% %	46 82	40-140 % 40-140 %

Footnotes

✓ Yes □ Were all QA/QC procedures REQUIRED by the EPH Method followed? No- Details Attatched ✓ Yes 🗌 Were all performance/acceptance standards for required QA/QC procedures achieved? No- Details Attatched Were any significant modifications made to the EPH method, as specified in Sect. 11.3? ✓ No Yes- Details Attatched

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Signature /

Postition

Laboratory Director

Date 12/15/2010 **Printed Name Reza Tand**

Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range

Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. C11-C22 Aromatic Hydrocarbons exclude the concentration of Target PAH Analytes

A 'J' qualifier indicates an estimated value

			_			
Matrix	Aqueous 🗸	Soil	Sediment	Other		
Containers	Satisfactory ✓ E	Broken 🗌	Leaking			
Aqueous Preservati	ve N/A □ p	H <= 2 ✓	pH > 2			
Temperature	Received on Ice	Received	at 4 Deg. C	Other	✓	Rec'd at 1.0 deg C.
Extraction Method	SW846 3510C					
Method for Ranges:	MADEP EPH REV 1.1	Client ID: MV Date Collected: 11/		La Date Rece	b ID:	M95681-4 11/8/2010
Method for Targets: EPH Surrogate Stds.	MADEP EPH REV 1.1 Aliphatic: 1-Chlorooctadecane Aromatic: o-Terphenyl	Date Extracted: 11/18/2010	First D	ate Run: //2010	iveu.	Last Date Run:
EPH Fractionation Surrogate Standards.	2-Fluorobiphenyl 2-Bromonaphthalene	% Solids: N/A	Low D	ilution: 1		High Dilution: N/A
Unadjusted Ranges	CAS#	<u>Units</u>	Result	RDL	Q	
C11-C22 Aromatics	(Unadi)	ug/l	ND ^A	110		

Adjusted Ranges			
C9-C18 Aliphatics	ug/l	ND ^A	110
C19-C36 Aliphatics	ug/l	ND ^A	110
C11-C22 Aromatics	ug/l	ND ^c	110
Surrogate Recoveries			Acceptance Range
1-Chlorooctadecane	%	16 ^E	40-140 %
o-Terphenyl	%	91	40-140 %
2-Fluorobiphenyl	%	111	40-140 %
2-Bromonaphthalene	%	105	40-140 %

Footnotes

- Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range
- Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. C11-C22 Aromatic Hydrocarbons exclude the concentration of Target PAH Analytes
- Outside control limits due to possible matrix interference. Confirmed by refractionation.
- A 'J' qualifier indicates an estimated value

✓ Yes □ Were all QA/QC procedures REQUIRED by the EPH Method followed? No- Details Attatched Were all performance/acceptance standards for required QA/QC procedures achieved? ☐ Yes 🗸 No- Details Attatched ✓ No 🗌 Were any significant modifications made to the EPH method, as specified in Sect. 11.3? Yes- Details Attatched

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtainig the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Signature /

Postition

Laboratory Director

Date 12/15/2010 **Printed Name Reza Tand**

Matrix	Aqueous 🗸	Soil 🗌	Sediment	☐ Other		
Containers	Satisfactory ✓	Broken 🗌	Leaking			
Aqueous Preservati	ive N/A 🗌	oH <= 2 ✓	pH > 2			
Temperature	Received on Ice	Received	at 4 Deg. C	Other	✓	Rec'd at 1.0 deg C.
Extraction Method	SW846 3510C					
Method for Ranges: Method for Targets:	MADEP EPH REV 1.1	Client ID: MV Date Collected: 11/		La Date Rece	b ID: ived:	M95681-5 11/8/2010
EPH Fractionation	Aliphatic: 1-Chlorooctadecane Aromatic: o-Terphenyl 2-Fluorobiphenyl	Date Extracted: 11/18/2010 % Solids:	12/5	ate Run: 5/2010 Dilution:		Last Date Run: N/A High Dilution:
Surrogate Standards.	2-Bromonaphthalene	N/A		1		N/A
Unadjusted Ranges	CAS #	<u>Units</u>	Result	RDL	Q	
C11-C22 Aromatics	s (Unadi.)	ua/l	ND ^A	110		

Adjusted Ranges			
C9-C18 Aliphatics	ug/l	ND ^A	110
C19-C36 Aliphatics	ug/l	ND ^A	110
C11-C22 Aromatics	ug/l	ND ^c	110
Surrogate Recoveries			Acceptance Range
1-Chlorooctadecane	%	27 ^E	40-140 %
o-Terphenyl	%	66	40-140 %
2-Fluorobiphenyl	%	104	40-140 %
2-Bromonaphthalene	%	92	40-140 %

Footnotes

- Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range
- Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. C11-C22 Aromatic Hydrocarbons exclude the concentration of Target PAH Analytes
- Outside control limits due to possible matrix interference. Confirmed by refractionation.
- A 'J' qualifier indicates an estimated value

✓ Yes □ Were all QA/QC procedures REQUIRED by the EPH Method followed? No- Details Attatched Were all performance/acceptance standards for required QA/QC procedures achieved? ☐ Yes 🗸 No- Details Attatched ✓ No 🗌 Were any significant modifications made to the EPH method, as specified in Sect. 11.3? Yes- Details Attatched

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtainig the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Signature /

Postition

Laboratory Director 12/15/2010

Date **Printed Name Reza Tand**

			_			
Matrix	Aqueous 🗸	Soil 🗌	Sediment	Other		
Containers	Satisfactory ✓ E	Broken 🗌	Leaking			
Aqueous Preservati	ve N/A □ p)H <= 2 ✓	pH > 2			
Temperature	Received on Ice	Received	at 4 Deg. C	Other	√	Rec'd at 1.0 deg C.
Extraction Method	SW846 3510C					
Method for Ranges: Method for Targets:	MADEP EPH REV 1.1 MADEP EPH REV 1.1	Client ID: M\ Date Collected: 11		La Date Rece	b ID: ived:	M95681-6 11/8/2010
EPH Surrogate Stds.	Aliphatic: 1-Chlorooctadecane Aromatic: o-Terphenyl	Date Extracted: 11/18/2010 % Solids:	12/5	ate Run: 5/2010 Dilution:		Last Date Run: N/A High Dilution:
EPH Fractionation Surrogate Standards.	2-Fluorobiphenyl 2-Bromonaphthalene	N/A	2011 2	1		N/A
Unadjusted Ranges	CAS#	<u>Units</u>	Result	RDL	Q	
C11-C22 Aromatics	(Unadi)	ua/l	ND ^A	110		

Adjusted Ranges			
C9-C18 Aliphatics	ug/l	ND ^A	110
C19-C36 Aliphatics	ug/l	ND ^A	110
C11-C22 Aromatics	ug/l	ND °	110
Surrogate Recoveries			Acceptance Range
1-Chlorooctadecane	%	33 ^E	40-140 %
o-Terphenyl	%	73	40-140 %
2-Fluorobiphenyl	%	99	40-140 %
2-Bromonaphthalene	%	84	40-140 %

Footnotes

- A Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range
- C Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. C11-C22 Aromatic Hydrocarbons exclude the concentration of Target PAH Analytes
- E Outside control limits due to possible matrix interference. Confirmed by refractionation.
- Z A 'J' qualifier indicates an estimated value

Were all QA/QC procedures REQUIRED by the EPH Method followed?

Were all performance/acceptance standards for required QA/QC procedures achieved?

Were any significant modifications made to the EPH method, as specified in Sect. 11.3?

✓ No Details Attatched

✓ Yes ✓ No Details Attatched

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Signature /

Postition

Laboratory Director

Printed Name Reza Tand Date 12/15/2010

Matrix	Aqueous 🗸	Soil 🗌	Sediment	Other		
Containers	Satisfactory ✓	Broken 🗌	Leaking			
Aqueous Preservati	ive N/A □	pH <= 2 ✓	pH > 2			
Temperature	Received on Ice	Received	at 4 Deg. C	Other	✓	Rec'd at 1.0 deg C.
Extraction Method	SW846 3510C					
Method for Ranges: Method for Targets:	MADEP EPH REV 1.1	Client ID: MW Date Collected: 11/	· ·=		b ID: ived:	M95681-7 11/8/2010
EPH Surrogate Stds.	Aliphatic: 1-Chlorooctadecane Aromatic: o-Terphenyl	11/18/2010	12/5	ate Run: /2010		Last Date Run: N/A
EPH Fractionation Surrogate Standards.	2-Fluorobiphenyl 2-Bromonaphthalene	% Solids: N/A	Low D	ilution: 1		High Dilution: N/A
Unadjusted Ranges	CAS #	<u>Units</u>	Result	RDL	Q	
C11-C22 Aromatics	s (Unadi.)	ua/l	ND ^A	110		

Adjusted Ranges			
C9-C18 Aliphatics	ug/l	ND ^A	110
C19-C36 Aliphatics	ug/l	ND ^A	110
C11-C22 Aromatics	ug/l	ND ^c	110
Surrogate Recoveries			Acceptance Range
1-Chlorooctadecane	%	37 ^E	40-140 %
o-Terphenyl	%	82	40-140 %
2-Fluorobiphenyl	%	119	40-140 %
2-Bromonaphthalene	%	108	40-140 %

Footnotes

- Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range
- Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. C11-C22 Aromatic Hydrocarbons exclude the concentration of Target PAH Analytes
- Outside control limits due to possible matrix interference. Confirmed by refractionation.
- A 'J' qualifier indicates an estimated value

Were all QA/QC procedures REQUIRED by the EPH Method followed?	✓ Yes 🗌	No- Details Attatched
Were all performance/acceptance standards for required QA/QC procedures achieved?	☐ Yes 🗸	No- Details Attatched
Were any significant modifications made to the EPH method, as specified in Sect. 11.3?	✓ No	Yes- Details Attatched

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtainig the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Signature /

Postition

Laboratory Director

Printed Name Reza Tand Date 12/15/2010

MADEP VPH FORM									
Matrix	Aqueous 🗸	Soil		Sediment		Other			
Containers		Broken		Leaking	<u> </u>				
Aqueous Preservatives		•	<u>v</u>	pH > 2	Ц	011		Doold at 1 () dow C
Temperature Methanol	Received on Ice	h	Received a	t 4 Deg. C		Other	✓	Rec'd at 1.0	deg C.
	N/A	Clie	nt ID: MW-1			l ah	I D : M9	5681-1	
Method for Ranges: Method for Target Analytes:	MADEP VPH REV 1.1 MADEP VPH REV 1.1		ected: 11/8/2	010	Da	te Receiv			
VPH Surrogate Standards	WINDER VITINEV I.I	Date Ex	tracted:	First Da	te Run			Last Date	Run:
PID: 2,5-Dibromotoluene	į		/A	11/16		•		N/A	ixuii.
FID: 2,5-Dibromotoluene	}	% Sc	olids:	Low Di	ilution:			High Dilu	tion:
		N	/A	1	1			N/A	
Unadjusted Ranges	CAS #	<u> Elutio</u>	n Range	<u>Units</u>		Result		RDL	<u>Q</u>
C5- C8 Aliphatics (Unadj.)		1	I/A	ug/l		ND ^A		50	
C9- C10 Aromatics (Unadj.)	1	I/A	ug/l		ND ^A		50	
C9- C12 Aliphatics (Unadj.)		1	I/A	ug/l		ND ^A		50	
Target Analytes									
Ethylbenzene	100-41	-4 C9	-C12	ug/l		ND		2	
Toluene	108-88	-3 C	5-C8	ug/l		ND		2	
Methyl Tert Butyl Ether	1634-04	1-4 C	5-C8	ug/l		ND		1	
Benzene	71-43-	2 C	5-C8	ug/l		ND		2	
Naphthalene	91-20-	3 1	I/A	ug/l		ND		3	
o-Xylene	95-47-	6 C9	-C12	ug/l		ND		2	
m,p-Xylene		C9	-C12	ug/l		ND		2	
Adjusted Ranges									
C5- C8 Aliphatics		1	I/A	ug/l		ND ^B		50	
C9- C12 Aliphatics		1	I/A	ug/l		ND D		50	
Surrogate Recoveries								tance Rang	<u>1e</u>
FID:2,5-Dibromotoluene				%		88		70-130 %	
PID:2,5-Dibromotoluene				%		82		70-130 %	
Footnotes A Hydrocarbon Range data exclude	concentrations of any surrogately	and/or intern	al etandarde clusio	og in that range					
B Hydrocarbon Range data exclude concentration of Target Analytes e	concentrations of any surrogate(s luting in that range.	s) and/or interna	ıl standards eluti	ng in that range.		-			
D Hydrocarbon Range data exclude conc of Target Analytes eluting in to				ng in that range. (C9-C12 ali	phatic Hydro	ocarbons e	exclude	
Z A 'J' qualifier indicates an estimate	d value								

Were all QA/QC procedures REQUIRED by the VPH Method followed?	✓ Yes	No- Details Attatched
Were all performance/acceptance standards for required QA/QC procedures achieved?	✓ Yes	No- Details Attatched
Were any significant modifications made to the VPH method, as specified in Sect. 11.3?	✓ No	Yes- Details Attatched

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Signature

Postition

Laboratory Director

Printed Name Reza Tand Date

	M.A	IDEP VP	H FORM			
Matrix	Aqueous 🗸	Soil	Sediment	Other		
Containers		Broken	Leaking			
Aqueous Preservatives		pH <= 2 ✓	pH > 2			
Temperature	Received on Ice	Recei	ved at 4 Deg. C	Other	Rec'd at 1.0	deg C.
Methanol	N/A	Client ID:	MM/ ZD	1 -1-	ID: M95681-4	
Method for Ranges: Method for Target Analytes:	MADEP VPH REV 1.1 MADEP VPH REV 1.1	Date Collected:			ed: 11/8/2010	
VPH Surrogate Standards	WW.DEL VITTALEV III	Date Extracte	d: First D	ate Run:	Last Date	Pun:
PID: 2,5-Dibromotoluene		N/A	i ii st Dt	7/2010	N/A	ixuii.
FID: 2,5-Dibromotoluene		% Solids:	Low D	ilution:	High Dilu	tion:
		N/A		1	N/A	
Unadjusted Ranges	CAS #	Elution Ran	ge <u>Units</u>	Result	<u>RDL</u>	<u>Q</u>
C5- C8 Aliphatics (Unadj.)		N/A	ug/l	ND ^A	50	
C9- C10 Aromatics (Unadj.)	N/A	ug/l	ND ^A	50	
C9- C12 Aliphatics (Unadj.)		N/A	ug/l	ND ^A	50	
Target Analytes						
Ethylbenzene	100-41	-4 C9-C12	ug/l	ND	2	
Toluene	108-88	-3 C5-C8	ug/l	ND	2	
Methyl Tert Butyl Ether	1634-04	l-4 C5-C8	ug/l	4.4	1	
Benzene	71-43-	2 C5-C8	ug/l	ND	2	
Naphthalene	91-20-	3 N/A	ug/l	ND	3	
o-Xylene	95-47-	6 C9-C12	ug/l	ND	2	
m,p-Xylene		C9-C12	ug/l	ND	2	
Adjusted Ranges						
C5- C8 Aliphatics		N/A	ug/l	ND ^B	50	
C9- C12 Aliphatics		N/A	ug/l	ND [□]	50	
Surrogate Recoveries					Acceptance Rang	<u>je</u>
FID:2,5-Dibromotoluene			%	94	70-130 %	
PID:2,5-Dibromotoluene			%	87	70-130 %	
Footnotes A Hydrocarbon Range data exclude of the Hydrocarbon Range data exclude of concentration of Target Analytes of the Hydrocarbon Range data exclude of the Hydrocarbon Range dat	concentrations of any surrogate(s luting in that range.	s) and/or internal standa	ards eluting in that range.			
conc of Target Analytes eluting in t Z A 'J' qualifier indicates an estimate	hat range AND concentration of C					

Were all QA/QC procedures REQUIRED by the VPH Method followed?	✓ Yes	No- Details Attatched
Were all performance/acceptance standards for required QA/QC procedures achieved?	✓ Yes □	No- Details Attatched
Were any significant modifications made to the VPH method, as specified in Sect. 11.3?	✓ No	Yes- Details Attatched

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Signature

Postition Laboratory Director

12/15/2010 Date **Printed Name Reza Tand**

> 62 of 69 ACCUTEST. M95681

MADED VOL EODM

Matrix	Aqueous 🗸	Soil	<u>VPH</u>	Sediment	Other		
Containers	Satisfactory 🗸	Broken		Leaking	U Other		
Aqueous Preservatives	N/A	pH <= 2		pH > 2			
Temperature	Received on Ice			at 4 Deg. C	Other	Rec'd at 1	.0 deg C
Methanol	N/A			•			
Method for Ranges: Method for Target Analytes:	MADEP VPH REV 1.1 MADEP VPH REV 1.1		lient ID: MW ollected: 11/			ID: M95681-5 ed: 11/8/2010	
/PH Surrogate Standards PID: 2,5-Dibromotoluene FID: 2,5-Dibromotoluene			Extracted: N/A Solids: N/A	First Da 11/17/ Low Di 1	/2010 lution:	Last Date N/A High Dil N/A	ution:
Jnadjusted Ranges	CAS	# Elut	ion Range	<u>Units</u>	Result	<u>RDL</u>	<u>Q</u>
C5- C8 Aliphatics (Unadj.)			N/A	ug/l	ND ^A	50	
C9- C10 Aromatics (Unadj.))		N/A	ug/l	ND ^A	50	
C9- C12 Aliphatics (Unadj.)			N/A	ug/l	ND ^A	50	
Farget Analytes							
Ethylbenzene	100-4	1-4	C9-C12	ug/l	ND	2	
Toluene	108-8	8-3	C5-C8	ug/l	ND	2	
Methyl Tert Butyl Ether	1634-0)4-4	C5-C8	ug/l	21.2	1	
Benzene	71-43	3-2	C5-C8	ug/l	ND	2	
Naphthalene	91-20)-3	N/A	ug/l	ND	3	
o-Xylene	95-47	'-6	C9-C12	ug/l	ND	2	
m,p-Xylene		(C9-C12	ug/l	ND	2	
Adjusted Ranges							
C5- C8 Aliphatics			N/A	ug/l	ND ^B	50	
C9- C12 Aliphatics			N/A	ug/l	ND D	50	
Surrogate Recoveries						Acceptance Ran	ge
FID:2,5-Dibromotoluene				%	102	70-130 %	
PID:2,5-Dibromotoluene				%	95	70-130 %	
Footnotes A Hydrocarbon Range data exclude of the Hydrocarbon Range data exclude of concentration of Target Analytes elements.	concentrations of any surrogate				C5-C8 Aliphatic Hydro	ocarbons exclude the	
D Hydrocarbon Range data exclude of conc of Target Analytes eluting in t					9-C12 aliphatic Hydro	ocarbons exclude	
Z A 'J' qualifier indicates an estimate	d value						

Were all QA/QC procedures REQUIRED by the VPH Method followed?	✓ Yes □	No- Details Attatched
Were all performance/acceptance standards for required QA/QC procedures achieved?	✓ Yes	No- Details Attatched
Were any significant modifications made to the VPH method, as specified in Sect. 11.3?	✓ No	Yes- Details Attatched

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Signature

Postition

Laboratory Director 12/15/2010

Printed Name

Reza Tand

Date

	IVI <i>F</i>	ADEP	<u>VPH</u>	<u> FURIVI</u>					
Matrix	Aqueous 🗸	Soil		Sediment		Other			
Containers	Satisfactory <	Broken		Leaking					
Aqueous Preservatives		pH <= 2	<u> </u>	pH > 2	Ц	011		Rec'd at 1.0	n dog C
Temperature Methanol	Received on Ice N/A		Received	l at 4 Deg. C		Other	✓	Recu at 1.	ueg C.
	-	Cli	ent ID: MW	/-11		Lab	ID: M	95681-6	
Method for Ranges: Method for Target Analytes:	MADEP VPH REV 1.1 MADEP VPH REV 1.1	_	lected: 11/8		Da	te Receiv			
VPH Surrogate Standards	WINDER VITTILEV I.I	Date E	xtracted:	First Da	te Run			Last Date	Run
PID: 2,5-Dibromotoluene		ı	N/A	11/19		•		N/A	ituii.
FID: 2,5-Dibromotoluene		% S	Solids:	Low Di	lution:			High Dilu	ıtion:
		ľ	N/A	1	I			N/A	
		I							
Unadjusted Ranges	CAS	# Elution	on Range	<u>Units</u>		Result		<u>RDL</u>	<u>Q</u>
C5- C8 Aliphatics (Unadj.)			N/A	ug/l		ND ^A		50	
C9- C10 Aromatics (Unadj.))		N/A	ug/l		ND ^A		50	
C9- C12 Aliphatics (Unadj.)			N/A	ug/l		ND ^A		50	
Target Analytes									
Ethylbenzene	100-41	I-4 C	9-C12	ug/l		ND		2	
Toluene	108-88	3-3	C5-C8	ug/l		ND		2	
Methyl Tert Butyl Ether	1634-0	4-4 C	C5-C8	ug/l		6.3		1	
Benzene	71-43	-2 0	C5-C8	ug/l		ND		2	
Naphthalene	91-20	-3	N/A	ug/l		ND		3	
o-Xylene	95-47	-6 C	9-C12	ug/l		ND		2	
m,p-Xylene		С	9-C12	ug/l		ND		2	
Adjusted Ranges									
C5- C8 Aliphatics			N/A	ug/l		ND ^B		50	
C9- C12 Aliphatics			N/A	ug/l		ND ^D		50	
Surrogate Recoveries							Acce	ptance Rang	g <u>e</u>
FID:2,5-Dibromotoluene				%		90		70-130 %	
PID:2,5-Dibromotoluene				%		83		70-130 %	
Footnotes A Hydrocarbon Range data exclude of	concentrations of any surrogate(s) and/or interi	nal standards e	luting in that range					
B Hydrocarbon Range data exclude of concentration of Target Analytes el	concentrations of any surrogate(C5-C8 Ali	phatic Hydro	carbons	exclude the	
D Hydrocarbon Range data exclude of conc of Target Analytes eluting in t	concentrations of any surrogate(hat range AND concentration of	s) and/or interi C9-C10 Aroma	nal standards e tic Hydrocarbo	luting in that range. Ons.	C9-C12 al	iphatic Hydro	carbons	exclude	
Z A 'J' qualifier indicates an estimate									

Were all QA/QC procedures REQUIRED by the VPH Method followed?	✓ Yes □	No- Details Attatched
Were all performance/acceptance standards for required QA/QC procedures achieved?	✓ Yes □	No- Details Attatched
Were any significant modifications made to the VPH method, as specified in Sect. 11.3?	✓ No	Yes- Details Attatched

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Signature

Postition

Laboratory Director

Printed Name Reza Tand Date

MADED VOLLEDOM

MADEP VPH FORM											
Matrix	Aqueous 🗸		Soil		Sediment		Other				
Containers	Satisfactory <		roken		Leaking						
Aqueous Preservatives	N/A		H <= 2	<u>.</u>	pH > 2				D. H. d. 4	0	
Temperature	Received on I	се		Receive	d at 4 Deg. C		Other	✓	Rec'd at 1.0	aeg C	
Methanol	N/A		Cli	ient ID: MV	N-12		Lah	ID: M	95681-7		
Method for Ranges: Method for Target Analytes:	MADEP VPH REV	1		lected: 11		Da	te Receiv				
/PH Surrogate Standards	WADEL VITTEEV	,	Date E	xtracted:	First Da	to Pun			Last Date	Pun-	
PID: 2,5-Dibromotoluene	i.			N/A		/2010	•		N/A	ixuii.	
FID: 2,5-Dibromotoluene			% 5	Solids:	Low D	ilution:			High Dilu	tion:	
			ı	N/A	•	1			N/A		
Unadjusted Ranges		CAS#	Elutio	on Range	<u>Units</u>		Result		<u>RDL</u>	<u>Q</u>	
C5- C8 Aliphatics (Unadj.)				N/A	ug/l		55.2 ^A		50		
C9- C10 Aromatics (Unadj.))			N/A	ug/l		ND ^A		50		
C9- C12 Aliphatics (Unadj.)				N/A	ug/l		ND ^A		50		
Target Analytes											
Ethylbenzene		100-41-4	С	9-C12	ug/l		ND		2		
Toluene		108-88-3	C	C5-C8	ug/l		ND		2		
Methyl Tert Butyl Ether	1	1634-04-4	1 (C5-C8	ug/l		12.3		1		
Benzene		71-43-2	C	C5-C8	ug/l		2.2		2		
Naphthalene		91-20-3		N/A	ug/l		ND		3		
o-Xylene		95-47-6	С	9-C12	ug/l		ND		2		
m,p-Xylene			С	9-C12	ug/l		ND		2		
Adjusted Ranges											
C5- C8 Aliphatics				N/A	ug/l		ND ^B		50		
C9- C12 Aliphatics				N/A	ug/l		ND ^D		50		
Surrogate Recoveries								<u>Acce</u>	ptance Rang	<u> 1e</u>	
FID:2,5-Dibromotoluene					%		94		70-130 %		
PID:2,5-Dibromotoluene					%		87		70-130 %		
Footnotes A Hydrocarbon Range data exclude (concentrations of any su	irronate(e) s	and/or inter	nal standarde	eluting in that range						
B Hydrocarbon Range data exclude of concentration of Target Analytes el	concentrations of any su luting in that range.	ırrogate(s) a	and/or inter	nal standards	eluting in that range.						
D Hydrocarbon Range data exclude of conc of Target Analytes eluting in t						C9-C12 al	iphatic Hydro	ocarbons	s exclude		
Z A 'J' qualifier indicates an estimate	d value										

Were all QA/QC procedures REQUIRED by the VPH Method followed?	✓ Yes □	No- Details Attatched
Were all performance/acceptance standards for required QA/QC procedures achieved?	✓ Yes	No- Details Attatched
Were any significant modifications made to the VPH method, as specified in Sect. 11.3?	✓ No	Yes- Details Attatched

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Signature / / **Postition Laboratory Director**

12/15/2010 Date **Printed Name** Reza Tand

MADED VOL EODM

		MAL	<u>)EP</u>	<u>VPH</u>	<u>FORM</u>						
Matrix	Aqueous 🗸		Soil		Sediment		Other				
Containers	Satisfactory ✓		oken		Leaking						
Aqueous Preservatives	N/A		 <= 2	<u>.</u>	pH > 2				Doold at 1 () do a C	
Temperature	Received on Ic	e		Received	d at 4 Deg. C		Other	✓	Rec'd at 1.0	J deg C.	
Methanol	N/A		Cli	ent ID: MV	V-13		l ah	ID: M	95681-8		
Method for Ranges: Method for Target Analytes:	MADEP VPH REV MADEP VPH REV			ected: 11/		Da	ate Receiv				
/PH Surrogate Standards	WADEF VEHICLY	1.1	Date E	xtracted:	First Da	to Pu	•		Last Date	Pun:	
PID: 2,5-Dibromotoluene	į			N/A		/2010			N/A	ixuii.	
FID: 2,5-Dibromotoluene	}		% S	olids:	Low Di	ilution	:		High Dilu	ition:	
			1	N/A	1	1			N/A		
Jnadjusted Ranges		CAS#	Elutio	on Range	<u>Units</u>		Result		RDL	Q	
C5- C8 Aliphatics (Unadj.)				N/A	ug/l		724 ^A		50		
C9- C10 Aromatics (Unadj.)			N/A	ug/l		161 ^A		50		
C9- C12 Aliphatics (Unadj.)				N/A	ug/l		292 ^A		50		
Target Analytes											
Ethylbenzene	1	100-41-4	C	9-C12	ug/l		24.6		2		
Toluene	1	108-88-3	C	5-C8	ug/l		ND		2		
Methyl Tert Butyl Ether	1	634-04-4	C	5-C8	ug/l		437		1		
Benzene		71-43-2	C	5-C8	ug/l		ND		2		
Naphthalene		91-20-3		N/A	ug/l		ND		3		
o-Xylene	!	95-47-6	C	9-C12	ug/l		ND		2		
m,p-Xylene			C	9-C12	ug/l		13.3		2		
Adjusted Ranges											
C5- C8 Aliphatics				N/A	ug/l		286 ^B		50		
C9- C12 Aliphatics				N/A	ug/l		92.4 ^D		50		
Surrogate Recoveries								Acce	ptance Rang	<u>ge</u>	
FID:2,5-Dibromotoluene					%		97		70-130 %		
PID:2,5-Dibromotoluene					%		90		70-130 %		
Footnotes A Hydrocarbon Range data exclude	concentrations of any sur	rrogate(s) ar	nd/or interr	ial standards (eluting in that range						
B Hydrocarbon Range data exclude concentration of Target Analytes et	concentrations of any sur luting in that range.	rrogate(s) ar	nd/or interr	nal standards e	eluting in that range.						
D Hydrocarbon Range data exclude conc of Target Analytes eluting in t						C9-C12 a	lliphatic Hydro	ocarbons	s exclude		
Z A 'J' qualifier indicates an estimate	d value										

Were all QA/QC procedures REQUIRED by the VPH Method followed?	✓ Yes □	No- Details Attatched
Were all performance/acceptance standards for required QA/QC procedures achieved?	✓ Yes	No- Details Attatched
Were any significant modifications made to the VPH method, as specified in Sect. 11.3?	✓ No	Yes- Details Attatched

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Postition Signature /

Laboratory Director

12/15/2010 Date **Printed Name Reza Tand**

MADED VOLLEDOM

MADEP VPH FORM											
Matrix		✓	Soil		Sediment	Other					
Containers	Satisfactory		<u> Broken</u>		Leaking						
Aqueous Preservatives	N/A)H <= 2		pH > 2			Daald at 4 a	0 -1 0		
Temperature Methanol	Received on	ı ice		Receive	d at 4 Deg. C	Other	✓	Rec'd at 1.0	J deg C.		
Methanol	N/A	5),,,,	CI	ient ID: M\	N-14	l ah	ID: M95	5681-9			
Method for Ranges: Method for Target Analytes:	MADEP VPH R MADEP VPH R			llected: 11		Date Receiv					
VPH Surrogate Standards	MADER VEH K	.EV 1.1	Date F	extracted:	Firet D	ate Run:		Last Date	Duni		
PID: 2,5-Dibromotoluene	;			N/A		9/2010		N/A			
FID: 2,5-Dibromotoluene)		% 9	Solids:	Low [Dilution:		High Dilu	ution:		
				N/A		1		N/A			
Unadicated Dayman		CAC#	F14	D	Unita	Danult		DDI.	•		
Unadjusted Ranges		CAS#	Eluti	on Range	<u>Units</u>	Result		RDL	<u>Q</u>		
C5- C8 Aliphatics (Unadj.)				N/A	ug/l	ND ^A		50			
C9- C10 Aromatics (Unadj.)			N/A	ug/l	ND ^A		50			
C9- C12 Aliphatics (Unadj.)	1			N/A	ug/l	ND ^A		50			
Target Analytes											
Ethylbenzene		100-41-	4 C	9-C12	ug/l	ND		2			
Toluene		108-88-	3 (C5-C8	ug/l	ND		2			
Methyl Tert Butyl Ether		1634-04	-4 (C5-C8	ug/l	ND		1			
Benzene		71-43-2	2 (C5-C8	ug/l	ND		2			
Naphthalene		91-20-3	3	N/A	ug/l	ND		3			
o-Xylene		95-47-6	6 C	9-C12	ug/l	ND		2			
m,p-Xylene			C	9-C12	ug/l	ND		2			
Adjusted Ranges											
C5- C8 Aliphatics				N/A	ug/l	ND ^B		50			
C9- C12 Aliphatics				N/A	ug/l	ND D		50			
Surrogate Recoveries								tance Rang	<u>ge</u>		
FID:2,5-Dibromotoluene					%	86		70-130 %			
PID:2,5-Dibromotoluene Footnotes					%	80		70-130 %			
Hydrocarbon Range data exclude Hydrocarbon Range data exclude	concentrations of any					C5-C8 Aliphatic Hydro	ocarbons e	exclude the			
concentration of Target Analytes e Hydrocarbon Range data exclude conc of Target Analytes eluting in t	concentrations of any	/ surrogate(s	and/or inter 9-C10 Aroma	nal standards	eluting in that range.	C9-C12 aliphatic Hydro	ocarbons e	exclude			
Z A 'J' qualifier indicates an estimate	=			,							

✓ Yes □ Were all QA/QC procedures REQUIRED by the VPH Method followed? No- Details Attatched ✓ Yes 🗌 Were all performance/acceptance standards for required QA/QC procedures achieved? No- Details Attatched ✓ No □ Were any significant modifications made to the VPH method, as specified in Sect. 11.3? Yes- Details Attatched

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Signature /

Postition

Laboratory Director

Reza Tand Printed Name

Date

	<u>IVI <i>F</i></u>	ADEP	<u> </u>	-ORM						
Matrix	Aqueous 🗸	Soil		Sediment		Other				
Containers	Satisfactory <	Broken		Leaking						
Aqueous Preservatives		pH <= 2	<u> </u>	pH > 2	<u> </u>	Other		Rec'd at 1.0) dog C	
Temperature Methanol	Received on Ice N/A		Received	at 4 Deg. C		Other	✓	Recu at 1.0	deg C.	
	-	Clie	ent ID: MW	-19		Lab	ID: MS	95681-10		
Method for Ranges: Method for Target Analytes:	MADEP VPH REV 1.1 MADEP VPH REV 1.1		ected: 11/8		Da	te Receiv				
VPH Surrogate Standards	WINDER VITTICEV II.	Date E	xtracted:	First Da	ite Run	, .		Last Date	Run.	
PID: 2,5-Dibromotoluene)	N	N/A		/2010			N/A		
FID: 2,5-Dibromotoluene	;		olids:	Low Di	ilution:			High Dilution:		
		١	√A	1	1			N/A		
Unadjusted Ranges	CAS:	<u> Elutic</u>	on Range	<u>Units</u>		<u>Result</u>		<u>RDL</u>	Q	
C5- C8 Aliphatics (Unadj.)			N/A	ug/l		ND ^A		50		
C9- C10 Aromatics (Unadj.)		N/A	ug/l		ND ^A		50		
C9- C12 Aliphatics (Unadj.)	1		N/A	ug/l		ND ^A		50		
Target Analytes										
Ethylbenzene	100-41	-4 C9	9-C12	ug/l		ND		2		
Toluene	108-88	s-3 C	5-C8	ug/l		ND		2		
Methyl Tert Butyl Ether	1634-04	4-4 C	5-C8	ug/l		5.2		1		
Benzene	71-43-	-2 C	5-C8	ug/l		ND		2		
Naphthalene	91-20-	-3	N/A	ug/l		ND		3		
o-Xylene	95-47-	-6 C9	9-C12	ug/l		ND		2		
m,p-Xylene		C	9-C12	ug/l		ND		2		
Adjusted Ranges										
C5- C8 Aliphatics			N/A	ug/l		ND ^B		50		
C9- C12 Aliphatics			N/A	ug/l		ND [□]		50		
Surrogate Recoveries							Acce	ptance Rang	<u>je</u>	
FID:2,5-Dibromotoluene				%		87		70-130 %		
PID:2,5-Dibromotoluene				%		82		70-130 %		
Footnotes A Hydrocarbon Range data exclude	concentrations of any surrogate(s) and/or intern	al standards e	uting in that range						
B Hydrocarbon Range data exclude concentration of Target Analytes e	concentrations of any surrogate(luting in that range.	s) and/or intern	al standards e	uting in that range.						
D Hydrocarbon Range data exclude conc of Target Analytes eluting in	concentrations of any surrogate(that range AND concentration of	s) and/or intern C9-C10 Aromat	al standards e ic Hydrocarbor	uting in that range. (C9-C12 al	iphatic Hydro	ocarbons	exclude		
Z A 'J' qualifier indicates an estimate	d value									

Were all QA/QC procedures REQUIRED by the VPH Method followed?	✓ Yes □	No- Details Attatched
Were all performance/acceptance standards for required QA/QC procedures achieved?	✓ Yes □	No- Details Attatched
Were any significant modifications made to the VPH method, as specified in Sect. 11.3?	✓ No	Yes- Details Attatched

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Signature

Postition

Laboratory Director

Printed Name Reza Tand Date

MADEP VPH FORM									
Matrix	Aqueous 🗸	Soil		Sediment		Other			
Containers	Satisfactory <	Broken		Leaking					
Aqueous Preservatives	N/A	pH <= 2	<u>.</u>	pH > 2	<u> </u>	0.1		Doold at 1 () dow C
Temperature Methanol	Received on Ice		Received	l at 4 Deg. C		Other	✓	Rec'd at 1.0	deg C.
	N/A	Cli	ent ID: FD-	102		l ah	ID· M	95681-11	
Method for Ranges: Method for Target Analytes:	MADEP VPH REV 1.1 MADEP VPH REV 1.1		lected: 11/8		Da	te Receiv			
VPH Surrogate Standards	WADEL VITINEV I.I	Date E	xtracted:	First Da	to Pun			Last Date	Pun:
PID: 2,5-Dibromotoluene			N/A		/2010			N/A	Kuii.
FID: 2,5-Dibromotoluene		% S	Solids:	Low D	ilution:		High Dilution:		
		1	N/A	•	1			N/A	
Unadjusted Ranges	CAS	# Elution	on Range	<u>Units</u>		Result		<u>RDL</u>	<u>Q</u>
C9- C12 Aliphatics (Unadj.)			N/A	ug/l		ND ^A		50	
C9- C10 Aromatics (Unadj.))		N/A	ug/l		ND ^A		50	
C5- C8 Aliphatics (Unadj.)			N/A	ug/l		ND ^A		50	
Target Analytes									
Naphthalene	91-20	-3	N/A	ug/l		ND		3	
m,p-Xylene		C	9-C12	ug/l		ND		2	
o-Xylene	95-47	-6 C	9-C12	ug/l		ND		2	
Ethylbenzene	100-47	1-4 C	9-C12	ug/l		ND		2	
Toluene	108-88	3-3 C	C5-C8	ug/l		ND		2	
Methyl Tert Butyl Ether	1634-0	4-4 C	C5-C8	ug/l		ND		1	
Benzene	71-43	-2 C	C5-C8	ug/l		ND		2	
Adjusted Ranges									
C9- C12 Aliphatics			N/A	ug/l		ND ^D		50	
C5- C8 Aliphatics			N/A	ug/l		ND ^B		50	
Surrogate Recoveries				0/		2.	Acce	ptance Rang	<u>qe</u>
FID:2,5-Dibromotoluene				%		84 80		70-130 %	
PID:2,5-Dibromotoluene Footnotes				%		80		70-130 %	
A Hydrocarbon Range data exclude (concentrations of any surrogate	(s) and/or interr	nal standards e	luting in that range					
B Hydrocarbon Range data exclude of concentration of Target Analytes el	concentrations of any surrogate luting in that range.	(s) and/or inter	nal standards e	luting in that range.					
D Hydrocarbon Range data exclude of conc of Target Analytes eluting in t	concentrations of any surrogate hat range AND concentration of	(s) and/or interi C9-C10 Aroma	nal standards e tic Hydrocarbo	luting in that range. (ns.	C9-C12 a	liphatic Hydro	ocarbons	exclude	
Z A 'J' qualifier indicates an estimate	d value								

Were all QA/QC procedures REQUIRED by the VPH Method followed?	✓ Yes	No- Details Attatched
Were all performance/acceptance standards for required QA/QC procedures achieved?	✓ Yes □	No- Details Attatched
Were any significant modifications made to the VPH method, as specified in Sect. 11.3?	✓ No	Yes- Details Attatched

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Signature

Postition

Laboratory Director

Printed Name Reza Tand Date

02/22/11

Technical Report for

EnviroTrac

Hess:#21224 468 West St Amherst MA

Accutest Job Number: M97632

Sampling Date: 02/09/11

Report to:

EnviroTrac

patrickc@envirotrac.com

ATTN: Patrick Corcoran

Total number of pages in report: 27

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Kristen Blanchard 508-481-6200

Certifications: MA (M-MA136,SW846 NELAC) CT (PH-0109) NH (250210) RI (00071) ME (MA00136) FL (E87579) NY (11791) NJ (MA926) PA (6801121) ND (R-188) CO MN (11546AA) NC (653) IL (002337) ISO 17025:2005 (L2235) This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

1 of 27
ACCUTEST

Lab Director

Sections:

_

C

-1-

Table of Contents

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Sample Results	6
3.1: M97632-1: MW-1	7
3.2: M97632-2: MW-4	8
3.3: M97632-3: MW-8R	10
3.4: M97632-4: MW-13	11
3.5: M97632-4F: MW-13	12
3.6: M97632-5: MW-14	14
3.7: M97632-6: MW-12	15
3.8: M97632-7: FD-102	16
Section 4: Misc. Forms	17
4.1: Parameter Certifications (MA)	18
4.2: Chain of Custody	19
4.3: MCP Form	21
4.4. VDI Forms	22

Sample Summary

Job No:

M97632

EnviroTrac

Hess:#21224 468 West St Amherst MA

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
M97632-1	02/09/11	09:30 RPDT	02/09/11	AQ	Ground Water	MW-1
M97632-2	02/09/11	10:45 RPDT	02/09/11	AQ	Groundwater Filtered	MW-4
M97632-3	02/09/11	10:48 RPDT	02/09/11	AQ	Ground Water	MW-8R
M97632-4	02/09/11	11:53 RPDT	02/09/11	AQ	Ground Water	MW-13
M97632-4F	02/09/11	11:53 RPDT	02/09/11	AQ	Groundwater Filtered	MW-13
M97632-5	02/09/11	12:45 RPDT	02/09/11	AQ	Ground Water	MW-14
M97632-6	02/09/11	11:45 RPDT	02/09/11	AQ	Ground Water	MW-12

M97632-7 02/09/11 14:50 RPDT 02/09/11 AQ Ground Water FD-102

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: EnviroTrac Job No M97632

Site: Hess:#21224 468 West St Amherst MA Report Date 2/22/2011 10:20:25 AM

7 Sample(s) were collected on 02/09/2011 and were received at Accutest on 02/09/2011 properly preserved, at 0.5 Deg. C and intact. These Samples received an Accutest job number of M97632. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Volatiles by GC By Method MADEP VPH REV 1.1

Matrix AQ Batch ID: GBD2000

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

Metals By Method SW846 6010C

Matrix AQ Batch ID: MP16613

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M97660-4FDUP, M97660-4FMS, M97660-4FSDL were used as the QC samples for metals.
- Only Manganese requested.

Wet Chemistry By Method ASTM516-90,02

Matrix AQ Batch ID: GN34128

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M97632-2DUP, M97632-2MS were used as the QC samples for Sulfate.

Wet Chemistry By Method EPA 353.2

Matrix AQ Batch ID: GP12619

- All samples were distilled within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M97632-2DUP, M97632-2MS were used as the QC samples for Nitrogen, Nitrate + Nitrite.

Matrix AQ Batch ID: R28116

M97632-2 for Nitrogen, Nitrate: Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Matrix AQ Batch ID: R28117

M97632-4F for Nitrogen, Nitrate: Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Wet Chemistry By Method SM 21 4500 NO2 B

Matrix AQ Batch ID: GP12612

- All samples were distilled within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M97630-3DUP, M97630-3MS were used as the QC samples for Nitrogen, Nitrite.

Wet Chemistry By Method SM21 2320B

Matrix AQ Batch ID: GN34143

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M97632-4FDUP, M97632-4FMS were used as the QC samples for Alkalinity, Total as CaCO3.

Matrix AQ Batch ID: GN34149

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M97706-1DUP, M97706-1MS were used as the QC samples for Alkalinity, Total as CaCO3.

Wet Chemistry By Method SM21 3500FE B

Matrix AQ Batch ID: GN34098

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M97632-2DUP were used as the QC samples for Iron, Ferrous.
- M97632-2 for Iron, Ferrous: Analysis is field recommended as per method.
- M97632-4F for Iron, Ferrous: Analysis is field recommended as per method.

The Accutest Laboratories of New England certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Accutest Laboratories of NE, Laboratory Director or assignee as verified by the signature on the cover page has authorized the release of this report (M97632).

Sample Results	
Report of Analysis	

Client Sample ID: MW-1

Lab Sample ID:M97632-1Date Sampled:02/09/11Matrix:AQ - Ground WaterDate Received:02/09/11Method:MADEP VPH REV 1.1Percent Solids:n/a

Project: Hess:#21224 468 West St Amherst MA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 BD42322.D 1 02/12/11 AF n/a n/a GBD2000

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

MA-VPH List

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	2.0	ug/l
100-41-4	Ethylbenzene	ND	2.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	ug/l
91-20-3	Naphthalene	ND	3.0	ug/l
108-88-3	Toluene	ND	2.0	ug/l
	m, p-Xylene	ND	2.0	ug/l
95-47-6	o-Xylene	ND	2.0	ug/l
	C5- C8 Aliphatics (Unadj.)	66.5	50	ug/l
	C9- C12 Aliphatics (Unadj.)	58.0	50	ug/l
	C9- C10 Aromatics (Unadj.)	ND	50	ug/l
	C5- C8 Aliphatics	65.7	50	ug/l
	C9- C12 Aliphatics	ND	50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
615-59-8	2,5-Dibromotoluene	74%		70-130%
615-59-8	2,5-Dibromotoluene	76%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-4

Lab Sample ID: M97632-2 **Date Sampled:** 02/09/11 Matrix: AQ - Groundwater Filtered **Date Received:** 02/09/11 Percent Solids: n/a

Project: Hess:#21224 468 West St Amherst MA

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Manganese	1500	15	ug/l	1	02/11/11	02/14/11 DA	SW846 6010C ¹	SW846 3010A ²

(1) Instrument QC Batch: MA12682 (2) Prep QC Batch: MP16613

nalysis Page 1 of 1

Client Sample ID: MW-4

Lab Sample ID:M97632-2Date Sampled:02/09/11Matrix:AQ - Groundwater FilteredDate Received:02/09/11Percent Solids:n/a

Project: Hess:#21224 468 West St Amherst MA

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as CaCO3	165	5.0	mg/l	1	02/16/11	CF	SM21 2320B
Iron, Ferrous ^a	1.7	0.10	mg/l	1	02/09/11 17:35	CF	SM21 3500FE B
Nitrogen, Nitrate b	0.53	0.11	mg/l	1	02/14/11 12:17	CF	EPA 353.2
Nitrogen, Nitrate + Nitrite	0.54	0.10	mg/l	1	02/14/11 12:17	CF	EPA 353.2
Nitrogen, Nitrite	0.012	0.010	mg/l	1	02/10/11 17:45	CF	SM 21 4500 NO2 B
Sulfate	76.4	25	mg/l	5	02/14/11	SA	ASTM516-90,02

(a) Analysis is field recommended as per method.

(b) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Page 1 of 1

Client Sample ID: MW-8R Lab Sample ID: M97632-3 **Date Sampled:** 02/09/11 Matrix: **Date Received:** 02/09/11 AQ - Ground Water Method: MADEP VPH REV 1.1 Percent Solids: n/a

Project: Hess:#21224 468 West St Amherst MA

File ID DF **Prep Date Prep Batch Analytical Batch** Analyzed By GBD2000 Run #1 BD42324.D 1 02/12/11 AF n/an/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

MA-VPH List

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	2.0	ug/l
100-41-4	Ethylbenzene	ND	2.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	9.0	1.0	ug/l
91-20-3	Naphthalene	ND	3.0	ug/l
108-88-3	Toluene	ND	2.0	ug/l
	m, p-Xylene	ND	2.0	ug/l
95-47-6	o-Xylene	ND	2.0	ug/l
	C5- C8 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C12 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C10 Aromatics (Unadj.)	ND	50	ug/l
	C5- C8 Aliphatics	ND	50	ug/l
	C9- C12 Aliphatics	ND	50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
615-59-8	2,5-Dibromotoluene	76%		70-130%
615-59-8	2,5-Dibromotoluene	80%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-13 Lab Sample ID:

M97632-4 **Date Sampled:** 02/09/11 Matrix: **Date Received:** 02/09/11 AQ - Ground Water Method: MADEP VPH REV 1.1 Percent Solids: n/a

Project: Hess:#21224 468 West St Amherst MA

File ID DF **Prep Date Prep Batch Analytical Batch** Analyzed By GBD2000 Run #1 BD42325.D 1 02/12/11 AF n/an/a Run #2

Purge Volume Run #1 5.0 ml

Run #2

MA-VPH List

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	2.0	ug/l
100-41-4	Ethylbenzene	ND	2.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	2.9	1.0	ug/l
91-20-3	Naphthalene	ND	3.0	ug/l
108-88-3	Toluene	ND	2.0	ug/l
	m, p-Xylene	ND	2.0	ug/l
95-47-6	o-Xylene	ND	2.0	ug/l
	C5- C8 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C12 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C10 Aromatics (Unadj.)	ND	50	ug/l
	C5- C8 Aliphatics	ND	50	ug/l
	C9- C12 Aliphatics	ND	50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
615-59-8	2,5-Dibromotoluene	78%		70-130%
615-59-8	2,5-Dibromotoluene	81%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-13

Lab Sample ID: M97632-4F **Date Sampled:** 02/09/11 Matrix: AQ - Groundwater Filtered **Date Received:** 02/09/11 Percent Solids: n/a

Project: Hess:#21224 468 West St Amherst MA

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Manganese	< 15	15	ug/l	1	02/11/11	02/14/11 DA	SW846 6010C ¹	SW846 3010A ²

(1) Instrument QC Batch: MA12682 (2) Prep QC Batch: MP16613

Page 1 of 1

Client Sample ID: MW-13

Lab Sample ID:M97632-4FDate Sampled:02/09/11Matrix:AQ - Groundwater FilteredDate Received:02/09/11Percent Solids:n/a

Project: Hess:#21224 468 West St Amherst MA

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as CaCO3	1410	5.0	mg/l	1	02/15/11	CF	SM21 2320B
Iron, Ferrous ^a	< 0.10	0.10	mg/l	1	02/09/11 17:35	CF	SM21 3500FE B
Nitrogen, Nitrate b	4.4	0.11	mg/l	1	02/14/11 12:18	CF	EPA 353.2
Nitrogen, Nitrate + Nitrite	4.4	0.10	mg/l	1	02/14/11 12:18	CF	EPA 353.2
Nitrogen, Nitrite	0.015	0.010	mg/l	1	02/10/11 17:45	CF	SM 21 4500 NO2 B
Sulfate	30.9	5.0	mg/l	1	02/14/11	SA	ASTM516-90,02

(a) Analysis is field recommended as per method.

(b) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Client Sample ID: MW-14 Lab Sample ID: M97632-:

Lab Sample ID:M97632-5Date Sampled:02/09/11Matrix:AQ - Ground WaterDate Received:02/09/11Method:MADEP VPH REV 1.1Percent Solids:n/a

Project: Hess:#21224 468 West St Amherst MA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 BD42326.D 1 02/12/11 AF n/a GBD2000

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

MA-VPH List

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	2.0	ug/l
100-41-4	Ethylbenzene	ND	2.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	ug/l
91-20-3	Naphthalene	ND	3.0	ug/l
108-88-3	Toluene	ND	2.0	ug/l
	m,p-Xylene	ND	2.0	ug/l
95-47-6	o-Xylene	ND	2.0	ug/l
	C5- C8 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C12 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C10 Aromatics (Unadj.)	ND	50	ug/l
	C5- C8 Aliphatics	ND	50	ug/l
	C9- C12 Aliphatics	ND	50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
615-59-8	2,5-Dibromotoluene	76%		70-130%
615-59-8	2,5-Dibromotoluene	79%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

Client Sample ID: MW-12

Lab Sample ID:M97632-6Date Sampled:02/09/11Matrix:AQ - Ground WaterDate Received:02/09/11Method:MADEP VPH REV 1.1Percent Solids:n/a

Project: Hess:#21224 468 West St Amherst MA

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1BD42327.D102/12/11AFn/an/aGBD2000

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

MA-VPH List

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	4.7	2.0	ug/l
100-41-4	Ethylbenzene	ND	2.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	8.4	1.0	ug/l
91-20-3	Naphthalene	ND	3.0	ug/l
108-88-3	Toluene	ND	2.0	ug/l
	m,p-Xylene	ND	2.0	ug/l
95-47-6	o-Xylene	ND	2.0	ug/l
	C5- C8 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C12 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C10 Aromatics (Unadj.)	ND	50	ug/l
	C5- C8 Aliphatics	ND	50	ug/l
	C9- C12 Aliphatics	ND	50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
615-59-8	2,5-Dibromotoluene	75%		70-130%
615-59-8	2,5-Dibromotoluene	77%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

Client Sample ID: FD-102

Lab Sample ID:M97632-7Date Sampled:02/09/11Matrix:AQ - Ground WaterDate Received:02/09/11Method:MADEP VPH REV 1.1Percent Solids:n/a

Project: Hess:#21224 468 West St Amherst MA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 BD42323.D 1 02/12/11 AF n/a GBD2000

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

MA-VPH List

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	2.0	ug/l
100-41-4	Ethylbenzene	ND	2.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	ug/l
91-20-3	Naphthalene	ND	3.0	ug/l
108-88-3	Toluene	ND	2.0	ug/l
	m,p-Xylene	ND	2.0	ug/l
95-47-6	o-Xylene	ND	2.0	ug/l
	C5- C8 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C12 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C10 Aromatics (Unadj.)	ND	50	ug/l
	C5- C8 Aliphatics	ND	50	ug/l
	C9- C12 Aliphatics	ND	50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
615-59-8	2,5-Dibromotoluene	76%		70-130%
615-59-8	2,5-Dibromotoluene	81%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 $N = \ Indicates \ presumptive \ evidence \ of \ a \ compound$

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Certification Exceptions
- Parameter Certifications (MA)
- · Chain of Custody
- MCP Form
- VPH Form

Page 1 of 1

Parameter Certifications

Job Number: M97632

Account: ENVTRAC EnviroTrac

Project: Hess:#21224 468 West St Amherst MA

The following parameters included in this report are certified by the state of MA.

Parameter	CAS#	Method	Mat	Certification Status
Alkalinity, Total as CaCO3 Nitrogen, Nitrate Nitrogen, Nitrate + Nitrite Sulfate	14797-55-8 14808-79-8	SM21 2320B EPA 353.2 EPA 353.2 ASTM516-90,02	AQ AQ AQ AQ	Accutest is certified for this parameter.

Ш	N
ᆸ	_

				CH	AI	N O	Tr (CT	ıs	T	ΛI	7	 V	F	ACCI	ITEST	JOB #:				
MAC	CUTES	T.		4	95 TECHN	OLOGY CL	ENTER	WEST	• B	ULDIN	VG ON	E	L	ļ					ľ	79 I	7632
	Laboratori	e s			TEL:	MARLBO 508-481-6					3			J	ACCL	ITEST	QUOTE	#:			
	CLIENT INFORMAT	TION			FA	CILITY IN	ORMA	TION				T	×	AN	IĄLY)	ICAL	INFOF	MATIC	N		MATRIX CODES
NAME ADDRESS CIPY	CCHOUNT ST WOO MA STATI MCK CO (CC	t Sut 1 0a bran	C 2	PROJECT	8 W	ala Jest Yers	au St Lt.	ME					Iron Alkalinity			*	Cuesa	1			DW - DRINKING WATER GW - GROUND WATER WW - WASTE WATER SO - SOIL SL - SLUDGE OI - OIL
SEND REPORT T	<u>"781793 (</u>	2074		FAX #	181	193	78	37	7			1	<u>×</u>	الد. الد	100	쿼	7	4			LIQ - OTHER LIQUID SOL - OTHER
ACCUTEST SAMPLE #	FIELD ID / POINT	OF COLLECTIO	N	DATE	TIME	SAMPLEI BY:	MATRIX	# OF BOTTLES	_	SERV.	ATION E	5	Ferrous	Nitrik	Dissolve	Nitratt	10 1 ×				SOLID SOLID
-	MW-1			alalıı	9.30	RP/O			٦	- -	-	¥	,+			₹		\dagger	+	 	
-2,F	mw-4			-4-1111	10:45	1''	17	4		χx	//	†	X	Χ	X	$ egthinspace{1.5em}$		$\dagger \dagger$			
- 3	mw-8r	2			10:48		11	a		1			Ì					\dagger	_		
-4,F	MW-12	3			11:52	-	17	(O)		хх	(x	₩	Y	X	X	\mathbf{x}^{\dagger}	+	\vdash	-	+	
-5	MW-14				12:45	1	H^-	2 ×	+		1	₺		$^{\sim}$		$^{+}$		+	_		
う	@MW-10	·	02	1	11:45	11	↓	ax		\vdash	Ħ	† ≎					-	\vdash		H	
-6	MW-12			29111	2.50	7	GW			+		슇		\dashv	-	+	+	H		H	
- K	1. (0 + 12			~ 1 1 1	0,.0	pm./DI	19VV	1 CYN	$\dagger \dagger$	+	+	ヤ≏			\dashv	\dashv		1 +	+	1	
						<u> </u>	ļ		Ħ	+-	\vdash	\vdash		\dashv	1	\dashv		+	-		
					<u> </u>	 			H	+	\vdash	╁╌	\vdash			+	+	\vdash	+-		IUF.SP:
							 		Н	+	+				-+	_	+	+	+	\vdash	165
	DATA TURNAROUND INFO	ODMATION 7										┖									7.75
14 DAYS 7 DAYS 48 HOUR	STANDARD API	PROVED BY:	-	STAND		В"	E INFO	RMAT	ON			Must meet GW-1 Standards					ards				
OTHER 14 DAY TURNAROUND HARDCOPY, EMERGENCY OR RUSH IS FAX DATA UNLESS PREVIOUSLY APPROVED			IS FAX	STATE FORMS OTHER (SPECIFY) MCP REPORT					Bill ET direct station # 21224					21004							
RECINOUISMED E	SAMPI	LE CUSTODY M	UST BE D	OCUMENTE	D BELOW	EACH TI	ME SAN	IPLES	CHA	NGE				LUDI				IVERY			
1/ ach	lettade 199	11 622 1	·	UL O	rill.	RELIF	IQUISHE	D BY:			D	ATE TIA	Æ:		REC	EIVED I	3Y:				
RELINQUISHED F	BY: DATE	TIME: R	ECEIVED BY			RELIF	(QUISHE)	BY:			D	ATE TIA	Æ:		REC	EIVED E	3Y:				
RELINQUISHED E	BY: DATE	-	ECEIVED BY:			SEAL	•				l_	þş	RESERV	E WH	4.	PLICAE	ILE		ON ICE.		TEMPERATURE
5. 5.																· LOAD	-		Ø.		O15°C

M97632: Chain of Custody

Page 1 of 2

Accutest Laboratories

V:508.481.6200

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: M97632 Client: ENVIROTRAC Immediate Client Services Action Required: No Client Service Action Required at Login: Date / Time Received: 2/9/2011 **Delivery Method:** Nο Project: HESS 21224 AMHERST No. Coolers: Airbill #'s: N/A Y or N **Cooler Security** Y or N Sample Integrity - Documentation Y or N П 3. COC Present: **√** 1. Custody Seals Present: ✓ 1. Sample labels present on bottles: ✓ 4. Smpl Dates/Time OK ✓ 2. Custody Seals Intact: ✓ 2. Container labeling complete: 3. Sample container label / COC agree: ✓ Cooler Temperature Y or N 1. Temp criteria achieved: Υ Ν or Sample Integrity - Condition 2. Cooler temp verification: Infared gun 1 1. Sample recvd within HT: 3. Cooler media: Ice (bag) 2. All containers accounted for: 1 **Quality Control Preservatio** Y or N N/A 3. Condition of sample: Intact 1. Trip Blank present / cooler: **√** Sample Integrity - Instructions or N N/A **✓** 2. Trip Blank listed on COC: 1 1. Analysis requested is clear: 3. Samples preserved properly: ✓ 2. Bottles received for unspecified tests ✓ 4. VOCs headspace free: 3. Sufficient volume recvd for analysis: **✓ ✓** 4. Compositing instructions clear: ✓ 5. Filtering instructions clear: ✓ Comments 495 Technology Center West, Bldg One

F: 508.481.7753

M97632: Chain of Custody

Marlborough, MA

Page 2 of 2

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

WSC-CAM	Exhibit VII A
July 1, 2010	Revision No. 1
Final	Page 13 of 38

Exhibit VII A-2: **MassDEP Analytical Protocol Certification Form**

	MassDEP Analytical Protocol Certification Form											
Labo	ratory Name	:	Accutest Laboratorie	es of New England		Project #:	M976	32				
Proje	ect Location:		Hess:#21224 468 W	est St Amherst MA		MADEP RTN	None					
	M97632-1,N	M97632-2	tions for the following ,M97632-3,M97632-4			` '						
Test	Test method: Refer to case narrative.											
	Matrices: Groundwater/Surface Water (X) Soil/Sediment () Drinking Water () Air () Other () CAM Protocol (check all that apply below):											
CAIVI	•		1	l	I	I <u>.</u>			ı			
		()	1	MassDEP VPH (X)	,		()		Mass DEP APH	()		
	8270 SVOC CAM II B	()	CAM III B 7010 Metals () CAM III C	CAM IV A MassDEP EPH () CAM IV B	CAM V B 8151 Herbicides () CAM V C	8330 Explosives CAM VIII A	()		TO-15 VOC CAM IX B	()		
	6010 Metals CAM III A	(X)	6020 Metals () CAM III D	8082 PCB () CAM V A	9014 Total () Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B	()		ON WINCE			
	Affirmative	Respon	ses to Questions A 1	Through F are requi	red for "Presumptiv	e Certainty status	;					
A		eserved (i	ceived in a condition concluding temperature)			•	7	Yes	☐ No			
В	protocol(s)	followed?		•			V	Yes	☐ No			
С		•	rective actions and an ited for all identified pe	•	•	selected CAM	V	Yes	□No			
D	Does the la	boratory r surance a	eport comply with all t nd Quality Control Gu	he reporting requiren	nents specified in CA	M VII A,	7	Yes	□No			
E	a. VPH, EP	H, and Al	d TO-15 only: PH Methods only: Wa fer to the individual me		•		V	Yes	□No			
	b. APH and	TÓ-15 M	lethods only: Was the	complete analyte list	t reported for each m	ethod?	V	Yes				
F			CAM protocol QC and boratory narrative (inc				<u> </u>	Yes	∐No			
	-	-	tions G, H, and I belo	<u> </u>		ty" status						
G	selected CA	AM protoc					✓ <u></u>	Yes		1		
			ita that achieve "Pres ness requirements de				data u	seabi	lity			
H	Were all Q	C perform	ance standards speci	fied in the CAM proto	col(s) achieved?		✓	Yes	□ No	1		
1			d for the complete ana				<u> </u>	Yes	☑ No	1		
			ses must be address				ive.					
inqu	iry of those	respons	under the pains and ible for obtaining the e best of my knowled	information, the m	aterial contained in							
	ature:	p	or fall			boratory Director						
Print	ted Name:		Reza Tand		Date:	02/22/2011						

	IVI <i>P</i>	NDEP VE	H FURIN			
Matrix	Aqueous 🗸	Soil	Sedimen	t 🗌 Other		
Containers	Satisfactory ✓	Broken 🗌	Leaking			
Aqueous Preservatives		pH <= 2 ✓	pH > 2			
Temperature	Received on Ice	Rec	eived at 4 Deg. (C 🗌 Other	Rec'd at 0.	.5 Deg. C
Methanol	N/A					
Method for Ranges:	MADEP VPH REV 1.1		D: MW-1		ID: M97632-1	
Method for Target Analytes:	MADEP VPH REV 1.1	Date Collected		Date Receiv	red: 2/9/2011	
VPH Surrogate Standards		Date Extrac	100	Date Run:	Last Date	
PID: 2,5-Dibromotoluene		N/A		12/2011	N/A	
FID: 2,5-Dibromotoluene		% Solids N/A	: Low	/ Dilution:	High Dil	
		IN/A		1	N/A	(
Unadjusted Ranges	CAS #	Elution Ra	inge <u>Units</u>	Result	RDL	Q
C5- C8 Aliphatics (Unadj.)		N/A	ug/l	66.5 ^A	50	
C9- C10 Aromatics (Unadj.)	1	N/A	ug/l	ND ^A	50	
C9- C12 Aliphatics (Unadj.)		N/A	ug/l	58 ^A	50	
Target Analytes						
Ethylbenzene	100-41-	-4 C9-C12	2 ug/l	ND	2	
Toluene	108-88-	-3 C5-C8	ug/l	ND	2	
Methyl Tert Butyl Ether	1634-04	-4 C5-C8	ug/l	ND	1	
Benzene	71-43-2	2 C5-C8	ug/l	ND	2	
Naphthalene	91-20-3	3 N/A	ug/l	ND	3	
o-Xylene	95-47-6	6 C9-C12	2 ug/l	ND	2	
m,p-Xylene		C9-C12	2 ug/l	ND	2	
Adjusted Ranges						
C5- C8 Aliphatics		N/A	ug/l	65.7 ^B	50	
C9- C12 Aliphatics		N/A	ug/l	ND °	50	
Surrogate Recoveries					Acceptance Ran	ge
FID:2,5-Dibromotoluene			%	74	70-130 %	
PID:2,5-Dibromotoluene			%	76	70-130 %	
Footnotes A Hydrocarbon Range data exclude of the Hydrocarbon Range data exclude of concentration of Target Analytes el C Hydrocarbon Range data exclude of the Hydrocarbon Range data exclude of the Hydrocarbon Range data	concentrations of any surrogate(s luting in that range.	and/or internal star	ndards eluting in that rang	e. C5-C8 Aliphatic Hydro		
conc of Target Analytes eluting in t Z A 'J' qualifier indicates an estimate	hat range AND concentration of C			, 2.2 0.2 unpriumo fiyur		
v quannor maiouros un ostiliate						

✓ Yes 🗌 Were all QA/QC procedures REQUIRED by the VPH Method followed? No- Details Attatched ✓ Yes 🗌 Were all performance/acceptance standards for required QA/QC procedures achieved? No- Details Attatched ✓ No □ Were any significant modifications made to the VPH method, as specified in Sect. 11.3? Yes- Details Attatched

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

2/22/2011 Date **Reza Tand Printed Name**

> ACCUTEST M97632

Signature /

Postition

Laboratory Director

	<u>IVI A</u>	ADEP	<u> </u>	-ORIVI					
Matrix	Aqueous 🗸	Soil		Sediment		Other			
Containers	Satisfactory <	Broken		Leaking	<u> </u>				
Aqueous Preservatives		pH <= 2	<u> </u>	pH > 2	Ц_	0.1		Doold at 0.1	- Dog C
Temperature Methanol	Received on Ice		<u>Received</u>	at 4 Deg. C		Other	√	Rec'd at 0.	b Deg. C
•	N/A	Cli	ent ID: MW	-8R		l ah	ID : M9	7632-3	
Method for Ranges: Method for Target Analytes:	MADEP VPH REV 1.1 MADEP VPH REV 1.1	_	ected: 2/9/2		Da	te Receiv			
VPH Surrogate Standards	WADEL VITTREV I.I	Date E	xtracted:	First Da	te Pun			Last Date	Pun:
PID: 2,5-Dibromotoluene	;		N/A	2/12/		•		N/A	ixuii.
FID: 2,5-Dibromotoluene	}	% S	olids:	Low Di	lution:			High Dilu	tion:
		1	N/A	1	l			N/A	
		l							
Unadjusted Ranges	<u>CAS</u> :	# Elution	on Range	<u>Units</u>		Result		<u>RDL</u>	<u>Q</u>
C5- C8 Aliphatics (Unadj.)			N/A	ug/l		ND ^A		50	
C9- C10 Aromatics (Unadj.)		N/A	ug/l		ND ^A		50	
C9- C12 Aliphatics (Unadj.)			N/A	ug/l		ND ^A		50	
Target Analytes									
Ethylbenzene	100-41	-4 C	9-C12	ug/l		ND		2	
Toluene	108-88	3-3 C	5-C8	ug/l		ND		2	
Methyl Tert Butyl Ether	1634-0	4-4 C	5-C8	ug/l		9		1	
Benzene	71-43	-2 C	5-C8	ug/l		ND		2	
Naphthalene	91-20-	-3	N/A	ug/l		ND		3	
o-Xylene	95-47-	-6 C	9-C12	ug/l		ND		2	
m,p-Xylene		C	9-C12	ug/l		ND		2	
Adjusted Ranges									
C5- C8 Aliphatics			N/A	ug/l		ND ^B		50	
C9- C12 Aliphatics			N/A	ug/l		ND °		50	
Surrogate Recoveries							<u>Accer</u>	tance Rang	<u> 1e</u>
FID:2,5-Dibromotoluene				%		76		70-130 %	
PID:2,5-Dibromotoluene				%		80		70-130 %	
Footnotes A Hydrocarbon Range data exclude	concentrations of any surrogate(s) and/or interr	nal standards el	uting in that range					
B Hydrocarbon Range data exclude concentration of Target Analytes el	concentrations of any surrogate(C5-C8 AI	iphatic Hydro	carbons	exclude the	
C Hydrocarbon Range data exclude conc of Target Analytes eluting in t	concentrations of any surrogate(hat range AND concentration of	s) and/or interr C9-C10 Aromat	nal standards el ic Hydrocarbon	uting in that range. C s.	C9-C12 al	iphatic Hydro	ocarbons	exclude	
Z A 'J' qualifier indicates an estimate	d value								

Were all QA/QC procedures REQUIRED by the VPH Method followed?	✓ Yes □	No- Details Attatched
Were all performance/acceptance standards for required QA/QC procedures achieved?	✓ Yes	No- Details Attatched
Were any significant modifications made to the VPH method, as specified in Sect. 11.3?	✓ No	Yes- Details Attatched

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Signature / /

Postition

Laboratory Director

Printed Name Reza Tand

Date

2/22/2011

			DEF	<u>VFN</u>	<u> FURIVI</u>					
Matrix	Aqueous	✓	Soil		Sediment		Other			
Containers	Satisfactory		roken		Leaking					
Aqueous Preservatives	N/A		H <= 2	<u>.</u>	pH > 2	<u>Ц</u>			D. II. I O. S	· D · · · O
Temperature	Received o	n Ice		Receive	d at 4 Deg. C		Other	✓	Rec'd at 0.5	Deg. C
Methanol	N/A		01:		V 40		Lab	ın.	M07622 4	
Method for Ranges: Method for Target Analytes:	MADEP VPH I			ient ID: MV lected: 2/9			Lab Date Receiv		M97632-4 2/9/2011	
VPH Surrogate Standards	W. C		Date E	xtracted:	First Da	to D	un.		Last Date	Dun
PID: 2,5-Dibromotoluene	÷			N/A	2/12/				N/A	Kuii.
FID: 2,5-Dibromotoluene			% 5	Solids:	Low D				High Dilu	tion:
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1	N/A		1			N/A	
Unadjusted Ranges		CAS#	Eluti	on Range	<u>Units</u>		Result		<u>RDL</u>	<u>Q</u>
C5- C8 Aliphatics (Unadj.)				N/A	ug/l		ND ^A		50	
C9- C10 Aromatics (Unadj.)			N/A	ug/l		ND ^A		50	
C9- C12 Aliphatics (Unadj.)			N/A	ug/l		ND ^A		50	
Target Analytes										
Ethylbenzene		100-41-4	C	9-C12	ug/l		ND		2	
Toluene		108-88-3	3 (C5-C8	ug/l		ND		2	
Methyl Tert Butyl Ether		1634-04-	4 (C5-C8	ug/l		2.9		1	
Benzene		71-43-2	C	C5-C8	ug/l		ND		2	
Naphthalene		91-20-3		N/A	ug/l		ND		3	
o-Xylene		95-47-6	С	9-C12	ug/l		ND		2	
m,p-Xylene			С	9-C12	ug/l		ND		2	
Adjusted Ranges										
C5- C8 Aliphatics				N/A	ug/l		ND ^B		50	
C9- C12 Aliphatics				N/A	ug/l		ND ^c		50	
Surrogate Recoveries								Acc	ceptance Rang	<u>ie</u>
FID:2,5-Dibromotoluene					%		78		70-130 %	
PID:2,5-Dibromotoluene					%		81		70-130 %	
Footnotes			and/ac !	nal atas deed	aludina in di t					
A Hydrocarbon Range data exclude B Hydrocarbon Range data exclude concentration of Target Analytes e	concentrations of ar					C5-C	3 Aliphatic Hydro	ocarbo	ns exclude the	
C Hydrocarbon Range data exclude conc of Target Analytes eluting in	concentrations of ar					C9-C1	2 aliphatic Hydro	ocarbo	ons exclude	
Z A 'J' qualifier indicates an estimate	d value									

Were all QA/QC procedures REQUIRED by the VPH Method followed?	✓ Yes	No- Details Attatched
Were all performance/acceptance standards for required QA/QC procedures achieved?	✓ Yes	No- Details Attatched
Were any significant modifications made to the VPH method, as specified in Sect. 11.3?	✓ No	Yes- Details Attatched

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

olete.

Postition Laboratory Director

Printed Name Reza Tand Date <u>2/22/2011</u>

Signature

		IVIA		PH FUI						
Matrix	Aqueous	<u> </u>	Soil _		<u>liment</u>	Щ	Other			
Containers	Satisfactory		roken		<u>aking</u>	<u> </u>				
Aqueous Preservatives	N/A		H <= 2 ✓		H > 2		Other		Poold at 0.5	Dog C
Temperature Methanol	Received o	n ice	Red	ceived at 4	Deg. C		Other	✓	Rec'd at 0.5	Deg. C
	N/A		Client	I D : MW-14			Lab	ID: A	Л97632-5	
Method for Ranges:	MADEP VPH I		Date Collecte			D	ate Receiv			
Method for Target Analytes:	MADEP VPH I	REV 1.1						-		_
VPH Surrogate Standards PID: 2,5-Dibromotoluene			Date Extra	ctea:	First Da 2/12/		n:		Last Date N/A	Run:
,			% Solid	e.						41
FID: 2,5-Dibromotoluene	;		N/A	J.	Low D		1:		High Dilu N/A	tion:
									IN/A	
Unadjusted Ranges		CAS#	Elution R	ange Ur	its		Result		RDL	Q
C5- C8 Aliphatics (Unadj.)			N/A	u	 g/l		ND A		50	_
C9- C10 Aromatics (Unadj.)		N/A	u	g/l		ND ^A		50	
C9- C12 Aliphatics (Unadj.))		N/A	u	g/I		ND ^A		50	
Target Analytes										
Ethylbenzene		100-41-4	C9-C1	2 u	g/I		ND		2	
Toluene		108-88-3	C5-C	8 u	g/I		ND		2	
Methyl Tert Butyl Ether		1634-04-4	1 C5-C	8 u	g/I		ND		1	
Benzene		71-43-2	C5-C	8 u	g/I		ND		2	
Naphthalene		91-20-3	N/A	u	g/I		ND		3	
o-Xylene		95-47-6	C9-C1	2 u	g/l		ND		2	
m,p-Xylene			C9-C1	2 u	g/I		ND		2	
Adjusted Ranges										
C5- C8 Aliphatics			N/A	u	g/l		ND ^B		50	
C9- C12 Aliphatics			N/A	u	g/I		ND ^c		50	
Surrogate Recoveries								Acc	eptance Rang	<u>1e</u>
FID:2,5-Dibromotoluene				9	6		76		70-130 %	
PID:2,5-Dibromotoluene				o,	6		79		70-130 %	
<u>Footnotes</u>										
A Hydrocarbon Range data exclude B Hydrocarbon Range data exclude concentration of Target Analytes e	concentrations of ar luting in that range.	ny surrogate(s) a	and/or internal sta	andards eluting in	that range.					
C Hydrocarbon Range data exclude conc of Target Analytes eluting in t					that range. (C9-C12	aliphatic Hydro	ocarbor	ns exclude	
Z A 'J' qualifier indicates an estimate	d value									

Were all QA/QC procedures REQUIRED by the VPH Method followed?

Were all performance/acceptance standards for required QA/QC procedures achieved?

Were any significant modifications made to the VPH method, as specified in Sect. 11.3?

No- Details Attatched

No- Details Attatched

Yes- Details Attatched

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Signature / Signature

Postition

<u>Laboratory Director</u> <u>2/22/2011</u>

Printed Name Reza Tand Date

			I I OIVIN		- <u>-</u>
Matrix	Aqueous 🗸	Soil	Sediment	Other	
Containers		Broken	Leaking		
Aqueous Preservatives	N/A	pH <= 2 ✓	pH > 2		
Temperature	Received on Ice	Receiv	ved at 4 Deg. C	Other	Rec'd at 0.5 Deg. C
Methanol	N/A				
Method for Ranges:	MADEP VPH REV 1.1	Client ID:			ID: M97632-6
Method for Target Analytes:	MADEP VPH REV 1.1	Date Collected:	2/9/2011	Date Receive	ed: 2/9/2011
VPH Surrogate Standards		Date Extracted	d: First D	ate Run:	Last Date Run:
PID: 2,5-Dibromotoluene		N/A	2/12	2/2011	N/A
FID: 2,5-Dibromotoluene		% Solids:	Low [Dilution:	High Dilution:
		N/A		1	N/A
Unadjusted Ranges	CAS #	Elution Rang	<u>je Units</u>	Result	<u>RDL</u> <u>Q</u>
C5- C8 Aliphatics (Unadj.)		N/A	ug/l	ND ^A	50
C9- C10 Aromatics (Unadj.))	N/A	ug/l	ND ^A	50
C9- C12 Aliphatics (Unadj.)		N/A	ug/l	ND ^a	50
Target Analytes					
Ethylbenzene	100-41	-4 C9-C12	ug/l	ND	2
Toluene	108-88	-3 C5-C8	ug/l	ND	2
Methyl Tert Butyl Ether	1634-04	l-4 C5-C8	ug/l	8.4	1
Benzene	71-43-	2 C5-C8	ug/l	4.7	2
Naphthalene	91-20-	3 N/A	ug/l	ND	3
o-Xylene	95-47-		ug/l	ND	2
m,p-Xylene		C9-C12	ug/l	ND	2
Adjusted Ranges					
C5- C8 Aliphatics		N/A	ug/l	ND ^B	50
C9- C12 Aliphatics		N/A	ug/l	ND ^c	50
Surrogate Recoveries					Acceptance Range
FID:2,5-Dibromotoluene			%	75	70-130 %
PID:2,5-Dibromotoluene			%	77	70-130 %
FOOtnotes A Hydrocarbon Range data exclude of B Hydrocarbon Range data exclude of concentration of Target Analytes el C Hydrocarbon Range data exclude of conc of Target Analytes eluting in t Z A 'J' qualifier indicates an estimater	concentrations of any surrogate(suting in that range. concentrations of any surrogate(subatration of Chatration of Chatra	s) and/or internal standa s) and/or internal standa	rds eluting in that range.	-	

Were all QA/QC procedures REQUIRED by the VPH Method followed?	✓ Yes 🗆	No- Details Attatched
Were all performance/acceptance standards for required QA/QC procedures achieved?	✓ Yes	No- Details Attatched
Were any significant modifications made to the VPH method, as specified in Sect. 11.3?	✓ No	Yes- Details Attatched

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Postition Laboratory Director Signature

2/22/2011 Date **Printed Name Reza Tand**

	<u>IVI</u>	ADEP	<u> </u>	· ORIVI					
Matrix	Aqueous 🗸	Soil		Sediment		Other			
Containers	Satisfactory <	Broken		Leaking					
Aqueous Preservatives		pH <= 2	<u>v</u>	pH > 2	Ц	011		Doold at 0.1	- Don C
Temperature Methanol	Received on Ice		Received	at 4 Deg. C		Other	✓	Rec'd at 0.	b Deg. C
•	N/A	Clie	ent ID: FD-1	02		l ah	I D : M9	7632-7	
Method for Ranges: Method for Target Analytes:	MADEP VPH REV 1.1 MADEP VPH REV 1.1		ected: 2/9/2		Da	te Receiv			
VPH Surrogate Standards	WADEL VITTREV I.I	Date Ex	xtracted:	First Da	to Pun			Last Date	Pun:
PID: 2,5-Dibromotoluene			I/A	2/12/		•		N/A	ixuii.
FID: 2,5-Dibromotoluene		% S	olids:	Low Di	lution:			High Dilu	ition:
		N	I/A	1				N/A	
		Į							
Unadjusted Ranges	CAS	# Elutio	n Range	<u>Units</u>		Result		<u>RDL</u>	<u>Q</u>
C5- C8 Aliphatics (Unadj.)		I	N/A	ug/l		ND ^A		50	
C9- C10 Aromatics (Unadj.)	I	N/A	ug/l		ND ^A		50	
C9- C12 Aliphatics (Unadj.)		I	N/A	ug/l		ND ^A		50	
Target Analytes									
Ethylbenzene	100-41	-4 C9	9-C12	ug/l		ND		2	
Toluene	108-88	3-3 C	5-C8	ug/l		ND		2	
Methyl Tert Butyl Ether	1634-0	4-4 C	5-C8	ug/l		ND		1	
Benzene	71-43	-2 C	5-C8	ug/l		ND		2	
Naphthalene	91-20	-3	N/A	ug/l		ND		3	
o-Xylene	95-47	-6 C9	9-C12	ug/l		ND		2	
m,p-Xylene		C	9-C12	ug/l		ND		2	
Adjusted Ranges									
C5- C8 Aliphatics		I	N/A	ug/l		ND ^B		50	
C9- C12 Aliphatics		I	N/A	ug/l		ND °		50	
Surrogate Recoveries				0.4			<u>Accep</u>	tance Rang	<u>qe</u>
FID:2,5-Dibromotoluene				%		76		70-130 %	
PID:2,5-Dibromotoluene				%		81		70-130 %	
Footnotes A Hydrocarbon Range data exclude	concentrations of any surrogate	s) and/or intern	al standards eli	uting in that range					
B Hydrocarbon Range data exclude concentration of Target Analytes el	concentrations of any surrogate(C5-C8 Ali	phatic Hydro	carbons	exclude the	
C Hydrocarbon Range data exclude conc of Target Analytes eluting in t	concentrations of any surrogate(hat range AND concentration of	s) and/or intern C9-C10 Aromat	al standards elu ic Hydrocarbon	uting in that range. C s.	9-C12 al	iphatic Hydro	ocarbons	exclude	
Z A 'J' qualifier indicates an estimate	d value								

Were all QA/QC procedures REQUIRED by the VPH Method followed?	✓ Yes □	No- Details Attatched
Were all performance/acceptance standards for required QA/QC procedures achieved?	✓ Yes	No- Details Attatched
Were any significant modifications made to the VPH method, as specified in Sect. 11.3?	✓ No	Yes- Details Attatched

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Signature

Postition Laboratory Director

Printed Name Reza Tand Date 2/22/2011

27 of 27
ACCUTEST.
M97632
LABORATORIES

06/14/11

Technical Report for

EnviroTrac

Hess:#21224 468 West St Amherst MA

Accutest Job Number: MC190

Sampling Date: 05/13/11

Report to:

EnviroTrac

RachelP@envirotrac.com

ATTN: Rachel Patenaude

Total number of pages in report: 16

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Kristen Blanchard 508-481-6200

Certifications: MA (M-MA136,SW846 NELAC) CT (PH-0109) NH (250210) RI (00071) ME (MA00136) FL (E87579) NY (11791) NJ (MA926) PA (6801121) ND (R-188) CO MN (11546AA) NC (653) IL (002337) ISO 17025:2005 (L2235) This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories.

Test results relate only to samples analyzed.

Lab Director

Sections:

_

-1-

Table of Contents

Section 1: Sample Summary	3
Section 2: Sample Results	4
2.1: MC190-1: MW-12	5
2.2: MC190-2: TANK PAD EX SOIL	11
Section 3: Misc. Forms	13
3.1: Parameter Certifications (MA)	14
3.2: Chain of Custody	15

MC190

Sample Summary

EnviroTrac

Job No:

Hess:#21224 468 West St Amherst MA

Sample	Collected			Matr	rix	Client			
Number	Date	Time By	Received	Code	Type	Sample ID			
MC190-1	05/13/11	11:29 AS	05/13/11	AQ	Ground Water	MW-12			
MC190-2	05/13/11	12:00 AS	05/13/11	SO	Soil	TANK PAD EX SOIL			

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

Sample Results	
Report of Analysis	

Page 1 of 3

Client Sample ID: MW-12

 Lab Sample ID:
 MC190-1
 Date Sampled:
 05/13/11

 Matrix:
 AQ - Ground Water
 Date Received:
 05/13/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: Hess:#21224 468 West St Amherst MA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 R21890.D 1 05/18/11 TD n/a n/a MSR806

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	Units	Q
67-64-1	Acetone	ND	5.0	ug/l	
71-43-2	Benzene	3.8	0.50	ug/l	
108-86-1	Bromobenzene	ND	5.0	ug/l	
74-97-5	Bromochloromethane	ND	5.0	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	ug/l	
75-25-2	Bromoform	ND	1.0	ug/l	
74-83-9	Bromomethane	ND	2.0	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	ug/l	
75-15-0	Carbon disulfide	ND	5.0	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	ug/l	
108-90-7	Chlorobenzene	ND	1.0	ug/l	
75-00-3	Chloroethane	ND	2.0	ug/l	
67-66-3	Chloroform	ND	1.0	ug/l	
74-87-3	Chloromethane	ND	2.0	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	ug/l	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

Client Sample ID: MW-12

 Lab Sample ID:
 MC190-1
 Date Sampled:
 05/13/11

 Matrix:
 AQ - Ground Water
 Date Received:
 05/13/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: Hess:#21224 468 West St Amherst MA

VOA 8260 List

CAS No.	Compound	Result	RL	Units	Q
142-28-9	1,3-Dichloropropane	ND	5.0	ug/l	
594-20-7	2,2-Dichloropropane	ND	5.0	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ug/l	
123-91-1	1,4-Dioxane	ND	25	ug/l	
100-41-4	Ethylbenzene	ND	1.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	ug/l	
591-78-6	2-Hexanone	ND	5.0	ug/l	
74-88-4	Iodomethane	ND	5.0	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	4.0	1.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	ug/l	
74-95-3	Methylene bromide	ND	5.0	ug/l	
75-09-2	Methylene chloride	ND	2.0	ug/l	
91-20-3	Naphthalene	ND	5.0	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	ug/l	
100-42-5	Styrene	ND	5.0	ug/l	
994-05-8	tert-Amyl Methyl Ether	ND	2.0	ug/l	
75-65-0	Tert Butyl Alcohol	733	20	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	ug/l	
108-88-3	Toluene	ND	1.0	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	ug/l	
79-01-6	Trichloroethene	ND	1.0	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	ug/l	
108-05-4	Vinyl Acetate	ND	5.0	ug/l	
75-01-4	Vinyl chloride	ND	1.0	ug/l	
05.45.6	m,p-Xylene	ND	1.0	ug/l	
95-47-6	o-Xylene	ND	1.0	ug/l	
1330-20-7	Xylene (total)	ND	1.0	ug/l	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 3 of 3

Client Sample ID: MW-12

 Lab Sample ID:
 MC190-1
 Date Sampled:
 05/13/11

 Matrix:
 AQ - Ground Water
 Date Received:
 05/13/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: Hess:#21224 468 West St Amherst MA

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7 2037-26-5	Dibromofluoromethane Toluene-D8	96% 88%		70-130% 70-130%
460-00-4	4-Bromofluorobenzene	79%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-12

 Lab Sample ID:
 MC190-1
 Date Sampled:
 05/13/11

 Matrix:
 AQ - Ground Water
 Date Received:
 05/13/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: Hess:#21224 468 West St Amherst MA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 S24011.D 1 05/17/11 KR 05/13/11 OP24914 MSS1019

Run #2

Initial Volume Final Volume

Run #1 900 ml 1.0 ml

Run #2

ABN Full List

CAS No.	Compound	Result	RL	Units Q				
95-57-8	2-Chlorophenol	ND	5.6	ug/l				
59-50-7	4-Chloro-3-methyl phenol	ND	11	ug/l				
120-83-2	2,4-Dichlorophenol	ND	11	ug/l				
105-67-9	2,4-Dimethylphenol	ND	11	ug/l				
51-28-5	2,4-Dinitrophenol	ND	22	ug/l				
534-52-1	4,6-Dinitro-o-cresol	ND	11	ug/l				
95-48-7	2-Methylphenol	ND	11	ug/l				
	3&4-Methylphenol	ND	11	ug/l				
88-75-5	2-Nitrophenol	ND	11	ug/l				
100-02-7	4-Nitrophenol	ND	22	ug/l				
87-86-5	Pentachlorophenol	ND	11	ug/l				
108-95-2	Phenol	ND	5.6	ug/l				
95-95-4	2,4,5-Trichlorophenol	ND	11	ug/l				
88-06-2	2,4,6-Trichlorophenol	ND	11	ug/l				
85-68-7	Butyl benzyl phthalate	7.1	5.6	ug/l				
84-74-2	Di-n-butyl phthalate	ND	5.6	ug/l				
117-84-0	Di-n-octyl phthalate	ND	5.6	ug/l				
84-66-2	Diethyl phthalate	ND	5.6	ug/l				
131-11-3	Dimethyl phthalate	ND	5.6	ug/l				
117-81-7	bis(2-Ethylhexyl)phthalate	2.8	2.2	ug/l				
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits				
367-12-4	2-Fluorophenol	40%		15-110%				
4165-62-2	Phenol-d5	24%		15-110%				
118-79-6	2,4,6-Tribromophenol	58%	8% 15-110%					
4165-60-0	Nitrobenzene-d5	72%		30-130%				
321-60-8	2-Fluorobiphenyl	62%	30-130%					
1718-51-0	Terphenyl-d14	71%		30-130%				

ND = Not detected

RL = Reporting Limit

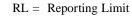
E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-12


Lab Sample ID:MC190-1Date Sampled:05/13/11Matrix:AQ - Ground WaterDate Received:05/13/11Percent Solids:n/a

Project: Hess:#21224 468 West St Amherst MA

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Antimony	< 6.0	6.0	ug/l	1	05/13/11	05/17/11 DA	EPA 200.7 ²	EPA 200.7 ³
Arsenic	9.5	4.0	ug/l	1	05/13/11	05/17/11 DA	EPA 200.7 ²	EPA 200.7 ³
Cadmium	< 4.0	4.0	ug/l	1	05/13/11	05/17/11 DA	EPA 200.7 ²	EPA 200.7 ³
Chromium	< 10	10	ug/l	1	05/13/11	05/17/11 DA	EPA 200.7 ²	EPA 200.7 ³
Copper	< 25	25	ug/l	1	05/13/11	05/17/11 DA	EPA 200.7 ²	EPA 200.7 ³
Iron	12400	100	ug/l	1	05/13/11	05/17/11 DA	EPA 200.7 ²	EPA 200.7 ³
Lead	< 5.0	5.0	ug/l	1	05/13/11	05/17/11 DA	EPA 200.7 ²	EPA 200.7 ³
Mercury	< 0.20	0.20	ug/l	1	05/14/11	05/16/11 MA	EPA 245.1 ¹	EPA 245.1 ⁴
Nickel	< 40	40	ug/l	1	05/13/11	05/17/11 DA	EPA 200.7 ²	EPA 200.7 ³
Selenium	< 10	10	ug/l	1	05/13/11	05/17/11 DA	EPA 200.7 ²	EPA 200.7 ³
Silver	< 5.0	5.0	ug/l	1	05/13/11	05/17/11 DA	EPA 200.7 ²	EPA 200.7 ³
Zinc	< 20	20	ug/l	1	05/13/11		EPA 200.7 ²	EPA 200.7 ³

(1) Instrument QC Batch: MA12970(2) Instrument QC Batch: MA12981(3) Prep QC Batch: MP17051(4) Prep QC Batch: MP17054

Page 1 of 1

Client Sample ID: MW-12

Lab Sample ID:MC190-1Date Sampled:05/13/11Matrix:AQ - Ground WaterDate Received:05/13/11Percent Solids:n/a

Project: Hess:#21224 468 West St Amherst MA

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chloride	4100	200	mg/l	200	05/16/11	CF	SM21 4500CL C
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	05/13/11 15:45	MC	SW846 7196A
Chromium, Trivalent ^a	< 0.020	0.020	mg/l	1	05/17/11 15:46	DA	6010/7196A M/200.7
Cyanide	< 0.010	0.010	mg/l	1	05/18/11 11:59	MA	EPA 335.4
Solids, Total Suspended	35.0	4.0	mg/l	1	05/16/11	BF	SM21 2540D

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Page 1 of 1

Client Sample ID: TANK PAD EX SOIL

 Lab Sample ID:
 MC190-2
 Date Sampled:
 05/13/11

 Matrix:
 SO - Soil
 Date Received:
 05/13/11

 Method:
 SW846 8015
 Percent Solids:
 96.6

Project: Hess:#21224 468 West St Amherst MA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 BH21044.D 1 05/16/11 WS n/a n/a GBH1136

Run #2

Run #1 15.2 g 15.0 ml 100 ul
Run #2

CAS No. Compound Result RLUnits Q TPH-GRO (VOA) ND 5.3 mg/kg CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits 615-59-8 2,5-Dibromotoluene 90% 36-148%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TANK PAD EX SOIL

 Lab Sample ID:
 MC190-2
 Date Sampled:
 05/13/11

 Matrix:
 SO - Soil
 Date Received:
 05/13/11

 Percent Solids:
 96.6

Project: Hess:#21224 468 West St Amherst MA

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	6.6	0.83	mg/kg	1	05/13/11	05/13/11 PY	SW846 6010C ¹	SW846 3050B ²

(1) Instrument QC Batch: MA12976(2) Prep QC Batch: MP17050

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Certification Exceptions
- Parameter Certifications (MA)
- Chain of Custody

Page 1 of 1

Parameter Certifications

Job Number: MC190 Account: ENVTRAC EnviroTrac

Project: Hess:#21224 468 West St Amherst MA

The following parameters included in this report are certified by the state of MA.

Parameter	CAS#	Method	Mat	Certification Status
Antimony	7440-36-0	EPA 200.7	AQ	Accutest is certified for this parameter.
Arsenic	7440-38-2	EPA 200.7	AQ	Accutest is certified for this parameter.
Cadmium	7440-43-9	EPA 200.7	AQ	Accutest is certified for this parameter.
Chromium	7440-47-3	EPA 200.7	AQ	Accutest is certified for this parameter.
Copper	7440-50-8	EPA 200.7	AQ	Accutest is certified for this parameter.
Iron	7439-89-6	EPA 200.7	AQ	Accutest is certified for this parameter.
Lead	7439-92-1	EPA 200.7	AQ	Accutest is certified for this parameter.
Mercury	7439-97-6	EPA 245.1	AQ	Accutest is certified for this parameter.
Nickel	7440-02-0	EPA 200.7	AQ	Accutest is certified for this parameter.
Selenium	7782-49-2	EPA 200.7	AQ	Accutest is certified for this parameter.
Silver	7440-22-4	EPA 200.7	AQ	Accutest is certified for this parameter.
Zinc	7440-66-6	EPA 200.7	AQ	Accutest is certified for this parameter.
Chloride	16887-00-6	SM21 4500CL C	AQ	Accutest is certified for this parameter.
Cyanide	57-12-5	EPA 335.4	AQ	Accutest is certified for this parameter.
Solids, Total Suspended		SM21 2540D	AQ	Accutest is certified for this parameter.

ACCUTEST:	CHAIN OF CUSTODY Accutest Laboratories of New England		PAGE OF
LABORATORIES	495 Technology Center West, Building One TEL, 508-481-6200 FAX: 508-481-7753	FED-EX Tracking #	Bottle Order Control #
	Www.accutest.com	Accutest Quote #	Accutest Job# MC190

LABORATORIES	•	495	Technolog	y Cent	er Wes	t, Buile	ding O	752			l l	Bottle Order Control w					1						
		112	L. 508-481 w		:rax:		81-773	5.5			^	Accutest Quote # Acc			Accutesi Job # MC190			1					
Client / Reporting Information	1.49	Project Information									+ · · · · · · · · · · · · · · · · · · ·				Matrix Codes	1							
SAVIO Truckti)	Project Name	255 2	1221	/											3		7					DW - Drinking Wate	
2 Merchant St Suite Z	468 We	468 west St.			Billing Information (If different from Report to)				to)				Cer		표					GW - Ground Water WW - Water SW Surface Water			
State Zip Signary MA 07047 Project Conject	A. he	ret NA	_	Comp	any Name	2						1			Z		2					SD - Soil SI - Sludge SFD-Sediment	
Project Conject Project Conject E mail	Project# 2 12	24		Stree	Address							1			섳	3	Ţ		0	,		OI - Oil LIQ - Other Liquid AIR - Air	
7 81 793-0074 Fax#	Client PO#	- /-	***	City			Sta	ite		Zip		X	177	9		Dioxan	bre		7			SOL - Other Solid WP - Wipe FB-Field Blank	
Sampler(s) Namo(s) Phone #	Project Manager	homedz		Attent	tion:			PC	O#			Hex	E	7	Z	Dia	VOC (phen	A	4	_ [EB Equipment Blan RB Rinse Blank TB Trip Blank	
7////			Collection	<u> </u>			N	lumber of	l prosorv	ud Bottles		Ø	10	10	188	2	3	4	10	2	1		
Serrole # Field ID / Point of Collection	MEOH/DI Vial#	Date	Time	Sampled by	Matrix	# of bottle	s Z Z	HZSO4	NON C	MEOH	Bisuffate	1 —	(Ť			S	ľ	\ <u>_</u>	٠,		LAB USE ONLY	
1 MW-12		5/13/11	11:29	15	Lw	10	XX	X	X		\sqcup	X	X	X	X.	\times	\leftarrow	-	-	-			-
1 SOURCE CACED		dela		100	\$																		
2 Tank pad ex soil		5/3/11	17:00	15	So	a			X	Х							1		X	X			
					-		H			H	\parallel					+	+						
							-			-							4		-				
							\Box										\pm						
-			-					H	\sqcup	+-	\parallel		_	4	-		+		-				
			1		i	Data	a Delive	rable I	nform	ation	ш					Cor	mmen	ts / Spec	ial Inst	ruçtio	L		l
Turnaround Time (Business days) Std. 10 Business Days	Approved By (Acc	cutest PM): / Date:		, –	Commerc Commerc					NYASP C				R	6) 🚜	M	lust	m-e	it (Gu	~1.	
Std. 5 Business Days (By Contract only) 5 Day RUSH		/			FULLT1 (CT RCP	Level 3+	4)			State For EDD For			_			J						<i>)</i>	
Day EMERGENCY 2 Day EMERGENCY	ISF					Commen			Only	Other		-		Ŀ	5.1	<u> </u>	M	-lu		M_{ν}	tr		
1 Day EMERGENCY Emergency & Rush T/A data available VIA Lablink		mple Custody m	uet he doc	antad "		Commen					last	dina -		dalis-					10	è Fi	54	115/293	Ü
Relinguished by Gampler: 1 MOSTENEE SIG	11 2:00		an be docum	<u> </u>	w eac	ume s		ished By		94991011	, moru	ung C	Juner		ry. ate Time	»:	- 1	Ceived By:					77
Relinquished by Sampler: Date Time:		Received By:	/				Relinqui	Relinquished By: Date Time:			r:	SAMPLES RECEIVED DIRECTLY RECEIVER FIELD SAMPLING											
Relinquished by: Date Time:		Received By:					Custody	Seal #			П.	itact of intact	P		where a	applicable	•		On to	-	Cooler	Temp. 17.6	

MC190: Chain of Custody

Page 1 of 2

V:508.481.6200

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: MC190 Client: ENVIROTRAC Immediate Client Services Action Required: No Client Service Action Required at Login: Date / Time Received: 5/13/2011 **Delivery Method:** Nο Project: HESS 21224 No. Coolers: Airbill #'s: N/A Y or N Y or N **Cooler Security** Sample Integrity - Documentation Y or N П 3. COC Present: **√** 1. Custody Seals Present: ✓ 1. Sample labels present on bottles: ✓ 4. Smpl Dates/Time OK ✓ 2. Custody Seals Intact: ✓ 2. Container labeling complete: 3. Sample container label / COC agree: ✓ Cooler Temperature Y or N 1. Temp criteria achieved: Υ Ν or Sample Integrity - Condition 2. Cooler temp verification: Infared gun 1 1. Sample recvd within HT: 3. Cooler media: Ice (bag) 2. All containers accounted for: 1 **Quality Control Preservatio** Y or N N/A 3. Condition of sample: Intact 1. Trip Blank present / cooler: **√** Sample Integrity - Instructions or N N/A **✓** 2. Trip Blank listed on COC: 1 1. Analysis requested is clear: 3. Samples preserved properly: ✓ 2. Bottles received for unspecified tests ✓ 4. VOCs headspace free: 3. Sufficient volume recvd for analysis: **✓ ✓** 4. Compositing instructions clear: ✓ 5. Filtering instructions clear: ✓ Comments 495 Technology Center West, Bldg One Accutest Laboratories Marlborough, MA

F: 508.481.7753

MC190: Chain of Custody

Page 2 of 2

06/08/11

Technical Report for

EnviroTrac

Hess:#21224 468 West St Amherst MA

Accutest Job Number: MC817

Sampling Date: 06/07/11

Report to:

EnviroTrac

patrickc@envirotrac.com

ATTN: Patrick Corcoran

Total number of pages in report: 9

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Lab Director

Client Service contact: Kristen Blanchard 508-481-6200

Certifications: MA (M-MA136,SW846 NELAC) CT (PH-0109) NH (250210) RI (00071) ME (MA00136) FL (E87579) NY (11791) NJ (MA926) PA (6801121) ND (R-188) CO MN (11546AA) NC (653) IL (002337) ISO 17025:2005 (L2235) This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories.

Test results relate only to samples analyzed.

Sections:

_

.

-1-

Table of Contents

Section 1: Sample Summary	3
Section 2: Sample Results	4
2.1: MC817-1: MW-12	5
Section 3: Misc. Forms	6
3.1: Parameter Certifications (MA)	7
3.2: Chain of Custody	

Sample Summary

EnviroTrac

Job No: MC817

Hess:#21224 468 West St Amherst MA

Sample Number	Collected Date	Time By	Received	Matrix d Code Type		Client Sample ID
Number	Date	Time By	Received	Couc	Турс	Sample 1D
MC817-1	06/07/11	11:55 RP	06/07/11	AQ	Ground Water	MW-12

Sample Results
Report of Analysis

Report of Analysis

Page 1 of 1

Client Sample ID: MW-12

Lab Sample ID:MC817-1Date Sampled:06/07/11Matrix:AQ - Ground WaterDate Received:06/07/11Percent Solids:n/a

Project: Hess:#21224 468 West St Amherst MA

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Total Residual Chlorine	< 0.050	0.050	mg/l	1	06/07/11 16:56	CF	SM21 4500CL F

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Certification Exceptions
- Parameter Certifications (MA)
- Chain of Custody

Parameter Certifications

Job Number: MC817

Account: ENVTRAC EnviroTrac

Project: Hess:#21224 468 West St Amherst MA

The following parameters included in this report are certified by the state of MA.

Parameter	CAS#	Method	Mat	Certification Status
Total Residual Chlorine		SM21 4500CL F	AQ	Accutest is certified for this parameter.

C

Page 1 of 1

	CCUTE			CH ₄₅		OGY CEI	NTER W OUGH,	VEST • MA 01	BUILD 752	NING C	DNE O	Ϋ́		ST JOB #: ST QUOTE	ø:	mc	2817
St. Winds of	CLIENT INFO			100 Mg 10		LITY INFO			-01-//	-	- (_ _	NALYTIC	AI INFO	MATION	Particle Total	MATRIX CODES
NAME ADDRESS CITY SEND REPORT T PHONE #	iro Trac exchant on MA Pick (o	Ltd	te2	PROJECT PROJECT	AMY No.	916 XSt EXS	18 14 14	iA			10101010101						DW - DRINKING WATER GW - GROUND WATER WW - WASTE WATER SO - SOIL SL - SLUDGE OI - OIL LIQ - OTHER LIQUID SOL - SOTHER
ACCUTEST	EIELD ID / DO	NAT OF COLUMN	CION	co	TIME SAMPLED BY: S					N S						SOLID	
SAMPLE #	FIELD ID / PC	OINT OF COLLECT	IUN	DATE	TIME	BY:	MA	¥ 10 E	NaOH HNO3	H2SO4	16	1					LAB USE ONLY
-1	_mw-	-19		0/7/11	11.55	P-	QW	2		X	X						
				, ,													
									11	+					++	-	
								\pm		-	+		 		+		
										+	-1-			-	+ +-		
							-+		\dashv	+	\vdash	\vdash	++		+	<u> </u>	
			·						\dashv	+			+	-	1	<u> </u>	
								\perp	$\perp \downarrow$	4			11	$\bot\bot$	1		
																	15C
			l														
	DATA TURNAROUNE	INFORMATION		·	DATA DELIV	/ERABI F	INFO	RMATIC	N	+		7.77		COMME	NTS/REMA	RKS	
14 DAYS 7 DAYS 48 HOUR OTHER	STANDARD REMERGENCY AROUND HARDCOPY. I	APPROVED BY EMERGENCY OR RU VED	SH IS FAX	STAND COMMI DISK D STATE OTHER	ARD ERCIAL "B" ELIVERABL FORMS (SPECIFY)	.E				_	£			livec	t St		1#31884
DEI WALTED	S. S.	AMPLE CUSTODY	MUST BE	OCUMENTE	D BELOW E				HANG	E POS					LIVERY		10 10 10 10 10 10 10 10 10 10 10 10 10 1
RELIGIOUS SAMPLER: 1. Contact of the Contact of th					RELING 2.	OUISHED	BY:			DATE TI	ME:	RECEIV	ED BY:				
RELINQUISHED	BY:	DATE TIME:	RECEIVED B	Y:		RELING	DUISHED	BY:			DATE TI	WE:	RECEIV	ED BY:			
RELINQUISHED E	BY:	DATE TIME:	3. RECEIVED BY	Y :		4.					Р	RESERVE V	4. MERE APPL	CABLE	01	LICE	TEMPERATURE
J.			5.													صراق	<i>Ø.</i> /_ c

MC817: Chain of Custody

Page 1 of 2

CCUTEST LABORATORIES

Accutest Laboratories V:508.481.6200

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: MC817 Client: ENVIROTRAC						Immediate Client Services Action Required:							
Date / Time Received: 6/7/2011			Delive	Delivery Method: Client Service A					Action Required at Login:				
Project: HESS 21224 AMHERS	ST		No. Co	olers:	1	Airbill #'s: N/A							
Cooler Security Y	or N			Y or	N	Sample Integrity - Documentation	Υ	or	N				
1. Custody Seals Present: 2. Custody Seals Intact:		4. Smpl Da	Present: ates/Time OK			Sample labels present on bottles: Container labeling complete: Sample container label / COC agree:	>						
1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media:	Y or ✓ Infared Ice (b	□ d gun				Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for:	Y	or	N				
Quality Control Preservatio	Y or	N N	<u>/A</u>			3. Condition of sample:		Intact					
Trip Blank present / cooler: Trip Blank listed on COC: Samples preserved properly: VOCs headspace free: Comments	□ 3		e 2			Sample Integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear: 5. Filtering instructions clear:	Y		N	N/A V			

495 Technology Center West, Bldg One F: 508.481.7753

MC817: Chain of Custody

Marlborough, MA www/accutest.com

Page 2 of 2

ATTACHMENT C

National Register Page 1 of 1

nps.gov

National Park Service U.S. Department of the Inte

National Register of Historic Places

HOME
BROWSE
ADVANCED SEARCH
DOWNLOAD CENTER
ABOUT

TITLE LIST DISPLAY

From: NPS Digital Library

Term(s) Searched: Massachusetts and Amherst

Records Displayed: 1 to 15 of 16

Go back to: Revise Search

Sort By: Title | Releva

Contact Us

STATUS HELP

Find A Park

History & Culture

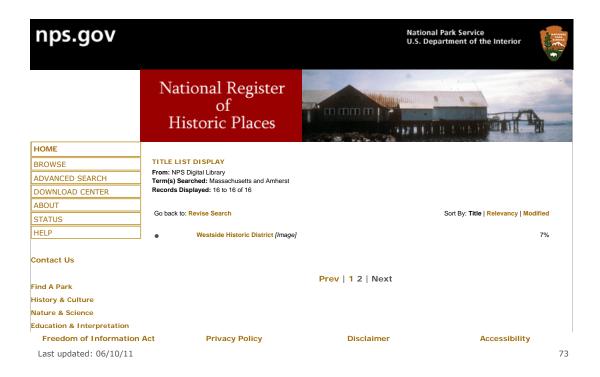
Nature & Science

Education & Interpretation

- Amherst Central Business District [Image]
- Amherst West Cemetery [Image]
- Baird House [Image]
- Conkey-Stevens House [Image]
- Cushman Village Historic District [Image]
- Dickinson Historic District [Image]
- Dickinson, Emily, House [Image]
- Dickinson, Emily, House [Image]
- East Village Historic District [Image]
- Goodwin Memorial African Methodist Episcopal Zion Church [Image]
- Lincoln--Sunset Historic District [Image]
- North Amherst Center Historic District [Image]
- Prospect--Gaylord Historic District [Image]
- South Amherst Common Historic District [Image]
- Strong House [Image]

Prev | 1 2 | Next

Freedom of Information Act


Privacy Policy

Disclaimer

Access

Last updated: 06/10/11

National Register Page 1 of 1

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Amherst; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

AMH 930 West Cemetery - Finnemore, Sarah Marker Triangle St Amherst 18	Inv. No.	Property Name	Street	Town	Year
AMH.331 West Cemetery - African American Civil War Soldier Triangle St Amherst 15 AMH.332 West Cemetery - Kellogg, Martin K. Obelisk Triangle St Amherst 18 AMH.433 West Cemetery - Boltwood, Lucius Marker Triangle St Amherst 17 AMH.469 Williams, B. H. House 20 Triangle St Amherst 18 AMH.467 Elder, David B. House 36 Triangle St Amherst 19 AMH.467 Elder, David B. House 36 Triangle St Amherst 19 AMH.467 Elder, David B. House 152 Triangle St Amherst 19 AMH.467 Elder, David B. House 152 Triangle St Amherst 19 AMH.468 Patterson, James - Lombard, Capt. Levi House 152 Triangle St Amherst 19 AMH.461 Tilder Cawid B. House 16 Tyler Pl Amherst 18 AMH.462 Field, Edwin G. House 24 Tyler Pl Amherst 18 AMH.463 Delta - Kappa Theta Fraternity House 35 Tyler Pl Amherst 18 AMH.569	AMH.929	West Cemetery - Joy, Levi Marker	Triangle St	Amherst	1785
AMH.332 West Cemetery - Kellogg, Martin K. Obelisk Triangle St Amherst 18 AMH.333 West Cemetery - Boltwood, Lucius Marker Triangle St Amherst 17 AMH.469 Dillon, Thomas House 28 Triangle St Amherst 18 AMH.467 Elder, David B. House 36 Triangle St Amherst 19 AMH.1003 Patterson, James - Lombard, Capt. Levi House 152 Triangle St Amherst 17 AMH.1003 Patterson, James - Lombard, Capt. Levi House 152 Triangle St Amherst 17 AMH.462 Field, Edwin G. House 16 Tyler Pl Amherst 18 AMH.463 Tyler, Williams Seymour House 24 Tyler Pl Amherst 18 AMH.465 Tyler, Williams Seymour House 35 Tyler Pl Amherst 18 AMH.671 Amherst 18 Amherst 18 AMH.570 Sabin, J. House West St Amherst 18 AMH.571 Sabin, J. House West St Amherst 19 AMH.552 Yel, L. House 332 West S	AMH.930	West Cemetery - Finnemore, Sarah Marker	Triangle St	Amherst	1842
AMH.333 West Cemetery - Boltwood, Lucius Marker Triangle St Amherst 17 AMH.468 Williams, B. H. House 20 Triangle St Amherst 18 AMH.468 Dillon, Thomas House 28 Triangle St Amherst 18 AMH.467 Elder, David B. House 36 Triangle St Amherst 19 AMH.467 Patterson, James - Lombard, Capt. Levi House 152 Triangle St Amherst 17 AMH.462 Field, Edwin G. House 10 Tyler Pl Amherst 18 AMH.465 Tyler, William Seymour House 24 Tyler Pl Amherst 18 AMH.465 Tyler, William Seymour House 24 Tyler Pl Amherst 18 AMH.466 Delta Tau Delta - Kappa Theta Fraternity House 35 Tyler Pl Amherst 18 AMH.569 Blodgett - Thurston, L. House West St Amherst 18 AMH.571 Sabin, J. House West St Amherst 18 AMH.572 West St Amherst 19 AMH.532 Uncluded Sculpture West St Amherst <td>AMH.931</td> <td>West Cemetery - African American Civil War Soldier</td> <td>Triangle St</td> <td>Amherst</td> <td>1961</td>	AMH.931	West Cemetery - African American Civil War Soldier	Triangle St	Amherst	1961
AMH.469 Williams, B. H. House 20 Triangle St Amherst 19 AMH.467 Elder, David B. House 28 Triangle St Amherst 19 AMH.1003 Patterson, James - Lombard, Capt. Levi House 152 Triangle St Amherst 17 AMH.1003 Patterson, James - Lombard, Capt. Levi House 152 Triangle St Amherst 17 AMH.464 Richardson, Mary Lincoln House 16 Tyler Pl Amherst 18 AMH.465 Tyler, William Seymour House 24 Tyler Pl Amherst 18 AMH.465 Delta Tau Delta - Kappa Theta Fraternity House 35 Tyler Pl Amherst 18 AMH.467 Blodgett - Thurston, L. House West St Amherst 18 AMH.570 Blodgett - Thurston, L. House West St Amherst 18 AMH.571 Sabin, J. House West St Amherst 18 AMH.572 Vest St Amherst 18 AMH.573 Vest St Amherst 18 AMH.574 Uncubed Sculpture West St Amherst 18 </td <td>AMH.932</td> <td>West Cemetery - Kellogg, Martin K. Obelisk</td> <td>Triangle St</td> <td>Amherst</td> <td>1854</td>	AMH.932	West Cemetery - Kellogg, Martin K. Obelisk	Triangle St	Amherst	1854
AMH.488 Dillon, Thomas House 28 Triangle St Amherst 19 AMH.467 Elder, David B. House 36 Triangle St Amherst 19 AMH.1073 Patterson, James - Lombard, Capt. Levi House 152 Triangle St Amherst 17 AMH.462 Field, Edwin G. House 10 Tyler Pl Amherst 18 AMH.465 Tyler, William Seymour House 24 Tyler Pl Amherst 18 AMH.466 Tyler, William Seymour House 24 Tyler Pl Amherst 18 AMH.466 Delta Tau Delta - Kappa Theta Fraternity House 35 Tyler Pl Amherst 19 AMH.569 Blodgett - Thurston, L. House West St Amherst 18 AMH.570 Sabin, J. House West St Amherst 18 AMH.571 Sabin, J. House West St Amherst 19 AMH.572 West St Amherst 19 AMH.573 Untitled Sculpture West St Amherst 19 AMH.552 Yale, L. House 32 West St Amherst 19 <	AMH.933	West Cemetery - Boltwood, Lucius Marker	Triangle St	Amherst	1792
AMH.467 Elder, David B. House 36 Triangle St Amherst 152 Mhl.1003 AMH.1003 Patterson, James - Lombard, Capt. Levi House 152 Triangle St Amherst 173 Mherst 174 Mherst 174 Mherst 175 Mherst 186 Mhl.464 Amherst 186 Mhl.464 Richardson, Mary Lincoln House 16 Tyler Pl Amherst 18 Mhl.465 Tyler, William Seymour House 24 Tyler Pl Amherst 18 Mhl.465 Mhl.466 Delta Tau Delta - Kappa Theta Fraternity House 35 Tyler Pl Amherst 18 Mhl.613 Amherst 19 Mherst 19 Mh	AMH.469	Williams, B. H. House	20 Triangle St	Amherst	1903
AMH.1003 Patterson, James - Lombard, Capt. Levi House 152 Triangle St Amherst 177 AMH.462 Field, Edwin G. House 10 Tyler PI Amherst 18 AMH.465 Richardson, Mary Lincoln House 16 Tyler PI Amherst 18 AMH.465 Tyler, William Seymour House 24 Tyler PI Amherst 18 AMH.466 Delta Tau Delta - Kappa Theta Fraternity House 35 Tyler PI Amherst 18 AMH.613 Bodgett - Thurston, L. House West St Amherst 18 AMH.509 Blodgett - Thurston, L. House West St Amherst 18 AMH.571 Sabin, J. House West St Amherst 18 AMH.572 West St Amherst 19 AMH.942 Uncubed Sculpture West St Amherst 19 AMH.556 Yale, L. House 332 West St Amherst 18 AMH.557 Amh.556 Amherst 18 AMH.556 Yale, L. House 322 West St Amherst 18 AMH.556 <t< td=""><td>AMH.468</td><td>Dillon, Thomas House</td><td>28 Triangle St</td><td>Amherst</td><td>1930</td></t<>	AMH.468	Dillon, Thomas House	28 Triangle St	Amherst	1930
AMH. 462 Field, Edwin G. House 10 Tyler PI Amherst 18 AMH. 464 Richardson, Mary Lincoln House 16 Tyler PI Amherst 18 AMH. 465 Tyler, William Seymour House 24 Tyler PI Amherst 18 AMH. 466 Delta Tau Delta - Kappa Theta Fraternity House 35 Tyler PI Amherst 18 AMH. 567 Blodgett - Thurston, L. House West St Amherst 18 AMH. 570 West St Amherst 18 AMH. 571 Sabin, J. House West St Amherst 18 AMH. 572 West St Amherst 18 AMH. 938 Untitled Sculpture West St Amherst 19 AMH. 939 Unitled Sculpture West St Amherst 19 AMH. 550 Yale, L. House 32 West St Amherst 18 AMH. 558 Yale, L. House 32 West St Amherst 18 AMH. 559 Merrick, Aaron House 410 West St Amherst 18 AMH. 560 Williams, A Miller, C.	AMH.467	Elder, David B. House	36 Triangle St	Amherst	1903
AMH.464 Richardson, Mary Lincoln House 16 Tyler PI Amherst 18 AMH.465 AMH.465 Tyler, William Seymour House 24 Tyler PI Amherst 18 AMH.466 AMH.465 Delta Tau Delta - Kappa Theta Fraternity House 35 Tyler PI Amherst 18 AMH.569 AMH.509 Blodgett - Thurston, L. House West St Amherst 18 AMH.570 AMH.571 Sabin, J. House West St Amherst 18 AMH.571 AMH.572 West St Amherst 18 AMH.572 AMH.381 Untitled Sculpture West St Amherst 19 AMH.572 AMH.392 Uncubed Sculpture West St Amherst 19 AMH.552 AMH.552 Uncubed Sculpture West St Amherst 18 AMH.552 AMH.553 Yale, L. House 33 West St Amherst 18 AMH.557 AMH.557 410 West St Amherst 18 AMH.557 AMH.561 Frick, Aaron House 410 West St Amherst 18 AMH.561 AMH.562 Williams, A Miller, C. House 577 West St Amherst	AMH.1003	Patterson, James - Lombard, Capt. Levi House	152 Triangle St	Amherst	1767
AMH.465 Tyler, William Seymour House 24 Tyler PI Amherst 18 AMH.466 Delta Tau Delta - Kappa Theta Fraternity House 35 Tyler PI Amherst 19 AMH.613 TV Dest Pomeroy Ln Amherst 18 AMH.569 Blodgett - Thurston, L. House West St Amherst 18 AMH.571 Sabin, J. House West St Amherst 18 AMH.932 Untitled Sculpture West St Amherst 19 AMH.938 Untitled Sculpture West St Amherst 19 AMH.952 Uncubed Sculpture West St Amherst 18 AMH.558 Yale, L. House 32 West St Amherst 18 AMH.559 Merrick, Aaron House 410 West St Amherst 18 AMH.559 Merrick, Aaron House 411 West St Amherst 18 AMH.561 Williams, A Miller, C. House 500 West St Amherst 18 AMH.562 Williams, A Miller, C. House 577 West St Amherst 18	AMH.462	Field, Edwin G. House	10 Tyler Pl	Amherst	1875
AMH.466 Delta Tau Delta - Kappa Theta Fraternity House 35 Tyler PI Amherst 19 AMH.613 71 West Pomeroy Ln Amherst 18 AMH.569 Blodgett - Thurston, L. House West St Amherst 18 AMH.571 Sabin, J. House West St Amherst 18 AMH.572 West St Amherst 18 AMH.938 Untitled Sculpture West St Amherst 19 AMH.942 Uncubed Sculpture West St Amherst 19 AMH.558 Yale, L. House 332 West St Amherst 18 AMH.559 Yale, L. House 332 West St Amherst 18 AMH.557 410 West St Amherst 18 AMH.558 Merrick, Aaron House 411 West St Amherst 18 AMH.561 600 West St Amherst 18 AMH.562 Williams, A Miller, C. House 570 West St Amherst 18 AMH.563 Miles - Dickinson House 611 West St Amherst 18 <td>AMH.464</td> <td>Richardson, Mary Lincoln House</td> <td>16 Tyler Pl</td> <td>Amherst</td> <td>1870</td>	AMH.464	Richardson, Mary Lincoln House	16 Tyler Pl	Amherst	1870
AMH.613 71 West Pomeroy Ln Amherst 18 AMH.569 Blodgett - Thurston, L. House West St Amherst 18 AMH.570 West St Amherst 18 AMH.571 Sabin, J. House West St Amherst 18 AMH.932 Untitled Sculpture West St Amherst 19 AMH.938 Untitled Sculpture West St Amherst 19 AMH.952 Uncubed Sculpture West St Amherst 18 AMH.552 165 West St Amherst 18 AMH.558 Yale, L. House 332 West St Amherst 18 AMH.557 410 West St Amherst 18 AMH.559 Merrick, Aaron House 411 West St Amherst 18 AMH.560 500 West St Amherst 18 AMH.561 500 West St Amherst 18 AMH.562 Williams, A Miller, C. House 577 West St Amherst 18 AMH.563 Miles - Dickinson House 611 West St Amherst 18 AMH.564 667 West St Amh	AMH.465	Tyler, William Seymour House	24 Tyler Pl	Amherst	1860
AMH.569 Blodgett - Thurston, L. House West St Amherst 18 AMH.570 Sabin, J. House West St Amherst 18 AMH.571 Sabin, J. House West St Amherst 18 AMH.938 Untitled Sculpture West St Amherst 19 AMH.942 Uncubed Sculpture West St Amherst 19 AMH.552 165 West St Amherst 18 AMH.558 Yale, L. House 332 West St Amherst 18 AMH.556 Yale, L. House 332 West St Amherst 18 AMH.557 410 West St Amherst 19 AMH.559 Merrick, Aaron House 441 West St Amherst 19 AMH.561 Merrick, Aaron House 410 West St Amherst 18 AMH.562 Williams, A Miller, C. House 500 West St Amherst 18 AMH.563 Miles - Dickinson House 611 West St Amherst 18 AMH.566 646 West St Amherst 19 <td>AMH.466</td> <td>Delta Tau Delta - Kappa Theta Fraternity House</td> <td>35 Tyler Pl</td> <td>Amherst</td> <td>1930</td>	AMH.466	Delta Tau Delta - Kappa Theta Fraternity House	35 Tyler Pl	Amherst	1930
AMH.570 Sabin, J. House West St Amherst 18 AMH.571 Sabin, J. House West St Amherst 18 AMH.572 West St Amherst 19 AMH.938 Untitled Sculpture West St Amherst 19 AMH.942 Uncubed Sculpture West St Amherst 19 AMH.552 166 West St Amherst 18 AMH.558 Yale, L. House 332 West St Amherst 18 AMH.556 400 West St Amherst 18 AMH.557 410 West St Amherst 18 AMH.559 Merrick, Aaron House 411 West St Amherst 18 AMH.561 600 West St Amherst 18 AMH.562 Williams, A Miller, C. House 577 West St Amherst 18 AMH.563 Miles - Dickinson House 611 West St Amherst 18 AMH.564 666 West St Amherst 19 AMH.565 685 West St Amherst 19 AMH.566 667 West St Amherst 18	AMH.613		71 West Pomeroy Ln	Amherst	1870
AMH.571 Sabin, J. House West St Amherst 18 AMH.938 Untitled Sculpture West St Amherst 19 AMH.938 Uncubed Sculpture West St Amherst 19 AMH.942 Uncubed Sculpture West St Amherst 19 AMH.552 165 West St Amherst 18 AMH.558 Yale, L. House 332 West St Amherst 18 AMH.557 40 West St Amherst 19 AMH.559 Merrick, Aaron House 441 West St Amherst 18 AMH.560 60 West St Amherst 18 AMH.561 70 West St Amherst 18 AMH.562 Williams, A Miller, C. House 577 West St Amherst 18 AMH.563 Miles - Dickinson House 611 West St Amherst 18 AMH.564 646 West St Amherst 19 AMH.565 685 West St Amherst 19 AMH.566 695 West St Amherst 19 AMH.568 Johnson, S. O. House 730 West St Amherst	AMH.569	Blodgett - Thurston, L. House	West St	Amherst	1800
AMH.572 West St Amherst 19 AMH.938 Untitled Sculpture West St Amherst 19 AMH.942 Uncubed Sculpture West St Amherst 19 AMH.552 165 West St Amherst 18 AMH.558 Yale, L. House 332 West St Amherst 18 AMH.556 400 West St Amherst 19 AMH.557 Merrick, Aaron House 410 West St Amherst 19 AMH.560 Merrick, Aaron House 410 West St Amherst 18 AMH.561 Merrick, Aaron House 414 West St Amherst 18 AMH.562 Williams, A Miller, C. House 570 West St Amherst 18 AMH.563 Miles - Dickinson House 611 West St Amherst 18 AMH.564 667 West St Amherst 19 AMH.565 Johnson, S. O. House 637 West St Amherst 19 AMH.573 Warner, Aaron Jr. House 916 West St Amherst 18 AMH.574 Darling House 1095 West St Amherst 18	AMH.570		West St	Amherst	1920
AMH.938 Untitled Sculpture West St Amherst 19 AMH.942 Uncubed Sculpture West St Amherst 19 AMH.552 Table L. House 332 West St Amherst 18 AMH.558 Yale, L. House 332 West St Amherst 18 AMH.556 400 West St Amherst 19 AMH.557 Merrick, Aaron House 411 West St Amherst 18 AMH.560 Merrick, Aaron House 441 West St Amherst 18 AMH.561 Merrick, C. House 500 West St Amherst 18 AMH.562 Williams, A Miller, C. House 577 West St Amherst 18 AMH.563 Miles - Dickinson House 611 West St Amherst 18 AMH.565 G67 West St Amherst 19 AMH.566 Johnson, S. O. House 635 West St Amherst 19 AMH.573 Warner, Aaron Jr. House 916 West St Amherst 18 AMH.574 Darling House 1095 West St	AMH.571	Sabin, J. House	West St	Amherst	1820
AMH.942 Uncubed Sculpture West St Amherst 18 AMH.552 Yale, L. House 332 West St Amherst 18 AMH.558 Yale, L. House 332 West St Amherst 18 AMH.556 AMH.557 410 West St Amherst 19 AMH.559 Merrick, Aaron House 441 West St Amherst 18 AMH.560 Merrick, Aaron House 441 West St Amherst 18 AMH.561 560 West St Amherst 18 AMH.562 Williams, A Miller, C. House 570 West St Amherst 18 AMH.563 Miles - Dickinson House 611 West St Amherst 18 AMH.564 646 West St Amherst 19 AMH.565 657 West St Amherst 19 AMH.566 Johnson, S. O. House 730 West St Amherst 18 AMH.573 Warner, Aaron Jr. House 916 West St Amherst 17 AMH.574 Darling House 1095 West St Amherst 18 AMH.8 Thayer, J. House 1120 West St Amherst	AMH.572		West St	Amherst	1900
AMH.552	AMH.938	Untitled Sculpture	West St	Amherst	1982
AMH.558 Yale, L. House 332 West St Amherst 18 AMH.556 400 West St Amherst 19 AMH.557 Merrick, Aaron House 410 West St Amherst 19 AMH.559 Merrick, Aaron House 410 West St Amherst 18 AMH.560 500 West St Amherst 18 AMH.561 560 West St Amherst 18 AMH.562 Williams, A Miller, C. House 577 West St Amherst 18 AMH.563 Miles - Dickinson House 611 West St Amherst 18 AMH.564 646 West St Amherst 18 AMH.565 657 West St Amherst 19 AMH.566 Johnson, S. O. House 730 West St Amherst 18 AMH.574 Darling House 1095 West St Amherst 17 AMH.8 Thayer, J. House 1120 West St Amherst 18	AMH.942	Uncubed Sculpture	West St	Amherst	1981
AMH.556 400 West St Amherst 19 AMH.557 410 West St Amherst 19 AMH.559 Merrick, Aaron House 410 West St Amherst 18 AMH.560 500 West St Amherst 18 AMH.561 560 West St Amherst 18 AMH.562 Williams, A Miller, C. House 577 West St Amherst 18 AMH.563 Miles - Dickinson House 611 West St Amherst 18 AMH.565 667 West St Amherst 19 AMH.566 685 West St Amherst 19 AMH.568 Johnson, S. O. House 730 West St Amherst 18 AMH.573 Warner, Aaron Jr. House 916 West St Amherst 18 AMH.574 Darling House 1095 West St Amherst 17 AMH.8 Thayer, J. House 1120 West St Amherst 18	AMH.552		165 West St	Amherst	1850
AMH.557 410 West St Amherst 19 AMH.559 Merrick, Aaron House 441 West St Amherst 18 AMH.560 500 West St Amherst 19 AMH.561 560 West St Amherst 18 AMH.562 Williams, A Miller, C. House 577 West St Amherst 18 AMH.563 Miles - Dickinson House 611 West St Amherst 18 AMH.564 646 West St Amherst 19 AMH.565 657 West St Amherst 19 AMH.566 Johnson, S. O. House 685 West St Amherst 18 AMH.573 Warner, Aaron Jr. House 916 West St Amherst 18 AMH.574 Darling House 1095 West St Amherst 17 AMH.8 Thayer, J. House 1120 West St Amherst 18	AMH.558	Yale, L. House	332 West St	Amherst	1820
AMH.559 Merrick, Aaron House 441 West St Amherst 18 AMH.560 500 West St Amherst 19 AMH.561 560 West St Amherst 18 AMH.562 Williams, A Miller, C. House 57 West St Amherst 18 AMH.563 Miles - Dickinson House 611 West St Amherst 19 AMH.564 646 West St Amherst 19 AMH.565 657 West St Amherst 19 AMH.566 Johnson, S. O. House 730 West St Amherst 18 AMH.573 Warner, Aaron Jr. House 916 West St Amherst 17 AMH.574 Darling House 1095 West St Amherst 18 AMH.8 Thayer, J. House 1120 West St Amherst 18	AMH.556		400 West St	Amherst	1920
AMH.560 AMH.561 AMH.562 AMH.562 Williams, A Miller, C. House AMH.563 AMH.563 Miles - Dickinson House AMH.564 AMH.565 AMH.565 AMH.566 AMH.566 AMH.566 AMH.566 AMH.567 AMH.568 AMH.574 Darling House AMH.574 Darling House AMH.574 AM	AMH.557		410 West St	Amherst	1920
AMH.561 560 West St Amherst 18 AMH.562 Williams, A Miller, C. House 577 West St Amherst 18 AMH.563 Miles - Dickinson House 611 West St Amherst 18 AMH.564 646 West St Amherst 19 AMH.565 657 West St Amherst 19 AMH.566 685 West St Amherst 19 AMH.568 Johnson, S. O. House 730 West St Amherst 18 AMH.573 Warner, Aaron Jr. House 916 West St Amherst 17 AMH.574 Darling House 1095 West St Amherst 18 AMH.8 Thayer, J. House 1120 West St Amherst 18	AMH.559	Merrick, Aaron House	441 West St	Amherst	1825
AMH.562 Williams, A Miller, C. House 577 West St Amherst 18 AMH.563 Miles - Dickinson House 611 West St Amherst 18 AMH.564 646 West St Amherst 19 AMH.565 - Gest West St Amherst 19 AMH.566 685 West St Amherst 19 AMH.568 Johnson, S. O. House 730 West St Amherst 18 AMH.573 Warner, Aaron Jr. House 916 West St Amherst 17 AMH.574 Darling House 1095 West St Amherst 18 AMH.8 Thayer, J. House 1120 West St Amherst 18	AMH.560		500 West St	Amherst	1900
AMH.563 Miles - Dickinson House 611 West St Amherst 18 AMH.564 646 West St Amherst 19 AMH.565 657 West St Amherst 19 AMH.568 Johnson, S. O. House 730 West St Amherst 18 AMH.573 Warner, Aaron Jr. House 916 West St Amherst 17 AMH.574 Darling House 1095 West St Amherst 18 AMH.8 Thayer, J. House 1120 West St Amherst 18	AMH.561		560 West St	Amherst	1880
AMH.564 646 West St Amherst 19 AMH.565 657 West St Amherst 19 AMH.566 685 West St Amherst 19 AMH.568 Johnson, S. O. House 730 West St Amherst 18 AMH.573 Warner, Aaron Jr. House 916 West St Amherst 17 AMH.574 Darling House 1095 West St Amherst 18 AMH.8 Thayer, J. House 1120 West St Amherst 18	AMH.562	Williams, A Miller, C. House	577 West St	Amherst	1850
AMH.565 657 West St Amherst 19 AMH.566 685 West St Amherst 19 AMH.568 Johnson, S. O. House 730 West St Amherst 18 AMH.573 Warner, Aaron Jr. House 916 West St Amherst 17 AMH.574 Darling House 1095 West St Amherst 18 AMH.8 Thayer, J. House 1120 West St Amherst 18	AMH.563	Miles - Dickinson House	611 West St	Amherst	1870
AMH.566 685 West St Amherst 19 AMH.568 Johnson, S. O. House 730 West St Amherst 18 AMH.573 Warner, Aaron Jr. House 916 West St Amherst 17 AMH.574 Darling House 1095 West St Amherst 18 AMH.8 Thayer, J. House 1120 West St Amherst 18	AMH.564		646 West St	Amherst	1920
AMH.568 Johnson, S. O. House 730 West St Amherst 18 AMH.573 Warner, Aaron Jr. House 916 West St Amherst 17 AMH.574 Darling House 1095 West St Amherst 18 AMH.8 Thayer, J. House 1120 West St Amherst 18	AMH.565		657 West St	Amherst	1900
AMH.573 Warner, Aaron Jr. House 916 West St Amherst 17 AMH.574 Darling House 1095 West St Amherst 18 AMH.8 Thayer, J. House 1120 West St Amherst 18	AMH.566		685 West St	Amherst	1920
AMH.574 Darling House 1095 West St Amherst 18 AMH.8 Thayer, J. House 1120 West St Amherst 18	AMH.568	Johnson, S. O. House	730 West St	Amherst	1840
AMH.8 Thayer, J. House 1120 West St Amherst 18	AMH.573	Warner, Aaron Jr. House	916 West St	Amherst	1770
AMH.8 Thayer, J. House 1120 West St Amherst 18	AMH.574	Darling House	1095 West St	Amherst	1830
AMH.903 Woodside Avenue Bridge over B & M Railroad Woodside Ave Amherst 19	AMH.8	Thayer, J. House	1120 West St	Amherst	1870
	AMH.903	Woodside Avenue Bridge over B & M Railroad	Woodside Ave	Amherst	1919
AMH.290 Goodwin Memorial African Methodist Episcopal 14 Woodside Ave Amherst 19	AMH.290		14 Woodside Ave	Amherst	1910
	AMH.288	·	58 Woodside Ave	Amherst	1837

May 17, 2011

Mr. Thomas Chapman, Supervisor U.S. Fish and Wildlife Service New England Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5087

Re: Hess Station # 21224

468 West Street, Amherst, MA 01002-2965

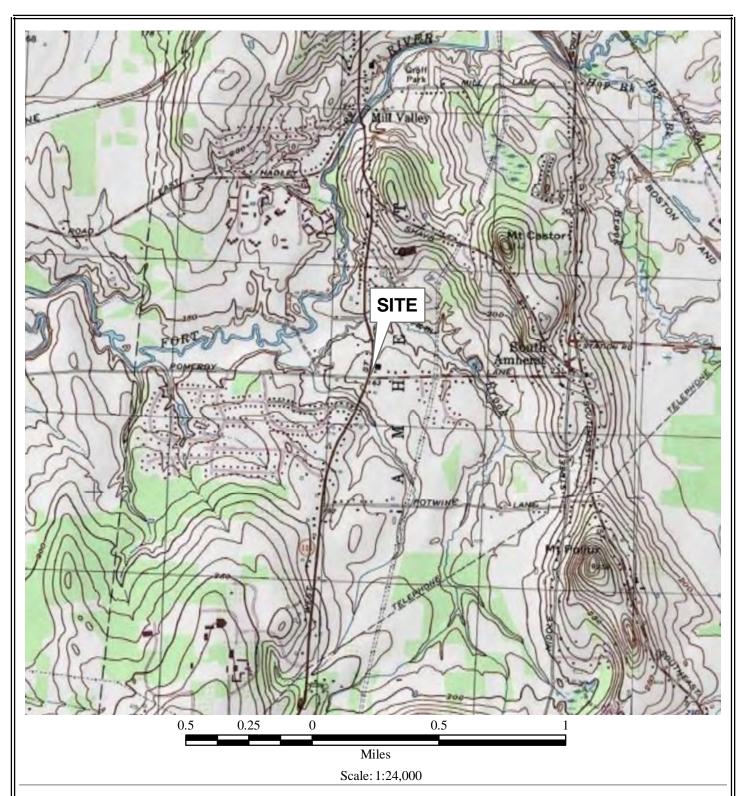
MassDEP RTN 1-18197

Dear Mr. Chapman:

EnviroTrac Ltd. (EnviroTrac) plans to prepare a Notice of Intent for coverage of a temporary discharge under the National Pollutant Discharge Elimination System (NPDES) Remediation & Miscellaneous Contaminated Sites General Permit (RGP) on behalf of Hess Corporation (Hess). The temporary discharge is expected to be less than one week and duration and will consist of treated groundwater generated during construction dewatering associated with the repair or replacement of an underground storage tank (UST). A site locus map is provided as **Figure 1**.

EnviroTrac plans to direct treated groundwater removed during dewatering activities to the catch basin located due north of the facility in West Street. This catch basin drains to a swale located approximately 250 feet north of the facility. The swale drains to Plum Brook, which ultimately drains to the Fort River. Plum Brook and the Fort River are both located in a National Heritage & Endangered Species Program Estimated Rare Wetland Habitat associated with the dwarf wedge mussel. Groundwater will be sampled prior to dewatering and during dewatering in accordance with RGP requirements.

Please advise whether the location of the proposed discharge is located within an area where the dwarf wedge mussel has been identified, or whether the proposed discharge is unlikely to affect the listed species. Should you have any questions, please contact the undersigned at (781) 793-0074.


Sincerely,

EnviroTrac Ltd.

Patrick D. Corcoran, LSP Senior Project Manager

cc: Mike Matri, Hess Corporation

Attachment: Site Locus Map

Hess Station #21224 468 West Street Amherst, MA 01002-2965

FIGURE 1

UTM Coordinates:

4,690,550 m North

704,320 m East

SITE LOCUS MAP UNITED STATES GEOLOGICAL SURVEY MT. HOLYOKE AND BELCHERTOWN, MA QUADRANGLES

Contour Interval: 10 ft.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5087 http://www.fws.gov/newengland

June 6, 2011

Mr. Patrick D. Corcoran EnviroTrac Environmental Services 2 Merchant Street Sharon, MA 02067

Dear Mr. Corcoran:

This responds to your May 17, 2011 letter requesting that we review a temporary discharge proposed under the National Pollutant Discharge Elimination System Remediation & Miscellaneous Contaminated Sites General Permit for information on the presence of federally endangered or threatened species. Our comments are provided in accordance with the Endangered Species Act (87 Stat. 884, as amended; 16 U.S.C. 1531, et seq.)

The temporary discharge will drain into a catch basin, through a swale, into a small brook (Plum Brook) before reaching the Fort River in Amherst, Massachusetts. The discharge will consist of treated groundwater generated during repair or replacement of an underground storage tank. Federally endangered dwarf wedgemussels are known to occur in the Fort River in the vicinity of the mouth of Plum Brook. Given the distance of the treated discharge to the Fort River and the number of wetlands the discharge may pass through, we anticipate that adverse effects are not likely to occur to dwarf wedgemussels located downstream of the mouth of Plum Brook. Preparation of a Biological Assessment or further consultation with us under section 7 of the Endangered Species Act is not required.

Thank you for your cooperation. Please contact Susi von Oettingen of this office at 603-223-2541, extension 22, if you have any questions or need additional assistance.

Sincerely yours,

Thomas R. Chapman Supervisor

New England Field Office