

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region 1 5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

CERTIFIED MAIL RETURN RECEIPT REQUESTED

JAN 1 3 2012

Mr. James M. Flynn Senior Vice President Century Bank 400 Mystic Avenue Medford, MA 02155

Re: Authorization to discharge under the Remediation General Permit (RGP) – MAG910000.Construction site located at 15 Elm Street Andover, MA 02180, Essex County; Authorization # MAG910516

Dear Mr. Flynn:

Based on the review of a Notice of Intent (NOI) submitted on behalf of Century Bank by the firm McPhail Associates, Inc., for the site referenced above, the U.S. Environmental Protection Agency (EPA) hereby authorizes you, as the named Owner and Operator, to discharge in accordance with the provisions of the RGP at that site. Your authorization number is listed above.

The checklist enclosed with this RGP authorization indicates the pollutants which you are required to monitor. Also indicated on the checklist are the effluent limits, test methods and minimum levels (MLs) for each pollutant. Please note that the checklist does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of this permit, including influent and effluent monitoring, narrative water quality standards, record keeping, and reporting requirements, found in Parts I and II, and Appendices I – VIII of the RGP. See EPA's website for the complete RGP and other information at: http://www.epa.gov/region1/npdes/mass.html#dgp.

Please note the enclosed checklist includes parameters that exceeded Appendix III limits. The checklist also includes other parameters for which your laboratory reports indicated there was insufficient sensitivity to detect these parameters at the minimum levels established in Appendix VI of the RGP.

Also, please note that the metals included on the checklist are dilution dependent pollutants and subject to limitations based on selected dilution ranges and technology-based ceiling limitations. For each parameter the dilution factor 6.58 for this site is within a dilution range greater than five to ten (>5-10), established in the RGP. (See the RGP Appendix IV for Massachusetts facilities). Therefore, the limits for arsenic of 50 ug/L,

copper of 26 ug/L, nickel of 145 ug/L, selenium of 25 ug/L, zinc of 333 ug/L and iron of 5,000 ug/L, are required to achieve permit compliance at your site.

Finally, please note the checklist of pollutants attached to this authorization is subject to a recertification if the operations at the site result in a discharge lasting longer than six months. A recertification can be submitted to EPA within six (6) to twelve (12) months of operations in accordance with the 2010 RGP regulations.

This general permit and authorization to discharge will expire on September 9, 2015. You have reported that this project will terminate on February 1, 2013. If for any reason the discharge terminates sooner you are required to submit a Notice of Termination (NOT) to the attention of the contact person indicated below within 30 days of project completion.

Thank you in advance for your cooperation in this matter. Please contact Victor Alvarez at 617-918-1572 or Alvarez.Victor@epa.gov, if you have any questions.

Sincerely,

Jay Wely

David M. Webster, Chief Industrial Permits Branch

Enclosure

cc: Kathleen Keohane, MassDEP Christopher M. Cronin, Andover Public Works Acting Director William J. Burns, McPhail Associates

2

2010 Remediation General Permit Summary of Monitoring Parameters^[11]

NPDES Authorization Number:		MAG910516		
Authorization Issued:	Janua	ry, 2012		
Facility/Site Name:	Const	ruction Site in Andover, MA		
		m Street, Andover, MA 02180		
2	Email	address of owner: jflynn@centurybank.com		
Legal Name of Operate		Century Bank		
Operator contact name, title, and Address:		Mr. James M. Flynn, Senior Vice President, 400 Mystic avenue Medford, MA 02155, Middlesex County		
		Email: Same as the Owner		
Estimated Date of Com	pletion	: February 1, 2013		
Category and Sub-Category:		Category III. Contaminated Construction Dewatering. Sub category A and B. General Urban Fill sites and Known Contaminated Sites, respectively.		
RGP Termination Date:		September 9, 2015		
Receiving Water:		Shawsheen River		

Monitoring & Limits are applicable if checked. All samples are to be collected as grab samples

	Parameter	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
\checkmark	1. Total Suspended Solids (TSS)	30 milligrams/liter (mg/L) **, 50 mg/L for hydrostatic testing **, Me#60.2/ML5ug/L
	2. Total Residual Chlorine (TRC) ¹	Freshwater = 11 ug/L ** Saltwater = 7.5 ug/L **/ Me#330.5/ML 20ug/L
\checkmark	3. Total Petroleum Hydrocarbons (TPH)	5.0 mg/L/ Me# 1664A/ML 5.0mg/L
	4. Cyanide (CN) ^{2,3}	Freshwater = 5.2 ug/l ** Saltwater = 1.0 ug/L **/ Me#335.4/ML 10ug/L
\checkmark	5. Benzene (B)	5ug/L /50.0 ug/L for hydrostatic testing only/ Me#8260C/ML 2 ug/L
	6. Toluene (T)	(limited as ug/L total BTEX)/ Me#8260C/ ML 2ug/L
	7. Ethylbenzene (E)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L
\checkmark	8. (m,p,o) Xylenes (X)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L

	Parameter	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
V	9. Total Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) ⁴	100 ug/L/ Me#8260C/ ML 2ug/L
	10. Ethylene Dibromide (EDB) (1,2- Dibromoethane)	0.05 ug/l/ Me#8260C/ ML 10ug/L
	11. Methyl-tert-Butyl Ether (MtBE)	70.0 ug/l/Me#8260C/ML 10ug/L
/	12.tert-Butyl Alcohol (TBA) (TertiaryButanol)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
	13. tert-Amyl Methyl Ether (TAME)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
	14. Naphthalene ⁵	20 ug/L /Me#8260C/ML 2ug/L
	15. Carbon Tetrachloride	4.4 ug/L /Me#8260C/ ML 5ug/L
	16. 1,2 Dichlorobenzene (o- DCB)	600 ug/L /Me#8260C/ ML 5ug/L
	17. 1,3 Dichlorobenzene (m- DCB)	320 ug/L /Me#8260C/ ML 5ug/L
	18. 1,4 Dichlorobenzene (p- DCB)	5.0 ug/L /Me#8260C/ ML 5ug/L
	18a. Total dichlorobenzene	763 ug/L - NH only /Me#8260C/ ML 5ug/L
	19. 1,1 Dichloroethane (DCA)	70 ug/L /Me#8260C/ ML 5ug/L
	20. 1,2 Dichloroethane (DCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
	21. 1,1 Dichloroethene (DCE)	3.2 ug/L/Me#8260C/ ML 5ug/L
	22. cis-1,2 Dichloroethene (DCE)	70 ug/L/Me#8260C/ ML 5ug/L
	23. Methylene Chloride	4.6 ug/L/Me#8260C/ ML 5ug/L
1	24. Tetrachloroethene (PCE)	5.0 ug/L/Me#8260C/ ML 5ug/L
	25. 1,1,1 Trichloro-ethane (TCA)	200 ug/L/Me#8260C/ ML 5ug/L
ā.	26. 1,1,2 Trichloro-ethane (TCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
	27. Trichloroethene (TCE)	5.0 ug/L /Me#8260C/ ML 5ug/L
	28. Vinyl Chloride (Chloroethene)	2.0 ug/L /Me#8260C/ ML 5ug/L
	29. Acetone	Monitor Only(ug/L)/Me#8260C/ML 50ug/L
	30. 1,4 Dioxane	Monitor Only /Me#1624C/ML 50ug/L
	31. Total Phenols	300 ug/L Me#420.1&420.2/ML 2 ug/L/ Me# 420.4 /ML 50ug/L
	32. Pentachlorophenol (PCP)	1.0 ug/L /Me#8270D/ML 5ug/L,Me#604 &625/ML 10ug/L
	33. Total Phthalates (Phthalate esters) ⁶	3.0 ug/L ** /Me#8270D/ML 5ug/L, Me#606/ML 10ug/L& Me#625/ML 5ug/L
10	34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	6.0 ug/L /Me#8270D/ML 5ug/L,Me#606/ML 10ug/L & Me#625/ML 5ug/L

	Parameter	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
	35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)	10.0 ug/L
	a. Benzo(a) Anthracene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	b. Benzo(a) Pyrene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	c. Benzo(b)Fluoranthene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	d. Benzo(k)Fluoranthene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	e. Chrysene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	f. Dibenzo(a,h)anthracene 7	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	g. Indeno(1,2,3-cd) Pyrene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML5ug/L
	36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)	100 ug/L
	h. Acenaphthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	i. Acenaphthylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	j. Anthracene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	k. Benzo(ghi) Perylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	I. Fluoranthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	m. Fluorene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	n. Naphthalene ⁵	20 ug/l / Me#8270/ML 5ug/L, Me#610/ML 5ug/L & Me#625/ML 5ug/L
	o. Phenanthrene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	p. Pyrene	X/Me#8270D/ML5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	37. Total Polychlorinated Biphenyls (PCBs) ^{8,9}	0.000064 ug/L/Me# 608/ ML 0.5 ug/L
V	38. Chloride	Monitor only/Me# 300.0/ ML 0.1ug/L

consitive ontents or pressed inc.	<u>Total Recoverable</u> <u>Metal Limit @ H ¹⁰=</u>	nalis natietien. Natietienen par
(Serv	50 mg/l CaCO3 for discharges in	
Metal parameter	Massachusetts (ug/l) ^{11/12}	<u>Minimum</u> level=ML

	And a strange of the second strange of the	Freshwater	
	39. Antimony	5.6/ML 10	
\checkmark	40. Arsenic **	50/ML20	
	41. Cadmium **	0.2/ML10	
	42. Chromium III (trivalent) **	48.8/ML15	
	43. Chromium VI (hexavalent) **	11.4/ML10	i Jacon (181
\checkmark	44. Copper **	26/ML15	
	45. Lead **	1.3/ML20	A STREET STREET
	46. Mercury **	0.9/ML0.2	1.
\checkmark	47. Nickel **	145/ML20	
\checkmark	48. Selenium **	25/ML20	
	49. Silver	1.2/ML10	
\checkmark	50. Zinc **	333/ML15	a honorad h
\checkmark	51. Iron	5,000/ML 20	

	Other Parameters	Limit
\checkmark	52. Instantaneous Flow	Site specific in CFS
\checkmark	53. Total Flow	Site specific in CFS
	54. pH Range for Class A & Class B Waters in MA	6.5-8.3; 1/Month/Grab13
	55. pH Range for Class SA & Class SB Waters in MA	6.5-8.3; 1/Month/Grab13
	56. pH Range for Class B Waters in NH	6.5-8; 1/Month/Grab ¹³
	57. Daily maximum temperature - Warm water fisheries	83°F; 1/Month/Grab ¹⁴
	58. Daily maximum temperature - Cold water fisheries	68°F; 1/Month/Grab ¹⁴
	59. Maximum Change in Temperature in MA - Any Class A water body	1.5°F; 1/Month/Grab ¹⁴
	60. Maximum Change in Temperature in MA - Any Class B water body- Warm Water	5°F; 1/Month/Grab ¹⁴
	61. Maximum Change in Temperature in MA – Any Class B water body - Cold water and Lakes/Ponds	3°F; 1/Month/Grab ¹⁴
	62. Maximum Change in Temperature in MA – Any Class SA water body - Coastal	1.5°F; 1/Month/Grab ¹⁴
	63. Maximum Change in Temperature in MA – Any Class SB water body - July to September	1.5°F; 1/Month/Grab ¹⁴
	64. Maximum Change in Temperature in MA –Any Class SB water body - October to June	4°F; 1/Month/Grab ¹⁴

Footnotes:

¹ Although the maximum values for TRC are 11ug/l and 7.5 ug/l for freshwater, and saltwater respectively, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., Method 330.5, 20 ug/l). ² Limits for cyanide are based on EPA's water quality criteria expressed as

micrograms per liter. There is currently no EPA approved test method for free cyanide. Therefore, total cyanide must be reported.

³ Although the maximum values for cyanide are 5.2 ug/l and 1.0 ug/l for freshwater and saltwater, respectively, the compliance limits are equal to the minimum level (ML) of the Method 335.4 as listed in Appendix VI (i.e., 10 ug/l).

⁴ BTEX = sum of Benzene, Toluene, Ethylbenzene, and total Xylenes.

⁵ Naphthalene can be reported as both a purgeable (VOC) and extractable (SVOC) organic compound. If both VOC and SVOC are analyzed, the highest value must be used unless the QC criteria for one of the analyses is not met. In such cases, the value from the analysis meeting the QC criteria must be used.

⁶ The sum of individual phthalate compounds(not including the #34, Bis (2-Ethylhexyl) Phthalate . The compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measurement of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁷ Although the maximum value for the individual PAH compounds is 0.0038 ug/l, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

⁸ In the November 2002 WQC, EPA has revised the definition of Total PCBs for aquatic life as total PCBs is the sum of all homologue, all isomer, all congener, or all "Oroclor analyses." Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measure of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁹Although the maximum value for total PCBs is 0.000064 ug/l, the compliance limit is equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., 0.5 ug/l for Method 608 or 0.00005 ug/l when Method 1668a is approved).
¹⁰ Hardness. Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc are Hardness Dependent.

¹¹ For a Dilution Factor (DF) from 1 to 5, metals limits are calculated using DF times the base limit for the metal. See Appendix IV. For example, iron limits are calculated using DF x 1,000ug/L (the iron base limit). Therefore DF is 1.5, the iron limit will be 1,500 ug/L; DF 2, then iron limit =1,000 x 2 =2,000 ug/L., etc. not to exceed the DF=5.

¹² Minimum Level (ML) is the lowest level at which the analytical system gives a recognizable signal and acceptable calibration point for the analyte. The ML represents the lowest concentration at which an analyte can be measured with a known level of confidence. The ML is calculated by multiplying the laboratory-determined method detection limit by 3.18 (see 40 CFR Part 136, Appendix B).

¹³pH sampling for compliance with permit limits may be performed using field methods as provided for in EPA test Method 150.1.

Temperature sampling per Method 170.1

NOTICE OF INTENT FOR DISCHARGE UNDER MASSACHUSETTS REMEDIAL GENERAL PERMIT MAG910000

15 ELM STREET

ANDOVER

MASSACHUSETTS

to

U.S. Environmental Protection Agency and Massachusetts Department of Environmental Protection

December 29, 2011

Project No. 5274

December 29, 2011

U.S Environmental Protection Agency RGP-NOC Processing Municipal Assistance Unit (CMU) 1 Congress Street, Suite 1100 Boston, MA 02114-2023

Attention: RGP-NOC Processing

Reference: 15 Elm Street; Boston, Massachusetts Notice of Intent for Construction Dewatering Discharge Under Massachusetts Remedial General Discharge MAG910000

Ladies and Gentlemen:

The purpose of this letter report is to provide a summary of the site and groundwater quality information in support of an application for permission from the U.S. Environmental Protection Agency (EPA) for the temporary discharge of groundwater into the Shawsheen River via the Town of Andover storm drain system during construction at the above referenced site. Refer to **Figure 1** Project Location Plan for the general site locus.

These services were performed and this permit application was prepared with the authorization of Century Bank. These services are subject to the limitations contained in **Attachment A**.

Fronting onto Elm Street to the north, the subject site is bounded by commercial properties to the east, west and south. Currently, a vacant one-story wood and brick building occupies the northern portion of the 15,182 square-foot site. The northern portion of the existing building contains a partial basement with the lowest level slab located at approximately Elevation +168. The lowest level slab of the southern portion of the existing building is approximately coincident with the existing grade at about Elevation +174.7. A canopy currently extends from the front of the building along Elm Street. The remaining portions of the subject site not covered by the footprint of the building consist of asphalt paved surfaces. Existing conditions of the subject site are shown on **Figure 2**, Subsurface Investigation Plan.

Historical research indicates that the subject site was formerly occupied by a gasoline station which ceased operation in 1984. Reportedly, two (2) 5,000-gallon, one 1,000-gallon, and one 500-gallon capacity underground storage tanks (USTs) containing gasoline, fuel oil and waste oil, respectively, formerly existed at the subject site. It is understood that during 1984 and 1987, these tanks were removed and disposed of off-site.

The subject site is listed with the DEP under Release Tracking Numbers (RTNs) 3-1066 and 3-16672. Initially in 1988, the subject site was listed by the DEP as a Location to be Investigated to which RTN 3-1066 was assigned. According to reports prepared by others, from 1992 through 1996 response actions were implemented at the subject site to recover non-aqueous phase liquid (NAPL) from on-site monitoring wells. In 1996, the results of post-remedial groundwater testing indicated that a Permanent Solution was achieved and as a result a Waiver Completion Statement was submitted to the DEP for RTN 3-1066.

In conjunction with filing of the Waiver Completion Statement, a Downgradient Property Status (DPS) was also submitted to the DEP for petroleum contamination identified in groundwater at the southeastern portion of the subject site. Subsequently, the DEP assigned RTN 3-16672 to the subject site. The DPS indicated that the source of the contamination at the southeastern portion of the subject site was related to

US EPA Massachusetts DEP December 29, 2011 Page 2

a release of diesel fuel and fuel oil documented on the abutting parcel. In 2006, a Class A-2 Response Action Outcome (RAO) was filed for the release indicating that a Permanent Solution and a Condition of No Significant Risk had been achieved at the site.

It is understood that redevelopment of the subject site will include demolition of a portion of the existing structure and construction of a new building in approximately the same location. The planned redevelopment will include the construction of a slab on grade addition. Dewatering is anticipated to facilitate removal of the existing foundations and to prepare new foundation bearing surfaces.

It is estimated that intermittent groundwater discharge required during the excavation phase of construction will be on the order of 20 to 35 gallons per minute (GPM). This rate of groundwater discharge is based on the relatively pervious nature of the existing fill material and the depth of excavation below the surface of groundwater. These estimates of discharge do not include surface runoff which will be removed from the excavation during a limited duration of a rain storm and shortly thereafter.

Based upon the historical presence of petroleum contamination in soil and groundwater at the subject site, temporary on-site collection and recharge of groundwater may alter groundwater flow direction at the subject site causing on-site residual contamination to migrate off-site. Although recent groundwater testing has not detected petroleum constituents in excess of the EPA effluent limits, residual petroleum contamination may be encountered during temporary construction dewatering. The discharge of groundwater will enter the Shawsheen River via the Town of Andover storm water system under the requested U.S. EPA Remediation General Permit (RGP).

Construction dewatering will require the discharge of collected groundwater into the storm drain system under the requested Remedial General Permit. A review of available subgrade utility plans provided by the Town of Andover indicates that a dedicated storm drain runs beneath Elm Street. The dedicated storm drain beneath Elm Street flows northwest beneath High Street to North Main Street connecting to a 12-inch storm drain. The 12-inch diameter storm drain flows northwest beneath North Main Street where it increases in size to 20 inches in diameter and discharges into the Shawsheen River. Additionally, during surcharged conditions, storm water is diverted to a 15-inch diameter storm drain beneath Central Street. The dedicated storm drain beneath Central Street flows southwest connecting to a 66-inch diameter storm drain that runs to the west and southwest beneath existing structures. The 66-inch storm drain eventually flows beneath Lupine Road and discharges into Rogers Brook, a tributary of the Shawsheen River. The flow path of the discharge is shown on plans provided by the Town of Andover which are included in **Figures 3A** and **3B**

Based on the historical presence of petroleum contamination at the subject site, dewatered groundwater may be affected by elevated levels of petroleum hydrocarbons and polynuclear aromatic hydrocarbons (PAHs). Therefore, it is our opinion that a settling tank, bag filter and a granular activated carbon filter will be required to settle out particulate matter and reduce potential levels of petroleum constituents in the water to meet allowable total suspended solids (TSS), total petroleum hydrocarbon and PAH discharge limits established by the US EPA prior to discharge. One settling tank, 2,000-gallons in capacity, two bag filters and a granular activated carbon filter will be incorporated into the discharge system in series in order to meet allowable discharge limits for TSS, total petroleum hydrocarbons and PAHs established by the RGP. A schematic of the treatment system is shown on **Figure 4**.

US EPA Massachusetts DEP December 29, 2011 Page 3

To document the effectiveness of the sedimentation and granular activated carbon filtration, samples of the effluent will be obtained and tested for the presence of TSS, total petroleum hydrocarbons and/or PAHs prior to the start of discharge into the storm drain system. Should the pre-start up testing indicate that the levels of TSS, petroleum hydrocarbon and/or PAHs in the effluent from the treatment system exceed the limits established under the RGP, additional treatment of the effluent will be implemented prior to initial discharge.

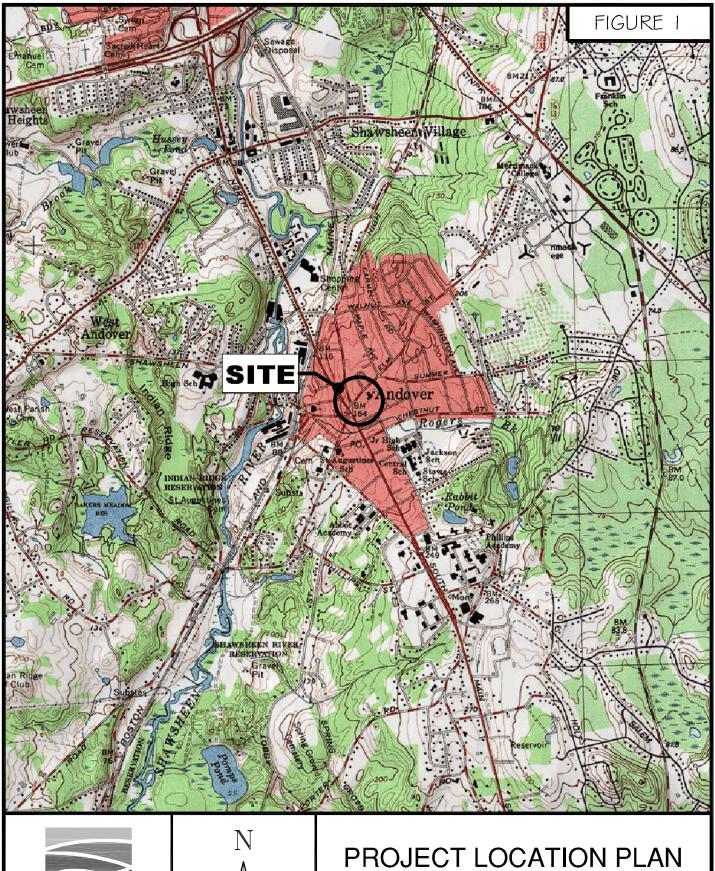
Should the results of testing for petroleum hydrocarbons and PAHs continue to indicate an exceedance of the RGP limit concentrations, appropriate treatment will be implemented to address the exceedances. In addition, should other contaminants be detected within the discharge water during the construction dewatering phase of the project at levels that exceed the effluent limitations, mitigative measures will be implemented to meet the allowable discharge limits.

In conclusion, it is our opinion that groundwater at the site is acceptable for discharge into the Shawsheen River via the Town of Andover storm drain system under a Remedial General Permit. Sampling and analysis of the effluent will be carried out in accordance with the terms of the Remedial General Permit.

Supplemental information appended to this letter in support of the RGP includes the following;

- Notice of Intent Transmittal Form for Permit Application (Appendix B)
- A summary of groundwater analysis (Appendix C, Tables 1 and 2);
- A review of Areas of Critical Concern and Endangered and Threatened Species (Appendix D);
- A review of National Historic Places (Attachment E); and
- Best Management Practice Plan (Appendix F)

We trust that the above satisfies your present requirements. Should you have any questions or comments concerning the above, please do not hesitate to contact us.

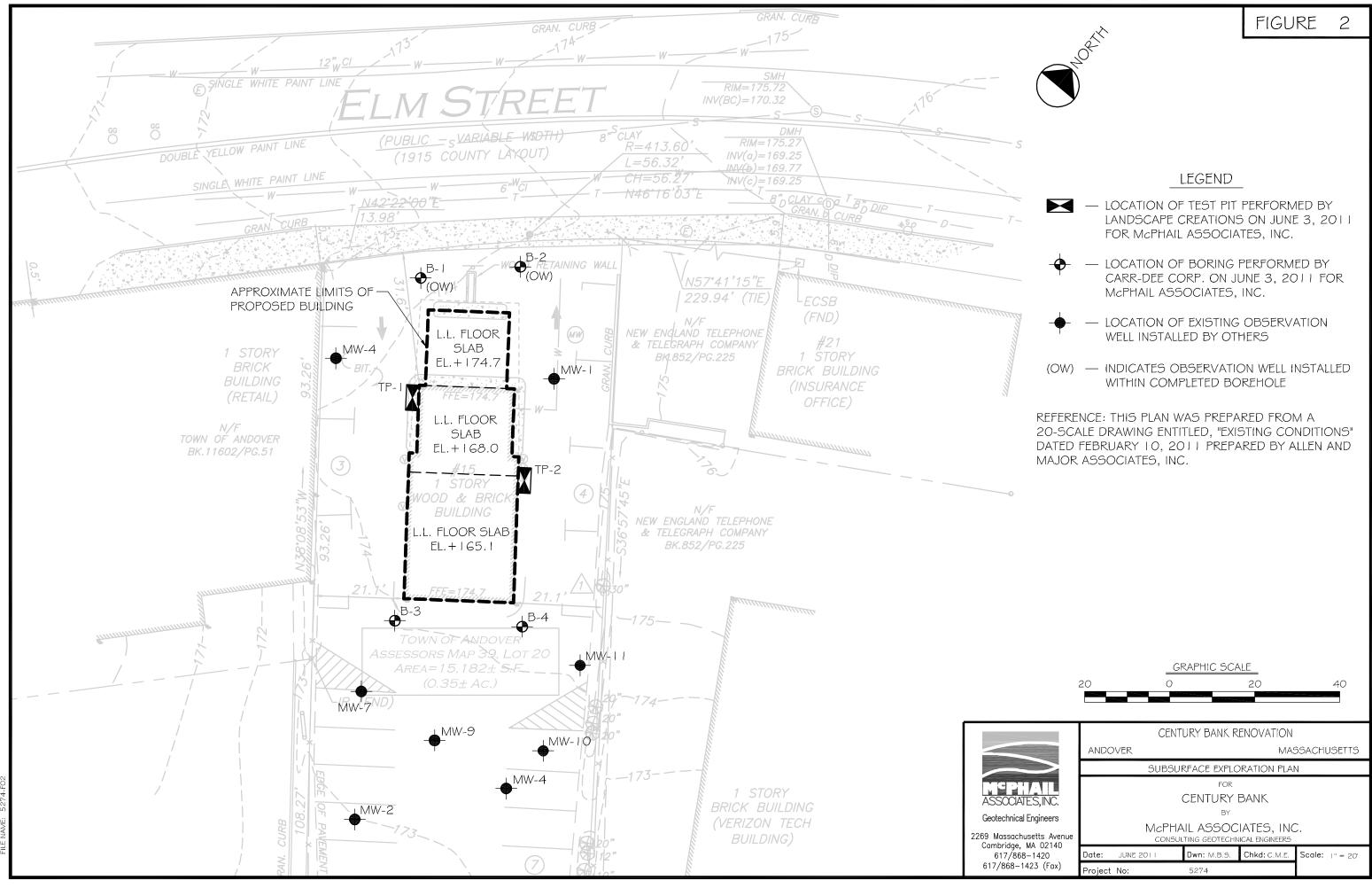

Very truly yours,

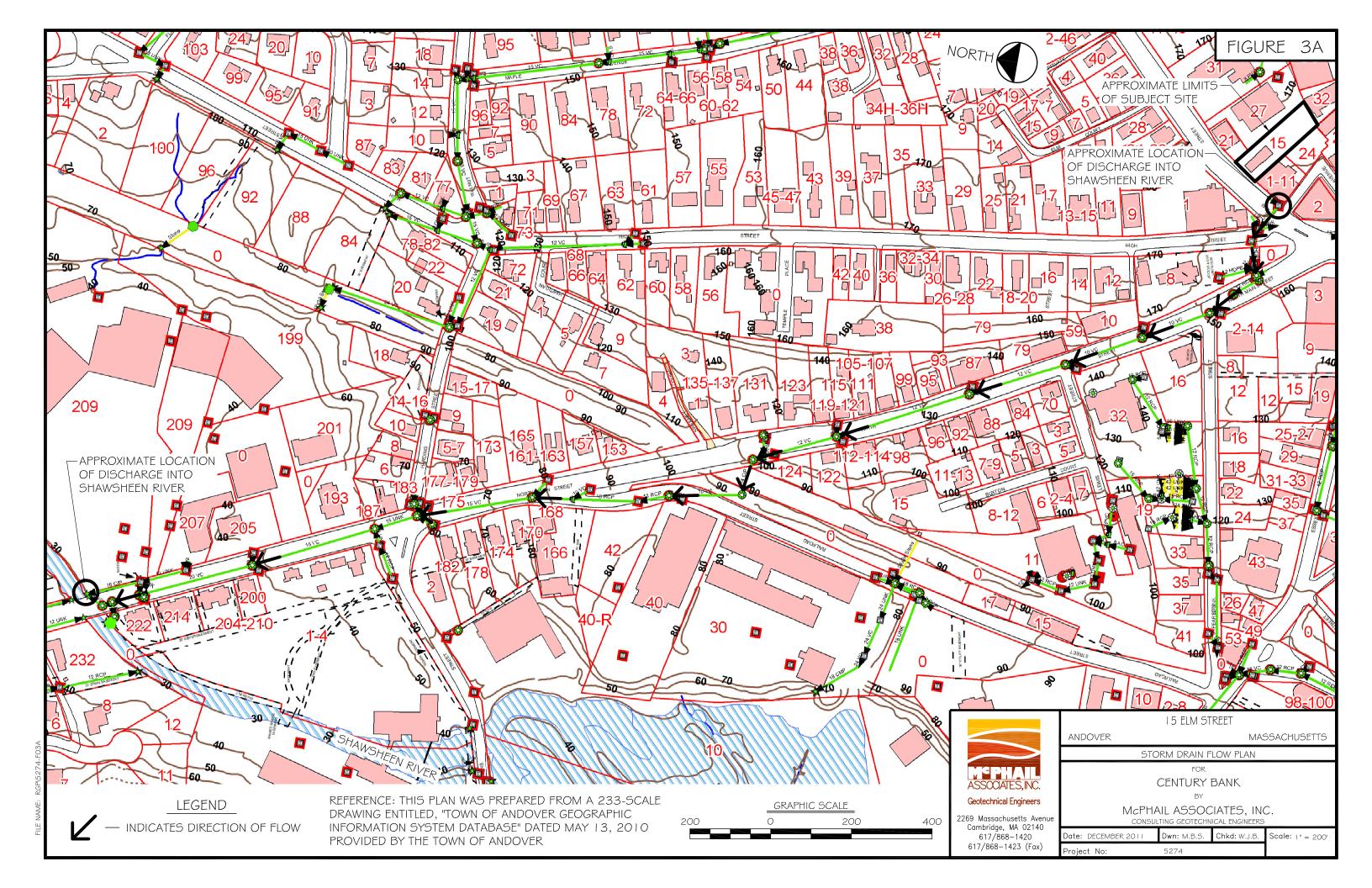
McPHAIL ASSOCIATES, INC.

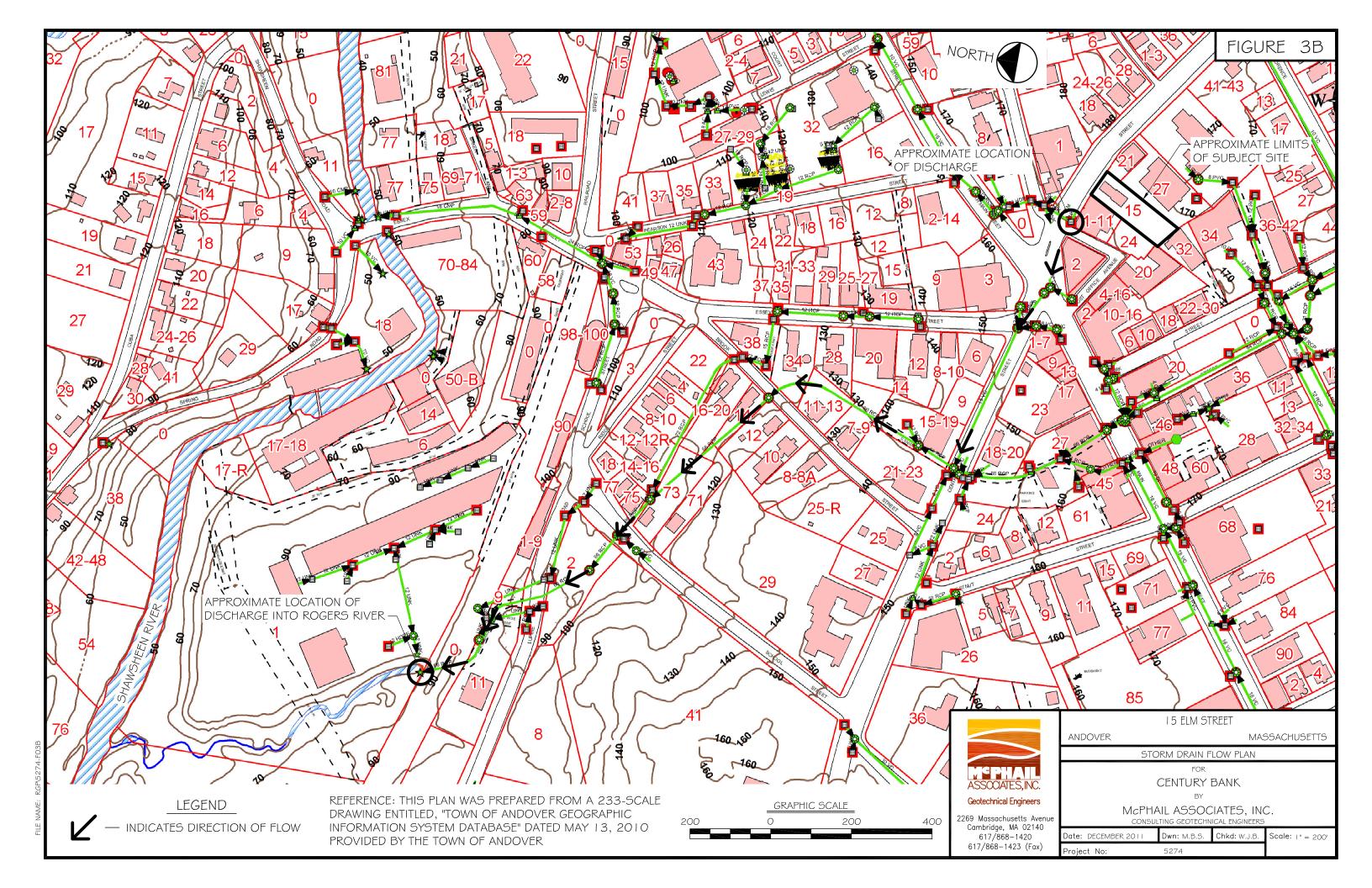
William J. Burns

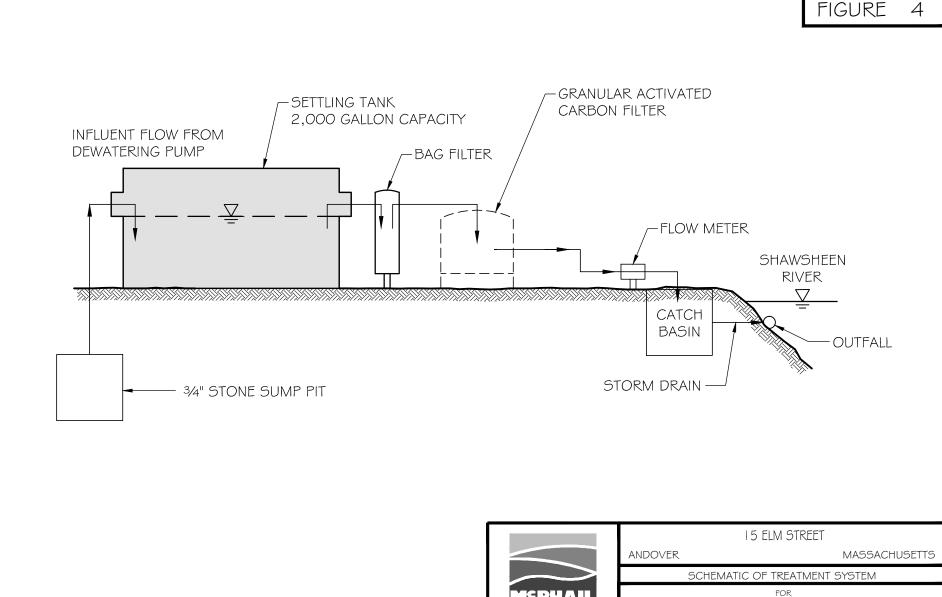
Peter J. DeChaves, L.S.P. Enclosures F:\WP5\REPORTS\5274 RGP.wpd

wJB/jwp/ajd


Geotechnical Engineers 2269 Massachusetts Avenue Cambridge, MA 02140 617/868–1420 617/868–1423 (Fax)


SCALE 1:25,000


ANDOVER


MASSACHUSETTS

CENTURY BANK RENOVATION

ASSOCIATES, INC.

Geotechnical Engineers

2269 Massachusetts Avenue Cambridge, MA 02140 617/868-1420

617/868-1423 (Fax)

CENTURY BANK

ΒY

MCPHAIL ASSOCIATES, INC. CONSULTING GEOTECHNICAL ENGINEERS

Chkd: W.J.B.

Scale: N.T.S.

Dwn: F.G.P.

5274

Date: DECEMBER 2011

Project No:

ATTACHMENT A

LIMITATIONS

The purpose of this report is to present the results of testing of groundwater samples obtained from monitoring wells located at 15 Elm Street in Andover, Massachusetts, in support of an application for approval of temporary construction site dewatering discharge into surface waters of the Commonwealth of Massachusetts under EPA's Massachusetts Remedial General Permit MAG910000.

The observations were made under the conditions stated in this report. The conclusions presented above were based on these observations. If variations in the nature and extent of subsurface conditions between the widely spaced subsurface explorations become evident in the future, it will be necessary to re-evaluate the conclusions presented herein after performing on-site observations and noting the characteristics of any variations.

The conclusions submitted in this report are based in part upon chemical test data obtained from analysis of groundwater samples, and are contingent upon their validity. The data have been reviewed, and interpretations have been made in the text. It should also be noted that fluctuations in the types and levels of contaminants and variations in their flow paths may occur due to changes in seasonal water table, past practices used in disposal and other factors.

Chemical analyses have been performed for specific constituents during the course of this site assessment, as described in the text. However, it should be noted that additional chemical constituents not searched for during the current study may be present in soil and/or groundwater at the site.

This report and application have been prepared on behalf of and for the exclusive use of Century Bank. This report and the findings contained herein shall not, in whole or in part, be disseminated or conveyed to any other party nor used in whole or in part by any other party without prior written consent of McPhail Associates, Inc.

APPENDIX B

Notice of Intent Transmittal Form

<u>B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit</u>

1. General facility/site information. Please provide the following information about the site:

a) Name of facility/site : 15 Elm Street			Facility/site mailing address:			
Location of facility/site : longitude: 71.1401 latitude: 42.6574	Facility SIC code(s):	Street:	15 Elm Street			
b) Name of facility/site owner: DAZ ,LLC	· ·	Town: Andover				
Email address of facility/site owner:				Zip: 02180		County: ESSEX
Telephone no. of facility/site owner :978-23	34-1205	L				
Fax no. of facility/site owner :		Owner is (check one): 1. Federal 2. State/Tribal 3. Private 4. OtherO if so, describe:				
Address of owner (if different from site):						
Street: 600 River Street						
Town: Haverhill	State: MA	Zip: 01	832	County:	Essex	
c) Legal name of operator : Operator tele			no: 781-393-4108			
Century Bank Operator fa		k no.: 781	no.: 781-393-4073 Operator email: jflynn@centurybank.c		lynn@centurybank.com	
Operator contact name and title: Mr. James M. Flynn Senior Vice President						
Address of operator (if different from owner):	om Street: 400 Mystic Avenue					
Town: Medford	State: MA	Zip: 02	155	County:	Middlesex	

 d) Check Y for "yes" or N for "no" for the following: 1. Has a prior NPDES permit exclusion been granted for the discharge? Y ○ N ○, if Y, number: 2. Has a prior NPDES application (Form 1 & 2C) ever been filed for the discharge? Y ○ N ○, if Y, date and tracking #: 3. Is the discharge a "new discharge" as defined by 40 CFR 122.2? Y ○ N ○ 4. For sites in Massachusetts, is the discharge covered under the Massachusetts Contingency Plan (MCP) and exempt from state permitting? Y ○ N ○ 					
 e) Is site/facility subject to any State permitting, license, or other action which is causing the generation of discharge? Y_ON_O If Y, please list: site identification # assigned by the state of NH or MA: permit or license # assigned: state agency contact information: name, location, and telephone number: 	 f) Is the site/facility covered by any other EPA permit, including: 1. Multi-Sector General Permit? Y O N O, if Y, number: 2. Final Dewatering General Permit? Y O N O, if Y, number: 3. EPA Construction General Permit? Y O N O, if Y, number: 4. Individual NPDES permit? Y O N O, if Y, number: 5. any other water quality related individual or general permit? Y O N_O, if Y, number: 				
g) Is the site/facility located within or does it discharge to	an Area of Critical Environmental Concern (ACEC)? Y_O_N_O_				
h) Based on the facility/site information and any historical sampling data, identify the sub-category into which the potential discharge falls.					
Activity Category	Activity Sub-Category				
I - Petroleum Related Site Remediation	 A. Gasoline Only Sites B. Fuel Oils and Other Oil Sites (including Residential Non-Business Remediation Discharges) C. Patroleum Sites with Additional Contomination 				
II - Non Petroleum Site Remediation	 C. Petroleum Sites with Additional Contamination A. Volatile Organic Compound (VOC) Only Sites B. VOC Sites with Additional Contamination C. Primarily Heavy Metal Sites 				
III - Contaminated Construction Dewatering	A. General Urban Fill Sites B. Known Contaminated Sites				

IV - Miscellaneous Related Discharges	A. Aquifer Pump Testing to Evaluate Formerly Contaminated Sites _
	B. Well Development/Rehabilitation at Contaminated/Formerly
	Contaminated Sites
	C. Hydrostatic Testing of Pipelines and Tanks _
	D. Long-Term Remediation of Contaminated Sumps and Dikes
	E. Short-term Contaminated Dredging Drain Back Waters (if not covered
	by 401/404 permit)

2. Discharge information. Please provide information about the discharge, (attaching additional sheets as necessary) including:

a) Describe the discharge activities for which the owner/applicant is seeking coverage:				
Temporary Construction Dewatering				
b) Provide the following information about each discharge:				
1) Number of discharge 2) What is the maximum and average flow rate of discharge (in cubic feet per second, ft ³ /s)? points: 1 1 Max. flow 0.07805 Is maximum flow a design value? Y O N O Average flow (include units) 446 ft3/s Is average flow a design value or estimate?				
	pt.6: latlong;			
4) If hydrostatic testing, total volume of the discharge (gals):	5) Is the discharge intermittent or seasonal? Is discharge ongoing? Y N			
c) Expected dates of discharge (mm/dd/yy): start 02/01/2012 end 02/01/2013				
 d) Please attach a line drawing or flow schematic showing water flow through the facility including: 1. sources of intake water. 2. contributing flow from the operation. 3. treatment units. and 4. discharge points and receiving 				
waters(s). Please refer to the attached report				

3. Contaminant information.

a) Based on the sub-category selected (see Appendix III), indicate whether each listed chemical is **believed present** or **believed absent** in the potential discharge. Attach additional sheets as needed.

					Sample	Analytical	<u>Minimum</u>	Maximum dai	<u>ly value</u>	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	<u>Believed</u> <u>Absent</u>	<u>Believed</u> <u>Present</u>	<u># of</u> <u>Samples</u>	<u>Tvpe</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (ML) of <u>Test</u> <u>Method</u>	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	concentration (ug/l)	<u>mass</u> (kg)
1. Total Suspended Solids (TSS)			×	1	grab	30,2540D	5000	ND			
2. Total Residual Chlorine (TRC)		×		1	grab	30,4500CL-D	20	ND			
3. Total Petroleum Hydrocarbons (TPH)			×	1	grab	74,1664A		1404	0.2683		
4. Cyanide (CN)	57125	×		1	grab	30,4500CN-CE	5	ND			
5. Benzene (B)	71432		×	1	grab	1,8260B		19	0.0036		
6. Toluene (T)	108883	×		1	grab	1,8260B	1	ND			
7. Ethylbenzene (E)	100414	×		1	grab	1,8260B	1	ND			
8. (m,p,o) Xylenes (X)	108883; 106423; 95476; 1330207		×	1	grab	1,8260B		2.5	0.0005		
9. Total BTEX ²	n/a		×	1	grab	1,8260B		21.5	0.0041		
10. Ethylene Dibromide (EDB) (1,2- Dibromoethane) ³	106934	×		1	grab	1,8260B	0.01	ND			
11. Methyl-tert-Butyl Ether (MtBE)	1634044	×		1	grab	1,8260B	10	ND			
12. tert-Butyl Alcohol (TBA) (Tertiary-Butanol)	75650	×		1	grab	1,8260B	300	ND			

^{*} Numbering system is provided to allow cross-referencing to Effluent Limits and Monitoring Requirements by Sub-Category included in Appendix III, as well as the Test Methods and Minimum Levels associated with each parameter provided in Appendix VI.

 ² BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes.
 ³ EDB is a groundwater contaminant at fuel spill and pesticide application sites in New England.

<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed <u>Absent</u>	<u>Believed</u> <u>Present</u>	<u># of</u> Samples	<u>Sample</u> <u>Type</u> <u>(e.g.,</u> grab)	<u>Analvtical</u> <u>Method</u> <u>Used</u> (method #)	Minimum Level (ML) of Test Method	<u>Maximum dai</u> concentration (ug/l)	<u>ly value</u> <u>mass</u> (kg)	<u>Average daily</u> concentration (ug/l)	value mass (kg)
13. tert-Amyl Methyl Ether (TAME)	9940508	×		1	grab	1,8260B	20	ND			
14. Naphthalene	91203	×		1	grab	1,8260B	0.2	ND			
15. Carbon Tetrachloride	56235	×		1	grab	1,8260B	5	ND			
16. 1,2 Dichlorobenzene (o-DCB)	95501	×		1	grab	1,8260B	5	ND			
17. 1,3 Dichlorobenzene (m-DCB)	541731	×		1	grab	1,8260B	25	ND			
18. 1,4 Dichlorobenzene (p-DCB)	106467	×		1	grab	1,8260B	25	ND			
18a. Total dichlorobenzene		×		1	grab	1,8260B	25	ND			
19. 1,1 Dichloroethane (DCA)	75343	×		1	grab	1,8260B	7.5	ND			
20. 1,2 Dichloroethane (DCA)	107062	×		1	grab	1,8260B	5	ND			
21. 1,1 Dichloroethene (DCE)	75354	×		1	grab	1,8260B	5	ND			
22. cis-1,2 Dichloroethene (DCE)	156592	×		1	grab	1,8260B	5	ND			
23. Methylene Chloride	75092	×		1	grab	1,8260B	30	ND			
24. Tetrachloroethene (PCE)	127184	×		1	grab	1,8260B	5	ND			
25. 1,1,1 Trichloro-ethane (TCA)	71556	×		1	grab	1,8260B	5	ND			
26. 1,1,2 Trichloro-ethane (TCA)	79005	×		1	grab	1,8260B	7.5	ND			
27. Trichloroethene (TCE)	79016	×		1	grab	1,8260B	5	ND			

					Sample	Analytical	Minimum	Maximum dai	<u>ly value</u>	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	<u>Believed</u> <u>Absent</u>	<u>Believed</u> <u>Present</u>	<u># of</u> <u>Samples</u>	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (<u>ML) of</u> <u>Test</u> <u>Method</u>	concentration (ug/l)	<u>mass</u> (kg)	concentration (ug/l)	<u>mass</u> (kg)
28. Vinyl Chloride (Chloroethene)	75014	×		1	grab	1,8260B	10	ND			
29. Acetone	67641	×		1	grab	1,8260B	50	ND			
30. 1,4 Dioxane	123911	×		1	grab	1,8260B	2500	ND			
31. Total Phenols	108952	×		1	grab	1,8260B	30	ND			
32. Pentachlorophenol (PCP)	87865	×		1	grab		0.8	ND			
33. Total Phthalates (Phthalate esters) ⁴		×		1	grab			ND			
34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	117817	×		1	grab		3	ND			
35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)		×		1	grab	1,827C		ND			
a. Benzo(a) Anthracene	56553	×		1	grab	1,827C	0.2	ND			
b. Benzo(a) Pyrene	50328	×		1	grab	1,827C	0.2	ND			
c. Benzo(b)Fluoranthene	205992	×		1	grab	1,827C	0.2	ND			
d. Benzo(k)Fluoranthene	207089	×		1	grab	1,827C	0.2	ND			
e. Chrysene	21801	×		1	grab	1,827C	0.2	ND			
f. Dibenzo(a,h)anthracene	53703	×		1	grab	1,827C	0.2	ND			
g. Indeno(1,2,3-cd) Pyrene	193395	×		1	grab	1,827C	0.2	ND			
36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)		×		1	grab	1,827C		ND			

⁴ The sum of individual phthalate compounds.

<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	<u>Believed</u> <u>Present</u>	<u># of</u> Samples	<u>Sample</u> <u>Type</u> <u>(e.g.,</u> <u>grab)</u>	Analytical <u>Method</u> <u>Used</u> (method #)	Minimum Level (ML) of <u>Test</u> Method	<u>Maximum dai</u> concentration (ug/l)	ily value <u>mass</u> (kg)	<u>Average daily</u> <u>concentration</u> <u>(ug/l)</u>	<u>value</u> <u>mass</u> (kg)
h. Acenaphthene	83329	×		1	grab	GC/MS-SIM	0.2	ND			
i. Acenaphthylene	208968	×		1	grab	GC/MS-SIM	0.2	ND			
j. Anthracene	120127	×		1	grab	GC/MS-SIM	0.2	ND			
k. Benzo(ghi) Perylene	191242	×		1	grab	GC/MS-SIM	0.2	ND			
1. Fluoranthene	206440	×		1	grab	GC/MS-SIM	0.2	ND			
m. Fluorene	86737	×		1	grab	GC/MS-SIM	0.2	ND			
n. Naphthalene	91203	×		1	grab	GC/MS-SIM	0.2	ND			
o. Phenanthrene	85018	×		1	grab	GC/MS-SIM	0.2	ND			
p. Pyrene	129000	×		1	grab	GC/MS-SIM	0.2	ND			
37. Total Polychlorinated Biphenyls (PCBs)	85687; 84742; 117840; 84662; 131113; 117817.	X		1	grab	EPA 608		ND			
38. Chloride	16887006		×	1	grab	44,300		420000	420		
39. Antimony	7440360	×		1	grab	16020	1	ND			
40. Arsenic	7440382		×	1	grab	16020		2.8	0.0005		
41. Cadmium	7440439	×		1	grab	16020	0.2	ND			
42. Chromium III (trivalent)	16065831	×		1	grab	30,3500CR-D	10	ND			
43. Chromium VI (hexavalent)	18540299	×		1	grab	30,3500-CR	10	ND			
44. Copper	7440508		×	1	grab	16020		1	0.0002		
45. Lead	7439921	×		1	grab	16020	0.5	ND			
46. Mercury	7439976	×		1	grab	3,245.1	0.2	ND			
47. Nickel	7440020		×	1	grab	16020		1.8	0.0003		
48. Selenium	7782492		×	1	grab	16020		2	0.0004		
49. Silver	7440224	×		1	grab	16020		ND			
50. Zinc	7440666		×	1	grab	16020		10.5	0.002		
51. Iron	7439896		×	1	grab	19,200.7		230	0.0439		
Other (describe):											

					<u>Sample</u>	Analytical	Minimum	Maximum dai	ly value	Average daily	value
Parameter *	<u>CAS</u> <u>Number</u>	Believed Absent	<u>Believed</u> <u>Present</u>	<u># of</u> Samples	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (ML) of <u>Test</u> <u>Method</u>	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)

b) For discharges where **metals** are believed present, please fill out the following (attach results of any calculations):

Step 1: Do any of the metals in the influent exceed the effluent limits in Appendix III (i.e., the limits set at zero dilution)? $Y O N O$	If yes, which metals?
Step 2: For any metals which exceed the Appendix III limits, calculate the dilution factor (DF) using the formula in Part I.A.3.c (step 2) of the NOI instructions or as determined by the State prior to the submission of this NOI. What is the dilution factor for applicable metals? Metal: DF: Metal: DF:	Look up the limit calculated at the corresponding dilution factor in Appendix IV. Do any of the metals in the influent have the potential to exceed the corresponding effluent limits in Appendix IV (i.e., is the influent concentration above the limit set at the calculated dilution factor)? Y O N O If Y, list which metals:

4. Treatment system information. Please describe the treatment system using separate sheets as necessary, including:

a) A description of the treatment system, including a schematic of the proposed or existing treatment system:

2,000-gallon settling tank, bag filter and granular activated carbon filtration in series

b) Identify each	Frac. tank 🗵	Air stripper 🗖	Oil/water separator	Equalization tanks \Box	Bag filter 🗵	GAC filter ⊠
applicable treatment unit (check all that apply):	Chlorination	De- chlorination	Other (please describe):			

c) Proposed average and maximum flow rates (gallons per minute) for the discharge and the design flow rate (s) (gallons per minute) of the treatment system: Average flow rate of discharge ²⁵ gpm Maximum flow rate of treatment system ³⁵ gpm Design flow rate of treatment system ¹⁰⁰ gpm
d) A description of chemical additives being used or planned to be used (attach MSDS sheets):

5. Receiving surface water(s). Please provide information about the receiving water(s), using separate sheets as necessary:

a) Identify the discharge pathway:	Direct to receiving water	Within facility (sewer)	Storm drain_⊠	Wetlands	Other (describe):
b) Provide a narrative description of Please refer to attached report for narrative			the name(s) of the	e receiving waters:	
 c) Attach a detailed map(s) indicatin 1. For multiple discharges, number t 2. For indirect dischargers, indicate t The map should also include the location USGS topographical mapping), s 	he discharges se the location of the ation and distand	equentially. he discharge to the ce to the nearest sa	e indirect conveyar anitary sewer as w	nce and the discha ell as the locus of	0
d) Provide the state water quality cla	ssification of th	e receiving water	Class B		
e) Provide the reported or calculated Please attach any calculation sheets					cfs
f) Is the receiving water a listed 3030 Is there a final TMDL? Y \odot N		•	Oxyg	N_O_ If yes, for en and fecal cholofo	±

6. ESA and NHPA Eligibility.

Please provide the following information according to requirements of Permit Parts I.A.4 and I.A.5 Appendices II and VII.

a) Using the instructions in Appendix VII and information on Appendix II, under which criterion listed in Part I.C are you eligible for coverage under this general permit?

 $A \underline{\bigcirc} B \underline{\bigcirc} C \underline{\bigcirc} D \underline{\bigcirc} E \underline{\bigcirc} F \underline{\bigcirc}$

b) If you selected Criterion D or F, has consultation with the federal services been completed? Y_O N_O Underway_O

c) If consultation with U.S. Fish and Wildlife Service and/or NOAA Fisheries Service was completed, was a written concurrence finding that the discharge is "not likely to adversely affect" listed species or critical habitat received? YO NO

d) Attach documentation of ESA eligibility as described in the NOI instructions and required by Appendix VII, Part I.C, Step 4.

e) Using the instructions in Appendix VII, under which criterion listed in Part II.C are you eligible for coverage under this general permit? 1 \bigcirc 2 \bigcirc 3 \bigcirc

f) If Criterion 3 was selected, attach all written correspondence with the State or Tribal historic preservation officers, including any terms and conditions that outline measures the applicant must follow to mitigate or prevent adverse effects due to activities regulated by the RGP.

7. Supplemental information.

Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit.

Please refer to attached report

8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facility/Site Name: 15 Elm Street
Operator signature: Tan m/ymm, SVP
Printed Name & Title: Mr. James M. Flynn Senior Vice President
Date: $12 - 29 - 11$
Date. 12-01-11

APPENDIX C

RESULTS OF GROUNDWATER ANALYSIS

On June 17, 2011, McPhail Associates, Inc. obtained a groundwater sample from each of monitoring wells B-2(OW), MW-1 and MW-11 for laboratory analysis for the presence of volatile organic compounds, (VOCs), volatile petroleum hydrocarbons (VPH) and/or extractable petroleum hydrocarbons (EPH).

The groundwater sample obtained from monitoring well MW-1 was analyzed for the presence of VOCs. The results indicate that VOCs were not detected above the laboratory method detection limit in the sample, with the exception of benzene, isopropyl ether and p/m xylene. Specifically, benzene, isopropyl ether and p/m xylene were detected in the groundwater sample at concentrations of 0.019 milligrams per liter (mg/l), 0.0028 mg/l and 0.0025 mg/l, respectively, which are well below the RCGW-2 reporting standards of 2 mg/l, 10 mg/l and 5 mg/l, respectively.

Groundwater samples MW-1, MW-11 and B-2(OW) were analyzed for the presence of VPH fractions. In addition, the groundwater sample obtained from B-2(OW) was analyzed for target VOC analytes. The results indicate that VPH fractions and target VOC analytes were not detected above the laboratory method detection limits, which are well below the applicable RCGW-2 reporting standards.

Groundwater samples MW-1 and MW-11 were analyzed for the presence of EPH fractions. Groundwater sample MW-11 was also analyzed for target PAH analytes. The results indicate that EPH fractions and target analytes were not detected above laboratory method detection limits, with the exception of C9-C18 Aliphatics, C19-C36 Aliphatics and C11-C22 Aromatics in sample MW-11. Specifically, C9-C18 Aliphatics were detected at a concentration of 0.45 mg/l, C19-C36 Aliphatics were detected at a concentration of 0.686 mg/l and C11-C22 Aromatics were detected at a concentration of 0.268 mg/l, which are well below the RCGW-2 reporting standards of 5 mg/l, 50 mg/l and 5mg/l, respectively.

The location of the groundwater monitoring wells is shown on **Figure 2**. The results of the June 2011 analysis are summarized in **Table 1**.

On November 11, 2011, a representative of McPhail Associates, Inc. obtained a groundwater sample from groundwater monitoring well B-1(OW). The groundwater sample did not exhibit the presence of a sheen or other visual or olfactory evidence of petroleum contamination. The sample was sent to a certified laboratory and chemically analyzed for the presence of compounds required under the RGP application of which are listed above. The location of the groundwater monitoring well is shown on **Figure 2**.

Chemical test results are summarized in **Table 2** and laboratory data is attached. The results of chemical testing indicate the following:

- 1. **pH:** The tested sample exhibited a level of 5.9 Standard Units (S.U.). The recommended range for pH discharge is 6.5 to 8.5 S.U. As a result of the low pH detected in the groundwater sample, daily pH monitoring of the effluent will be performed. During periods where pH is detected below the recommended 6.5 S.U. for discharge into a freshwater body, pH treatment compounds such as soda ash will be added to the settlement tank as necessary to raise the level of pH to within the recommended range for discharge into a fresh water body.
- 2. TSS: Total suspended solids (TSS) was not detected in the tested sample at a concentration in excess of the laboratory method detection limit of 5 milligrams per liter (mg/l). The limit established by the US EPA for discharge into surface water is 30 mg/l. However, it is likely that construction activities associated with the proposed site development will cause concentrations of TSS in the influent to fluctuate which will require mitigation. As a result, groundwater will be pretreated by passing the water through one 2,000 gallon sediment settling tank and bag filters prior to discharge in order to reduce the concentration of TSS in the effluent.
- 3. **VOCs:** The groundwater samples indicated no detected levels of any of the target VOCs, including BTEX.
- 4. **TPH:** Chemical analysis of the groundwater samples indicated no detectable levels of TPH.
- 5. **PAHs and SVOCs:** The laboratory reported no detectable levels of Group 1 or Group II PAH, pentachlorophenol, total phenols, no bis(2-ethylhexyl)phthalate and total phthalates.
- 6. **PCBs:** The laboratory results indicated no detectable levels of PCBs.
- 7. **Cyanide:** Cyanide was not detected in the tested groundwater sample at a concentration in excess of the laboratory method detection limit of 0.5 ug/l.
- 8. **Total Metals:** The laboratory reported no detectable levels of antimony, cadmium, chromium III, chromium VI, lead, mercury, and silver. Levels of arsenic, copper, nickel, selenium, zinc and iron were reported at levels of 2.8 ug/l, 1.0 ug/l, 1.8 ug/l, 2.0 ug/l, 10.5 ug/l, and 230 ug/l, respectively. All of these results are below the RGP permit limits for discharge to fresh water.

TABLE 1 ANALYTICAL RESULTS- GROUNDWATER

15 Elm Street; Andover, MA Project No. 5274

LOCATION		MW-1	MW-11	B-2 (OW)
SAMPLING DATE	RCGW-2	17-JUN-11	17-JUN-11	17-JUN-11
LAB SAMPLE ID		L1108786-01	L1108786-02	L1108786-03
Volatile Organic Compounds (mg/l)				
Benzene	2	0.019		
Isopropyl Ether	10	0.0028		
p/m-Xylene	5	0.0025		
Volatile Petroleum Hydrocarbons (mg/l)				
C5-C8 Aliphatics	3	ND	ND	ND
C9-C12 Aliphatics	5	ND	ND	ND
C9-C10 Aromatics	7	ND	ND	ND
Benzene	2			ND
Ethylbenzene	5			ND
Methyl tert butyl ether	5			ND
Naphthalene	1			ND
o-Xylene	5			ND
p/m-Xylene	5			ND
Toluene	40			ND
Extractable Petroleum Hydrocarbons (mg/	I)			
C9-C18 Aliphatics	5	ND	0.45	
C19-C36 Aliphatics	50	ND	0.686	
C11-C22 Aromatics	5	ND	0.268	
2-Methylnaphthalene	2		ND	
Acenaphthene	6		ND	
Acenaphthylene	0.04		ND	
Anthracene	0.03		ND	
Benzo(a)anthracene	1		ND	
Benzo(a)pyrene	0.5		ND	
Benzo(b)fluoranthene	0.4		ND	
Benzo(ghi)perylene	0.02		ND	
Benzo(k)fluoranthene	0.1		ND	
Chrysene	0.07		ND	
Dibenzo(a,h)anthracene	0.04		ND	
Fluoranthene	0.2		ND	
Fluorene	0.04		ND	
Indeno(1,2,3-cd)Pyrene	0.1		ND	
Naphthalene	1		ND	
Phenanthrene	10		ND	
Pyrene	0.02		ND	

Table 2 Analytical Results-Groundwater (RGP Application)

15 Elm Street; Andover, MA Job # 5274

OCATI			I.I.e.ide	B-1(OW)
	NG DATE MPLE ID	RGP Limits	Units	11/11/2011 L1118797-01
AD SA P 1	Total Suspended Solids	30	mg/l	ND(5)
1	pH (H)	6.5-8.3	SU	5.9
2	Total Residual Chlorine (freshwater)	11	ug/l	ND(20)
3	ТРН	5000	ug/l	ND(4000)
4	Total Cyanide (freshwater)	5.2	ug/l	ND(5)
5	Benzene	Total BTEX	ug/l	ND(1)
6	Toluene	Total BTEX	ug/l	ND(1)
7	Ethylbenzene	Total BTEX	ug/l	ND(1)
8	Xylene (Total)	Total BTEX	ug/l	ND
9	Total BTEX	100	ug/l	ND
10	1,2-Dibromoethane	0.05	ug/l	ND(0.01)
11	Methyl-tert-Butyl Ether (MtBE)	70	ug/l	ND(10)
12	tert-Butyl Alcohol (TBA) (Tertiary Buta	Monitor Only	ug/l	ND(100)
13	tert-Amyl Methyl Ether (TAME)	Monitor Only	ug/l	ND(20)
14	Naphthalene (SVOC)	20	ug/l	ND(0.2)
15	Carbon tetrachloride	4.44	ug/l	ND(1)
16	1,2 Dichlorobenzene (o-DCB)	600	ug/l	ND(5)
17	1,3 Dichlorobenzene (m-DCB)	320	ug/l	ND(5)
18 19	1,4 Dichlorobenzene (p-DCB)1,1-Dichloroethane (DCA)	5 70	ug/l ug/l	ND(5) ND(1.5)
20	1,2-Dichloroethane	5	ug/1 ug/1	ND(1.5) ND(1.5)
20	1,1-Dichloroethene	3.2	ug/l	ND(1.3) ND(1)
21	cis-1,2-Dichloroethene	70	ug/l	ND(1) ND(1)
23	Methylene Chloride	4.6	ug/l	ND(1) ND(5)
23	Tetrachloroethene	5	ug/l	ND(1.5)
25	1,1,1-Trichloroethane	200	ug/l	ND(2)
26	1,1,2-Trichloroethane	5	ug/l	ND(1.5)
27	Trichloroethene	5	ug/l	ND(1)
28	Vinyl chloride	2	ug/l	ND(1)
29	Acetone	Monitor Only	ug/l	ND(10)
30	1,4 Dioxane	Monitor Only	ug/l	ND(2000)
31	Total Phenolics	300	ug/l	ND(30)
32	Pentachlorophenol	1	ug/l	ND(0.8)
33	Total Phthalates (Phthalate esters)	3	ug/l	ND
34	Bis(2-Ethylhexyl)phthalate	6	ug/l	ND(3)
25	Total Crown L DAIL	10		ND
35 a	Total Group I PAH Benzo(a)anthracene	0.0038	ug/l ug/l	ND(0.2)
b	Benzo(a)pyrene	0.0038	ug/l	ND(0.2)
c	Benzo(b)fluoranthene	0.0038	ug/l	ND(0.2)
d	Benzo(k)fluoranthene	0.0038	ug/l	ND(0.2)
e	Chrysene	0.0038	ug/l	ND(0.2)
f	Dibenzo(a,h)anthracene	0.0038	ug/l	ND(0.2)
g	Indeno(1,2,3-cd)Pyrene	0.0038	ug/l	ND(0.2)
36	Total Group II PAH	10	ug/l	ND
h	Acenaphthene	Total Group II PAH	ug/l	ND(0.2)
i	Acenaphthylene	Total Group II PAH	ug/l	ND(0.2)
j	Anthracene	Total Group II PAH	ug/l	ND(0.2)
k	Benzo(ghi)perylene	Total Group II PAH	ug/l	ND(0.2)
1	Fluoranthene	Total Group II PAH	ug/1	ND(0.2)
m	Fluorene	Total Group II PAH	ug/l	ND(0.2)
n	Naphthalene Phononthrono	20 Total Group II DAH	ug/l	ND(0.2)
0 n	Phenanthrene Pyrana	Total Group II PAH Total Group II PAH	ug/l	ND(0.2) ND(0.2)
р	Pyrene	10tal Oloup II PAH	ug/l	MD(0.2)
37	Total PCBs	0.000046	ug/l	ND(0.25)
38	Chloride	Monitor Only	ug/l	420000
-			6	
	Total Recoverable Metal Limits			
38	Antimony	5.6	ug/l	ND(0.5)
39	Arsenic (freshwater)	10	ug/l	2.8
40	Cadmium (freshwater)	0.2	ug/l	ND(0.2)
41	Chromium III (freshwater)	48.8	ug/l	ND(10)
42	Chromium IV, Hexavalent (freshwater)	11.4	ug/l	ND(10)
44	Copper	5.2	ug/l	1
45	Lead	1.3	ug/l	ND(0.5)
46	Mercury	0.9	ug/l	ND(0.2)
47	Nickel	29	ug/1	1.8
49	Selenium	5	ug/l	2
	Cilman	1 0	/1	
50 51	Silver Zinc	1.2 66.6	ug/l ug/l	ND(0.4) 10.5

ND()-not detected above laboratory method detection limits Highlight-exceeds EPA Effluent Limit

McPhail Associates, Inc.

H:\EXCEL\JOBS\5274\RGP limits.xls Page 1 of 1

ANALYTICAL REPORT

Lab Number:	L1118797
Client:	McPhail Associates
	2269 Massachusetts Avenue
	Cambridge, MA 02140
ATTN:	Ambrose Donovan
Phone:	(617) 868-1420
Project Name:	15 ELM STREET
Project Number:	5274
Report Date:	11/17/11

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

 Lab Number:
 L1118797

 Report Date:
 11/17/11

Project Name:15 ELM STREETProject Number:5274

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1118797-01	B-1 (OW)	ANDOVER, MA	11/11/11 09:45
L1118797-02	TRIP BLANK	ANDOVER, MA	11/11/11 00:00

Project Name: 15 ELM STREET Project Number: 5274

 Lab Number:
 L1118797

 Report Date:
 11/17/11

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

Sample Report

Trip Blanks were received in the laboratory but not listed on the Chain of Custody. At the client's request, the Trip Blanks were analyzed.

Volatile Organics

L1118797-02: The pH of the sample was greater than two; however, the sample was analyzed within the method required holding time.

Chloride

L1118797-01 has an elevated detection limit due to the dilution required to quantitate the result within the calibration range.

Project Name: 15 ELM STREET Project Number: 5274

 Lab Number:
 L1118797

 Report Date:
 11/17/11

Case Narrative (continued)

Cyanide, Total

The WG502185-3 MS recovery (86%), performed on L1118797-01, is below the acceptance criteria; however, the associated LCS recovery was within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative

Date: 11/17/11

ORGANICS

VOLATILES

			Serial_No	:11171116:31
Project Name:	15 ELM STREET		Lab Number:	L1118797
Project Number:	5274		Report Date:	11/17/11
		SAMPLE RESULTS		
Lab ID:	L1118797-01		Date Collected:	11/11/11 09:45
Client ID:	B-1 (OW)		Date Received:	11/11/11
Sample Location:	ANDOVER, MA		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	14,504.1		Extraction Date:	11/15/11 14:30
Analytical Date:	11/15/11 18:28			
Analyst:	SH			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Pesticides by GC - Westborough Lab						
1,2-Dibromoethane	ND		ug/l	0.010		1

			Serial_No	:11171116:31
Project Name:	15 ELM STREET		Lab Number:	L1118797
Project Number:	5274		Report Date:	11/17/11
		SAMPLE RESULTS		
Lab ID:	L1118797-01		Date Collected:	11/11/11 09:45
Client ID:	B-1 (OW)		Date Received:	11/11/11
Sample Location:	ANDOVER, MA		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	5,624			
Analytical Date:	11/15/11 11:48			
Analyst:	KL			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	5.0		1
1,1-Dichloroethane	ND		ug/l	1.5		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.5		1
Tetrachloroethene	ND		ug/l	1.5		1
1,2-Dichloroethane	ND		ug/l	1.5		1
1,1,1-Trichloroethane	ND		ug/l	2.0		1
Benzene	ND		ug/l	1.0		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
cis-1,2-Dichloroethene ¹	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	5.0		1
1,3-Dichlorobenzene	ND		ug/l	5.0		1
1,4-Dichlorobenzene	ND		ug/l	5.0		1
p/m-Xylene ¹	ND		ug/l	2.0		1
o-xylene ¹	ND		ug/l	1.0		1
Acetone ¹	ND		ug/l	10		1
Methyl tert butyl Ether ¹	ND		ug/l	20		1
1,4-Dioxane ¹	ND		ug/l	2000		1
Tert-Butyl Alcohol ¹	ND		ug/l	100		1
Tertiary-Amyl Methyl Ether ¹	ND		ug/l	20		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	107		80-120	
Fluorobenzene	105		80-120	
4-Bromofluorobenzene	110		80-120	

			Serial_No	:11171116:31
Project Name:	15 ELM STREET		Lab Number:	L1118797
Project Number:	5274		Report Date:	11/17/11
		SAMPLE RESULTS		
Lab ID:	L1118797-02		Date Collected:	11/11/11 00:00
Client ID:	TRIP BLANK		Date Received:	11/11/11
Sample Location:	ANDOVER, MA		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	14,504.1		Extraction Date:	11/15/11 14:30
Analytical Date:	11/15/11 18:43			
Analyst:	SH			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Pesticides by GC - Westborough Lab						
1,2-Dibromoethane	ND		ug/l	0.010		1

			Serial_No	:11171116:31
Project Name:	15 ELM STREET		Lab Number:	L1118797
Project Number:	5274		Report Date:	11/17/11
		SAMPLE RESULTS		
Lab ID:	L1118797-02		Date Collected:	11/11/11 00:00
Client ID:	TRIP BLANK		Date Received:	11/11/11
Sample Location:	ANDOVER, MA		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	5,624			
Analytical Date:	11/15/11 11:15			
Analyst:	KL			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbord	ough Lab					
Methylene chloride	ND		ug/l	5.0		1
1,1-Dichloroethane	ND		ug/l	1.5		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.5		1
Tetrachloroethene	ND		ug/l	1.5		1
1,2-Dichloroethane	ND		ug/l	1.5		1
1,1,1-Trichloroethane	ND		ug/l	2.0		1
Benzene	ND		ug/l	1.0		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
cis-1,2-Dichloroethene ¹	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	5.0		1
1,3-Dichlorobenzene	ND		ug/l	5.0		1
1,4-Dichlorobenzene	ND		ug/l	5.0		1
p/m-Xylene ¹	ND		ug/l	2.0		1
o-xylene ¹	ND		ug/l	1.0		1
Acetone ¹	ND		ug/l	10		1
Methyl tert butyl Ether ¹	ND		ug/l	20		1
1,4-Dioxane ¹	ND		ug/l	2000		1
Tert-Butyl Alcohol ¹	ND		ug/l	100		1
Tertiary-Amyl Methyl Ether ¹	ND		ug/l	20		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	107		80-120	
Fluorobenzene	106		80-120	
4-Bromofluorobenzene	112		80-120	

Project Name: 15 ELM STREET

Project Number: 5274

 Lab Number:
 L1118797

 Report Date:
 11/17/11

Method Blank Analysis Batch Quality Control

Analytical Method:	5,624
Analytical Date:	11/15/11 10:42
Analyst:	KL

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough La	b for sample(s):	01-02	Batch: WG50)2420-6
Methylene chloride	ND		ug/l	5.0	
1,1-Dichloroethane	ND		ug/l	1.5	
Carbon tetrachloride	ND		ug/l	1.0	
1,1,2-Trichloroethane	ND		ug/l	1.5	
Tetrachloroethene	ND		ug/l	1.5	
1,2-Dichloroethane	ND		ug/l	1.5	
1,1,1-Trichloroethane	ND		ug/l	2.0	
Benzene	ND		ug/l	1.0	
Toluene	ND		ug/l	1.0	
Ethylbenzene	ND		ug/l	1.0	
Vinyl chloride	ND		ug/l	2.0	
1,1-Dichloroethene	ND		ug/l	1.0	
cis-1,2-Dichloroethene1	ND		ug/l	1.0	
Trichloroethene	ND		ug/l	1.0	
1,2-Dichlorobenzene	ND		ug/l	5.0	
1,3-Dichlorobenzene	ND		ug/l	5.0	
1,4-Dichlorobenzene	ND		ug/l	5.0	
p/m-Xylene¹	ND		ug/l	2.0	
o-xylene ¹	ND		ug/l	1.0	
Acetone ¹	ND		ug/l	10	
Methyl tert butyl Ether ¹	ND		ug/l	20	
1,4-Dioxane ¹	ND		ug/l	2000	
Tert-Butyl Alcohol ¹	ND		ug/l	100	
Tertiary-Amyl Methyl Ether ¹	ND		ug/l	20	

Project Name:	15 ELM STREET			Lab Number:	L1118797
Project Number:	5274			Report Date:	11/17/11

Method Blank Analysis Batch Quality Control

Analytical Method:	5,624
Analytical Date:	11/15/11 10:42
Analyst:	KL

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - West	oorough La	b for sample(s	s): 01-02	Batch: WG50	2420-6	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
Pentafluorobenzene	108		80-120	
Fluorobenzene	109		80-120	
4-Bromofluorobenzene	112		80-120	

Project Name: Project Number:	15 ELM STREET 5274		Blank Anal Quality Contr		Lab Number: Report Date:	L1118797 11/17/11
Analytical Method: Analytical Date: Analyst:	14,504.1 11/15/11 17:11 SH				Extraction Date:	11/15/11 14:30
Parameter		Result	Qualifier	Units	RL	MDL

i alametei	Roodin	Quaimor	enne		
Pesticides by GC - Westboro	ugh Lab for sample	(s): 01-02	Batch:	WG502519-1	
1,2-Dibromoethane	ND		ug/l	0.010	

Lab Control Sample Analysis

Batch Quality Control

Project Name: 15 ELM STREET

Project Number: 5274

Lab Number: L1118797 Report Date: 11/17/11

LCS LCSD %Recovery %Recovery %Recovery Qual Limits RPD **RPD** Limits Qual Qual Parameter Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG502420-5 Methylene chloride 105 1-221 30 --1,1-Dichloroethane 100 59-155 30 _ -Chloroform 102 51-138 30 --Carbon tetrachloride 118 70-140 30 --1,2-Dichloropropane1 100 1-210 30 --Dibromochloromethane 53-149 30 105 --1,1,2-Trichloroethane 94 52-150 30 --2-Chloroethylvinyl ether 64 1-305 30 --Tetrachloroethene 64-148 30 105 --Chlorobenzene 113 37-160 30 --Trichlorofluoromethane 121 17-181 30 --1,2-Dichloroethane 100 49-155 30 -1,1,1-Trichloroethane 109 52-162 30 --Bromodichloromethane 35-155 30 111 -trans-1,3-Dichloropropene 17-183 30 89 -cis-1,3-Dichloropropene 92 1-227 30 --Bromoform 111 45-169 30 --1,1,2,2-Tetrachloroethane 106 46-157 30 --37-151 30 Benzene 104 _ -Toluene 47-150 30 104 --Ethylbenzene 118 37-162 30 --

Lab Control Sample Analysis

Batch Quality Control

Project Name: 15 ELM STREET

Project Number: 5274

Lab Number: L1118797 Report Date: 11/17/11

LCSD LCS %Recovery %Recovery %Recovery Qual Limits RPD **RPD** Limits Parameter Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG502420-5 Chloromethane 121 1-273 30 --Bromomethane 106 1-242 30 _ -Vinyl chloride 102 1-251 30 --115 14-230 30 Chloroethane --1,1-Dichloroethene 107 1-234 30 --54-156 30 trans-1.2-Dichloroethene 106 -cis-1,2-Dichloroethene1 100 60-140 30 --Trichloroethene 106 71-157 30 --1.2-Dichlorobenzene 113 18-190 30 --1,3-Dichlorobenzene 116 59-156 30 --1.4-Dichlorobenzene 116 18-190 30 -p/m-Xylene1 116 40-160 30 o-Xylene¹ 116 40-160 30 --XYLENE (TOTAL)¹ 40-160 30 116 --40-160 30 Styrene¹ 157 --Acetone¹ 40-160 30 76 --Carbon disulfide1 108 40-160 30 --2-Butanone¹ 30 74 40-160 --Vinyl acetate1 Q 40-160 30 396 _ -4-Methyl-2-pentanone1 40-160 30 88 --2-Hexanone¹ 80 40-160 30 --

Lab Control Sample Analysis Batch Quality Control

Project Name: 15 ELM STREET

Project Number: 5274

Lab Number: L1118797 Report Date: 11/17/11

arameter	LCS %Recovery	Qual		CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-02	Batch:	WG502420-	5			
Acrolein ¹	144			-		40-160	-		30
Acrylonitrile ¹	94			-		40-160	-		30
Methyl tert butyl ether ¹	92			-			-		30
Dibromomethane ¹	104			-		70-130	-		30
1,4-Dioxane ¹	86			-			-		30
tert-Butyl Alcohol ¹	76			-			-		30
Tertiary-Amyl Methyl Ether ¹	88			-			-		30

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
Pentafluorobenzene	108				80-120	
Fluorobenzene	105				80-120	
4-Bromofluorobenzene	111				80-120	

Lab Control Sample Analysis Batch Quality Control

15 ELM STREET

Project Number: 5274

Project Name:

Lab Number: L1118797 Report Date: 11/17/11

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Pesticides by GC - Westborough Lab	Associated sample(s):	01-02	Batch: WG502519	9-2				
1,2-Dibromoethane	106		-		70-130	-		20
1,2-Dibromo-3-chloropropane	95		-		70-130	-		20

Matrix Spike Analysis Batch Quality Control

Drainat Nama		Batch Quality Contro
Project Name:	15 ELM STREET	

Project Number: 5274

 Lab Number:
 L1118797

 Report Date:
 11/17/11

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	Qual	RPD Limits
Volatile Organics by G Sample	GC/MS - Westborough	Lab Asso	ciated sample(s): 01-02 C	C Batch	ID: WG50	2420-4 QC	Sample: L1118599	-02	Client ID:	MS
Methylene chloride	ND	200	220	108		-	-	1-221	-		30
1,1-Dichloroethane	ND	200	220	108		-	-	59-155	-		30
Chloroform	ND	200	220	110		-	-	51-138	-		30
Carbon tetrachloride	ND	200	250	124		-	-	70-140	-		30
1,2-Dichloropropane ¹	ND	200	220	112		-	-	1-210	-		30
Dibromochloromethane	ND	200	210	104		-	-	53-149	-		30
1,1,2-Trichloroethane	ND	200	190	96		-	-	52-150	-		30
2-Chloroethylvinyl ether	ND	200	ND	0	Q	-	-	1-305	-		30
Tetrachloroethene	ND	200	200	102		-	-	64-148	-		30
Chlorobenzene	ND	200	230	116		-	-	37-160	-		30
Trichlorofluoromethane	ND	200	250	124		-	-	17-181	-		30
1,2-Dichloroethane	ND	200	210	103		-	-	49-155	-		30
1,1,1-Trichloroethane	ND	200	230	117		-	-	52-162	-		30
Bromodichloromethane	ND	200	240	118		-	-	35-155	-		30
trans-1,3-Dichloropropene	ND	200	180	89		-	-	17-183	-		30
cis-1,3-Dichloropropene	ND	200	190	96		-	-	1-227	-		30
Bromoform	ND	200	220	112		-	-	45-169	-		30
1,1,2,2-Tetrachloroethane	ND	200	220	108		-	-	46-157	-		30
Benzene	ND	200	230	114		-	-	35-151	-		30
Toluene	ND	200	220	108		-	-	47-150	-		30
Ethylbenzene	ND	200	240	120		-	-	37-162	-		30

Matrix Spike Analysis

Project Name:	15 ELM STREET	Batch Quality Control

Project Number: 5274

 Lab Number:
 L1118797

 Report Date:
 11/17/11

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS Sample	- Westborough	Lab Assoc	iated sample(s): 01-02 Q0	C Batch I	D: WG502	2420-4 QC	Sample	e: L1118599	-02	Client ID:	MS
Chloromethane	ND	200	280	139		-	-		1-273	-		30
Bromomethane	ND	200	200	100		-	-		1-242	-		30
Vinyl chloride	ND	200	230	117		-	-		1-251	-		30
Chloroethane	ND	200	240	122		-	-		14-230	-		30
1,1-Dichloroethene	ND	200	220	113		-	-		1-234	-		30
trans-1,2-Dichloroethene	ND	200	220	110		-	-		54-156	-		30
cis-1,2-Dichloroethene1	ND	200	220	108		-	-		60-140	-		30
Trichloroethene	ND	200	220	112		-	-		71-157	-		30
1,2-Dichlorobenzene	ND	200	220	109		-	-		18-190	-		30
1,3-Dichlorobenzene	ND	200	220	111		-	-		59-156	-		30
1,4-Dichlorobenzene	ND	200	230	114		-	-		18-190	-		30
p/m-Xylene ¹	ND	400	470	117		-	-		40-160	-		30
o-Xylene ¹	ND	200	230	117		-	-		40-160	-		30
XYLENE (TOTAL) ¹	ND	600	700	117		-	-		40-160	-		30
Styrene ¹	ND	200	300	152		-	-		40-160	-		30
Acetone ¹	ND	500	400	80		-	-		40-160	-		30
Carbon disulfide1	ND	200	230	117		-	-		40-160	-		30
2-Butanone ¹	ND	500	390	79		-	-		40-160	-		30
Vinyl acetate ¹	ND	400	2000	501	Q	-	-		40-160	-		30
4-Methyl-2-pentanone ¹	ND	500	450	91		-	-		40-160	-		30
2-Hexanone ¹	ND	500	400	79		-	-		40-160	-		30

Matrix Spike Analysis

Project Name:	15 ELM STREET	Batch Quality Control	Lab Number:	L1118797
Project Number:	5274		Report Date:	11/17/11

Parameter	Native Sample	MS Added	MS Found	MS %Recover	y Qual	MSD Found	MSD %Recovery	/ Qual	Recovery Limits	RPD	Qual	RPD <u>Limit</u> s
Volatile Organics by GC/ Sample	MS - Westborough	Lab Assoc	iated sample	(s): 01-02	QC Batch II	D: WG502	2420-4 QC	Sample	e: L1118599	-02	Client ID	: MS
Acrolein ¹	ND	400	650	162	Q	-	-		40-160	-		30
Acrylonitrile ¹	ND	400	430	107		-	-		40-160	-		30
Dibromomethane ¹	ND	200	220	108		-	-			-		30

	Surrogate	ž	% Rec	MS overv	Qualifier	% Reco	MS overv	D Qualifier	Acceptan Criteria			
	4-Bromofluor			107		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ,		80-120			
	Fluorobenzer	e		107					80-120			
	Pentafluorobe	enzene		107					80-120			
Pesticides by GC - Westborou	gh Lab Asso	ciated sampl	e(s): 01-02	QC Bate	ch ID: WG	502519-3	QC Sa	mple: L1118	707-01 Clier	nt ID:	MS Sample	е
1,2-Dibromoethane	ND	0.255	0.263	103	3	-		-	70-130	-		20
1,2-Dibromo-3-chloropropane	ND	0.255	0.244	96		-		-	70-130	-		20

Project Name: 15 ELM STREET

Project Number: 5274

 Lab Number:
 L1118797

 Report Date:
 11/17/11

Colatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 QC Batch ID: WG502420-3 QC Sample: L1118599-02 Client ID: DUP Methode ND ND ug1 NC 30 1,1-Dichloroethane ND ND ug1 NC 30 Chloroform ND ND ug1 NC 30 1,2-Dichloropropane1 ND ND ug1 NC 30 1,2-Dichloropropane1 ND ND ug1 NC 30 1,1-2-Tichloroethane ND ND ug1 NC 30 Chloroethylwing ether ND ND ug1 NC 30 1,1-2-Tichloroethane ND ND ug1 NC 30 1,1-2-Dichloroethane ND ND ug1 N	arameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
1.1-DichloroethaneNDNDug/lNC30ChlorotormNDNDUg/lNC30Carbon tetrachlorideNDNDUg/lNC301.2-Dichloropropane1NDNDUg/lNC30DibronochloromethaneNDNDUg/lNC301.1.2-TrichloroethaneNDNDUg/lNC302-Chloroethyvinyl etherNDNDUg/lNC302-ChloroethaneNDNDUg/lNC302-Chloroethyrinyl etherNDNDUg/lNC302-ChloroethaneNDNDUg/lNC302-ChloroethaneNDNDUg/lNC302-ChloroethaneNDNDUg/lNC301.1.2-TrichloroethaneNDNDUg/lNC301.2-DichloroethaneNDNDUg/lNC301.1.1-TrichloroethaneNDNDUg/lNC301.1.2-TichloroethaneNDNDUg/lNC301.1.1-TrichloroethaneNDNDUg/lNC301.1.2-TichloropeneNDNDUg/lNC301.1.2-TichloropeneNDNDUg/lNC301.1.2-TichloropeneNDNDUg/lNC301.1.2-TichloroethaneNDNDUg/lNC301.1.2-TichloroethaneNDNDUg/lNC <td></td> <td>Associated sample(s): 01-02</td> <td>QC Batch ID: WG50242</td> <td>0-3 QC Sam</td> <td>ple: L111859</td> <td>99-02 Client ID: DUP</td>		Associated sample(s): 01-02	QC Batch ID: WG50242	0-3 QC Sam	ple: L111859	99-02 Client ID: DUP
ChloroformNDNDugitNC30Carbon tetrachlorideNDNDugitNC301,2-Dichloropropane1NDNDugitNC301,2-Dichloropropane1NDNDugitNC30DibromochloromethaneNDNDugitNC301,1,2-TichloropethaneNDNDugitNC302-Chloroethylvinyl etherNDNDugitNC302-ChloroetheneNDNDugitNC301,2-DichloropethaneNDNDugitNC302-ChloroethaneNDNDugitNC301,2-DichloroethaneNDNDugitNC301,1-TrichloroethaneNDNDugitNC301,2-DichloroethaneNDNDugitNC301,1-TrichloroethaneNDNDugitNC301,1-TrichloroethaneNDNDugitNC301,1-TrichloropropeneNDNDugitNC301,1-TrichloropropeneNDNDugitNC301,1-TrichloropropeneNDNDugitNC301,1-Z-TetrachloroethaneNDNDugitNC301,1,2-Z-TetrachloroethaneNDNDugitNC301,1,2-Z-TetrachloroethaneNDNDugitNC301,1,2-Z-TetrachloroethaneNDND	Methylene chloride	ND	ND	ug/l	NC	30
Carbon tetrachlorideNDNDug/lNC301,2-Dichloropropane¹NDNDNDug/lNC301,2-Dichloropropane¹NDNDug/lNC30DibromochloromethaneNDNDug/lNC301,1.2-TrichloroethaneNDNDug/lNC302-Chloroethylvinyl etherNDNDug/lNC301TetrachloroethaneNDNDug/lNC30ChlorobenzeneNDNDug/lNC301,12-TrichloroethaneNDNDug/lNC301,2-DichloroethaneNDNDug/lNC301,11-TrichloroethaneNDNDug/lNC301,12-DichloroptopeneNDNDug/lNC301,11-TrichloroethaneNDNDug/lNC301,11-TrichloroptopeneNDNDug/lNC301,13-DichloropropeneNDNDug/lNC30cis-1,3-DichloropropeneNDNDug/lNC30IsomoformNDNDug/lNC3030IsomoformNDNDug/lNC3030IsomoformNDNDug/lNC3030IsomoformNDNDug/lNC3030IsomoformNDNDug/lNC3030Isomoform <td< td=""><td>1,1-Dichloroethane</td><td>ND</td><td>ND</td><td>ug/l</td><td>NC</td><td>30</td></td<>	1,1-Dichloroethane	ND	ND	ug/l	NC	30
1,2-Dichloropropane¹ ND ND ug/l NC 30 Dibromochloromethane ND ND ug/l NC 30 1,1,2-Trichloropethane ND ND ug/l NC 30 2-Chloropethylvinyl ether ND ND ug/l NC 30 2-Chloropethylvinyl ether ND ND ug/l NC 30 1 Tetrachloroethane ND ND ug/l NC 30 2-Chloropethylvinyl ether ND ND ND ug/l NC 30 1 Tetrachloroethane ND ND ug/l NC 30 1 Trichlorofluoromethane ND ND ug/l NC 30 1,2-Dichloroethane ND ND ND ug/l NC 30 1,1-Trichloroethane ND ND ND ug/l NC 30 1,1-Trichloropropene ND ND ND NC 30 30	Chloroform	ND	ND	ug/l	NC	30
DibronochloromethaneNDNDug/lNC301,1,2-TrichloroethaneNDNDug/lNC302-Chloroethylvinyl etherNDNDug/lNC302-Chloroethylvinyl etherNDNDug/lNC30TetrachloroethaneNDNDug/lNC30ChlorobenzeneNDNDug/lNC30TrichloroftuoromethaneNDNDug/lNC301,2-DichloroethaneNDNDug/lNC301,1-TrichloroethaneNDNDug/lNC301,1-TrichloroethaneNDNDug/lNC301,1-TrichloropthaneNDNDug/lNC301,1,1-TrichloropthaneNDNDug/lNC30Israns-1,3-DichloropropeneNDNDug/lNC30BromodichloropropeneNDNDug/lNC30BromoformNDNDug/lNC301,1,2,2-TetrachloroethaneNDNDug/lNC301,1,2,2-TetrachloroethaneNDNDug/lNC30	Carbon tetrachloride	ND	ND	ug/l	NC	30
1,1,2-TrichloroethaneNDNDug/lNC302-Chloroethylvinyl etherNDNDug/lNC302-Chloroethylvinyl etherNDNDug/lNC30TetrachloroetheneNDNDug/lNC30ChlorobenzeneNDNDug/lNC30TrichlorofluoromethaneNDNDug/lNC301,1,2-TrichloroethaneNDNDug/lNC301,1,1-TrichloroethaneNDNDug/lNC301,1,1-TrichloroethaneNDNDug/lNC301,1,2-DichloropropeneNDNDug/lNC30cis-1,3-DichloropropeneNDNDug/lNC30BromoformNDNDug/lNC301,1,2-ZretrachloroethaneNDNDug/lNC301,1,2-ZretrachloroethaneNDNDug/lNC301,1,2-ZretrachloroethaneNDNDug/lNC301,1,2-ZretrachloroethaneNDNDug/lNC301,1,2-ZretrachloroethaneNDNDug/lNC30	1,2-Dichloropropane ¹	ND	ND	ug/l	NC	30
2-Chloroethylvinyl etherNDNDug/lNC302-Chloroethylvinyl etherNDNDug/lNC30TetrachloroetheneNDNDug/lNC30ChlorobenzeneNDNDug/lNC30TrichlorofluoromethaneNDNDug/lNC301,2-DichloroethaneNDNDug/lNC301,1,1-TrichloroethaneNDNDug/lNC30BromodichloromethaneNDNDug/lNC30trans-1,3-DichloropropeneNDNDug/lNC30cis-1,3-DichloropropeneNDNDug/lNC30BromoformNDNDug/lNC30I,1,2,2-TetrachloroethaneNDNDug/lNC30I,1,2,2-TetrachloroethaneNDNDug/lNC30	Dibromochloromethane	ND	ND	ug/l	NC	30
TetrachloroetheneNDNDug/lNC30ChlorobenzeneNDNDUg/lNC30TrichlorofthoroethaneNDNDUg/lNC301,2-DichloroethaneNDNDUg/lNC301,1,1-TrichloroethaneNDNDUg/lNC30BromodichloromethaneNDNDUg/lNC30trans-1,3-DichloropropeneNDNDUg/lNC30BromoformNDNDUg/lNC30I,1,2-TetrachloroethaneNDNDUg/lNC30I,1,2-TetrachloroethaneNDNDUg/lNC30I,1,2-TetrachloroethaneNDNDUg/lNC30I,1,2-TetrachloroethaneNDNDUg/lNC30	1,1,2-Trichloroethane	ND	ND	ug/l	NC	30
ChlorobenzeneNDNDug/lNC30TrichlorofluoromethaneNDNDug/lNC301,2-DichloroethaneNDNDug/lNC301,1.1-TrichloroethaneNDNDug/lNC30BromodichloromethaneNDNDug/lNC30trans-1,3-DichloropropeneNDNDug/lNC30cis-1,3-DichloropropeneNDNDug/lNC30BromoformNDNDug/lNC30BromoformNDNDug/lNC30I,1,2,2-TetrachloroethaneNDNDug/lNC30	2-Chloroethylvinyl ether	ND	ND	ug/l	NC	30
TrichlorofluoromethaneNDNDug/lNC301,2-DichloroethaneNDNDug/lNC301,1,1-TrichloroethaneNDNDug/lNC301,1,1-TrichloroethaneNDNDug/lNC30BromodichloromethaneNDNDug/lNC30trans-1,3-DichloropropeneNDNDug/lNC30cis-1,3-DichloropropeneNDNDug/lNC30BromoformNDNDug/lNC30I,1,2,2-TetrachloroethaneNDNDug/lNC30	Tetrachloroethene	ND	ND	ug/l	NC	30
1,2-DichloroethaneNDNDug/lNC301,1,1-TrichloroethaneNDNDug/lNC30BromodichloromethaneNDNDug/lNC30trans-1,3-DichloropropeneNDNDug/lNC30cis-1,3-DichloropropeneNDNDug/lNC30BromoformNDNDug/lNC30BromoformNDNDug/lNC301,1,2,2-TetrachloroethaneNDNDug/lNC30	Chlorobenzene	ND	ND	ug/l	NC	30
1,1,1-TrichloroethaneNDNDug/lNC30BromodichloromethaneNDNDug/lNC30trans-1,3-DichloropropeneNDNDug/lNC30cis-1,3-DichloropropeneNDNDug/lNC30BromoformNDNDug/lNC30BromoformNDNDug/lNC301,1,2,2-TetrachloroethaneNDNDug/lNC30	Trichlorofluoromethane	ND	ND	ug/l	NC	30
BromodichloromethaneNDNDug/lNC30trans-1,3-DichloropropeneNDNDug/lNC30cis-1,3-DichloropropeneNDNDug/lNC30BromoformNDNDug/lNC30BromoformNDNDug/lNC301,1,2,2-TetrachloroethaneNDNDug/lNC30	1,2-Dichloroethane	ND	ND	ug/l	NC	30
Itrans-1,3-DichloropropeneNDNDug/lNC30cis-1,3-DichloropropeneNDNDug/lNC30BromoformNDNDug/lNC301,1,2,2-TetrachloroethaneNDNDug/lNC30	1,1,1-Trichloroethane	ND	ND	ug/l	NC	30
cis-1,3-DichloropropeneNDNDug/lNC30BromoformNDNDug/lNC301,1,2,2-TetrachloroethaneNDNDug/lNC30	Bromodichloromethane	ND	ND	ug/l	NC	30
BromoformNDNDug/lNC301,1,2,2-TetrachloroethaneNDNDug/lNC30	trans-1,3-Dichloropropene	ND	ND	ug/l	NC	30
1,1,2,2-Tetrachloroethane ND ND ug/l NC 30	cis-1,3-Dichloropropene	ND	ND	ug/l	NC	30
	Bromoform	ND	ND	ug/l	NC	30
Benzene ND ND ug/l NC 30	1,1,2,2-Tetrachloroethane	ND	ND	ug/l	NC	30
	Benzene	ND	ND	ug/l	NC	30

Project Name: 15 ELM STREET

Project Number: 5274

Lab Number:

L1118797 11/17/11 Report Date:

Detaile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 QC Batch ID: WG502420-3 QC Sample L1118599-02 Client ID: DUP Tolene ND ND ug1 NC 30 Ethylbenzene ND ND ug1 NC 30 Chloromethane ND ND ug1 NC 30 Bromonethane ND ND ug1 NC 30 Vinyl choide ND ND ug1 NC 30 Chloromethane ND ND ug1 NC 30 Lin-Dichorothene ND ND ug1 NC 30 <th>arameter</th> <th>Native Sample</th> <th>Duplicate Sample</th> <th>Units</th> <th>RPD</th> <th>RPD Limits</th>	arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
ItypibenzeneNDNDug/lNC30ChloromethaneNDNDug/lNC30BromomethaneNDNDug/lNC30Vinyl chlorideNDNDug/lNC30ChloroethaneNDNDug/lNC30ChloroethaneNDNDug/lNC301,1-DichloroetheneNDNDug/lNC301,1-DichloroetheneNDNDug/lNC30trans-1,2-Dichloroethene ¹ NDNDug/lNC30trans-1,2-Dichloroethene ¹ NDNDug/lNC30trans-1,2-Dichloroethene ¹ NDNDug/lNC30trans-1,2-Dichloroethene ¹ NDNDug/lNC30trans-1,2-Dichloroethene ¹ NDNDug/lNC30trans-1,2-Dichloroethene ¹ NDNDug/lNC30trans-1,2-Dichloroethene ¹ NDNDug/lNC30trans-1,2-DichloroetheneNDNDug/lNC30trans-1,2-DichloroetheneNDNDug/lNC30trans-1,2-DichloroetheneNDNDug/lNC30trans-1,2-DichloroetheneNDNDug/lNC30trans-1,2-DichloroetheneNDNDug/lNC30trans-1,2-DichloroetheneNDNDug/lNC30trans-1,2-D		Associated sample(s): 01-02	QC Batch ID: WG502420)-3 QC Sample	: L1118599-02	Client ID: DUP
Chloromethane ND ND ug/l NC 30 Bromomethane ND ND ND ug/l NC 30 Bromomethane ND ND ND ug/l NC 30 Vinyl chloride ND ND ND ug/l NC 30 Chloroethane ND ND ND ug/l NC 30 1,1-Dichloroethene ND ND ND ug/l NC 30 trans-1,2-Dichloroethene ¹ ND ND ND ug/l NC 30 trans-1,2-Dichloroethene ¹ ND ND ND ug/l NC 30 trans-1,2-Dichloroethene ¹ ND ND ug/l NC 30 trans-1,2-Dichloroethene ¹ ND ND ug/l NC 30 1,2-Dichloroethene ¹ ND ND ug/l NC 30 1,2-Dichloroethene ND ND ug/l NC 30	Toluene	ND	ND	ug/l	NC	30
Bromomethane ND ND ug1 NC 30 Vinyl chloride ND ND Ug1 NC 30 Chloroethane ND ND Ug1 NC 30 1,1-Dichloroethene ND ND Ug1 NC 30 trans-1,2-Dichloroethene ND ND Ug1 NC 30 trans-1,2-Dichloroethene ¹ ND ND Ug1 NC 30 1,2-Dichloroethene ¹ ND ND Ug1 NC 30 1,2-Dichloroethene ND ND Ug1 NC 30 1,2-Dichloroethene ND ND Ug1 NC	Ethylbenzene	ND	ND	ug/l	NC	30
Vinyl chloride ND ND ug/l NC 30 Chloroethane ND ND NC 30	Chloromethane	ND	ND	ug/l	NC	30
ND ND ug/l NC 30 1,1-Dichloroethene ND ND ug/l NC 30 trans-1,2-Dichloroethene ND ND ug/l NC 30 trans-1,2-Dichloroethene ND ND ug/l NC 30 cis-1,2-Dichloroethene' ND ND ug/l NC 30 Trichloroethene' ND ND ug/l NC 30 1,2-Dichloroethene' ND ND ug/l NC 30 1,2-Dichloroethene ND ND ug/l NC 30 1,2-Dichlorobenzene ND ND ug/l NC 30 1,4-Dichlorobenzene ND ND ug/l NC 30 1,4-Dichlorobenzene ND ND ug/l NC 30 o-Xylene ¹ ND ND ug/l NC 30 o-Xylene ¹ ND ND ug/l NC 30 Styrene ¹ <td>Bromomethane</td> <td>ND</td> <td>ND</td> <td>ug/l</td> <td>NC</td> <td>30</td>	Bromomethane	ND	ND	ug/l	NC	30
1,1-Dichloroethene ND ND ug/l NC 30 trans-1,2-Dichloroethene ND ND ND ug/l NC 30 cis-1,2-Dichloroethene' ND ND ND ug/l NC 30 trichloroethene' ND ND ND ug/l NC 30 Trichloroethene ND ND ug/l NC 30 1,2-Dichloroethene ND ND ug/l NC 30 1,2-Dichlorobenzene ND ND ug/l NC 30 1,3-Dichlorobenzene ND ND ug/l NC 30 1,4-Dichlorobenzene ND ND ug/l NC 30 1,4-Dichlorobenzene ND ND ug/l NC 30 o-Xylene' ND ND ug/l NC 30 XYLENE (TOTAL)' ND ND ug/l NC 30 Styrene' ND ND ug/l	Vinyl chloride	ND	ND	ug/l	NC	30
Itrans-1,2-Dichloroethene ND ND ug/l NC 30 cis-1,2-Dichloroethene' ND ND ug/l NC 30 Trichloroethene' ND ND ug/l NC 30 1,2-Dichloroethene' ND ND ug/l NC 30 1,2-Dichlorobenzene ND ND ug/l NC 30 1,3-Dichlorobenzene ND ND ug/l NC 30 1,4-Dichlorobenzene ND ND ug/l NC 30 1,4-Dichlorobenzene ND ND ug/l NC 30 1,4-Dichlorobenzene ND ND ug/l NC 30 p/m-Xylene' ND ND ug/l NC 30 o-Xylene' ND ND ug/l NC 30 XYLENE (TOTAL)' ND ND ug/l NC 30 Styrene' ND ND ug/l NC 30	Chloroethane	ND	ND	ug/l	NC	30
cis-1,2-Dichloroethene ¹ ND ND ug/l NC 30 Trichloroethene ND ND ug/l NC 30 1,2-Dichlorobenzene ND ND ug/l NC 30 1,3-Dichlorobenzene ND ND ug/l NC 30 1,4-Dichlorobenzene ND ND ug/l NC 30 1,4-Dichlorobenzene ND ND ug/l NC 30 1,4-Dichlorobenzene ND ND ug/l NC 30 p/m-Xylene ¹ ND ND ug/l NC 30 o-Xylene ¹ ND ND ug/l NC 30 XYLENE (TOTAL) ¹ ND ND ug/l NC 30 Styrene ¹ ND ND ug/l NC 30 Acetone ¹ ND ND ug/l NC 30	1,1-Dichloroethene	ND	ND	ug/l	NC	30
Trichloroethene ND ND ug/l NC 30 1,2-Dichlorobenzene ND ND ug/l NC 30 1,3-Dichlorobenzene ND ND ug/l NC 30 1,4-Dichlorobenzene ND ND ug/l NC 30 p/m-Xylene¹ ND ND ug/l NC 30 o-Xylene¹ ND ND ug/l NC 30 xYLENE (TOTAL)¹ ND ND ug/l NC 30 Styrene¹ ND ND ug/l NC 30 Aceone¹ ND ND ug/l NC 30	trans-1,2-Dichloroethene	ND	ND	ug/l	NC	30
1,2-Dichlorobenzene ND ND ug/l NC 30 1,3-Dichlorobenzene ND ND ug/l NC 30 1,4-Dichlorobenzene ND ND ug/l NC 30 p/m-Xylene ¹ ND ND ug/l NC 30 o-Xylene ¹ ND ND ug/l NC 30 Styrene ¹ ND ND ug/l NC 30 Styrene ¹ ND ND ug/l NC 30 Acetone ¹ ND ND ug/l NC 30	cis-1,2-Dichloroethene ¹	ND	ND	ug/l	NC	30
ND ND ug/l NC 30 1,4-Dichlorobenzene ND ND Ug/l NC 30 1,4-Dichlorobenzene ND ND Ug/l NC 30 p/m-Xylene ¹ ND ND Ug/l NC 30 o-Xylene ¹ ND ND Ug/l NC 30 XYLENE (TOTAL) ¹ ND ND Ug/l NC 30 Styrene ¹ ND ND Ug/l NC 30 Ctotone ¹ ND ND Ug/l NC 30	Trichloroethene	ND	ND	ug/l	NC	30
1,4-Dichlorobenzene ND ND ug/l NC 30 p/m-Xylene ¹ ND ND ug/l NC 30 o-Xylene ¹ ND ND ug/l NC 30 xYLENE (TOTAL) ¹ ND ND ug/l NC 30 Styrene ¹ ND ND ug/l NC 30 Acetone ¹ ND ND ug/l NC 30	1,2-Dichlorobenzene	ND	ND	ug/l	NC	30
p/m-Xylene1 ND ND ug/l NC 30 o-Xylene1 ND ND ug/l NC 30 XYLENE (TOTAL)1 ND ND ug/l NC 30 Styrene1 ND ND ug/l NC 30 Acetone1 ND ND ug/l NC 30	1,3-Dichlorobenzene	ND	ND	ug/l	NC	30
o-Xylene1NDNDug/lNC30XYLENE (TOTAL)1NDNDug/lNC30Styrene1NDNDug/lNC30Acetone1NDNDug/lNC30	1,4-Dichlorobenzene	ND	ND	ug/l	NC	30
XYLENE (TOTAL) ¹ ND ND ug/l NC 30 Styrene ¹ ND ND ug/l NC 30 Acetone ¹ ND ND ug/l NC 30	p/m-Xylene ¹	ND	ND	ug/l	NC	30
Styrene1NDNDug/lNC30Acetone1NDNDug/lNC30	o-Xylene ¹	ND	ND	ug/l	NC	30
Acetone ¹ ND ND ug/l NC 30	XYLENE (TOTAL) ¹	ND	ND	ug/l	NC	30
	Styrene ¹	ND	ND	ug/l	NC	30
Carbon disulfide ¹ ND ND ug/I NC 30	Acetone ¹	ND	ND	ug/l	NC	30
	Carbon disulfide1	ND	ND	ug/l	NC	30

Project Name: 15 ELM STREET

Project Number: 5274

Lab Number:

 Lab Number:
 L1118797

 Report Date:
 11/17/11

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics by GC/MS - Westborough Lab	Associated sample(s): 01-02	QC Batch ID: WG502420-3	QC Sample	e: L1118599·	02 Client ID: DUP
2-Butanone ¹	ND	ND	ug/l	NC	30
Vinyl acetate ¹	ND	ND	ug/l	NC	30
4-Methyl-2-pentanone ¹	ND	ND	ug/l	NC	30
2-Hexanone ¹	ND	ND	ug/l	NC	30
Acrolein ¹	ND	ND	ug/l	NC	30
Acrylonitrile ¹	ND	ND	ug/l	NC	30
Dibromomethane ¹	ND	ND	ug/l	NC	30

				Acceptance	
Surrogate	%Recovery	Qualifier %Recovery	Qualifier	Criteria	
Pentafluorobenzene	109	108		80-120	
Fluorobenzene	110	110		80-120	
4-Bromofluorobenzene	109	110		80-120	

SEMIVOLATILES

			Serial_No:11171116:31			
Project Name:	15 ELM STREET		Lab Number:	L1118797		
Project Number:	5274		Report Date:	11/17/11		
		SAMPLE RESULTS				
Lab ID:	L1118797-01		Date Collected:	11/11/11 09:45		
Client ID:	B-1 (OW)		Date Received:	11/11/11		
Sample Location:	ANDOVER, MA		Field Prep:	Not Specified		
Matrix:	Water		Extraction Method:	EPA 3510C		
Analytical Method:	1,8270C		Extraction Date:	11/12/11 02:54		
Analytical Date:	11/12/11 23:58					
Analyst:	JB					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	tborough Lab					
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1
Butyl benzyl phthalate	ND		ug/l	5.0		1
Di-n-butylphthalate	ND		ug/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	48		21-120	
Phenol-d6	32		10-120	
Nitrobenzene-d5	67		23-120	
2-Fluorobiphenyl	76		15-120	
2,4,6-Tribromophenol	111		10-120	
4-Terphenyl-d14	88		41-149	

			Serial_No:	11171116:31
Project Name:	15 ELM STREET		Lab Number:	L1118797
Project Number:	5274		Report Date:	11/17/11
		SAMPLE RESULTS		
Lab ID:	L1118797-01		Date Collected:	11/11/11 09:45
Client ID:	B-1 (OW)		Date Received:	11/11/11
Sample Location:	ANDOVER, MA		Field Prep:	Not Specified
Matrix:	Water		Extraction Method:	EPA 3510C
Analytical Method:	1,8270C-SIM		Extraction Date:	11/12/11 02:57
Analytical Date:	11/13/11 16:10			
Analyst:	JC			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS-SIM - Westborough Lab								
Accorditions	ND			0.20		4		
Acenaphthene	ND		ug/l	0.20		1		
Fluoranthene	ND		ug/l	0.20		1		
Naphthalene	ND		ug/l	0.20		1		
Benzo(a)anthracene	ND		ug/l	0.20		1		
Benzo(a)pyrene	ND		ug/l	0.20		1		
Benzo(b)fluoranthene	ND		ug/l	0.20		1		
Benzo(k)fluoranthene	ND		ug/l	0.20		1		
Chrysene	ND		ug/l	0.20		1		
Acenaphthylene	ND		ug/l	0.20		1		
Anthracene	ND		ug/l	0.20		1		
Benzo(ghi)perylene	ND		ug/l	0.20		1		
Fluorene	ND		ug/l	0.20		1		
Phenanthrene	ND		ug/l	0.20		1		
Dibenzo(a,h)anthracene	ND		ug/l	0.20		1		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20		1		
Pyrene	ND		ug/l	0.20		1		
Pentachlorophenol	ND		ug/l	0.80		1		

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	52	21-120
Phenol-d6	39	10-120
Nitrobenzene-d5	85	23-120
2-Fluorobiphenyl	78	15-120
2,4,6-Tribromophenol	90	10-120
4-Terphenyl-d14	111	41-149

Project Name:	15 ELM STREET		Lab Number:	L1118797
Project Number:	5274		Report Date:	11/17/11
		Method Blank Analysis		

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8270C	
Analytical Date:	11/13/11 01:30	
Analyst:	JB	

Extraction Method: EPA 3510C Extraction Date: 11/12/11 02:54

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/N	/IS - Westborough	Lab for sam	ple(s): 01	Batch:	WG501937-1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	
Butyl benzyl phthalate	ND		ug/l	5.0	
Di-n-butylphthalate	ND		ug/l	5.0	
Di-n-octylphthalate	ND		ug/l	5.0	
Diethyl phthalate	ND		ug/l	5.0	
Dimethyl phthalate	ND		ug/l	5.0	

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	66	21-120
Phenol-d6	45	10-120
Nitrobenzene-d5	93	23-120
2-Fluorobiphenyl	91	15-120
2,4,6-Tribromophenol	105	10-120
4-Terphenyl-d14	112	41-149

Project Name:	15 ELM STREET		Lab Number:	L1118797
Project Number:	5274		Report Date:	11/17/11
		Mathad Blank Analysia		

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8270C-SIM
Analytical Date:	11/13/11 14:22
Analyst:	JC

Extraction Method: EPA 3510C Extraction Date: 11/12/11 02:57

arameter	Result	Qualifier	Units		RL	MDL
emivolatile Organics by GC/	MS-SIM - Westbo	orough Lab fo	or sample(s):	01	Batch:	WG501938-1
Acenaphthene	ND		ug/l		0.20	
Fluoranthene	ND		ug/l		0.20	
Naphthalene	ND		ug/l		0.20	
Benzo(a)anthracene	ND		ug/l		0.20	
Benzo(a)pyrene	ND		ug/l		0.20	
Benzo(b)fluoranthene	ND		ug/l		0.20	
Benzo(k)fluoranthene	ND		ug/l		0.20	
Chrysene	ND		ug/l		0.20	
Acenaphthylene	ND		ug/l		0.20	
Anthracene	ND		ug/l		0.20	
Benzo(ghi)perylene	ND		ug/l		0.20	
Fluorene	ND		ug/l		0.20	
Phenanthrene	ND		ug/l		0.20	
Dibenzo(a,h)anthracene	ND		ug/l		0.20	
Indeno(1,2,3-cd)pyrene	ND		ug/l		0.20	
Pyrene	ND		ug/l		0.20	
Pentachlorophenol	ND		ug/l		0.80	

_	_	Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	67	21-120
Phenol-d6	50	10-120
Nitrobenzene-d5	102	23-120
2-Fluorobiphenyl	100	15-120
2,4,6-Tribromophenol	104	10-120
4-Terphenyl-d14	132	41-149

Lab Control Sample Analysis

Batch Quality Control

Project Name: 15 ELM STREET

Project Number: 5274

Lab Number: L1118797 Report Date: 11/17/11

LCSD LCS %Recovery %Recovery %Recovery Limits RPD **RPD** Limits Qual Qual Qual Parameter Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG501937-2 WG501937-3 Acenaphthene 85 37-111 2 30 83 1,2,4-Trichlorobenzene 67 71 39-98 6 30 2-Chloronaphthalene 89 96 40-140 30 8 72 72 40-140 30 1,2-Dichlorobenzene 0 1,4-Dichlorobenzene 70 70 36-97 0 30 2.4-Dinitrotoluene 24-96 30 95 96 1 2,6-Dinitrotoluene 93 99 40-140 6 30 Fluoranthene 101 102 40-140 30 1 4-Chlorophenyl phenyl ether 94 97 40-140 30 3 n-Nitrosodi-n-propylamine 90 41-116 30 86 5 Butyl benzyl phthalate 104 106 40-140 2 30 Anthracene 99 101 40-140 2 30 Pyrene 98 100 26-127 2 30 P-Chloro-M-Cresol Q 23-97 30 94 100 6 2-Chlorophenol 82 27-123 30 78 5 2-Nitrophenol 80 82 30-130 30 2 4-Nitrophenol 56 62 10-80 10 30 30 2,4-Dinitrophenol 76 81 20-130 6 Pentachlorophenol 9-103 2 30 89 91 Phenol 12-110 30 44 46 4

Lab Control Sample Analysis Batch Quality Control

Project Name: 15 ELM STREET

Project Number: 5274 Lab Number: L1118797 **Report Date:** 11/17/11

LCSD LCS %Recovery %Recovery %Recovery Limits **RPD Limits** Parameter Qual Qual RPD Qual Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG501937-2 WG501937-3

LCS %Recovery Qu	LCSD al %Recovery Qual	Acceptance Criteria
55	59	21-120
40	43	10-120
82	86	23-120
79	88	15-120
91	98	10-120
96	102	41-149
	%Recovery Qu 55 40 82 79 91 91	%Recovery Qual %Recovery Qual 55 59 40 43 40 43 43 43 82 86 79 88 91 98 98 91

emivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG501938-2 WG501938-3						
Acenaphthene	78	80	37-111	3	40	
2-Chloronaphthalene	84	89	40-140	6	40	
Fluoranthene	101	96	40-140	5	40	
Anthracene	96	105	40-140	9	40	
Pyrene	95	92	26-127	3	40	
Pentachlorophenol	100	94	9-103	6	40	

Lab Control Sample Analysis

Batch Quality Control

Project Name: 15 ELM STREET

Project Number: 5274

 Lab Number:
 L1118797

 Report Date:
 11/17/11

 LCS
 LCSD
 %Recovery

 Parameter
 %Recovery
 Qual
 %Recovery
 Qual
 Limits
 RPD
 Qual
 RPD Limits

 Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s):
 01
 Batch:
 WG501938-2
 WG501938-3

ince ia
)
D
D
D
D
Э
C

PCBS

			Serial_No:	11171116:31
Project Name:	15 ELM STREET		Lab Number:	L1118797
Project Number:	5274		Report Date:	11/17/11
		SAMPLE RESULTS		
Lab ID:	L1118797-01		Date Collected:	11/11/11 09:45
Client ID:	B-1 (OW)		Date Received:	11/11/11
Sample Location:	ANDOVER, MA		Field Prep:	Not Specified
Matrix:	Water		Extraction Method:	EPA 608
Analytical Method:	5,608		Extraction Date:	11/13/11 11:45
Analytical Date:	11/14/11 15:40		Cleanup Method1:	EPA 3665A
Analyst:	GT		Cleanup Date1:	11/14/11
-			Cleanup Method2:	EPA 3660B
			Cleanup Date2:	11/14/11

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Polychlorinated Biphenyls by GC - Westborough Lab									
Aroclor 1016	ND		ug/l	0.250		1			
Aroclor 1221	ND		ug/l	0.250		1			
Aroclor 1232	ND		ug/l	0.250		1			
Aroclor 1242	ND		ug/l	0.250		1			
Aroclor 1248	ND		ug/l	0.250		1			
Aroclor 1254	ND		ug/l	0.250		1			
Aroclor 1260	ND		ug/l	0.250		1			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,4,5,6-Tetrachloro-m-xylene	68		30-150	
Decachlorobiphenyl	61		30-150	

11/14/11

Project Name: **15 ELM STREET** Project Number: 5274

Lab Number: L1118797 Report Date: 11/17/11

Method Blank Analysis Batch Quality Control

Analytical Method:	5,608
Analytical Date:	11/14/11 16:34
Analyst:	GT

Extraction Method:	EPA 608
Extraction Date:	11/13/11 11:45
Cleanup Method1:	EPA 3665A
Cleanup Date1:	11/14/11
Cleanup Method2:	EPA 3660B
Cleanup Date2:	11/14/11

arameter	Result	Qualifier Units	RL	MDL
olychlorinated Biphenyls I	oy GC - Westborough	Lab for sample(s):	01 Batch:	WG501991-1
Aroclor 1016	ND	ug/l	0.25	0
Aroclor 1221	ND	ug/l	0.25	0
Aroclor 1232	ND	ug/l	0.25	0
Aroclor 1242	ND	ug/l	0.25	0
Aroclor 1248	ND	ug/l	0.25	0
Aroclor 1254	ND	ug/l	0.25	0
Aroclor 1260	ND	ug/l	0.25	0

		Acceptance				
Surrogate	%Recovery	Qualifier	Criteria			
2.4.5.6-Tetrachloro-m-xylene	58		30-150			
Decachlorobiphenyl	66		30-150			

Matrix Spike Analysis

Project Name:	15 ELM STREET	Batch Quality Control	Lab Number:	L1118797
Project Number:	5274		Report Date:	11/17/11

Pa	rameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
	olychlorinated Biphenyls by GC ample	C - Westbor	ough Lab As	sociated san	nple(s): 01	QC Batch	ID: WG50	01991-3 Q	C Samp	ole: L111859	90-08	Client I	D: MS
	Aroclor 1016	ND	2.22	1.67	75		-	-		40-140	-		50
	Aroclor 1260	ND	2.22	1.32	59		-	-		40-140	-		50

	MS		M	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
2,4,5,6-Tetrachloro-m-xylene	65				30-150	
Decachlorobiphenyl	55				30-150	

Lab Control Sample Analysis Batch Quality Control

Project Name: 15 ELM STREET

Project Number: 5274

Lab Number: L1118797 Report Date: 11/17/11

Parameter	LCS %Recovery	Qual	LCSD %Recoverv	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Farameter	/arcecovery	Quai		Quai	Linits	KFD	Quai		
Polychlorinated Biphenyls by GC - Westborough Lab Associated sample(s): 01 Batch: WG501991-2									
Aroclor 1016	72		-		40-140	-		50	
Aroclor 1260	69		-		40-140	-		50	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
2,4,5,6-Tetrachloro-m-xylene	59				30-150	
Decachlorobiphenyl	64				30-150	

Project Name: 15 ELM STREET

Project Number: 5274

L

 Lab Number:
 L1118797

 Report Date:
 11/17/11

Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
Associated sample(s): 01	QC Batch ID: WG501	991-4 QC Sam	nple: L1118	3590-08 Client ID: DUP
ND	ND	ug/l	NC	50
ND	ND	ug/l	NC	50
ND	ND	ug/l	NC	50
ND	ND	ug/l	NC	50
ND	ND	ug/l	NC	50
ND	ND	ug/l	NC	50
ND	ND	ug/l	NC	50
	Associated sample(s): 01 ND	Associated sample(s): 01QC Batch ID: WG5013ND	Associated sample(s): 01QC Batch ID:WG501991-4QC SamNDNDug/lNDNDug/lNDNDug/lNDNDug/lNDNDug/lNDNDug/lNDNDug/l	Associated sample(s): 01 QC Batch ID: WG501991-4 QC Sample: L1118 ND ND NC ND ND NC

					Acceptance	
Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Criteria	
2,4,5,6-Tetrachloro-m-xylene	63		70		30-150	
Decachlorobiphenyl	58		62		30-150	

METALS

Serial_No:11171116:31

Project Name:	15 ELI	M STREET					Lab Nu	mber:	L1118	797	
Project Number:	5274						Report	Date:	11/17/	'11	
				SAMPL	E RES	ULTS					
Lab ID:	L1118	797-01					Date Co	ollected:	11/11/	11 09:45	
Client ID:	B-1 (O	W)					Date Re	eceived:	11/11/	'11	
Sample Location:	ANDO	VER, MA					Field Pr	ep:	Not Sp	pecified	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst

Total Metals - We	stborough Lab					
Antimony, Total	ND	mg/l	0.0005	 1	11/14/11 09:40 11/14/11 21:44 EPA 3005A 1,6020	BM
Arsenic, Total	0.0028	mg/l	0.0005	 1	11/14/11 09:40 11/14/11 21:44 EPA 3005A 1,6020	BM
Cadmium, Total	ND	mg/l	0.0002	 1	11/14/11 09:40 11/14/11 21:44 EPA 3005A 1,6020	BM
Chromium, Total	ND	mg/l	0.0005	 1	11/14/11 09:40 11/14/11 21:44 EPA 3005A 1,6020	BM
Copper, Total	0.0010	mg/l	0.0005	 1	11/14/11 09:40 11/14/11 21:44 EPA 3005A 1,6020	BM
Iron, Total	0.23	mg/l	0.05	 1	11/14/11 09:40 11/16/11 11:05 EPA 3005A 19,200.7	AI
Lead, Total	ND	mg/l	0.0005	 1	11/14/11 09:40 11/14/11 21:44 EPA 3005A 1,6020	BM
Mercury, Total	ND	mg/l	0.0002	 1	11/16/11 11:00 11/16/11 16:08 EPA 245.1 3,245.1	JP
Nickel, Total	0.0018	mg/l	0.0005	 1	11/14/11 09:40 11/14/11 21:44 EPA 3005A 1,6020	BM
Selenium, Total	0.002	mg/l	0.001	 1	11/14/11 09:40 11/14/11 21:44 EPA 3005A 1,6020	BM
Silver, Total	ND	mg/l	0.0004	 1	11/14/11 09:40 11/14/11 21:44 EPA 3005A 1,6020	BM
Zinc, Total	0.0105	mg/l	0.0050	 1	11/14/11 09:40 11/14/11 21:44 EPA 3005A 1,6020	BM

Project Name: 15 ELM STREET Project Number: 5274
 Lab Number:
 L1118797

 Report Date:
 11/17/11

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Westboroug	h Lab for sample(s)	: 01 Ba	tch: WG	G50209	93-1				
Antimony, Total	ND	mg/l	0.0005		1	11/14/11 09:40	11/14/11 19:20	1,6020	BM
Arsenic, Total	ND	mg/l	0.0005		1	11/14/11 09:40	11/14/11 19:20	1,6020	BM
Cadmium, Total	ND	mg/l	0.0002		1	11/14/11 09:40	11/14/11 19:20	1,6020	BM
Chromium, Total	ND	mg/l	0.0005		1	11/14/11 09:40	11/14/11 19:20	1,6020	BM
Copper, Total	ND	mg/l	0.0005		1	11/14/11 09:40	11/14/11 19:20	1,6020	BM
Lead, Total	ND	mg/l	0.0005		1	11/14/11 09:40	11/14/11 19:20	1,6020	BM
Nickel, Total	ND	mg/l	0.0005		1	11/14/11 09:40	11/14/11 19:20	1,6020	BM
Selenium, Total	ND	mg/l	0.001		1	11/14/11 09:40	11/14/11 19:20	1,6020	BM
Silver, Total	ND	mg/l	0.0004		1	11/14/11 09:40	11/14/11 19:20	1,6020	BM
Zinc, Total	ND	mg/l	0.0050		1	11/14/11 09:40	11/14/11 19:20	1,6020	BM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Westboroug	h Lab fo	r sample(s):	01 E	Batch: Wo	G50209	97-1				
Iron, Total	ND		mg/l	0.05		1	11/14/11 09:40	11/16/11 10:13	3 19,200.7	AI

Digestion Method: EPA 3005A

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Westboroug	n Lab for	sample(s):	01 E	Batch: WO	G5028	14-1				
Mercury, Total	ND		mg/l	0.0002		1	11/16/11 11:00	11/16/11 14:56	3,245.1	JP

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis

Batch Quality Control

Project Name:

Project Number: 5274 Lab Number: L1118797 **Report Date:** 11/17/11

LCS LCSD %Recovery Limits %Recovery Qual %Recovery RPD **RPD** Limits Parameter Qual Qual Total Metals - Westborough Lab Associated sample(s): 01 Batch: WG502093-2 Antimony, Total 100 -80-120 Arsenic, Total 108 80-120 --Cadmium, Total 111 80-120 --Chromium, Total 99 80-120 --Copper, Total 105 80-120 --Lead, Total 106 80-120 --Nickel, Total 104 80-120 --Selenium, Total 80-120 111 --Silver, Total 102 80-120 --Zinc, Total 112 80-120 --Total Metals - Westborough Lab Associated sample(s): 01 Batch: WG502097-2 Iron, Total 85-115 97 --Total Metals - Westborough Lab Associated sample(s): 01 Batch: WG502814-2 Mercury, Total 109 85-115 --

15 ELM STREET

Matrix Spike Analysis **Batch Quality Control**

Lab Number: L1118797 **Report Date:** 11/17/11

Project Name: 15 ELM STREET Project Number: 5274

MS MSD RPD Native MS MS MSD Recovery Sample %Recovery Found Limits Added Found Limits Qual %Recovery Qual **RPD** Qual Parameter Total Metals - Westborough Lab Associated sample(s): 01 QC Batch ID: WG502093-4 QC Sample: L1118689-01 Client ID: MS Sample ND 0.5 0.5225 104 80-120 20 Antimony, Total -Arsenic. Total 0.0013 0.12 0.1343 111 80-120 20 ---Cadmium. Total ND 0.051 0.0549 108 80-120 20 _ --Chromium, Total 0.0006 0.2 0.1951 97 80-120 20 -_ -Copper, Total 0.0013 0.25 0.2579 103 -80-120 20 --Lead, Total ND 0.51 0.5418 106 80-120 20 ---Nickel, Total 0.0019 0.5 0.5101 102 80-120 20 ---Selenium, Total ND 0.12 0.127 106 80-120 20 _ --Silver, Total ND 0.05 0.0507 101 80-120 20 -_ _ Zinc, Total 0.0209 0.5 0.5619 108 80-120 20 --_ Total Metals - Westborough Lab Associated sample(s): 01 QC Batch ID: WG502097-4 QC Sample: L1118707-01 Client ID: MS Sample Iron, Total 26 1 27 100 75-125 20 _ Total Metals - Westborough Lab Associated sample(s): 01 QC Batch ID: WG502814-4 QC Sample: L1118156-01 Client ID: MS Sample Mercury, Total ND 0.001 0.0011 113 70-130 _ 20

Lab Duplicate Analysis Batch Quality Control

Project Name:15 ELM STREETProject Number:5274

 Lab Number:
 L1118797

 Report Date:
 11/17/11

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual F	RPD Limits
Total Metals - Westborough Lab Associated sample(s): 0	01 QC Batch ID: WG	502093-3 QC Sample:	L1118689-01	Client ID:	DUP Sample	
Cadmium, Total	ND	ND	mg/l	NC		20
Copper, Total	0.0013	0.0013	mg/l	1		20
Lead, Total	ND	ND	mg/l	NC		20
Nickel, Total	0.0019	0.0019	mg/l	0		20
Zinc, Total	0.0209	0.0199	mg/l	5		20
otal Metals - Westborough Lab Associated sample(s): 0	01 QC Batch ID: WG	502097-3 QC Sample:	L1118707-01	Client ID:	DUP Sample	÷
Iron, Total	26	26	mg/l	0		20
Total Metals - Westborough Lab Associated sample(s): 0	01 QC Batch ID: WG	502814-3 QC Sample:	L1118156-01	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Serial_No:11171116:31

Project Name:15 ELM STREETProject Number:5274

Lab Number: L1118797 Report Date: 11/17/11

SAMPLE RESULTS

Lab ID:	L1118797-01
Client ID:	B-1 (OW)
Sample Location:	ANDOVER, MA
Matrix:	Water

Date Collected:	11/11/11 09:45
Date Received:	11/11/11
Field Prep:	Not Specified

Parameter	Parameter Result		Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst	
General Chemistry - Wes	stborough Lab)									
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	11/16/11 15:15	30,2540D	DW	
Cyanide, Total	ND		mg/l	0.005		1	11/14/11 13:45	11/15/11 16:58	30,4500CN-CE	JO	
Chlorine, Total Residual	ND		mg/l	0.02		1	-	11/11/11 14:45	30,4500CL-D	JO	
рН (Н)	5.9		SU	-	NA	1	-	11/11/11 23:33	30,4500H+-B	KK	
ТРН	ND		mg/l	4.00		1	11/14/11 14:00	11/16/11 14:30	74,1664A	JO	
Phenolics, Total	ND		mg/l	0.03		1	11/15/11 18:00	11/15/11 21:35	4,420.1	TP	
Chromium, Hexavalent	ND		mg/l	0.010		1	11/12/11 02:30	11/12/11 02:43	30,3500CR-D	TP	
General Chemistry											
Trivalent Chromium	ND		mg/l	0.01		1	-	11/16/11 19:00	30,3500-Cr	ED	
Anions by Ion Chromato	graphy - West	borough L	.ab								
Chloride	420		mg/l	5.0		10	-	11/15/11 19:56	44,300.0	AU	

Project Name: 15 ELM STREET Project Number: 5274
 Lab Number:
 L1118797

 Report Date:
 11/17/11

Method Blank Analysis Batch Quality Control

Parameter	Result Qı	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG50	1873-2				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	11/11/11 14:45	30,4500CL-D	JO
General Chemistry -	· Westborough Lab	for sam	ple(s): 01	Batch:	WG50	1930-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	11/12/11 02:30	11/12/11 02:38	30,3500CR-D	TP
General Chemistry -	· Westborough Lab	for sam	ple(s): 01	Batch:	WG50	2185-2				
Cyanide, Total	ND		mg/l	0.005		1	11/14/11 13:45	11/15/11 16:49	30,4500CN-CE	JO
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG50	2217-2				
ТРН	ND		mg/l	4.00		1	11/14/11 14:00	11/16/11 14:30	74,1664A	JO
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG50	2569-1				
Phenolics, Total	ND		mg/l	0.03		1	11/15/11 18:00	11/15/11 21:32	4,420.1	TP
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG50	2647-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	11/16/11 15:15	30,2540D	DW
Anions by Ion Chror	natography - Westb	orough	Lab for sa	mple(s):	01 Ba	atch: WG5	02832-1			
Chloride	ND		mg/l	0.50		1	-	11/15/11 19:08	44,300.0	AU

Lab Control Sample Analysis Batch Quality Control

Project Name: 15 ELM STREET

Project Number: 5274

Lab Number: L1118797 Report Date: 11/17/11

Parameter	LCS %Recovery (LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): (D1 Batch: WG501873-1			
Chlorine, Total Residual	97	-	90-110	-	
General Chemistry - Westborough Lab	Associated sample(s): (D1 Batch: WG501908-1			
рН	100	-	99-101	-	5
General Chemistry - Westborough Lab	Associated sample(s): (D1 Batch: WG501930-2			
Chromium, Hexavalent	105	-	85-115	-	20
General Chemistry - Westborough Lab	Associated sample(s): (D1 Batch: WG502185-1			
Cyanide, Total	97	-	90-110	-	
General Chemistry - Westborough Lab	Associated sample(s): (D1 Batch: WG502217-1			
ТРН	90	-	64-132	-	34
General Chemistry - Westborough Lab	Associated sample(s): (D1 Batch: WG502569-2			
Phenolics, Total	95	-	82-111	-	12
Anions by Ion Chromatography - Westbo	rough Lab Associated	sample(s): 01 Batch: W	/G502832-2		
Chloride	108	-	90-110	-	

Matrix Spike Analysis Batch Quality Control

Project Name: 15 ELM STREET

Project Number: 5274 Lab Number: L1118797 **Report Date:** 11/17/11

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborou	gh Lab Asso	ciated samp	ole(s): 01	QC Batch ID:	WG5019	30-3 (QC Sample: L111	8797-01	Client ID	: B-1	(WO)	
Chromium, Hexavalent	ND	0.1	0.107	107		-	-		85-115	-		20
General Chemistry - Westborou	gh Lab Asso	ciated samp	ole(s): 01	QC Batch ID:	WG5021	85-3 (QC Sample: L111	8797-01	Client ID	: B-1	(WO)	
Cyanide, Total	ND	0.2	0.171	86	Q	-	-		90-110	-		30
General Chemistry - Westborou	gh Lab Asso	ciated samp	ole(s): 01	QC Batch ID:	WG5022	17-3 (QC Sample: L111	8707-01	Client ID	MS	Sample)
TPH	ND	20.4	16.7	82		-	-		64-132	-		34
General Chemistry - Westborou	gh Lab Asso	ciated samp	ole(s): 01	QC Batch ID:	WG5025	69-3 (QC Sample: L111	18800-02	2 Client ID	MS	Sample)
Phenolics, Total	ND	0.8	0.75	94		-	-		77-124	-		12
Anions by Ion Chromatography	- Westborou	gh Lab Asso	ociated sar	mple(s): 01 Q	C Batch	ID: WG5	02832-3 QC S	Sample: I	_1118800-0	1 Cli	ent ID:	MS Sam
Chloride	140	100	230	97		-	-		40-151	-		18

Lab Duplicate Analysis Batch Quality Control

Project Name:15 ELM STREETProject Number:5274

 Lab Number:
 L1118797

 Report Date:
 11/17/11

Parameter	Native Sample	Duplicate Sar	nple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Ass	sociated sample(s): 01 QC Batch	ID: WG501873-3	QC Sample: L1118	771-06 Clien	t ID: DUF	Sample
Chlorine, Total Residual	4.5	4.4	mg/l	2		20
General Chemistry - Westborough Lab As	sociated sample(s): 01 QC Batch	ID: WG501908-2	QC Sample: L1118	795-01 Clien	t ID: DUF	Sample
рН	5.9	5.9	SU	0		5
General Chemistry - Westborough Lab As	sociated sample(s): 01 QC Batch	ID: WG501930-4	QC Sample: L1118	797-01 Clien	t ID: B-1	(OW)
Chromium, Hexavalent	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab As	sociated sample(s): 01 QC Batch	ID: WG502185-4	QC Sample: L1118	783-02 Clien	t ID: DUF	Sample
Cyanide, Total	ND	ND	mg/l	NC		30
General Chemistry - Westborough Lab As	sociated sample(s): 01 QC Batch	ID: WG502217-4	QC Sample: L1118	743-02 Clien	t ID: DUF	Sample
TPH	ND	ND	mg/l	NC		34
General Chemistry - Westborough Lab As	sociated sample(s): 01 QC Batch	ID: WG502569-4	QC Sample: L1118	800-01 Clien	t ID: DUF	Sample
Phenolics, Total	ND	0.03	mg/l	NC		12
General Chemistry - Westborough Lab As	sociated sample(s): 01 QC Batch	ID: WG502647-2	QC Sample: L1118	737-11 Clien	t ID: DUF	Sample
Solids, Total Suspended	150	510	mg/l	109	Q	32
Anions by Ion Chromatography - Westboro Sample	ough Lab Associated sample(s): 01	QC Batch ID: WC	3502832-4 QC Sar	nple: L11188	00-01 Cli	ent ID: DUP
Chloride	140	130	mg/l	7		18

Project Name: 15 ELM STREET Project Number: 5274

Lab Number: L1118797 Report Date: 11/17/11

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal Cooler A Absent

D	A 1 (
В	Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1118797-01A	Vial HCI preserved	В	N/A	2.7	Y	Absent	624(14)
L1118797-01B	Vial HCI preserved	В	N/A	2.7	Y	Absent	624(14)
L1118797-01C	Vial Na2S2O3 preserved	А	N/A	2.1	Y	Absent	504(14)
L1118797-01D	Vial Na2S2O3 preserved	А	N/A	2.1	Y	Absent	504(14)
L1118797-01E	Plastic 1000ml unpreserved	А	7	2.1	Y	Absent	TSS-2540(7)
L1118797-01F	Plastic 1000ml unpreserved	A	7	2.1	Y	Absent	SPECWC(),CL-300(28),HEXCR- 3500(1),TRC-4500(1),PH- 4500(.01)
L1118797-01G	Amber 1000ml Na2S2O3	А	7	2.1	Y	Absent	PCB-608(7)
L1118797-01H	Amber 1000ml Na2S2O3	А	7	2.1	Y	Absent	PCB-608(7)
L1118797-01I	Amber 1000ml unpreserved	А	7	2.1	Y	Absent	8270TCL(7),8270TCL-SIM(7)
L1118797-01J	Amber 1000ml unpreserved	А	7	2.1	Y	Absent	8270TCL(7),8270TCL-SIM(7)
L1118797-01K	Amber 1000ml HCl preserved	А	<2	2.1	Y	Absent	TPH-1664(28)
L1118797-01L	Amber 1000ml HCl preserved	А	<2	2.1	Y	Absent	TPH-1664(28)
L1118797-01M	Amber 500ml H2SO4preserved	В	<2	2.7	Y	Absent	TPHENOL-420(28)
L1118797-01N	Plastic 250ml NaOH preserved	В	>12	2.7	Y	Absent	TCN-4500(14)
L1118797-01O	Plastic 250ml HNO3 preserved	В	<2	2.7	Y	Absent	SE-6020T(180),CR- 6020T(180),NI-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180),HG- U(28),AS-6020T(180),SB- 6020T(180),AG-6020T(180),CD- 6020T(180),SPECWC(0)
L1118797-02A	Vial Na2S2O3 preserved	А	N/A	2.1	Y	Absent	504(14)
L1118797-02B	Vial Na2S2O3 preserved	А	N/A	2.1	Y	Absent	504(14)
L1118797-02C	Vial HCI preserved	А	N/A	2.1	Y	Absent	624(14)

Serial_No:11171116:31

Project Name: 15 ELM STREET

Project Number: 5274

Lab Number: L1118797

Report Date: 11/17/11

Acronyms

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

GLOSSARY

- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The RPD between the results for the two columns exceeds the method-specified criteria; however, the lower value has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

Report Format: Data Usability Report

Serial_No:11171116:31

Project Name: 15 ELM STREET

Project Number: 5274

Lab Number: L1118797 Report Date: 11/17/11

Data Qualifiers

- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

 Lab Number:
 L1118797

 Report Date:
 11/17/11

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IIIA, 1997.
- 3 Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- 5 Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- 14 Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.
- 44 Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 74 Method 1664, Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised November 17, 2011 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. <u>Organic Parameters:</u> Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP), Ethylene Dibromide (EDB), 1,4-Dioxane (Mod 8270). <u>Microbiology Parameters:</u> Total Coliform-MF mEndo (SM9222B), Total Coliform – Colilert (SM9223 P/A), E. Coli. – Colilert (SM9223 P/A), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D))

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics, TPH (HEM/SGT), Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH. <u>Microbiology Parameters</u>: Total Coliform – MF mEndo (SM9222B), Total Coliform – MTF (SM9221B), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D), Fecal Coliform – A-1 Broth (SM9221E).)

Solid Waste/Soil (Inorganic Parameters: pH, Sulfide, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), SPLP Leach (1312 metals only), Reactivity. <u>Organic Parameters</u>: PCBs, PCBs in Oil, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH, Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Volatile Organics, Acid Extractables (Phenols), 3.3'-Dichlorobenzidine, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (<u>Inorganic Parameters</u>: SM9215B, 9222D, 9223B, EPA 180.1, 353.2, SM2130B, 2320B, 2540C, 4500Cl-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B, 4500NO3-F, EPA 200.7, EPA 200.8, 245.1, EPA 300.0. <u>Organic Parameters</u>: 504.1, 524.2.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, SM2320B, 2510B, 2540C, 2540D, 426C, 4500CI-D, 4500CI-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-G, 4500NH3-H, 4500NO3-F, 4500P-B, 4500P-E, 5210B, 5220D, 5310C, 9010B, 9040B, 9030B, 7470A, 7196A, 2340B, EPA 200.7, 6010, 200.8, 6020, 245.1, 1311, 1312, 3005A, Enterolert, 9223D, 9222D. <u>Organic Parameters</u>: 608, 8081, 8082, 8330, 8151A, 624, 8260, 3510C, 3630C, 5030B, ME-DRO, ME-GRO, MA-EPH, MA-VPH.)

Solid Waste/Soil (<u>Inorganic Parameters</u>: 9010B, 9012A, 9014A, 9040B, 9045C, 6010B, 7471A, 7196A, 9050A, 1010, 1030, 9065, 1311, 1312, 3005A, 3050B. <u>Organic Parameters</u>: ME-DRO, ME-GRO, MA-EPH, MA-VPH, 8260B, 8270C, 8330, 8151A, 8081A, 8082, 3540C, 3546, 3580A, 3630C, 5030B, 5035.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water (Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl) (EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Fluoride, Sulfate); (EPA 353.2 for: Nitrate-N, Nitrite-N); (SM4500NO3-F for: Nitrate-N and Nitrite-N); 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, 2320B, SM2540C, SM4500H-B. <u>Organic Parameters</u>: (EPA 524.2 for: Trihalomethanes, Volatile Organics); (504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), EPA 332. <u>Microbiology Parameters</u>: SM9215B; ENZ. SUB. SM9223; ColilertQT SM9223B; MF-SM9222D.)

Page 54 of 54 of 54 Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn); 245.1, SM4500H,B, EPA 120.1,

SM2510B, 2540C, 2340B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Ammonia-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

<u>Organic Parameters</u>: (EPA 624 for Volatile Halocarbons, Volatile Aromatics),(608 for: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs-Water), (EPA 625 for SVOC Acid Extractables and SVOC Base/Neutral Extractables), 600/4-81-045-PCB-Oil. <u>Microbiology Parameters</u>: (ColilertQT SM9223B;Enterolert-QT: SM9222D-MF.)

New Hampshire Department of Environmental Services <u>Certificate/Lab ID</u>: 200307. *NELAP Accredited. Drinking Water* (<u>Inorganic Parameters</u>: SM 9222B, 9223B, 9215B, EPA 200.7, 200.8, 245.2, 300.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 332.0. <u>Organic Parameters</u>: 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 3005A, 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6020, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 300.0, 350.1, 350.2, 351.1, 353.2, 410.4, 420.1, 1664A, SW-846 9010, 9030, 9040B, SM426C, SM2120B, 2310B, 2320B, 2540B, 2540D, 4500H+B, 4500CL-E, 4500CN-E, 4500NH3-H, 4500NO3-F, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 5220D, 2510B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. <u>Organic Parameters</u>: SW-846 3510C, 3630C, 5030B, 8260B, 8270C, 8330, EPA 624, 625, 608, SW-846 8082, 8081A, 8151A.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6010B, 7196A, 7471A, 1010, 1030, 9010, 9012A, 9014, 9030B, 9040B, 9045C, 9050C, 9065,1311, 1312, 3005A, 3050B. <u>Organic Parameters</u>: SW-846 3540C, 3546, 3550B, 3580A, 3630C, 5030B, 5035, 8260B, 8270C, 8330, 8151A, 8015B, 8082, 8081A.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9222B, 9221E, 9223B, 9215B, 4500CN-CE, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 200.8, 245.2, 2540C, SM2120B, 2320B, 2510B, 5310C, SM4500H-B. <u>Organic Parameters</u>: EPA 332, 504.1, 524.2.)

Non-Potable Water (<u>Inorganic Parameters</u>: SM5210B, EPA 410.4, SM5220D, 4500CI-E, EPA 300.0, SM2120B, SM4500F-BC, EPA 200.7, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM510ABC, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM15 426C, 9222D, 9221B, 9221C, 9221E, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, EPA 350.1, 350.2, SW-846 1312, 6020, 6020A, 7470A, 5540C, 4500H-B, EPA 200.8, SM3500Cr-D, 4500CN-CE, EPA 245.1, 245.2, SW-846 9040B, 3005A, 3015, EPA 6010B, 6010C, 7196A, 3060A, SW-846 9010B, 9030B. <u>Organic Parameters</u>: SW-846 8260B, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3510C, EPA 608, 624, 625, SW-846 3630C, 5030B, 8081A, 8081B, 8082, 8082A, 8151A, 8330, NJ OQA-QAM-025 Rev.7, NJ EPH.)

Solid & Chemical Materials (Inorganic Parameters: SW-846, 6010B, 6010C, 7196A, 3060A, 9010B, 9030B, 1010, 1030, 1311, 1312, 3005A, 3050B, 7471A, 7471B, 9014, 9012A, 9040B, 9045C, 9050A, 9065. <u>Organic Parameters</u>: SW-846 8015B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8330, 8260B, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3540C, 3545, 3546, 3550B, 3580A, 3630C, 5030B, 5035L, 5035H, NJ OQA-QAM-025 Rev.7, NJ EPH.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (<u>Inorganic Parameters</u>: SM9223B, 9222B, 9215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 332.0, SM2320B, EPA 300.0, SM2120B, 4500CN-E, 4500F-C, 4500H-B, 4500NO3-F, 2540C, SM 2510B. <u>Organic Parameters</u>: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, 5210B, 5310C, EPA 410.4, SM5220D, 2310B-4a, 2320B, EPA 200.7, 300.0, SM4500CL-E, 4500F-C, SM15 426C, EPA 350.1, SM4500NH3-BH, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, LACHAT 10-107-04-1-C, SM4500-NO3-F, 4500-NO2-B, 4500P-E, 2540C, 2540B, 2540D, EPA 200.8, EPA 6010B, 6020, EPA 7196A, SM3500Cr-D, EPA 245.1, 245.2, 7470A, SM2120B, LACHAT 10-204-00-1-A, EPA 9040B, SM4500-HB, EPA 1664A, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, SM4500S-D, SM5540C, EPA 3005A, 9010B, 9030B. <u>Organic Parameters</u>: EPA 624, 8260B, 8270C, 625, 608, 8081A, 8151A, 8330, 8082, EPA 3510C, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: 1010, 1030, EPA 6010B, 7196A, 7471A, 9012A, 9014, 9040B, 9045C, 9065, 9050, EPA 1311, 1312, 3005A, 3050B, 9010B, 9030B. <u>Organic Parameters</u>: EPA 8260B, 8270C, 8015B, 8081A, 8151A, 8330, 8082, 3540C, 3545, 3546, 3580, 5030B, 5035.)

North Carolina Department of the Environment and Natural Resources <u>Certificate/Lab ID</u>: 666. <u>Organic</u> <u>Parameters</u>: MA-EPH, MA-VPH.

Page 57inking Water Program Certificate/Lab ID: 25700. (Inorganic Parameters: Chloride EPA 300.0. Organic Parameters: 524.2)

Pennsylvania Department of Environmental Protection <u>Certificate/Lab ID</u>: 68-03671. *NELAP Accredited. Drinking Water* (<u>Organic Parameters</u>: EPA 524.2, 504.1)

Non-Potable Water (<u>Inorganic Parameters:</u> EPA 1312, 200.7, 410.4, 1664A, SM2540D, 5210B, 5220D, 4500-P,BE. <u>Organic Parameters</u>: EPA 3510C, 3005A, 3630C, 5030B, 625, 624, 608, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Solid & Hazardous Waste (Inorganic Parameters: EPA 350.1, 1010, 1030, 1311, 1312, 3050B, 6010B, 7196A, 7471A, 9010B, 9012A, 9014, 9040B, 9045C, 9050, 9065, SM 4500NH3-H. <u>Organic Parameters</u>: 3540C, 3545, 3546, 3550B, 3580A, 3630C, 5035, 8015B, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Rhode Island Department of Health <u>Certificate/Lab ID</u>: LAO00065. *NELAP Accredited via NY-DOH.* Refer to MA-DEP Certificate for Potable and Non-Potable Water. Refer to NJ-DEP Certificate for Potable and Non-Potable Water.

Texas Commisson on Environmental Quality <u>Certificate/Lab ID</u>: T104704476-09-1. *NELAP Accredited. Non-Potable Water* (<u>Inorganic Parameters</u>: EPA 120.1, 1664, 200.7, 200.8, 245.1, 245.2, 300.0, 350.1, 351.1, 353.2, 410.4, 420.1, 6010, 6020, 7196, 7470, 9040, SM 2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 2540D, 426C, 4500CL-E, 4500CN-E, 4500F-C, 4500H+B, 4500NH3-H, 4500NO2B, 4500P-E, 4500 S2⁻ D, 510C, 5210B, 5220D, 5310C, 5540C. <u>Organic Parameters</u>: EPA 608, 624, 625, 8081, 8082, 8151, 8260, 8270, 8330.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 9012, 9014, 9040, 9045, 9050, 9065.)

Department of Defense Certificate/Lab ID: L2217.

Drinking Water (Inorganic Parameters: SM 4500H-B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (<u>Inorganic Parameters</u>: EPA 200.7, 200.8, 6010B, 6020, 245.1, 245.2, 7470A, 9040B, 300.0, 332.0, 6860, 353.2, 410.4, 9060, 1664A, SM 4500CN-E, 4500H-B, 4500NO3-F, 5220D, 5310C, 2320B, 2540C, 3005A, 3015, 9010B, 9056. <u>Organic Parameters</u>: EPA 8260B, 8270C, 8330A, 625, 8082, 8081A, 3510C, 5030B, MassDEP EPH, MassDEP VPH.)

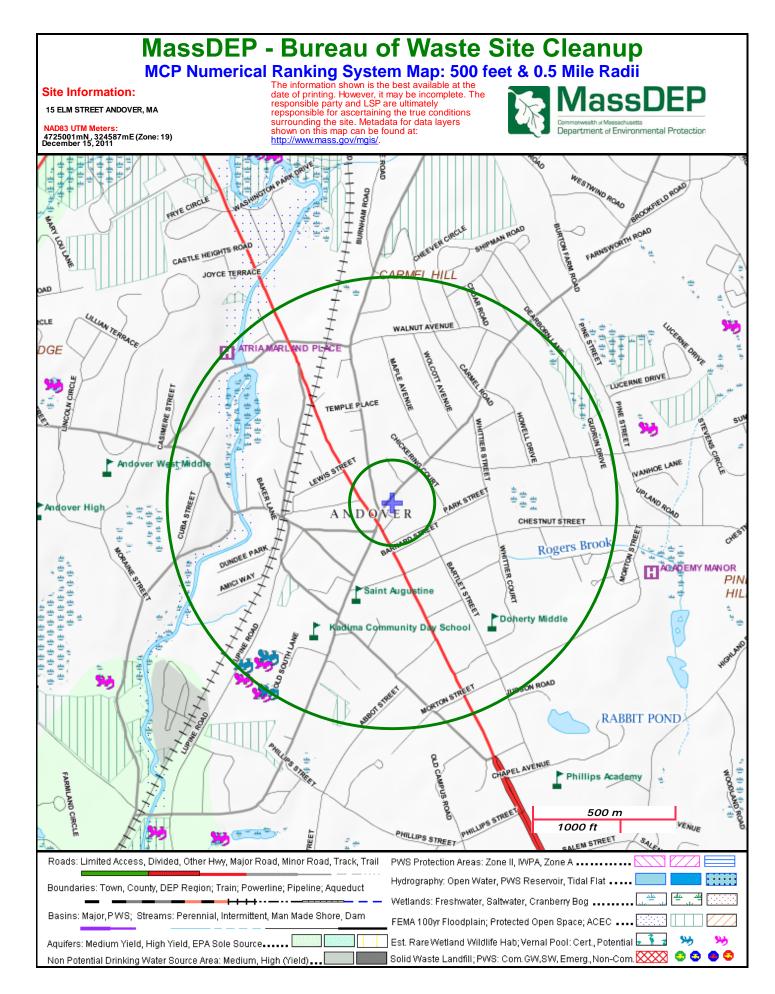
Solid & Hazardous Waste (Inorganic Parameters: EPA 200.7, 6010B, 7471A, 9010, 9012A, 6860, 1311, 1312, 3050B, 7196A, 9010B, 3500-CR-D, 4500CN-CE, 2540G, <u>Organic Parameters</u>: EPA 8260B, 8270C, 8330A/B-prep, 8082, 8081A, 3540C, 3546, 3580A, 5035A, MassDEP EPH, MassDEP VPH.)

The following analytes are not included in our current NELAP/TNI Scope of Accreditation:

EPA 8260B: Freon-113, 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene. **EPA 8330A:** PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT. **EPA 8270C:** Methyl naphthalene, Dimethyl naphthalene, Total Methylnapthalenes, Total Dimethylnaphthalenes, 1,4-Diphenylhydrazine (Azobenzene). **EPA 625:** 4-Chloroaniline, 4-Methylphenol. Total Phosphorus in a soil matrix, Chloride in a soil matrix, TKN in a soil matrix, NO2 in a soil matrix, NO3 in a soil matrix, SO4 in a soil matrix.

	CHAIN	OF CU	STO	DY P	AGE	OF	Date	Rec'd i	n Lab:		11	۱ <u>]</u> ۱		A	LPH	A Job #: []]890	17
	MANSFIELD, MA	Project	Informati	on			Rep	ort Inf	ormat	ion - D	ata De	livera	bles	В	illing	Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project N		Elm			1	AX							Same	as Client info PO #:	
Client Information		Project L	ocation: A	ndove	er, Mi	A		DEx		🗅 Add'l						· · · ·	
Client: McPha	Mass Ave	Inc Project #			, 			latory			_						
Address: 2269	Mass Ave.	Project M	lanager: 1	Bill	Bur	ns		/Fed Pr				GP-				luent Limits	
Combri	dar, MA	ALPHA	Quote #:		1									•		NABLE CONFIDENCE PRO	
Phone: 617-8	doc. MA 68-1420	Turn-A	round Tin	ne				es Xath es Xath	1	Are MC	-					DG? (If yes see note in Commen	ıts)
Fax:	· · · ·	X Standa	ia 🗆				 🛛 Ye	s X	0	Are CT	RCP (R	leason	able C	onfide	nce P	rotocols) Required?	
Email:		f .		RUSH (only		pproved!)		<u> </u>	\$	/ *. /				1	/		T O
These samples have	been previously analyzed by A	Alpha Date Du	เริ่าแ		Time:	-	Š) <u>*</u>				' / [`]				SAMPLE HANDLING	T A L
If MS is required , indic	cific Requirements/Co ate in Sample Specific Comn ds for inorganic analyses requ	nents which sample	es and what to		e performec	I, -	D. AMALYSIO		r r							Filtration Done Not needed Lab to do Preservation Lab to do	H B O T T
ALPHA Lab ID (Lab Use Only)	Sample ID		Colle Date	ection Time	Sample Matrix	Sampler's Initials	- ∕ \ ∧ .		/.	.						(Please specify below) Sample Specific Comments	L E S
8797-01	B-1(ow)			9:45		FBK				<u>/ /</u>						4(Phashic)+7(Mbers)+4(VIA	
0111-01			Madu	-1:12	H20											7(1m3)()17(1bevs)71(0)	14/13
			4.						:								
														_			
						_			;					_			
											ĺ						
	····															· · · ·	
PLEASE ANSWER	QUESTIONS ABOVE!			·	Cont	ainer Type										Please print clearly, legibly and	
IS YOUR PF					Pr	reservative						Anna an Anna				pletely. Samples can not be lo In and turnaround time clock w	gged ill not
MAMCP or		Relinqu	ished By:		Dat	te/Time		F	Receive	By:			Da	te/Tim		start until any ambiguities are r All samples submitted are subj	esolved
		mm	ane	Hay	- 4/14	11 3: 11 NSS		50	ML.	$\overline{}$		·	â]n[<u> </u> t	35	Alpha's Terms and Conditions.	
FORM NO: 01-01 (rev. 18-Jan-	2010)				··· / #[]	<u>p. 100</u>		S	in		-		111	ща	i	Comparatorse side.	

Page 57 of 57


ATTACHMENT D

AREAS OF CRITICAL CONCERN, ENDANGERED AND THREATENED SPECIES

Based on a review of Massachusetts Geographic Information Systems DEP Priority Resources' Map, there are no drinking water supplies, no Areas of Critical Environmental Concern, no Sole Source Aquifers, no fish habitats, and no habitats of Species of Special Concern or Threatened or Endangered Species at or within 500-feet of the subject site. No Protected Open Space is indicated within 500-feet of the subject property. There are no surface water bodies located within the site boundaries. The Shawsheen River and Rogers Brook are located approximately 1,800 to the west and 2,000 feet to the southwest of the subject site, respectively.

A review of the most recent federal listing of threatened and endangered species published by the U.S. Fish and Wildlife Service did not identify the presence of threatened and/or endangered species or critical habitats at or in the vicinity of the discharge location and/or discharge outfall. In addition, a review of the Massachusetts Division of Fisheries and Wildlife on-line database did not indicate the presence of threatened or endangered species at the point of discharge and/or the discharge outfall.

Based upon the above, the site is considered criterion A pursuant to Appendix IV of the RGP.

MASSACHUSETTS AREAS OF CRITICAL ENVIRONMENTAL CONCERN June 2009

Total Approximate Acreage: 268,000 acres Approximate acreage and designation date follow ACEC names below.

Bourne Back River (1,850 acres, 1989) Bourne

Canoe River Aquifer and Associated Areas (17,200 acres, 1991) Easton, Foxborough, Mansfield, Norton, Sharon, and Taunton

Cedar Swamp (1,650 acres, 1975) Hopkinton and Westborough

Central Nashua River Valley (12,900 acres, 1996) Bolton, Harvard, Lancaster, and Leominster

Cranberry Brook Watershed (1,050 acres, 1983) Braintree and Holbrook

Ellisville Harbor (600 acres, 1980) Plymouth

Fowl Meadow and Ponkapoag Bog (8,350 acres, 1992) Boston, Canton, Dedham, Milton, Norwood, Randolph, Sharon, and Westwood

Golden Hills (500 acres, 1987) Melrose, Saugus, and Wakefield

Great Marsh (originally designated as Parker River/Essex Bay)

(25,500 acres, 1979) Essex, Gloucester, Ipswich, Newbury, and Rowley

Herring River Watershed (4,450 acres, 1991) Bourne and Plymouth

Hinsdale Flats Watershed (14,500 acres, 1992) Dalton, Hinsdale, Peru, and Washington

Hockomock Swamp (16,950 acres, 1990) Bridgewater, Easton, Norton, Raynham, Taunton, and West Bridgewater

Inner Cape Cod Bay (2,600 acres, 1985) Brewster, Eastham, and Orleans

Kampoosa Bog Drainage Basin (1,350 acres, 1995) Lee and Stockbridge Karner Brook Watershed (7,000 acres, 1992) Egremont and Mount Washington

Miscoe, Warren, and Whitehall Watersheds (8,700 acres, 2000) Grafton, Hopkinton, and Upton

Neponset River Estuary (1,300 acres, 1995) Boston, Milton, and Quincy

Petapawag (25,680 acres, 2002) Ayer, Dunstable, Groton, Pepperell, and Tyngsborough

Pleasant Bay (9,240 acres, 1987) Brewster, Chatham, Harwich, and Orleans

Pocasset River (160 acres, 1980) Bourne

Rumney Marshes (2,800 acres, 1988) Boston, Lynn, Revere, Saugus, and Winthrop

Sandy Neck Barrier Beach System (9,130 acres, 1978) Barnstable and Sandwich

Schenob Brook Drainage Basin (13,750 acres, 1990) Mount Washington and Sheffield

Squannassit

(37,420 acres, 2002) Ashby, Ayer, Groton, Harvard, Lancaster, Lunenburg, Pepperell, Shirley, and Townsend

Three Mile River Watershed

(14,280 acres, 2008) Dighton, Norton, Taunton

Upper Housatonic River (12,280 acres, 2009) Lee, Lenox, Pittsfield, Washington

Waquoit Bay (2,580 acres, 1979) Falmouth and Mashpee

Weir River (950 acres, 1986) Cohasset, Hingham, and Hull

Wellfleet Harbor (12,480 acres, 1989) Eastham, Truro, and Wellfleet

Weymouth Back River (800 acres, 1982) Hingham and Weymouth

ACEC acreages above are based on MassGIS calculations and may differ from numbers originally presented in designation documents and other ACEC publications due to improvements in accuracy of GIS data and boundary clarifications. Listed acreages have been rounded to the nearest 50 or 10 depending on whether boundary clarification has occurred. For more information please see, http://www.mass.gov/dcr/stewardship/acec/aboutMaps.htm.

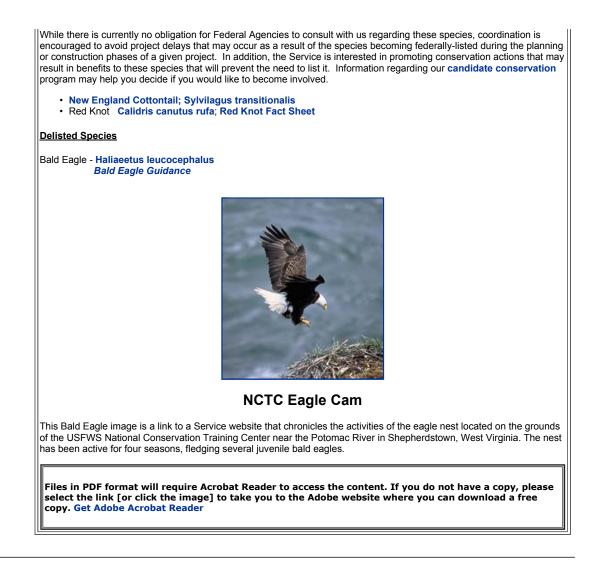
Towns with ACECs within their Boundaries

•

June 2009

TOWN	ACEC	TOWN	ACEC
Ashby	Squannassit	Mt. Washington	Karner Brook Watershed
Ayer	Petapawag	· ·	Schenob Brook
,	Squannassit	Newbury	Great Marsh
Barnstable	Sandy Neck Barrier Beach System	Norton	Hockomock Swamp
Bolton	Central Nashua River Valley		Canoe River Aquifer
Boston	Rumney Marshes		Three Mile River Watershed
Booton	Fowl Meadow and Ponkapoag Bog	Norwood	Fowl Meadow and Ponkapoag Bog
	Neponset River Estuary	Orleans	Inner Cape Cod Bay
Bourne	Pocasset River	Officiality	Pleasant Bay
Doume	Bourne Back River	Pepperell	Petapawag
		i ebberen	Squannassit
Dusintus	Herring River Watershed	Doru	
Braintree	Cranberry Brook Watershed	Peru	Hinsdale Flats Watershed
Brewster	Pleasant Bay	Pittsfield	Upper Housatonic River
	Inner Cape Cod Bay	Plymouth	Herring River Watershed
Bridgewater	Hockomock Swamp		Ellisville Harbor
Canton	Fowl Meadow and Ponkapoag Bog	Quincy	Neponset River Estuary
Chatham	Pleasant Bay	Randolph	Fowl Meadow and Ponkapoag Bog
Cohasset	Weir River	Raynham	Hockomock Swamp
Dalton	Hinsdale Flats Watershed	Revere	Rumney Marshes
Dedham	Fowl Meadow and Ponkapoag Bog	Rowley	Great Marsh
Dighton	Three Mile River Watershed	Sandwich	Sandy Neck Barrier Beach System
Dunstable	Petapawag	Saugus	Runney Marshes
Eastham	Inner Cape Cod Bay	0	Golden Hills
	Wellfleet Harbor	Sharon	Canoe River Aquifer
Easton	Canoe River Aquifer		Fowl Meadow and Ponkapoag Bog
Laoton	Hockomock Swamp	Sheffield	Schenob Brook
Egremont	Karner Brook Watershed	Shirley	Squannassit
Essex	Great Marsh	Stockbridge	Kampoosa Bog Drainage Basin
		Taunton	Hockomock Swamp
Falmouth	Waquoit Bay	raumon	
Foxborough	Canoe River Aquifer		Canoe River Aquifer
Gloucester	Great Marsh	T	Three Mile River Watershed
Grafton	Miscoe-Warren-Whitehall	Truro	Wellfleet Harbor
-	Watersheds	Townsend	Squannassit
Groton	Petapawag	Tyngsborough	Petapawag
	Squannassit	Upton	Miscoe-Warren-Whitehall
Harvard	Central Nashua River Valley		Watersheds
	Squannassit	Wakefield	Golden Hills
Harwich	Pleasant Bay	Washington	Hinsdale Flats Watershed
Hingham	Weir River		Upper Housatonic River
	Weymouth Back River	Wellfleet	Wellfleet Harbor
Hinsdale	Hinsdale Flats Watershed	W Bridgewater	Hockomock Swamp
Holbrook	Cranberry Brook Watershed	Westborough	Cedar Swamp
Hopkinton	Miscoe-Warren-Whitehall	Westwood	Fowl Meadow and Ponkapoag Bog
	Watersheds	Weymouth	Weymouth Back River
	Cedar Swamp	Winthrop	Rumney Marshes
Hull	Weir River	11 milliop	
Ipswich	Great Marsh		
Lancaster	Central Nashua River Valley		
1.00	Squannassit		
Lee	Kampoosa Bog Drainage Basin		
1	Upper Housatonic River		
Lenox	Upper Housatonic River		
Leominster	Central Nashua River Valley		
Lunenburg	Squannassit		
Lynn	Rumney Marshes		
Mansfield	Canoe River Aquifer		
	Waquoit Bay		
Mashpee	Waqaan Day		
	Golden Hills		
Mashpee Melrose Milton			

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS


COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS			
Barnstable	Piping Plover	Threatened	Coastal Beaches	All Towns			
Durnstable	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns			
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham			
	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.			
· .	Northern Red-bellied cooter	Endangered	Inland Ponds and Rivers	Boume (north of the Cape Cod Canal)			
Berkshire	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield			
Bristol	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport			
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport			
	Northern Red-bellied cooter	Endangered	Inland Ponds and Rivers	Raynham and Taunton			
Dukes	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns			
	Piping Plover	Threatened	Coastal Beaches	All Towns			
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark			
	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury			
Essex	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester			
	Piping Plover	Threatened	Coastal Beaches	Glocester, Essex, Ipswich, Rowley, Revere Newbury, Newburyport and Salisbury			
Franklin	Northeastern bulrush	Endangered	Wetlands	Montague			
	Dwarf wedgemussel	Endangered	Mill River	Whately			
Hampshire	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley			
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley			
	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hadley, Hatfield, Amherst and Northampto			
Hampden	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick			
Middlesex	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton			
Nantucket	Piping Plover	Threatened	Coastal Beaches	Nantucket			
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket			
	American burying beetle	Endangered	Upland grassy meadows	Nantucket			
Plymouth	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth Wareham and Mattapoisett			
	Northern Red-bellied cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymou Bourne, and Wareham			
Χ,	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.			
Suffolk	Piping Plover	Threatened	Coastal Beaches	Winthrop			
Worcester	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster			

-Eastern cougar and gray wolf are considered extirpated in Massachusetts. -Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide. -Critical habitat for the Northern Red-bellied cooter is present in Plymouth County.

7/31/2008

	New England Field Office Conserving the Nature of New England				
Friday, November 18, 2011					
ENDANGERED SPECIES Overview	Enderword Oracias				
Consultation N.E. Listed Species	Endangered Species				
Species Under Review Recovery Activities	New England Listed Species				
Habitat Conservation Images Biological Opinions	The following federally-listed species are protected in New England. This list includes links to species information on our National Fish and Wildlife Service website including current Federal Register documents, HCPs, Recovery Plans, Life				
PARTNERS FOR FISH & WILDLIFE	History accounts. Vertebrates				
Overview Restoration Initiatives	Mammals				
Species & Habitats of Special Concern	Eastern Cougar -Puma (=Felis) concolor couguar Gray Wolf -Canis Iupus				
Accomplishments How to Participate	Indiana Bat - Myotis sodalis Canada Lynx - Lynx canadensis				
Habitat Restoration Links	Birds				
ENVIRONMENTAL	Atlantic Coast Piping Plover - Charadrius melodus Birds of North America Species Account Piping Plover				
CONTAMINANTS Overview	Atlantic Coast piping plover website Piping Plover Roseate Tern – Sterna dougallii dougallii				
BTAG NRDAR	Birds of North America Species Account Roseate Tern				
Special Studies Oil Spills	Reptiles				
FEDERAL ACTIVITIES	Bog Turtle - Clemmys muhlenbergii Northern Redbelly Cooter (Plymouth redbelly turtle) Pseudemys rubriventris bangsii				
Overview Federal Projects &	Northern Redbelly Cooter 5-year Review;(pdf size 1.6MB*) May 2007				
Permits	Fish Atlantic Salmon - Salmo salar (Maine only)				
Wetland Permits FERC_ Hydropower	Maine Atlantic Salmon Atlas				
Projects River Flow Protection	Invertebrates				
Wind Energy Projects	Insects				
OUTREACH	American Burying Beetle - Nicrophorus americanus Karner Blue Butterfly - Lycaeides melissa samuelis				
NH Envirothon Kids Corner	Karner Blue Butterfly Fact sheet				
Let's Go Outside	Northeastern Beach Tiger Beetle - Cicindela dorsalis dorsalis Puritan Tiger Beetle - Cicindela puritana				
Staff Directory	Draft Puritan Tiger Beetle; (pdf size 2.4MB*) 5-year Review				
	Mussels				
Our Location	Dwarf Wedgemussel - Alasmidonta heterodon Dwarf Wedgemussel 5-Year Status Review 2007 (pdf size 1.14MB*)				
HOME	Plants				
🖸 Bookmark 📲 🖄 輝	Jesup 's Milkvetch - Astragalus robbinsii var. jesupi Northeastern Bulrush - Scirpus ancistrochaetus				
	Sandplain Gerardia - Agalinis acuta Small Whorled Pogonia - Isotria medeoloides				
	Seabeach Amaranth - Amaranthus pumilus (historic)				
	American Chaffseed - Schwalbea americana (historic) Eastern Prairie Fringed Orchid - Platanthera leucophaea (Maine only)				
	Furbish's Lousewort - Pedicularis furbishiae (Maine only)				
	Candidate species and species recently delisted are identified below, including links for additional information regarding their status.				
	Candidate Species				
	The Service has recently completed a status assessment for the following species and determined that federally listing i "warranted, but precluded", i.e. the status of the species indicates that it should be listed but the listing is superceded by higher listing actions.				

New England Field Office, U.S. Fish and Wildlife Service

Last updated: October 28, 2010

ATTACHMENT E

NATIONAL REGISTER OF HISTORIC PLACES

The National Register of Historic Places on-line database was reviewed for listings located within the immediate vicinity of the subject site in Andover, Massachusetts. A review of the most recent National Register of Historical Places for Essex County, Massachusetts did not identify records or addresses of Historic Places that exist in the immediate vicinity of the subject site and/or outfall location. The nearest National Historic Place to the subject site is the Memorial Hall Library which is located approximately 280 feet to the southwest of the subject site. It is not anticipated that dewatering activities at the subject site will affect the Memorial Hall Library National Historic Place.

Based upon the above, the site considered criterion 2 pursuant to Appendix IV of the RGP.

APPENDIX F

Best Management Practice Plan

A Notice of Intent for a Remediation General Permit (RGP) under the National Pollutant Discharge Elimination System (NPDES) has been submitted to the US Environmental Protection Agency (EPA) in anticipation of temporary construction dewatering planned to occur at 15 Elm Street located in Andover, Massachusetts. This Best Management Practices Plan (BMPP) has been prepared as an Appendix to the RGP and will be posted at the site during the time period that temporary construction dewatering is occurring at the site.

Water Treatment and Management

Construction dewatering effluent is anticipated to be pumped from localized sumps and trenches within the excavation and directly into a treatment system that will consist of a settling tank, bag filters and a granular activated carbon filtration. The effluent will then flow through any necessary treatment systems and discharge through hoses directly into the Shawsheen River via the Town of Andover storm drain system.

Discharge Monitoring and Compliance

Regular sampling and testing will be conducted at the influent to the system and the treated effluent as required by the RGP. This includes chemical testing required within days 1 and 3 of initial discharge and the monthly testing to be conducted through the end of the scheduled discharge.

Monitoring will include checking the condition of the treatment system, assessing the need for treatment system adjustments based on monitoring data, observing and recording daily flow rates and discharge quantities, and verifying the flow path of the discharged effluent.

The total monthly flow will be monitored by checking and documenting the flow through the flow meter to be installed on the system. Flow will be maintained below the "system design flow" by regularly monitoring flow and adjusting the amount of construction dewatering as needed.

Monthly monitoring reports will be compiled and maintained at the site

System Maintenance

A number of methods will be used to minimize the potential for violations for the term of this permit. Scheduled regular maintenance of the treatment system will be conducted to verify proper operation. Regular maintenance will include checking the condition of the treatment system equipment such as the settling tanks, bag filters, granular activated carbon filters, hoses, pumps, and flow meters. Equipment will be monitored daily for potential issues or unscheduled maintenance requirements.

Employees who have direct or indirect responsibility for ensuring compliance with the RGP will be trained by the Contractor.

Miscellaneous Items

It is anticipated that the erosion control measures and the nature of the site will minimize potential runoff to or from the site. The project specifications also include requirements for erosion control. Site security for the treatment system will be covered within the overall site security plan.

No adverse affects on designated uses of surrounding surface water bodies is anticipated. The nearest surface water body is the Shawsheen River which is located 1,800 feet to the west of the subject site. Dewatering effluent will be pumped to a settling tank. Water within the settling tank will pumped through bag filters and a granular activated carbon filter in series prior to discharge to the storm drains.

Management of Treatment System Materials

Dewatering effluent will be pumped directly to the treatment system from the excavation with use of hoses and sumps to minimize handling. The Contractor will establish staging areas for equipment or materials storage that may be possible sources of pollution away from any dewatering activities, to the extent practicable.

Sediment from the tank used in the treatment system will be characterized and removed from the site to an appropriate receiving facility, in accordance with applicable laws and regulations. Bag filters and granular activated carbon filters will be disposed of as necessary.