

# UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region 1

5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

# CERTIFIED MAIL

January 20, 2011

Mr. William Cassidy Manager Longfin LLC dba Holgate Partners 1 Barnard Valley Road, P.O. Box 427 Nantucket, MA 02554

Re: Authorization to discharge under the Remediation General Permit (RGP) – MAG910000.Dream land Theater Construction site located at 17 South Water Street, Nantucket, MA 02554, Nantucket County, Authorization # MAG910412.

Dear Mr. Cassiddy:

Based on the review of a Notice of Intent (NOI) submitted on behalf of The Nantucket Dream land Foundation by the firm GZA GeoEnvironmental Inc., for the site referenced above, the U.S. Environmental Protection Agency (EPA) hereby authorizes you, as the named Operator, to discharge in accordance with the provisions of the RGP at that site. Your authorization number is listed above.

The checklist enclosed with this RGP authorization indicates the pollutants for which you are required to monitor. Also indicated on the checklist are the effluent limits, test methods and minimum levels (MLs) for each pollutant. Please note that the check list does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of this permit, including influent and effluent monitoring, narrative water quality standards, record keeping, and reporting requirements, found in Parts I and II, and Appendices I – VIII of the RGP. See EPA's website for the complete RGP and other information at: <a href="http://www.epa.gov/region1/npdes/mass.html#dgp">http://www.epa.gov/region1/npdes/mass.html#dgp</a>.

Also, please note that the metals arsenic, copper, lead, nickel, selenium, zinc and iron included on the list are dilution dependent pollutants and subject to limitations based on a dilution factor range (DFR). With the absence of dilution for tidal water, EPA determined that the DFR for each parameter is in the one and five (1-5) range. (See the RGP Appendix IV for Massachusetts facilities) Therefore, the limits for arsenic of 36ug/L,

copper of 3.7ug/L, lead of 8.5ug/L, nickel of 8.2ug/L, selenium of 71ug/L, zinc of 85.6ug/L and iron of 1,000 ug/L, are required to achieve permit compliance at your site.

Finally, please note the list of pollutants attached to this authorization is subject to a recertification if the operations at the site result in a discharge lasting longer than six months. Recertification's can be submitted to EPA within six (6) to twelve (12) months of operations in accordance with the 2010 RGP regulations.

This general permit and authorization to discharge will expire on September 9, 2015. You have reported that this project will terminate on March 31, 2011. You are required to submit a Notice of Termination (NOT) to the attention of the contact person indicated below within 30 days of project completion.

Thank you in advance for your cooperation in this matter. Please contact Victor Alvarez at 617-918-1572 or Alvarez. Victor@epa.gov, if you have any questions.

Sincerely,

David M. Webster, Chief Industrial Permits Branch

Enclosure

cc: Kathleen Keohane, MassDEP

Alfred Jones, GZA

# 2010 Remediation General Permit Summary of Monitoring Parameters<sup>[1]</sup>

| <b>NPDES Permit Numb</b>                   | er:     | MAG910412- Reissuance                                                                               |  |  |  |  |
|--------------------------------------------|---------|-----------------------------------------------------------------------------------------------------|--|--|--|--|
| Date Permit Issued:                        |         | ry, 2011                                                                                            |  |  |  |  |
| Facility/Site Name:                        | Drea    | Land Theater Construction                                                                           |  |  |  |  |
|                                            | 17 So   | uth Water Street, Nantucket, MA 02554, Nantucket County                                             |  |  |  |  |
| Facility/Site Address:                     |         | l address of owner: Pattyroggeveen@nantackelandtheater.org; e n:508-332-4822                        |  |  |  |  |
| Legal Name of Operat                       | or:     | Longfin LLC dba Holdgate Partners                                                                   |  |  |  |  |
| Operator contact name                      | title   | William Cassidy, Manager                                                                            |  |  |  |  |
| Operator contact name, title, and Address: |         | 1 Barnard Valley Road, P.O. Box 427, Nantucket, MA 02554<br>Email: Not provided; Phone n:5082284266 |  |  |  |  |
| Estimated Date of Com                      | pletion |                                                                                                     |  |  |  |  |
| Category and Sub-Category:                 |         | Category III- Contaminated Construction Dewatering. Sub-<br>category B. Known Contaminated Sites    |  |  |  |  |
| Receiving Water:                           | /Mers   | Nantucket Harbor                                                                                    |  |  |  |  |

# Monitoring & Limits are applicable if checked. All samples are to be collected as grab samples

|   | <u>Parameter</u>                                                                                                                                                                                                                                                                                                                                                                            | Effluent Limit/Method#/ML  (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit) |  |  |  |  |  |  |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| √ | Total Suspended Solids     (TSS)                                                                                                                                                                                                                                                                                                                                                            | 30 milligrams/liter (mg/L) **, 50 mg/L for hydrostatic testing **, Me#60.2/ML 5ug/L                                                                        |  |  |  |  |  |  |
|   | Total Residual Chlorine (TRC)                                                                                                                                                                                                                                                                                                                                                               | Freshwater = 11 ug/L ** Saltwater = 7.5 ug/L **/ Me#330.5/ML 20ug/L                                                                                        |  |  |  |  |  |  |
|   | 1. Total Suspended Solids (TSS)  2. Total Residual Chlorine (TRC) <sup>1</sup> 3. Total Petroleum Hydrocarbons (TPH)  4. Cyanide (CN) <sup>2, 3</sup> 5. Benzene (B)  6. Toluene (T)  7. Ethylbenzene (E)  8. (m,p,o) Xylenes (X)  9. Total Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) <sup>4</sup> 10. Ethylene Dibromide (EDB) (1,2- Dibromoethane)  11. Methyl-tert-Butyl Ether | 5.0 mg/L/ Me# 1664A/ML 5.0mg/L                                                                                                                             |  |  |  |  |  |  |
|   | 4. Cyanide (CN) 2, 3                                                                                                                                                                                                                                                                                                                                                                        | Freshwater = 5.2 ug/l ** Saltwater = 1.0 ug/L **/ Me#335.4/ML 5ug/L                                                                                        |  |  |  |  |  |  |
|   | 5. Benzene (B)                                                                                                                                                                                                                                                                                                                                                                              | 5ug/L /50.0 ug/L for hydrostatic testing only/ Me#8260C/ML 2 ug/L                                                                                          |  |  |  |  |  |  |
|   | 6. Toluene (T)                                                                                                                                                                                                                                                                                                                                                                              | (limited as ug/L total BTEX)/ Me#8260C/<br>ML 2ug/L                                                                                                        |  |  |  |  |  |  |
|   | 7. Ethylbenzene (E)                                                                                                                                                                                                                                                                                                                                                                         | (limited as ug/L total BTEX) Me#8260C/<br>ML 2ug/L                                                                                                         |  |  |  |  |  |  |
|   | 8. (m,p,o) Xylenes (X)                                                                                                                                                                                                                                                                                                                                                                      | (limited as ug/L total BTEX) Me#8260C/<br>ML 2ug/L                                                                                                         |  |  |  |  |  |  |
|   | Ethyl Benzene, and Xylenes                                                                                                                                                                                                                                                                                                                                                                  | 100 ug/L/ Me#8260C/ ML 2ug/L                                                                                                                               |  |  |  |  |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                             | 0.05 ug/l/ Me#8260C/ ML 10ug/L                                                                                                                             |  |  |  |  |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                             | 70.0 ug/l /Me#8260C/ ML 10ug/L                                                                                                                             |  |  |  |  |  |  |

| <u>Parameter</u>                                              | Effluent Limit/Method#/ML  (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit) |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12.tert-Butyl Alcohol (TBA)                                   | Monitor Only (ug/L)/ Me#8260C/ ML                                                                                                                          |
| (TertiaryButanol)                                             | 10ug/L                                                                                                                                                     |
| 13. tert-Amyl Methyl Ether                                    | Monitor Only (ug/L) /Me#8260C/ ML                                                                                                                          |
| (TAME)                                                        | 10ug/L                                                                                                                                                     |
| 14. Naphthalene <sup>5</sup>                                  | 20 ug/L /Me#8260C/ ML 2ug/L                                                                                                                                |
| 15. Carbon Tetrachloride                                      | 4.4 ug/L /Me#8260C/ ML 5ug/L                                                                                                                               |
| 16. 1,2 Dichlorobenzene (o-<br>DCB)                           | 600 ug/L /Me#8260C/ ML 5ug/L                                                                                                                               |
| 17. 1,3 Dichlorobenzene (m-DCB)                               | 320 ug/L /Me#8260C/ ML 5ug/L                                                                                                                               |
| 18. 1,4 Dichlorobenzene (p-DCB)                               | 5.0 ug/L /Me#8260C/ ML 5ug/L                                                                                                                               |
| 18a. Total dichlorobenzene                                    | 763 ug/L - NH only /Me#8260C/ ML5ug/L                                                                                                                      |
| 19. 1,1 Dichloroethane (DCA)                                  | 70 ug/L /Me#8260C/ ML 5ug/L                                                                                                                                |
| 20. 1,2 Dichloroethane (DCA)                                  | 5.0 ug/L /Me#8260C/ ML 5ug/L                                                                                                                               |
| 21. 1,1 Dichloroethene (DCE)                                  | 3.2 ug/L/Me#8260C/ ML 5ug/L                                                                                                                                |
| 22. cis-1,2 Dichloroethene (DCE)                              | 70 ug/L/Me#8260C/ ML 5ug/L                                                                                                                                 |
| 23. Methylene Chloride                                        | 4.6 ug/L/Me#8260C/ ML 5ug/L                                                                                                                                |
| 24. Tetrachloroethene (PCE)                                   | 5.0 ug/L/Me#8260C/ ML 5ug/L                                                                                                                                |
| 25. 1,1,1 Trichloro-ethane (TCA)                              | 200 ug/L/Me#8260C/ ML 5ug/L                                                                                                                                |
| 26. 1,1,2 Trichloro-ethane (TCA)                              | 5.0 ug/L /Me#8260C/ ML 5ug/L                                                                                                                               |
| 27. Trichloroethene (TCE)                                     | 5.0 ug/L /Me#8260C/ ML 5ug/L                                                                                                                               |
| 28. Vinyl Chloride (Chloroethene)                             | 2.0 ug/L /Me#8260C/ ML 5ug/L                                                                                                                               |
| 29. Acetone                                                   | Monitor Only(ug/L)/Me#8260C/ML 50ug/L                                                                                                                      |
| 30. 1,4 Dioxane                                               | Monitor Only /Me#1624C/ML 50ug/L                                                                                                                           |
| 31. Total Phenols                                             | 300 ug/L Me#420.1&420.2/ML 2 ug/L/<br>Me# 420.4 /ML 50ug/L                                                                                                 |
| 32. Pentachlorophenol (PCP)                                   | 1.0 ug/L /Me#8270D/ML5ug/L,Me#604<br>&625/ML 10ug/L                                                                                                        |
| 33. Total Phthalates<br>(Phthalate esters) <sup>6</sup>       | 3.0 ug/L ** /Me#8270D/ML 5ug/L,<br>Me#606/ML 10ug/L& Me#625/ML 5ug/L                                                                                       |
| 34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate] | 6.0 ug/L /Me#8270D/ML<br>5ug/L,Me#606/ML 10ug/L & Me#625/ML<br>5ug/L                                                                                       |
| 35. Total Group I Polycyclic<br>Aromatic Hydrocarbons (PAH)   | 10.0 ug/L                                                                                                                                                  |
| a. Benzo(a) Anthracene <sup>7</sup>                           | 0.0038 ug/L /Me#8270D/ ML 5ug/L,<br>Me#610/ML 5ug/L& Me#625/ML 5ug/L                                                                                       |
| b. Benzo(a) Pyrene <sup>7</sup>                               | 0.0038 ug/L /Me#8270D/ ML 5ug/L,<br>Me#610/ML 5ug/L& Me#625/ML 5ug/L                                                                                       |
| c. Benzo(b)Fluoranthene <sup>7</sup>                          | 0.0038 ug/L /Me#8270D/ ML 5ug/L,<br>Me#610/ML 5ug/L& Me#625/ML 5ug/L                                                                                       |

|        | sade no cover la to                                                                                                                                                                                                                                                                                                                                                                                                        | Effluent Limit/Method#/ML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|        | Od - N D August In                                                                                                                                                                                                                                                                                                                                                                                                         | (All Effluent Limits are shown as Daily                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|        | d. Benzo(k)Fluoranthene <sup>7</sup> e. Chrysene <sup>7</sup> f. Dibenzo(a,h)anthracene <sup>7</sup> g. Indeno(1,2,3-cd) Pyrene <sup>7</sup> 36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH) h. Acenaphthene i. Acenaphthylene j. Anthracene k. Benzo(ghi) Perylene l. Fluoranthene m. Fluorene n. Naphthalene <sup>5</sup> o. Phenanthrene p. Pyrene 37. Total Polychlorinated Biphenyls (PCBs) <sup>8, 9</sup> | Maximum Limit, unless denoted by a **,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                            | in that case it will be a Monthly Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|        | Les more perfections refrances                                                                                                                                                                                                                                                                                                                                                                                             | Limit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|        | d Benzo(k) Eluoranthono 7                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0038 ug/L /Me#8270D/ ML 5ug/L,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|        | d. Belizo(k)i idolalitilelle                                                                                                                                                                                                                                                                                                                                                                                               | Me#610/ML 5ug/L& Me#625/ML 5ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|        | a Chrysono 7                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0038 ug/L /Me#8270D/ML 5ug/L,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|        | e. Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                | Me#610/ML 5ug/L& Me#625/ML 5ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|        | f Dibonada blanthuseana 7                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0038 ug/L /Me#8270D/ML 5ug/L,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|        | 1. Dibenzo(a,n)anthracene                                                                                                                                                                                                                                                                                                                                                                                                  | Me#610/ML 5ug/L& Me#625/ML 5ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|        | 7 1 (4 2 2 1) 2 7                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0038 ug/L /Me#8270D/ML 5ug/L,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|        | g. Indeno(1,2,3-cd) Pyrene                                                                                                                                                                                                                                                                                                                                                                                                 | Me#610/ML 5ug/L& Me#625/ML5ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|        | 36. Total Group II Polycyclic                                                                                                                                                                                                                                                                                                                                                                                              | TO THE STATE OF TH |  |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                            | 100 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|        | 3/1051000,1                                                                                                                                                                                                                                                                                                                                                                                                                | X/Me#8270D/ML 5ug/L,Me#610/ML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|        | n. Acenaphtnene                                                                                                                                                                                                                                                                                                                                                                                                            | 5ug/L & Me#625/ML 5ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                            | X/Me#8270D/ML 5ug/L,Me#610/ML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|        | i. Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                          | 5ug/L & Me#625/ML 5ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 1      | ÷ Authoracous                                                                                                                                                                                                                                                                                                                                                                                                              | X/Me#8270D/ML 5ug/L,Me#610/ML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|        | j. Anthracene                                                                                                                                                                                                                                                                                                                                                                                                              | 5ug/L & Me#625/ML 5ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|        | k Penne(shi) Pendene                                                                                                                                                                                                                                                                                                                                                                                                       | X/Me#8270D/ML 5ug/L,Me#610/ML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|        | k. Benzo(gni) Perylene                                                                                                                                                                                                                                                                                                                                                                                                     | 5ug/L & Me#625/ML 5ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|        | I Flyggesthan                                                                                                                                                                                                                                                                                                                                                                                                              | X/Me#8270D/ML 5ug/L,Me#610/ML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|        | I. Fluorantnene                                                                                                                                                                                                                                                                                                                                                                                                            | 5ug/L & Me#625/ML 5ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|        | Charles and the same of                                                                                                                                                                                                                                                                                                                                                                                                    | X/Me#8270D/ML 5ug/L,Me#610/ML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|        | m. Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                | 5ug/L & Me#625/ML 5ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|        | Nambabalana 5                                                                                                                                                                                                                                                                                                                                                                                                              | 20 ug/l / Me#8270/ML 5ug/L, Me#610/ML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|        | n. Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                             | 5ug/L & Me#625/ML 5ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|        | A Discount of the second                                                                                                                                                                                                                                                                                                                                                                                                   | X/Me#8270D/ML 5ug/L,Me#610/ML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|        | o. Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                            | 5ug/L & Me#625/ML 5ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| TOMORE | n Dimens                                                                                                                                                                                                                                                                                                                                                                                                                   | X/Me#8270D/ML5ug/L,Me#610/ML 5ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|        | p. Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                  | & Me#625/ML 5ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 1      | 37. Total Polychlorinated                                                                                                                                                                                                                                                                                                                                                                                                  | 0.000064 ug/L/Me# 608/ ML 0.5 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|        | Biphenyls (PCBs) 8, 9                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000004 ug/L/Me# 608/ ML 0.5 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| V      | 38. Chloride                                                                                                                                                                                                                                                                                                                                                                                                               | Monitor only/Me# 300.0/ ML 0.1ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |

|   |                                 | Total Rec<br>Metal Limit<br>mg/l Ca<br>dischar<br>Massachuse | @ H <sup>10</sup> = 50<br>CO3 for<br>ges in |      |
|---|---------------------------------|--------------------------------------------------------------|---------------------------------------------|------|
|   | Metal parameter                 | Freshwater                                                   | Saltwater                                   | 4404 |
|   | 39. Antimony                    | 5.6/1                                                        | 0mL                                         |      |
| √ | 40. Arsenic **                  | 10/20mL                                                      | 36/20mL                                     |      |
|   | 41. Cadmium **                  | 0.2/10ml                                                     | 8.9/10mL                                    |      |
|   | 42. Chromium III (trivalent) ** | 48.8/15mL                                                    | 100/15mL                                    |      |
|   | 43. Chromium VI (hexavalent) ** | 11.4/10mL                                                    | 50.3/10mL                                   |      |

|              | ari Canoni ani Chimbo in Ang | Total Rec<br>Metal Limit<br>mg/l Ca<br>dischar<br>Massachuse |           |          |  |
|--------------|------------------------------|--------------------------------------------------------------|-----------|----------|--|
|              | Metal parameter              | Freshwater                                                   | Saltwater |          |  |
| <b>√</b>     | 44. Copper **                | 5.2/15mL                                                     | 3.7/15mL  |          |  |
| √            | 45. Lead **                  | 1.3/20mL                                                     | 8.5/20mL  |          |  |
|              | 46. Mercury **               | 0.9/0.2mL                                                    | 1.1/0.2mL | L noul d |  |
| √            | 47. Nickel **                | 29/20mL                                                      | 8.2/20mL  |          |  |
| √            | 48. Selenium **              | 5/20mL                                                       | 71/20mL   | Sear -   |  |
|              | 49. Silver                   | 1.2/10mL                                                     | 2.2/10mL  |          |  |
| $\checkmark$ | 50. Zinc **                  | 66.6/15mL                                                    | 85.6/15mL |          |  |
| √            | 51. Iron                     | 1,000/                                                       | 20mL      |          |  |

|              | Other Parameters                                                                                    | <u>Limit</u>                        |
|--------------|-----------------------------------------------------------------------------------------------------|-------------------------------------|
| <b>√</b>     | 52. Instantaneous Flow                                                                              | Site specific in CFS                |
| $\checkmark$ | 53. Total Flow                                                                                      | Site specific in CFS                |
|              | 54. pH Range for Class A & Class B Waters in MA                                                     | 6.5-8.3; 1/Month/Grab <sup>13</sup> |
| <b>√</b>     | 55. pH Range for Class SA & Class SB Waters in MA                                                   | 6.5-8.3; 1/Month/Grab <sup>13</sup> |
|              | 56. pH Range for Class B Waters in NH                                                               | 6.5-8; 1/Month/Grab <sup>13</sup>   |
|              | 57. Daily maximum temperature - Warm water fisheries                                                | 83°F; 1/Month/Grab <sup>14</sup>    |
|              | 58. Daily maximum temperature - Cold water fisheries                                                | 68°F; 1/Month/Grab <sup>14</sup>    |
|              | 59. Maximum Change in Temperature in MA -<br>Any Class A water body                                 | 1.5°F; 1/Month/Grab <sup>14</sup>   |
|              | 60. Maximum Change in Temperature in MA -<br>Any Class B water body- Warm Water                     | 5°F; 1/Month/Grab <sup>14</sup>     |
|              | 61. Maximum Change in Temperature in MA –<br>Any Class B water body - Cold water and<br>Lakes/Ponds | 3°F; 1/Month/Grab <sup>14</sup>     |
|              | 62. Maximum Change in Temperature in MA –<br>Any Class SA water body - Coastal                      | 1.5°F; 1/Month/Grab <sup>14</sup>   |
|              | 63. Maximum Change in Temperature in MA –<br>Any Class SB water body - July to September            | 1.5°F; 1/Month/Grab <sup>14</sup>   |
|              | 64. Maximum Change in Temperature in MA –<br>Any Class SB water body - October to June              | 4°F; 1/Month/Grab <sup>14</sup>     |

# Footnotes:

- 1 Although the maximum values for TRC are 11ug/l and 7.5 ug/l for freshwater, and saltwater respectively, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., Method 330.5, 20 ug/l).
- <sup>2</sup> Limits for cyanide are based on EPA's water quality criteria expressed as micrograms per liter. There is currently no EPA approved test method for free cyanide. Therefore, total cyanide must be reported.
- Although the maximum values for cyanide are 5.2 ug/l and 1.0 ug/l for freshwater and saltwater, respectively, the compliance limits are equal to the minimum level (ML) of the Method 335.4 as listed in Appendix VI (i.e., 10 ug/l).

<sup>4</sup> BTEX = sum of Benzene, Toluene, Ethylbenzene, and total Xylenes.

- <sup>5</sup> Naphthalene can be reported as both a purgeable (VOC) and extractable (SVOC) organic compound. If both VOC and SVOC are analyzed, the highest value must be used unless the QC criteria for one of the analyses is not met. In such cases, the value from the analysis meeting the QC criteria must be used.
- <sup>6</sup> The sum of individual phthalate compounds(not including the #34, Bis (2-Ethylhexyl) Phthalate . The compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measurement of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

<sup>7</sup> Although the maximum value for the individual PAH compounds is 0.0038 ug/l, the compliance limits are equal to the minimum level (ML) of the test method used as

listed in Appendix VI.

<sup>8</sup> In the November 2002 WQC, EPA has revised the definition of Total PCBs for aquatic life as total PCBs is the sum of all homologue, all isomer, all congener, or all "Oroclor analyses." Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measure of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

<sup>9</sup>Although the maximum value for total PCBs is 0.000064 ug/l, the compliance limit is equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., 0.5 ug/l for Method 608 or 0.00005 ug/l when Method 1668a is approved).

10 Hardness. Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc are

Hardness Dependent.

<sup>11</sup> For a Dilution Factor (DF) from 1 to 5, metals limits are calculated using DF times the base limit for the metal. See Appendix IV. For example, iron limits are calculated using DF x 1,000ug/L (the iron base limit). Therefore DF is 1.5, the iron limit will be 1,500 ug/L; DF 2, then iron limit =1,000 x 2 =2,000 ug/L., etc. not to exceed the

DF=5.

Minimum Level (ML) is the lowest level at which the analytical system gives a recognizable signal and acceptable calibration point for the analyte. The ML represents the lowest concentration at which an analyte can be measured with a known level of confidence. The ML is calculated by multiplying the laboratorydetermined method detection limit by 3.18 (see 40 CFR Part 136, Appendix B).

pH sampling for compliance with permit limits may be performed using field

methods as provided for in EPA test Method 150.1.

Temperature sampling per Method 170.1

December 8, 2010 File No. 19030.90



133 Federal Street 3d Floor Boston Massachusetts 02110 671-963-1000 FAX 781-482-6868 http://www.gza.com Mr. Victor Alvarez
United States Environmental Protection Agency – Region 1
1 Congress Street, Suite 1100
Boston, Massachusetts 02114-2023

Re: Submittal of Notice of Intent (NOI)

Construction Excavation Dewatering – Dreamland Theater

17 South Water Street Nantucket, Massachusetts

MassDEP - RTN Nos. 4-20318 and 4-20530

Dear Mr. Alvarez:

GZA GeoEnvironmental, Inc. (GZA), on behalf of The Nantucket Dreamland Foundation, has prepared this Notice of Intent (NOI) for application of a National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) for proposed dewatering activities at the above referenced location. This NOI is being submitted for performing construction-related excavation dewatering at the site. The enclosed NOI form (Attachment 1) provides required information on the general site conditions, proposed treatment system, discharge location and receiving water, and analytical results for testing performed on a groundwater sample at the site.

GZA previously submitted an NOI to the EPA for dewatering discharge on April 15, 2009. The NOI was subsequently approved by the EPA on April 29, 2009 by written notice to the previous site contractor Shawmut Design and Construction. A Notice of Change (NOC) was submitted by GZA to the EPA in March 2010 (on behalf of the project) to request a permit transfer from Shawmut Design and Construction to Holgate Partners (the new site contractor). This NOC was approved by the EPA via email on March 23, 2010.

This NOI is being submitted such that we continue dewatering operating at the site under the new 2010 RGP without a lapse in permit coverage. This letter is also serving as notice for our 6-month recertification. As such, the laboratory data presented herein for this NOI is based on samples recently collected and tested for the recertification.

#### SITE DESCRIPTION

The Dreamland Theater site is bounded by South Water Street to the north, Oak Street to the west, Easy Street to the east and the Atlantic Café to the east. The site is located in the downtown portion of Nantucket approximately 35 feet from Nantucket Harbor.



Prior to commencement of construction, the site consisted of the vacant Dreamland Theater structure in the western portion of the property and a small parking area to the east. The Theater was demolished in 2009. A site locus plan is provided in Attachment 2.

#### **ENVIRONMENTAL CONTEXT**

Numerous soil and groundwater samples have been collected at the site during various phases of geotechnical and environmental investigations. Based on the results of these analytical tests, two release notifications were made to Massachusetts Department of Environmental Protection (MassDEP) for the Site in 2007. The Site is identified by Release Tracking Numbers (RTNs) 4-20318 and 4-20530.

The initial Release Notification (RTN 4-20318) to DEP was by GZA on behalf of the previous Site owner on February 6, 2007. The Notification was made as a result of RCS-1 Reportable Concentration exceedances of Extractable and Volatile Petroleum Hydrocarbon fractions, which represented a reportable condition under the MCP. The second Release Notification (RTN 4-20530) to DEP was made by a representative of the previous Site owner on May 17, 2007. The Notification was made as a result of the exceedance of the RCGW-2 standard for lead in the groundwater. This exceedance was believed to be the result of testing an unfiltered sample. Lead has not been detected in subsequent filtered testing of the groundwater at the site.

GZA submitted a Response Action Outcome (RAO) to the MassDEP in January 2008 for the current property owner. GZA's RAO concluded that, "The Site meets the requirements for No Remedial Action Required (Class B RAO) under the MCP because a condition of No Significant Risk of harm to human health, safety, public welfare, and the environment exists at the Site under both current and future conditions and because continuing sources of oil and hazardous material (OHM) do not exist at the Site".

A second Class B-1 RAO was submitted to the MassDEP in February 2010 as a result of some additional testing that was performed, which required a new, larger disposal site boundary. GZA's RAO conclusion was the same as that submitted in January 2008.

## PROPOSED ACTIVITIES

The project consists of the proposed construction of a new Dreamland Theater building. During the initial construction stage which occurred between April and June of 2009, the Contractor installed sheeting to depths ranging from approximately 13 to 28 feet below the existing ground surface. The main function of the sheeting is to provide temporary lateral earth support for the excavation. However, the sheeting will also provide some level of groundwater cutoff reducing groundwater inflow into the excavation.



The sheeting was installed along the northern, southern and western perimeter of the site and approximately 30 feet from the eastern edge for the site. There was a break in the sheeting at the northwest corner of the site where an existing utility vault protrudes into the property. Additionally, sheeting was installed around the perimeter of two square-shaped areas within Oak Street (adjacent to the north edge of the site were) for the installation of new utility vaults. Dewatering, excavation and installation of the utility vaults within these sheeted areas was performed from May 26 to 29, 2009. Discharge of the dewatering effluent was collected in a frac tank, treated utilizing bag and carbon filtration, and was subsequently discharged to Nantucket Harbor (via a nearby catch basin) on May 29, 2009. Flow was estimated to be on the order of 1 gallon per minute (gpm). Water testing was performed in accordance with the requirements of the RGP, and no exceedences of allowable effluent concentrations were observed.

Construction recently resumed at the site in November 2010 with a system of well points installed around the perimeter of the site to enable excavation "in the dry". Initial dewatering was performed at the site on November 22, 2010 in the presence of a GZA representative. The Site Dewatering Flow Schematic is provided in Attachment 3.

The water will continue to be pumped into a fractionalization tank and then through a bag filter designed to remove particulates from the water. Although petroleum-related compounds were not detected in the groundwater sample, due to the petroleum-related contaminants encountered in the soil, we are prepared to provide carbon adsorption if necessary. GZA will evaluate the groundwater extracted from the subsurface for visible or olfactory signs of petroleum contamination. If petroleum-related compounds are detected or observed, dewatering and treatment system discharge will cease and appropriate laboratory tests will be performed to evaluate the contaminants to determine if activated carbon filtration is necessary. The EPA will be notified if petroleum is encountered in extracted groundwater which requires treatment prior to discharge. The Laboratory Test Results (collected on November 24, 2010) and the Treatment System Process Flow Diagram are presented in Attachment 4 and 5, respectively. Water will be discharged to the catch basins at the northeast edge of the property at the intersection of Oak and Easy Streets or to the catch basin along South Water Street. The catch basins discharge to the Nantucket Harbor approximately 30 feet east of the site. Supplemental information including a Natural Heritage and Endangered Species Program (NHESP) map showing the site is not part of rare or endangered species habitat and correspondence from the Nantucket Historic Commission is provided in Attachment 6.

Excavation ranging from approximately 4 to 8 feet below grade was performed to reach the natural subgrade elevations between November 22 and November 30, 2010 and was substantially completed on November 30, 2010. Fill placement and building foundation construction is anticipated to extend through January 2011.



Note that appropriate re-start water testing (as indicated in the original EPA approval) has currently being performed along with re-certification testing that is required every 6 months under the old 2005 RGP permit. Recertification results are pending.

Please do not hesitate to contact the undersigned at (617) 963-1000 if you have any questions or require further information.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

Alfred Jones, P.E.

Senior Project Manager

Russell B. Parkman, P.E. Consultant/Reviewer

Bruce W. Fairless, P.E. Associate Principal

Enclosures:

Attachment 1: NOI Form

Attachment 2: Site Locus Map

Attachment 3: Site Dewatering Flow Schematic

Attachment 4: Laboratory Test Data

Attachment 5: Treatment System Process Flow Diagram

Attachment 6: Supplemental Information

cc: Mr. Kevin Reuther (Hospitality 3)

Mr. William Cassidy (Longfin LLC dba Holdgate Partners)

MassDEP - Southeast Region

NOI FORM

# B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit

1. General facility/site information. Please provide the following information about the site:

| a) Name of <b>facility/site</b> : Dreamland Theater C                                                                       | Construction Site     | Facility/site mailing address: |                                                                                               |                   |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------|-----------------------------------------------------------------------------------------------|-------------------|--|--|--|--|
| Location of <b>facility/site</b> : longitude: 70.0979 degrees latitude: 41.2848 degrees                                     | Facility SIC code(s): | Street:                        | 17 South Water Stre                                                                           | eet               |  |  |  |  |
| b) Name of <b>facility/site owner:</b>                                                                                      |                       | Town:                          | Town: Nantucket                                                                               |                   |  |  |  |  |
| Email address of facility/site owner:  pattyroggeveen@nantucketdreamland.org  Telephone no. of facility/site owner:  508-33 | State:                |                                | Zip:<br>02554-3554                                                                            | County:           |  |  |  |  |
| Fax no. of facility/site <b>owner</b> : 508-332-4823 Address of <b>owner</b> (if different from site):                      |                       |                                | Owner is (check one): 1. Federal O 2. State/Tribal O 3. Private O 4. Other O if so, describe: |                   |  |  |  |  |
| Street: 35 Centre Street, 2nd Floor or P.O. Box 98                                                                          | 9                     |                                |                                                                                               |                   |  |  |  |  |
| Town: Nantucket                                                                                                             | State: MA             | Zip: 02                        | 2554                                                                                          | County: Nantucket |  |  |  |  |
| c) Legal name of <b>operator</b> :                                                                                          | Operator tel          | ephone no: 508-228-4266        |                                                                                               |                   |  |  |  |  |
| Longfin LLC dba Holdgate Partners                                                                                           | Operator fax          | x no.:                         |                                                                                               | Operator email:   |  |  |  |  |
| Operator contact name and title: Mr. William Cassidy, Manag                                                                 |                       |                                |                                                                                               |                   |  |  |  |  |
| Address of <b>operator</b> (if different from owner):                                                                       | ard Valley            | ard Valley Road, PO Box 427    |                                                                                               |                   |  |  |  |  |
| Town: Nantucket                                                                                                             | State: MA             | Zip: 02                        | 554                                                                                           | County: Nantucket |  |  |  |  |

| d) Check Y for "yes" or N for "no" for the following:  1. Has a prior NPDES permit exclusion been granted for the second | en filed for the discharge?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| e) Is site/facility subject to any State permitting, license, or other action which is causing the generation of discharge? Y NO If Y, please list:  1. site identification # assigned by the state of NH or MA: MA MCP RTN's 4-20318 and 4-20530  2. permit or license # assigned: None  3. state agency contact information: name, location, and telephone number:  DEP Southeast Regional Office, 20 Riverside Drive, Lakeville, MA 02347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | f) Is the site/facility covered by any other EPA permit, including:  1. Multi-Sector General Permit? Y O N O,     if Y, number:  2. Final Dewatering General Permit? Y O N O,     if Y, number:  3. EPA Construction General Permit? Y O N O,     if Y, number:  4. Individual NPDES permit? Y O N O,     if Y, number:  5. any other water quality related individual or general permit? Y O N O, if Y, number:  8. Modern Management Permit? Modern Permit? Y O N O,     if Y, number:  9. Modern Permit P |
| g) Is the site/facility located within or does it discharge to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | an Area of Critical Environmental Concern (ACEC)? Y O N O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| h) Based on the facility/site information and any historical discharge falls.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | al sampling data, identify the sub-category into which the potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Activity Category                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Activity Sub-Category                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| I - Petroleum Related Site Remediation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A. Gasoline Only Sites  B. Fuel Oils and Other Oil Sites (including Residential Non-Business Remediation Discharges)  C. Petroleum Sites with Additional Contamination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| II - Non Petroleum Site Remediation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A. Volatile Organic Compound (VOC) Only Sites  B. VOC Sites with Additional Contamination  C. Primarily Heavy Metal Sites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| III - Contaminated Construction Dewatering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A. General Urban Fill Sites   B. Known Contaminated Sites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| IV - Miscellaneous Related Discharges                                                                                                                                                                                | A. Aquifer Pump Testing to Evaluate Formerly Contaminated Sites  B. Well Development/Rehabilitation at Contaminated/Formerly  Contaminated Sites  C. Hydrostatic Testing of Pipelines and Tanks  D. Long-Term Remediation of Contaminated Sumps and Dikes  E. Short-term Contaminated Dredging Drain Back Waters (if not covered |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                      | by 401/404 permit)                                                                                                                                                                                                                                                                                                               |
| 2. Discharge information. Please provide information                                                                                                                                                                 | about the discharge, (attaching additional sheets as necessary) including                                                                                                                                                                                                                                                        |
| a) Describe the discharge activities for which the owner/a                                                                                                                                                           | pplicant is seeking coverage:                                                                                                                                                                                                                                                                                                    |
| Dewatering will be performed via wellpoints within a sheeted excavof up to approximately 8 feet. Discharge of treated dewatering efflu                                                                               | ration to allow for excavation and replacement of existing fill materials to a depth<br>uent to catch basins leading to Nantucket Harbor is requested.                                                                                                                                                                           |
| b) Provide the following information about each discharge                                                                                                                                                            | e:                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                      | and average flow rate of discharge (in cubic feet per second, ft <sup>3</sup> /s)?  s maximum flow a design value? Y O N O  Is average flow a design value or estimate?  Estimate                                                                                                                                                |
| 3) Latitude and longitude of each discharge within 100 fee pt.1: lat 70.0975 deg long 41.2850 deg pt.2: lat. 7 pt.3: lat 70.0983 deg long 41.2847 deg pt.4: lat. pt.5: lat long pt.6: lat. pt.7: lat long pt.8: lat. |                                                                                                                                                                                                                                                                                                                                  |
| 4) If hydrostatic testing, total volume of the discharge (gals): NA  5) Is the discharge intermitt Is discharge ongoing? Y                                                                                           | tent or seasonal?                                                                                                                                                                                                                                                                                                                |
| c) Expected dates of discharge (mm/dd/yy): start Dec 22, 2010                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                  |
| d) Please attach a line drawing or flow schematic showing 1. sources of intake water. 2. contributing flow from the owaters(s). See Attached                                                                         | g water flow through the facility including: peration. 3. treatment units, and 4. discharge points and receiving                                                                                                                                                                                                                 |
| 11 40410(0)1                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                  |

## 3. Contaminant information.

a) Based on the sub-category selected (see Appendix III), indicate whether each listed chemical is believed present or believed absent in the potential discharge. Attach additional sheets as needed.

|                                                               |                                         |                    |                     |                 | Sample                  | Analytical             | Minimum                   | Maximum dai             | ly value     | Average daily           | <u>value</u> |
|---------------------------------------------------------------|-----------------------------------------|--------------------|---------------------|-----------------|-------------------------|------------------------|---------------------------|-------------------------|--------------|-------------------------|--------------|
| <u>Parameter *</u>                                            | <u>CAS</u><br><u>Number</u>             | Believed<br>Absent | Believed<br>Present | # of<br>Samples | Type<br>(e.g.,<br>grab) | Method Used (method #) | Level (ML) of Test Method | concentration<br>(ug/l) | mass<br>(kg) | concentration<br>(ug/l) | mass<br>(kg) |
| 1. Total Suspended<br>Solids (TSS)                            |                                         |                    | ×                   | 1               | grab                    | 2540D                  | 5,000 ug/L                | 7,000                   |              | 7,000                   |              |
| 2. Total Residual<br>Chlorine (TRC)                           |                                         | ×                  |                     | 1               | grab                    | 4500CID                | 20                        | BDL                     |              | BDL                     |              |
| 3. Total Petroleum<br>Hydrocarbons (TPH)                      |                                         | ×                  |                     | 1               | grab                    | 1664A                  | 5,000                     | BDL                     |              | BDL                     |              |
| 4. Cyanide (CN)                                               | 57125                                   | ×                  |                     | 1               | grab                    | 4500CN-C E             | 5.0                       | BDL                     |              | BDL                     |              |
| 5. Benzene (B)                                                | 71432                                   | ×                  |                     | 1               | grab                    | 8260                   | 1.0                       | BDL                     |              | BDL                     |              |
| 6. Toluene (T)                                                | 108883                                  | ×                  |                     | 1               | grab                    | 8260                   | 1.0                       | BDL                     |              | BDL                     |              |
| 7. Ethylbenzene (E)                                           | 100414                                  | ×                  |                     | 1               | grab                    | 8260                   | 1.0                       | BDL                     |              | BDL                     |              |
| 8. (m,p,o) Xylenes (X)                                        | 108883;<br>106423;<br>95476;<br>1330207 | ×                  |                     | 1               | grab                    | 8260                   | 3.0                       | BDL                     |              | BDL                     |              |
| 9. Total BTEX <sup>2</sup>                                    | n/a                                     | ×                  |                     | 1               | grab                    | 8260                   | 6.0                       | BDL                     |              | BDL                     |              |
| 10. Ethylene Dibromide (EDB) (1,2-Dibromoethane) <sup>3</sup> | 106934                                  | ×                  |                     | 1               | grab                    | 8260                   | 2.0                       | BDL                     |              | BDL                     |              |
| 11. Methyl-tert-Butyl<br>Ether (MtBE)                         | 1634044                                 | ×                  |                     | 1               | grab                    | 8260                   | 1.0                       | BDL                     |              | BDL                     |              |
| 12. tert-Butyl Alcohol<br>(TBA) (Tertiary-Butanol)            | 75650                                   | ×                  |                     | 1               | grab                    | 8260                   | 10                        | BDL                     |              | BDL                     |              |

<sup>\*</sup> Numbering system is provided to allow cross-referencing to Effluent Limits and Monitoring Requirements by Sub-Category included in Appendix III, as well as the Test Methods and Minimum Levels associated with each parameter provided in Appendix VI.

<sup>&</sup>lt;sup>2</sup> BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes.
<sup>3</sup> EDB is a groundwater contaminant at fuel spill and pesticide application sites in New England.

| Parameter *                          | <u>CAS</u><br><u>Number</u> | Believed<br>Absent | Believed<br>Present | # of<br>Samples | Sample Type (e.g., grab) | Analytical Method Used (method #) | Minimum Level (ML) of Test Method | Maximum dai  concentration (ug/l) | ly value<br>mass<br>(kg) | Average daily  concentration (ug/l) | walue<br>mass<br>(kg) |
|--------------------------------------|-----------------------------|--------------------|---------------------|-----------------|--------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--------------------------|-------------------------------------|-----------------------|
| 13. tert-Amyl Methyl<br>Ether (TAME) | 9940508                     | ×                  |                     | 1               | grab                     | 8260                              | 2.0                               | BDL                               |                          | BDL                                 |                       |
| 14. Naphthalene                      | 91203                       | X                  |                     | 1               | grab                     | 8260                              | 2.0                               | BDL                               |                          | BDL                                 |                       |
| 15. Carbon Tetrachloride             | 56235                       | ×                  |                     | 1               | grab                     | 8260                              | 1.0                               | BDL                               |                          | BDL                                 |                       |
| 16. 1,2 Dichlorobenzene<br>(o-DCB)   | 95501                       | ×                  |                     | 1               | grab                     | 8260                              | 1.0                               | BDL                               |                          | BDL                                 |                       |
| 17. 1,3 Dichlorobenzene (m-DCB)      | 541731                      | ×                  |                     | 1               | grab                     | 8260                              | 1.0                               | BDL                               |                          | BDL                                 |                       |
| 18. 1,4 Dichlorobenzene (p-DCB)      | 106467                      | ×                  |                     | 1               | grab                     | 8260                              | 1.0                               | BDL                               |                          | BDL                                 |                       |
| 18a. Total dichlorobenzene           |                             | ×                  |                     | 1               | grab                     | 8260                              | 3.0                               | BDL                               |                          | BDL                                 |                       |
| 19. 1,1 Dichloroethane (DCA)         | 75343                       | ×                  |                     | 1               | grab                     | 8260                              | 1.0                               | BDL                               |                          | BDL                                 |                       |
| 20. 1,2 Dichloroethane (DCA)         | 107062                      | ×                  |                     | 1               | grab                     | 8260                              | 1.0                               | BDL                               |                          | BDL                                 |                       |
| 21. 1,1 Dichloroethene (DCE)         | 75354                       | ×                  |                     | 1               | grab                     | 8260                              | 1.0                               | BDL                               |                          | BDL                                 |                       |
| 22. cis-1,2 Dichloroethene (DCE)     | 156592                      | ×                  |                     | 1               | grab                     | 8260                              | 1.0                               | BDL                               |                          | BDL                                 |                       |
| 23. Methylene Chloride               | 75092                       | ×                  |                     | 1               | grab                     | 8260                              | 2.0                               | BDL                               |                          | BDL                                 |                       |
| 24. Tetrachloroethene (PCE)          | 127184                      | ×                  |                     | 1               | grab                     | 8260                              | 1.0                               | BDL                               |                          | BDL                                 |                       |
| 25. 1,1,1 Trichloro-ethane (TCA)     | 71556                       | ×                  |                     | 1               | grab                     | 8260                              | 1.0                               | BDL                               |                          | BDL                                 |                       |
| 26. 1,1,2 Trichloro-ethane (TCA)     | 79005                       | ×                  |                     | 1               | grab                     | 8260                              | 1.0                               | BDL                               |                          | BDL                                 |                       |
| 27. Trichloroethene (TCE)            | 79016                       | ×                  |                     | 1               | grab                     | 8260                              | 1.0                               | BDL                               |                          | BDL                                 |                       |

|                                                                 | CAS           | Believed | Believed | # of    | Sample<br>Type  | Analytical<br>Method | Minimum<br>Level          | Maximum dai             | ly value     | Average daily           | value        |
|-----------------------------------------------------------------|---------------|----------|----------|---------|-----------------|----------------------|---------------------------|-------------------------|--------------|-------------------------|--------------|
| <u>Parameter *</u>                                              | <u>Number</u> | Absent   | Present  | Samples | (e.g.,<br>grab) | Used<br>(method #)   | (ML) of<br>Test<br>Method | concentration<br>(ug/l) | mass<br>(kg) | concentration<br>(ug/l) | mass<br>(kg) |
| 28. Vinyl Chloride (Chloroethene)                               | 75014         | ×        |          | 1       | grab            | 8260                 | 1.0                       | BDL                     |              | BDL                     |              |
| 29. Acetone                                                     | 67641         | ×        |          | 1       | grab            | 8260                 | 10                        | BDL                     |              | BDL                     |              |
| 30. 1,4 Dioxane                                                 | 123911        | ×        |          | 1       | grab            | 8260                 | 100                       | BDL                     |              | BDL                     |              |
| 31. Total Phenols                                               | 108952        | ×        |          | 1       | grab            | 8270                 | 10                        | BDL                     |              | BDL                     |              |
| 32. Pentachlorophenol (PCP)                                     | 87865         | ×        |          | 1       | grab            | 8270                 | 50                        | BDL                     |              | BDL                     |              |
| 33. Total Phthalates (Phthalate esters) <sup>4</sup>            |               | ×        |          | 1       | grab            | 8270                 | 60                        | BDL                     |              | BDL                     |              |
| 34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]   | 117817        | ×        |          | 1       | grab            | 8270                 | 10                        | BDL                     |              | BDL                     |              |
| 35. Total Group I<br>Polycyclic Aromatic<br>Hydrocarbons (PAH)  |               | ×        |          | 1       | grab            | 8270                 | 0.35                      | BDL                     |              | BDL                     |              |
| a. Benzo(a) Anthracene                                          | 56553         | ×        |          | 1       | grab            | 8270                 | 0.05                      | BDL                     |              | BDL                     |              |
| b. Benzo(a) Pyrene                                              | 50328         | ×        |          | 1       | grab            | 8270                 | 0.05                      | BDL                     |              | BDL                     |              |
| c. Benzo(b)Fluoranthene                                         | 205992        | ×        |          | 1       | grab            | 8270                 | 0.05                      | BDL                     |              | BDL                     |              |
| d. Benzo(k)Fluoranthene                                         | 207089        | ×        |          | 1       | grab            | 8270                 | 0.05                      | BDL                     |              | BDL                     |              |
| e. Chrysene                                                     | 21801         | ×        |          | 1       | grab            | 8270                 | 0.05                      | BDL                     |              | BDL                     |              |
| f. Dibenzo(a,h)anthracene                                       | 53703         | ×        |          | 1       | grab            | 8270                 | 0.05                      | BDL                     |              | BDL                     |              |
| g. Indeno(1,2,3-cd)<br>Pyrene                                   | 193395        | ×        |          | 1       | grab            | 8270                 | 0.05                      | BDL                     |              | BDL                     |              |
| 36. Total Group II<br>Polycyclic Aromatic<br>Hydrocarbons (PAH) |               | ×        |          | 1       | grab            | 8270                 | 1.8                       | BDL                     |              | BDL                     |              |

<sup>&</sup>lt;sup>4</sup> The sum of individual phthalate compounds.

|                                            |                                                             |                    | Sample Analytical Minimum Maxi |                 | Maximum dai             | ly value               | Average daily             | value                   |              |                         |              |
|--------------------------------------------|-------------------------------------------------------------|--------------------|--------------------------------|-----------------|-------------------------|------------------------|---------------------------|-------------------------|--------------|-------------------------|--------------|
| <u>Parameter *</u>                         | <u>CAS</u><br><u>Number</u>                                 | Believed<br>Absent | Believed<br>Present            | # of<br>Samples | Type<br>(e.g.,<br>grab) | Method Used (method #) | Level (ML) of Test Method | concentration<br>(ug/l) | mass<br>(kg) | concentration<br>(ug/l) | mass<br>(kg) |
| h. Acenaphthene                            | 83329                                                       | ×                  |                                | 1               | grab                    | 8270                   | .20                       | BDL                     |              | BDL                     |              |
| i. Acenaphthylene                          | 208968                                                      | ×                  |                                | 1               | grab                    | 8270                   | .20                       | BDL                     |              | BDL                     |              |
| j. Anthracene                              | 120127                                                      | ×                  |                                | 1               | grab                    | 8270                   | .20                       | BDL                     |              | BDL                     |              |
| k. Benzo(ghi) Perylene                     | 191242                                                      | ×                  |                                | 1               | grab                    | 8270                   | .20                       | BDL                     |              | BDL                     |              |
| 1. Fluoranthene                            | 206440                                                      | X                  |                                | 1               | grab                    | 8270                   | .20                       | BDL                     |              | BDL                     |              |
| m. Fluorene                                | 86737                                                       | ×                  |                                | 1               | grab                    | 8270                   | .20                       | BDL                     |              | BDL                     |              |
| n. Naphthalene                             | 91203                                                       | ×                  |                                | 1               | grab                    | 8270                   | .20                       | BDL                     |              | BDL                     |              |
| o. Phenanthrene                            | 85018                                                       | ×                  |                                | 1               | grab                    | 8270                   | .20                       | BDL                     |              | BDL                     |              |
| p. Pyrene                                  | 129000                                                      | ×                  |                                | 1               | grab                    | 8270                   | .20                       | BDL                     |              | BDL                     |              |
| 37. Total Polychlorinated Biphenyls (PCBs) | 85687;<br>84742;<br>117840;<br>84662;<br>131113;<br>117817. | ×                  |                                | 1               | grab                    | 608                    | 4.5                       | BDL                     |              | BDL                     |              |
| 38. Chloride                               | 16887006                                                    |                    | ×                              | 1               | grab                    | EPA 300.0              | 500                       | 80,000                  |              | 80,000                  |              |
| 39. Antimony                               | 7440360                                                     | ×                  |                                | 1               | grab                    | 6010C                  | 5.0                       | BDL                     |              | BDL                     |              |
| 40. Arsenic                                | 7440382                                                     |                    | ×                              | 1               | grab                    | 6010C                  | 2.0                       | 2.8                     |              | 2.8                     |              |
| 41. Cadmium                                | 7440439                                                     | ×                  |                                | 1               | grab                    | 6010C                  | 1.0                       | BDL                     |              | BDL                     |              |
| 42. Chromium III<br>(trivalent)            | 16065831                                                    | ×                  |                                | 1               | grab                    | 6010C                  | 1.0                       | BDL                     |              | BDL                     |              |
| 43. Chromium VI (hexavalent)               | 18540299                                                    | ×                  |                                | 1               | grab                    | 3500 CrD               | 10                        | BDL                     |              | BDL                     |              |
| 44. Copper                                 | 7440508                                                     |                    | X                              | 1               | grab                    | 6010C                  | 5.0                       | 22                      |              | 22                      |              |
| 45. Lead                                   | 7439921                                                     |                    |                                | 1               | grab                    | 6010C                  | 2.0                       | 8.8                     |              | 8.8                     |              |
| 46. Mercury                                | 7439976                                                     | ×                  |                                | 1               | grab                    | 7470A                  | 0.20                      | BDL                     |              | BDL                     |              |
| 47. Nickel                                 | 7440020                                                     |                    | ×                              | 1               | grab                    | 6010C                  | 2.0                       | 6.8                     |              | 6.8                     |              |
| 48. Selenium                               | 7782492                                                     |                    | ×                              | 1               | grab                    | 6010C                  | 5.0                       | 6.2                     |              | 6.2                     |              |
| 49. Silver                                 | 7440224                                                     | ×                  |                                | 1               | gab                     | 6010C                  | 1.0                       | BDL                     |              | BDL                     |              |
| 50. Zinc                                   | 7440666                                                     |                    | ×                              | 1               | grab                    | 6010C                  | 5.0                       | 120                     |              | 120                     |              |
| 51. Iron                                   | 7439896                                                     |                    | ×                              | 1               | grab                    | 6010C                  | 10                        | 420                     |              | 420                     |              |
| Other (describe):                          |                                                             |                    |                                |                 |                         |                        |                           |                         |              |                         |              |

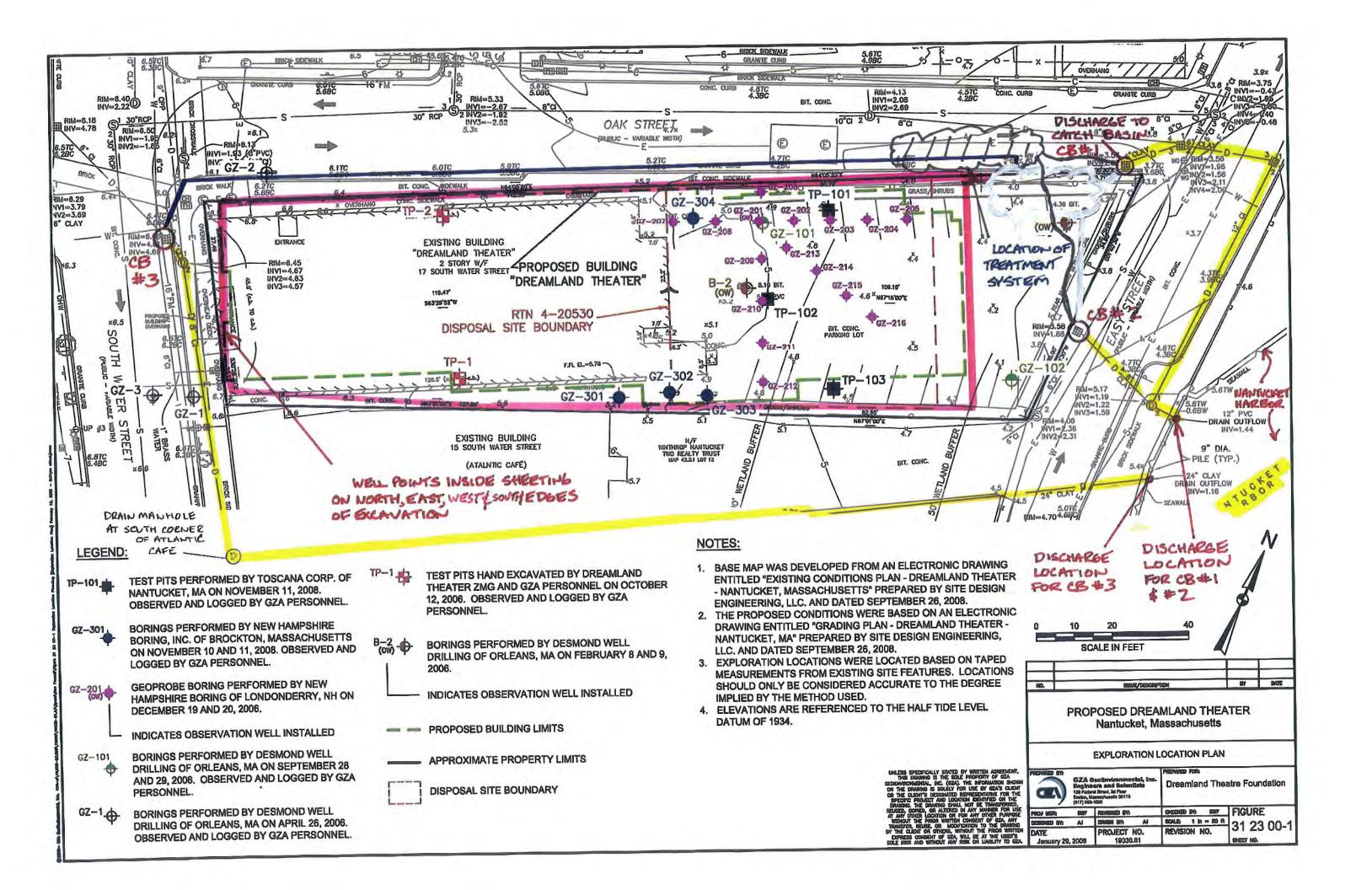
| NI DESTEIMIL NO. NITO 10000                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |                    |                              |                 |                          |                                       |         |                            |              |                                     |                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------|------------------------------|-----------------|--------------------------|---------------------------------------|---------|----------------------------|--------------|-------------------------------------|----------------|
| Parameter *                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>CAS</u><br><u>Number</u> | Believed<br>Absent | Believed<br>Present          | # of<br>Samples | Sample Type (e.g., grab) | Analytic<br>Method<br>Used<br>(method | (ML) of | Maximum concentrati (ug/l) | on mass (kg) | Average daily  concentration (ug/l) | <u>m</u><br>(l |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                    |                              |                 |                          |                                       |         |                            |              |                                     |                |
| b) For discharges where <b>metals</b> are believed present, please fill out the following (attach results of any calculations):  Step 1: Do any of the metals in the influent exceed the effluent limits in Appendix III (i.e., the limits set at zero dilution)? Y                                                                                                                                                                                                 |                             |                    |                              |                 |                          |                                       |         |                            |              |                                     |                |
| 4. Treatment system information. Please describe the treatment system using separate sheets as necessary, including:  a) A description of the treatment system, including a schematic of the proposed or existing treatment system:  Water will be pumped to a 21,000 gallon frac tank and then through a 25 micron bag filtration system prior to discharge to a catch basin. Carbon filtration will be utilized if any sheens or petroleum odors are encountered. |                             |                    |                              |                 |                          |                                       |         |                            |              |                                     |                |
| b) Identify each applicable treatment unit (check all that apply):                                                                                                                                                                                                                                                                                                                                                                                                  | Chlorin                     | nation I           | Air stripper De- hlorination | Other           | vater separat            | scribe):                              | 1       |                            | Bag filter   | GAC filter                          | $\dashv$       |

| c) Proposed <b>average</b> and <b>maximum</b> the treatment system: Average flow rate of discharge 100 Design flow rate of treatment system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gpm N                     | ,                       | or the discharge and of treatment syst |          | gpm (gallons per minute) of |   |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------|----------------------------------------|----------|-----------------------------|---|--|--|--|
| d) A description of chemical additive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | es being used or          | planned to be use       | d (attach MSDS s                       | heets):  |                             |   |  |  |  |
| None Anticipated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                         |                                        |          |                             |   |  |  |  |
| <b>5. Receiving surface water(s).</b> Please provide information about the receiving water(s), using separate sheets as necessary:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                         |                                        |          |                             |   |  |  |  |
| a) Identify the discharge pathway:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Direct to receiving water | Within facility (sewer) | Storm<br>drain <u>⊠</u>                | Wetlands | Other (describe):           | ] |  |  |  |
| b) Provide a narrative description of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                         |                                        |          |                             | _ |  |  |  |
| water will be discharged from the treatment system to a catch basin adjacent to the site which discharges to Nantucket Harbor.  c) Attach a detailed map(s) indicating the site location and location of the outfall to the receiving water:  1. For multiple discharges, number the discharges sequentially.  2. For indirect dischargers, indicate the location of the discharge to the indirect conveyance and the discharge to surface water. The map should also include the location and distance to the nearest sanitary sewer as well as the locus of nearby sensitive receptors (based on USGS topographical mapping), such as surface waters, drinking water supplies, and wetland areas. |                           |                         |                                        |          |                             |   |  |  |  |
| d) Provide the state water quality classification of the receiving water SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                         |                                        |          |                             |   |  |  |  |
| e) Provide the reported or calculated seven day-ten year low flow (7Q10) of the receiving water Not Applicable  Cfs  Please attach any calculation sheets used to support stream flow and dilution calculations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                         |                                        |          |                             |   |  |  |  |
| f) Is the receiving water a listed 303(d) water quality impaired or limited water? Y O If yes, for which pollutant(s)?  Total Nitrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                         |                                        |          |                             |   |  |  |  |
| Is there a final TMDL? Y O N O If yes, for which pollutant(s)? Total Nitrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                         |                                        |          |                             |   |  |  |  |

# 6. ESA and NHPA Eligibility.

Please provide the following information according to requirements of Permit Parts I.A.4 and I.A.5 Appendices II and VII.

| a) Using the instructions in Appendix VII and information on Appendix II, under which criterion listed in Part I.C are you eligible for coverage under this general permit?  A O B O C D D O E O F O  b) If you selected Criterion D or F, has consultation with the federal services been completed? Y O N O Underway O |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| c) If consultation with U.S. Fish and Wildlife Service and/or NOAA Fisheries Service was completed, was a written concurrence finding that the discharge is "not likely to adversely affect" listed species or critical habitat received? Y O NOA                                                                        |
| d) Attach documentation of ESA eligibility as described in the NOI instructions and required by Appendix VII, Part I.C, Step 4.                                                                                                                                                                                          |
| e) Using the instructions in Appendix VII, under which criterion listed in Part II.C are you eligible for coverage under this general permit?  1 _O _2 _O _3 _O _                                                                                                                                                        |
| f) If Criterion 3 was selected, attach all written correspondence with the State or Tribal historic preservation officers, including any terms and conditions that outline measures the applicant must follow to mitigate or prevent adverse effects due to activities regulated by the RGP.                             |
| 7. Supplemental information.                                                                                                                                                                                                                                                                                             |
| Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit.                                                                                                                                                     |
| None                                                                                                                                                                                                                                                                                                                     |


**8. Signature Requirements:** The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

| Facility/Site Name: Dreamland Theater         |  |
|-----------------------------------------------|--|
| Operator signature:                           |  |
| Printed Name &Title: William Cassidy, Manager |  |
| Date: December 8, 2010                        |  |

SITE LOCUS MAP

SITE DEWATERING FLOW SCHEMATIC



LABORATORY TEST DATA



Laboratory Identification Numbers:
MA and ME: MA092 NH: 2028
CT: PH0579 RI: LAO00236
NELAC - NYS DOH: 11063

**REVISED** 

01.0019030.90

## ANALYTICAL REPORT

GZA GeoEnvironmental, Inc. One Edgewater Drive Norwood, MA 02062

NOrwood, MA U2062

Work Order No.: 1011-00193
Date Received: 11/29/2010
Date Reported: 12/08/2010

Project No.:

Al Jones

# **SAMPLE INFORMATION**

Date Sampled Matrix Laboratory ID Sample ID 11/24/2010 Aqueous 1011-00193 001 Influent





#### ANALYTICAL REPORT

GZA GeoEnvironmental, Inc. One Edgewater Drive Norwood, MA 02062

Al Jones

Project No.:

Project Name.: Proposed Dreamland Theater

**01.0019030.90** Date Reported:

11/29/2010 12/08/2010

Work Order No.: **1011-00193** 

Date Received:

#### PROJECT NARRATIVE:

# 1. Sample Receipt

The samples were received on 11/29/10 via \_x\_GZA courier, \_\_EC, \_\_FEDEX, or \_\_\_hand delivered. The temperature of the \_x\_temperature blank/\_\_cooler air, was 2.8 degrees C. The temperature requirement for most analyses is above freezing to 6 degrees C. The samples were received intact for all requested analyses.

The chain of custody indicates that the samples, when required, were chemically preserved in accordance with the method they reference. Soil samples for high level VOC analysis were received preserved in methanol.

#### 2. Subcontracted Analyses

Analyses for PCB, TRC, Cyanide, PAH-SIM, TPH, TSS were performed by ESS Laboratory, Cranston, RI.

#### 3. Method SM 18 3500 Cr(D) - Hexavalent Chromium

The Hex Cr sample was analyzed outside of the method specified 24 hour HT, per the Project Manager.

Attach QC 11/29/10 - Aqueous

#### 4. EPA Method 6010C/7470A - Metals

All samples were pre-concentrated 5 times in order to reach the required reporting limits for Cu (0.005 mg/L) and Sb (0.005 mg/L).

Attach QC 6010C 12/02/10 B - Aqueous Attach QC 7470A 12/01/10 A - Aqueous

#### 4. EPA Method 300.0 - Anions

Attach QC 300.0 12/01/10 - Aqueous

#### 5. EPA Method 8270 - SVOCs

The Initial Calibration (ICAL) (11/11/10) (IABN205) had an analyte whose RF value did not meet the minimum values (Table 4, EPA 8270D), however, the RF value was greater than 0.050. The specific outlier includes 2-chloronaphthalene.

The RF value for 2-chloronaphthalene did not achieve the method required level in the CCV for 12/02/10, however, the RF value was greater than 0.050.

Attach QC 8270 12/1/2010 "I" - Aqueous

#### 6. EPA Method 8260 - VOCs

The following analyte(s) in the lowest ICAL (Initial Calibration) standard did not meet the minimum RF criteria specified in Table 4 of Method 8260C, but were above 0.050: acetone (0.080).





#### ANALYTICAL REPORT

GZA GeoEnvironmental, Inc. One Edgewater Drive Norwood, MA 02062

Al Jones

Project Name.: **Proposed Dreamland Theater** 

Project No.: **01.0019030.90** 

Date Received: 11/29/2010
Date Reported: 12/08/2010

Work Order No.: 1011-00193

The following analytes in the CCV did not meet the minimum RF criteria specified in Table 4 of Method 8260C, but were above 0.050: acetone (0.068)

The Continuing Calibration Verification Standard (CCV) (12/4/2010 S) had method 8260 List analytes outside of the 80-120% acceptance criteria. Specific outliers include: bromomethane (79.7%), diethyl ether (73.4%), methyl-tert-butyl-ether (79.3%), 2-butanone (76.2%), tetrahydrofuran (79.7%), 1,4-Dioxane (67%), 1,2,3-trichloropropane (79.3%), 1,2-dibromo-3-chloropropane (69.9%), and naphthalene (79.2%). Method 8260C permits up to 14 outliers if within 60-140%.

The Laboratory Control Sample (LCS) (12/4/2010 S) had method 8260 List analytes outside of the 70-130% acceptance criteria. Specific outliers include: 1,4-Dioxane (67%) and 1,2-dibromo-3-chloropropane (69.9%).

Attach QC 8260 12/4/2010 "S" - Aqueous





#### ANALYTICAL REPORT

GZA GeoEnvironmental, Inc. One Edgewater Drive Norwood, MA 02062

Al Jones

Project Name.: **Proposed Dreamland Theater** 

Project No.: 01.0019030.90

11/29/2010 Date Received: Date Reported:

12/08/2010

Work Order No.:

1011-00193



Data Authorized By:

NELAC certification, as indicated by the NELAC Lab ID Number, is per analyte. For a complete list of NELAC validated analytes, please contact the laboratory.

#### Abbreviations:

% R = % Recovery

DF = Dilution Factor

DFS = Dilution Factor Solids

CF = Calculation Factor

DO = Diluted Out

#### Method Key:

Method 8260: The current version of the method is 8260B. Method 8270: The current version of the method is 8270D. Method 6010: The current version of the method is 6010C.

Please note that the laboratory signed copy of the chain of custody record is an integral part of the data report.

The laboratory report shall not be reproduced except in full without the written consent of the laboratory.

Soil data is reported on a dry weight basis unless otherwise specified. Matrix Spike / Matrix Spike Duplicate sets are performed as per method and are reported at the end of the analytical report if assigned on the Chain of Custody.



11/29/2010

Date Received:



# GZA GeoEnvironmental, Inc. 106 South Street Hopkinton, MA 01748 (781) 278-4700

## ANALYTICAL REPORT

GZA GeoEnvironmental, Inc. One Edgewater Drive Norwood, MA 02062

Al Jones

Project Name.: Proposed Dreamland Theater

Project No.: 01.0019030.90 Date Reported: 12/08/2010 Work Order No.: 1011-00193

Sample ID: Influent Sample No.: 001

| Test Performed              | Method   | Results | Reporting<br>Limit | Units | Tech | Analysis<br>Date |
|-----------------------------|----------|---------|--------------------|-------|------|------------------|
| VOLATILE ORGANICS           | EPA 8260 |         |                    |       | MQS  | 12/04/2010       |
| Dichlorodifluoromethane     | EPA 8260 | <2.0    | 2.0                | ug/L  | MQS  | 12/04/2010       |
| Chloromethane               | EPA 8260 | <2.0    | 2.0                | ug/L  | MQS  | 12/04/2010       |
| Vinyl chloride              | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| Bromomethane                | EPA 8260 | <2.0    | 2.0                | ug/L  | MQS  | 12/04/2010       |
| Chloroethane                | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| Trichlorofluoromethane      | EPA 8260 | <2.0    | 2.0                | ug/L  | MQS  | 12/04/2010       |
| Diethylether                | EPA 8260 | <2.0    | 2.0                | ug/L  | MQS  | 12/04/2010       |
| Acetone                     | EPA 8260 | <10     | 10                 | ug/L  | MQS  | 12/04/2010       |
| 1,1-Dichloroethene          | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| Carbon disulfide            | EPA 8260 | 2.2     | 2.0                | ug/L  | MQS  | 12/04/2010       |
| Dichloromethane             | EPA 8260 | <2.0    | 2.0                | ug/L  | MQS  | 12/04/2010       |
| Methyl tert-butyl ether     | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| trans-1,2-Dichloroethene    | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| 1,1-Dichloroethane          | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| Diisopropyl ether (DIPE)    | EPA 8260 | <2.0    | 2.0                | ug/L  | MQS  | 12/04/2010       |
| Ethyl tert-butyl ether ETBE | EPA 8260 | <2.0    | 2.0                | ug/L  | MQS  | 12/04/2010       |
| 2-Butanone (MEK)            | EPA 8260 | <10     | 10                 | ug/L  | MQS  | 12/04/2010       |
| 2,2-Dichloropropane         | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| cis-1,2-Dichloroethene      | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| Chloroform                  | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| Bromochloromethane          | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| Tetrahydrofuran             | EPA 8260 | <10     | 10                 | ug/L  | MQS  | 12/04/2010       |
| 1,1,1-Trichloroethane       | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| 1,1-Dichloropropene         | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| Carbon tetrachloride        | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| 1,2-Dichloroethane          | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| Benzene                     | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| tert-Amyl methyl ether TAME | EPA 8260 | <2.0    | 2.0                | ug/L  | MQS  | 12/04/2010       |
| Trichloroethene             | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| 1,4-Dioxane                 | EPA 8260 | <100    | 100                | ug/L  | MQS  | 12/04/2010       |
| 1,2-Dichloropropane         | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| Bromodichloromethane        | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| Dibromomethane              | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| 4-Methyl-2-pentanone (MIBK) | EPA 8260 | <10     | 10                 | ug/L  | MQS  | 12/04/2010       |



11/29/2010

Date Received:



# GZA GeoEnvironmental, Inc. 106 South Street Hopkinton, MA 01748 (781) 278-4700

## ANALYTICAL REPORT

GZA GeoEnvironmental, Inc. One Edgewater Drive Norwood, MA 02062

Al Jones

Project Name.: Proposed Dreamland Theater

Project No.: 01.0019030.90 Date Reported: 12/08/2010 Work Order No.: 1011-00193

Sample ID: Influent Sample No.: 001

| Test Performed              | Method   | Results | Reporting<br>Limit | Units | Tech | Analysis<br>Date |
|-----------------------------|----------|---------|--------------------|-------|------|------------------|
| cis-1,3-Dichloropropene     | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| Toluene                     | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| trans-1,3-Dichloropropene   | EPA 8260 | <2.0    | 2.0                | ug/L  | MQS  | 12/04/2010       |
| 1,1,2-Trichloroethane       | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| 2-Hexanone                  | EPA 8260 | <10     | 10                 | ug/L  | MQS  | 12/04/2010       |
| 1,3-Dichloropropane         | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| Tetrachloroethene           | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| Dibromochloromethane        | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| 1,2-Dibromoethane (EDB)     | EPA 8260 | <2.0    | 2.0                | ug/L  | MQS  | 12/04/2010       |
| Chlorobenzene               | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| 1,1,1,2-Tetrachloroethane   | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| Ethylbenzene                | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| m&p-Xylene                  | EPA 8260 | <2.0    | 2.0                | ug/L  | MQS  | 12/04/2010       |
| o-Xylene                    | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| Styrene                     | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| Bromoform                   | EPA 8260 | <2.0    | 2.0                | ug/L  | MQS  | 12/04/2010       |
| Isopropylbenzene            | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| 1,1,2,2-Tetrachloroethane   | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| 1,2,3-Trichloropropane      | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| Bromobenzene                | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| n-Propylbenzene             | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| 2-Chlorotoluene             | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| 1,3,5-Trimethylbenzene      | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| 4-Chlorotoluene             | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| tert-Butylbenzene           | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| 1,2,4-Trimethylbenzene      | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| sec-Butylbenzene            | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| p-Isopropyltoluene          | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| 1,3-Dichlorobenzene         | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| 1,4-Dichlorobenzene         | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| n-Butylbenzene              | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| 1,2-Dichlorobenzene         | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| 1,2-Dibromo-3-chloropropane | EPA 8260 | <2.0    | 2.0                | ug/L  | MQS  | 12/04/2010       |
| 1,2,4-Trichlorobenzene      | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| Hexachlorobutadiene         | EPA 8260 | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |





## ANALYTICAL REPORT

GZA GeoEnvironmental, Inc. One Edgewater Drive Norwood, MA 02062

Al Jones

Project Name.: Proposed Dreamland Theater

Project No.: **01.0019030.90** 

Date Received: 11/29/2010
Date Reported: 12/08/2010

Work Order No.: **1011-00193** 

Sample ID: Influent Sample No.: 001

| Test Performed              | Method    | Results | Reporting<br>Limit | Units | Tech | Analysis<br>Date |
|-----------------------------|-----------|---------|--------------------|-------|------|------------------|
| Naphthalene                 | EPA 8260  | <2.0    | 2.0                | ug/L  | MQS  | 12/04/2010       |
| 1,2,3-Trichlorobenzene      | EPA 8260  | <1.0    | 1.0                | ug/L  | MQS  | 12/04/2010       |
| Surrogates:                 | EPA 8260  |         |                    |       |      |                  |
| ***1,2-Dichloroethane-D4    | EPA 8260  | 96.5    | 70-130             | % R   | MQS  | 12/04/2010       |
| ***Toluene-D8               | EPA 8260  | 104     | 70-130             | % R   | MQS  | 12/04/2010       |
| ***4-Bromofluorobenzene     | EPA 8260  | 93.7    | 70-130             | % R   | MQS  | 12/04/2010       |
| Preparation                 | EPA 5030B | 1.0     |                    | CF    | MQS  | 12/03/2010       |
| SEMI-VOLATILE ORGANICS      | EPA 8270  |         |                    |       | CMG  | 12/02/2010       |
| Phenol                      | EPA 8270  | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| 2-Chlorophenol              | EPA 8270  | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| 2-Methylphenol              | EPA 8270  | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| 3&4-Methylphenol            | EPA 8270  | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| 2-Nitrophenol               | EPA 8270  | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| 2,4-Dimethylphenol          | EPA 8270  | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| 2,4-Dichlorophenol          | EPA 8270  | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| 2,4,6-Trichlorophenol       | EPA 8270  | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| 2,4,5-Trichlorophenol       | EPA 8270  | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| 2,4-Dinitrophenol           | EPA 8270  | <100    | 100                | ug/L  | CMG  | 12/02/2010       |
| 4-Nitrophenol               | EPA 8270  | <50     | 50                 | ug/L  | CMG  | 12/02/2010       |
| Pentachlorophenol           | EPA 8270  | <50     | 50                 | ug/L  | CMG  | 12/02/2010       |
| bis(2-Chloroethyl)Ether     | EPA 8270  | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| 1,3-Dichlorobenzene         | EPA 8270  | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| 1,4-Dichlorobenzene         | EPA 8270  | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| 1,2-Dichlorobenzene         | EPA 8270  | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| bis(2-Chloroisopropyl)Ether | EPA 8270  | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| Acetophenone                | EPA 8270  | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| Hexachloroethane            | EPA 8270  | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| Nitrobenzene                | EPA 8270  | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| Isophorone                  | EPA 8270  | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| bis(2-Chloroethoxy)Methane  | EPA 8270  | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| 1,2,4-Trichlorobenzene      | EPA 8270  | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| Naphthalene                 | EPA 8270  | <2.0    | 2.0                | ug/L  | CMG  | 12/02/2010       |
| 4-Chloroaniline             | EPA 8270  | <20     | 20                 | ug/L  | CMG  | 12/02/2010       |
| Hexachlorobutadiene         | EPA 8270  | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| 2-Methylnaphthalene         | EPA 8270  | <2.0    | 2.0                | ug/L  | CMG  | 12/02/2010       |



11/29/2010

Date Received:



# GZA GeoEnvironmental, Inc. 106 South Street Hopkinton, MA 01748 (781) 278-4700

## ANALYTICAL REPORT

GZA GeoEnvironmental, Inc. One Edgewater Drive Norwood, MA 02062

Al Jones

Project Name.: Proposed Dreamland Theater

Project No.: 01.0019030.90 Date Reported: 12/08/2010 Work Order No.: 1011-00193

Sample ID: Influent Sample No.: 001

| Test Performed             | Method   | Results | Reporting<br>Limit | Units | Tech | Analysis<br>Date |
|----------------------------|----------|---------|--------------------|-------|------|------------------|
| Aniline                    | EPA 8270 | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| 2-Chloronaphthalene        | EPA 8270 | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| Dimethylphthalate          | EPA 8270 | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| Acenaphthylene             | EPA 8270 | <2.0    | 2.0                | ug/L  | CMG  | 12/02/2010       |
| 2,6-Dinitrotoluene         | EPA 8270 | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| Acenaphthene               | EPA 8270 | <2.0    | 2.0                | ug/L  | CMG  | 12/02/2010       |
| Dibenzofuran               | EPA 8270 | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| 2,4-Dinitrotoluene         | EPA 8270 | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| Diethylphthalate           | EPA 8270 | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| Fluorene                   | EPA 8270 | <2.0    | 2.0                | ug/L  | CMG  | 12/02/2010       |
| Azobenzene                 | EPA 8270 | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| 4-Bromophenyl Phenyl Ether | EPA 8270 | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| Hexachlorobenzene          | EPA 8270 | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| Phenanthrene               | EPA 8270 | <2.0    | 2.0                | ug/L  | CMG  | 12/02/2010       |
| Anthracene                 | EPA 8270 | <2.0    | 2.0                | ug/L  | CMG  | 12/02/2010       |
| di-n-Butylphthalate        | EPA 8270 | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| Fluoranthene               | EPA 8270 | <2.0    | 2.0                | ug/L  | CMG  | 12/02/2010       |
| Pyrene                     | EPA 8270 | <2.0    | 2.0                | ug/L  | CMG  | 12/02/2010       |
| Butylbenzylphthalate       | EPA 8270 | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| Benzo [a] Anthracene       | EPA 8270 | <2.0    | 2.0                | ug/L  | CMG  | 12/02/2010       |
| 3,3'-Dichlorobenzidine     | EPA 8270 | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| Chrysene                   | EPA 8270 | <2.0    | 2.0                | ug/L  | CMG  | 12/02/2010       |
| bis(2-Ethylhexyl)Phthalate | EPA 8270 | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| di-n-Octylphthalate        | EPA 8270 | <10     | 10                 | ug/L  | CMG  | 12/02/2010       |
| Benzo [b] Fluoranthene     | EPA 8270 | <2.0    | 2.0                | ug/L  | CMG  | 12/02/2010       |
| Benzo [k] Fluoranthene     | EPA 8270 | <2.0    | 2.0                | ug/L  | CMG  | 12/02/2010       |
| Benzo [a] Pyrene           | EPA 8270 | <2.0    | 2.0                | ug/L  | CMG  | 12/02/2010       |
| Indeno [1,2,3-cd] Pyrene   | EPA 8270 | <2.0    | 2.0                | ug/L  | CMG  | 12/02/2010       |
| Dibenzo [a,h] Anthracene   | EPA 8270 | <2.0    | 2.0                | ug/L  | CMG  | 12/02/2010       |
| Benzo [g,h,i] Perylene     | EPA 8270 | <2.0    | 2.0                | ug/L  | CMG  | 12/02/2010       |
| Surrogates:                | EPA 8270 |         |                    |       |      |                  |
| ***2-Fluorophenol          | EPA 8270 | 39.4    | 15-110             | % R   | CMG  | 12/02/2010       |
| ***Phenol-D6               | EPA 8270 | 26.3    | 15-110             | % R   | CMG  | 12/02/2010       |
| ***Nitrobenzene-D5         | EPA 8270 | 59.8    | 30-130             | % R   | CMG  | 12/02/2010       |
| ***2-Fluorobiphenyl        | EPA 8270 | 58.6    | 30-130             | % R   | CMG  | 12/02/2010       |





## GZA GeoEnvironmental, Inc. 106 South Street Hopkinton, MA 01748 (781) 278-4700

## ANALYTICAL REPORT

GZA GeoEnvironmental, Inc. One Edgewater Drive Norwood, MA 02062

Al Jones

Project Name.: Proposed Dreamland Theater

Project No.: **01.0019030.90** 

Date Received: 11/29/2010
Date Reported: 12/08/2010

Work Order No.: **1011-00193** 

Sample ID: Influent Sample No.: 001

Sample Date: 11/24/2010

| Test Performed              | Method        | Results  | Reporting<br>Limit | Units | Tech | Analysis<br>Date |
|-----------------------------|---------------|----------|--------------------|-------|------|------------------|
| ***2,4,6-Tribromophenol     | EPA 8270      | 60.3     | 15-110             | % R   | CMG  | 12/02/2010       |
| ***P-Terphenyl-D14          | EPA 8270      | 64.0     | 39-120             | % R   | CMG  | 12/02/2010       |
| Extraction                  | EPA 3510C     | 1.0      |                    | DF    | LRB  | 12/01/2010       |
| ANIONS - ION CHROMATOGRAPHY | EPA 300.0     |          |                    |       | TAJ  | 12/01/2010       |
| Chloride                    | EPA 300.0     | 80       | 0.50               | mg/L  | TAJ  | 12/01/2010       |
| Hexavalent Chromium         | SM 3500CrD    | <0.010   | 0.010              | mg/L  | LLZ  | 11/29/2010       |
| SUBCONTRACTED ANALYTES      |               |          |                    |       |      |                  |
| PCB                         | EPA 608       |          |                    |       | XXX  |                  |
| Residual Chlorine           | SM4500-CL,D   | < 0.02   | 0.02               | mg/L  | XXX  | 11/29/2010       |
| Total Cyanide               | SM-4500CN-C E | <0.0050  | 0.0050             | mg/L  | XXX  | 12/02/2010       |
| TPH                         | EPA 1664A     | <5       | 5                  | mg/L  | XXX  | 11/30/2010       |
| METALS                      |               |          |                    |       |      |                  |
| Antimony                    | EPA 6010C     | <0.0050  | 0.0050             | mg/L  | LLZ  | 12/02/2010       |
| Arsenic                     | EPA 6010C     | 0.0028   | 0.0020             | mg/L  | LLZ  | 12/02/2010       |
| Cadmium                     | EPA 6010C     | <0.0010  | 0.0010             | mg/L  | LLZ  | 12/02/2010       |
| Chromium                    | EPA 6010C     | <0.0010  | 0.0010             | mg/L  | LLZ  | 12/02/2010       |
| Copper                      | EPA 6010C     | 0.022    | 0.0050             | mg/L  | LLZ  | 12/02/2010       |
| Lead                        | EPA 6010C     | 0.0088   | 0.0020             | mg/L  | LLZ  | 12/02/2010       |
| Mercury                     | EPA 7470A     | <0.00020 | 0.00020            | mg/L  | GDD  | 12/01/2010       |
| Nickel                      | EPA 6010C     | 0.0068   | 0.0020             | mg/L  | LLZ  | 12/02/2010       |
| Selenium                    | EPA 6010C     | 0.0062   | 0.0050             | mg/L  | LLZ  | 12/02/2010       |
| Silver                      | EPA 6010C     | <0.0010  | 0.0010             | mg/L  | LLZ  | 12/02/2010       |
| Zinc                        | EPA 6010C     | 0.12     | 0.0050             | mg/L  | LLZ  | 12/02/2010       |
| Iron                        | EPA 6010C     | 0.42     | 0.010              | mg/L  | LLZ  | 12/02/2010       |
| Total Suspended Solids      | SM-2540D      | 7        | 5                  | mg/L  | XXX  | 12/01/2010       |
| Miscellaneous               |               |          |                    |       | EAH  |                  |
| tert-Butyl alcohol (TBA)    | EPA 8260      | <10      | 10                 | ug/L  | MQS  | 12/04/2010       |

### GZA GEOENVIRONMENTAL, INC. ENVIRONMENTAL CHEMISTRY LABORATORY 106 SOUTH ST, HOPKINTON, MA 01748 MASSACHUSETTS LABORATORY I.D. NO. MA092

## EPA METHOD 7196A/SM 18 3500 CR (d) ANALYSIS Hexavalent Chromium by Colorometric Method

## **QUALITY CONTROL - AQUEOUS**

Date Prepared: 11/29/10

| QC Sample         | Method Blank | Lab Control Sample | Lab Control Sample Duplicate | LC/LCD Difference |
|-------------------|--------------|--------------------|------------------------------|-------------------|
| Units             | mg/L         | % Recovery         | % Recovery                   | RPD               |
| Acceptance Limits | Results      | 80-120             | 80-120                       | 20%               |
| Analyte           |              |                    |                              |                   |
| Hex Cr (Cr+6)     | < 0.010      | 90.0               | 100                          | 10.5              |

RPD = Relative Percent Difference

## GZA GEOENVIRONMENTAL, INC. ENVIRONMENTAL CHEMISTRY LABORATORY 106 SOUTH ST, HOPKINTON, MA 01748 MASSACHUSETTS LABORATORY I.D. NO. MA092

# EPA METHOD 6010C ANALYSIS Metals by ICP

## **QUALITY CONTROL - AQUEOUS**

DATE PREPARED: 12/2/2010 B

| QC Sample         | Method Blank | Lab Control Sample |
|-------------------|--------------|--------------------|
| Units             | mg/L         | % Recovery         |
| Acceptance Limits | Results      | 80-120             |
| Analyte           |              |                    |
| Silver (Ag)       | < 0.001      | 94.1               |
| Aluminum (Al)     | NA           | NA                 |
| Arsenic (As)      | < 0.002      | 101                |
| Boron (B)         | NA           | NA                 |
| Barium (Ba)       | NA           | NA                 |
| Beryllium (Be)    | NA           | NA                 |
| Calcium (Ca)      | NA           | NA                 |
| Cadmium (Cd)      | < 0.001      | 102                |
| Cobalt (Co)       | NA           | NA                 |
| Chromium (Cr)     | < 0.001      | 102                |
| Copper (Cu)       | < 0.005      | 113                |
| Iron (Fe)         | < 0.010      | 106                |
| Magnesium (Mg)    | NA           | NA                 |
| Manganese (Mn)    | NA           | NA                 |
| Molybdenum (Mo)   | NA           | NA                 |
| Nickel (Ni)       | < 0.002      | 103                |
| Lead (Pb)         | < 0.002      | 102                |
| Antimony (Sb)     | < 0.005      | 99.6               |
| Selenium (Se)     | < 0.005      | 104                |
| Tin (Sn)          | NA           | NA                 |
| Titanium (Ti)     | NA           | NA                 |
| Thallium (Tl)     | NA           | NA                 |
| Vanadium (V)      | NA           | NA                 |
| Zinc (Zn)         | < 0.005      | 113                |
| Zirconium (Zr)    | NA           | NA                 |
|                   |              |                    |

RPD = Relative Percent Difference

NA = Not Applicable

NC = Not Calculated

CRM = Certified Reference Material

## GZA GEOENVIRONMENTAL, INC. ENVIRONMENTAL CHEMISTRY LABORATORY 106 SOUTH ST, HOPKINTON, MA 01748 MASSACHUSETTS LABORATORY I.D. NO. MA092

# EPA METHOD 7470A ANALYSIS Mercury by Cold Vapor Atomic Absorption

## **QUALITY CONTROL - AQUEOUS**

Date Prepared: 12/01/10 A

| QC Sample         | Method Blank | Lab Control Sample |
|-------------------|--------------|--------------------|
| Units             | mg/L         | % Recovery         |
| Acceptance Limits | Results      | 80-120             |
| Analyte           |              |                    |
| Mercury (Hg)      | < 0.00020    | 92.4               |

LC concentration = 0.005 mg/L

## ENVIRONMENTAL CHEMISTRY LABORATORY 106 SOUTH ST, HOPKINTON, MA 01748 MASSACHUSETTS LABORATORY I.D. NO. MA092

## **EPA METHOD 300.0 ANALYSIS Anions by Ion Chromatography**

## **QUALITY CONTROL - AQUEOUS**

DATE PREPARED: 12/01/10

| QC Sample         | Method Blank | Lab Control Sample | Lab Control Sample Duplicate | LC/LCD Difference |
|-------------------|--------------|--------------------|------------------------------|-------------------|
| Units             | mg/L         | % Recovery         | % Recovery                   | RPD               |
| Acceptance Limits | Results      | 90-110%            | 90-110%                      | 20%               |
| Analyte           |              |                    |                              |                   |
| Fluoride          | NA           | NA                 | NA                           | NA                |
| Chloride          | < 0.20       | 93.4               | 100                          | 6.90              |
| Nitrite           | NA           | NA                 | NA                           | NA                |
| Nitrate           | NA           | NA                 | NA                           | NA                |
| Phosphate         | NA           | NA                 | NA                           | NA                |
| Sulfate           | NA           | NA                 | NA                           | NA                |

RPD = Relative Percent Difference

### GZA GeoEnvironmental, Inc. 106 South Street Hopkinton, MA 01748 MA092

EPA Method 8270 Aqueous Method Blank (MB) and Laboratory Control Sample (LCS) Data

### Method Blank

| Date Extracted:<br>Date Analyzed:<br>File Name: | 12/01/10<br>12/2/2010<br>M7257 |                     |
|-------------------------------------------------|--------------------------------|---------------------|
| Semi-Volatile Organics                          | Result<br>ND                   | <b>(ug/L)</b><br>10 |
| phenol<br>bis(2-chloroethyl)ether               | ND<br>ND                       | 10                  |
| 2-chlorophenol                                  | ND                             | 10                  |
| 1,3-dichlorobenzene                             | ND                             | 10                  |
| 1,4-dichlorobenzene                             | ND                             | 10                  |
| 1,2-dichlorobenzene                             | ND                             | 10                  |
| 2-methylphenol                                  | ND                             | 10                  |
| bis(2-chloroisopropyl)ether                     | ND                             | 10                  |
| 3&4-methylphenol                                | ND                             | 10                  |
| acetophenone                                    | ND                             | 10                  |
| hexachloroethane                                | ND                             | 10                  |
| nitrobenzene                                    | ND                             | 10                  |
| isophrone                                       | ND                             | 10                  |
| 2-nitrophenol                                   | ND<br>ND                       | 10                  |
| 2,4-dimethylphenol bis(2-chloroethoxy)methane   | ND<br>ND                       | 10<br>10            |
| 2,4-dichlorophenol                              | ND<br>ND                       | 10                  |
| 1,2,4-trichlorobenzene                          | ND<br>ND                       | 10                  |
| naphthalene                                     | ND                             | 2.0                 |
| 4-chloroaniline                                 | ND                             | 10                  |
| hexachlorobutadiene                             | ND                             | 10                  |
| 2-methylnaphthalene                             | ND                             | 2.0                 |
| aniline                                         | ND                             | 10                  |
| 2,4,6-trichlorophenol                           | ND                             | 10                  |
| 2,4,5-trichlorophenol                           | ND                             | 10                  |
| 2-chloronaphthalene                             | ND                             | 10                  |
| dimethylphthalate                               | ND                             | 10                  |
| acenaphthylene                                  | ND                             | 2.0                 |
| 2,6-dinitrotoluene                              | ND                             | 10                  |
| acenaphthene                                    | ND                             | 2.0                 |
| 2,4-dinitrophenol dibenzofuran                  | ND<br>ND                       | 100<br>10           |
| 4-nitrophenol                                   | ND<br>ND                       | 50                  |
| 2,4-dinitrotoluene                              | ND<br>ND                       | 10                  |
| diethylphthalate                                | ND                             | 10                  |
| fluorene                                        | ND                             | 2.0                 |
| azobenzene                                      | ND                             | 10                  |
| 4-bromophenyl phenyl ether                      | ND                             | 10                  |
| hexachlorobenzene                               | ND                             | 10                  |
| pentachlorophenol                               | ND                             | 50                  |
| phenanthrene                                    | ND                             | 2.0                 |
| anthracene                                      | ND                             | 2.0                 |
| di-n-butylphthalate                             | ND                             | 15                  |
| fluoranthene                                    | ND                             | 2.0                 |
| pyrene<br>butulbanandahthalata                  | ND<br>ND                       | 2.0                 |
| butylbenzylphthalate                            | ND<br>ND                       | 10<br>2.0           |
| benz [a] anthracene 3,3'-dichlorobenzidine      | ND<br>ND                       | 2.0                 |
| chrysene                                        | ND                             | 2.0                 |
| bis(2-ethylhexyl)phthalate                      | ND                             | 10                  |
| di-n-octylphthalate                             | ND                             | 10                  |
| benzo [b] fluoranthene                          | ND                             | 2.0                 |
| benzo [k] fluoranthene                          | ND                             | 2.0                 |
| benzo [a] pyrene                                | ND                             | 2.0                 |
| indeno [1,2,3-cd] pyrene                        | ND                             | 2.0                 |
| dibenz [a,h] anthracene                         | ND                             | 2.0                 |
| benzo [ghi] perylene                            | ND                             | 2.0                 |
|                                                 |                                |                     |

| Surrogates:          | Recovery (%) | Acceptance Limits |
|----------------------|--------------|-------------------|
| 2-FLUOROPHENOL       | 37.9         | 15-110            |
| PHENOL-D6            | 24.3         | 15-110            |
| NITROBENZENE-D5      | 62.0         | 30-130            |
| 2-FLUOROBIPHENYL     | 59.1         | 30-130            |
| 2,4,6-TRIBROMOPHENOL | 62.8         | 15-100            |
| p-TERPHENYL-D14      | 65.4         | 30-130            |

Page 1 of 2 Report Generated: 12/8/2010 9:55 AM

#### GZA GeoEnvironmental, Inc. 106 South Street Hopkinton, MA 01748 MA092

EPA Method 8270 Aqueous Method Blank (MB) and Laboratory Control Sample (LCS) Data

### **Laboratory Control Sample**

| Date Extracted: Date Analyzed:                    | 12/01/10<br>12/2/2010 |                             |               |
|---------------------------------------------------|-----------------------|-----------------------------|---------------|
| File Name:                                        | M7258                 | A 4 1 ii4-                  | V!:-4         |
| Spike Concentration = 20ug/L phenol               | % Recovery<br>34.5    | Acceptance Limits<br>30-130 | Verdict<br>ok |
| bis(2-chloroethyl)ether                           | 71.6                  | 40-140                      | ok            |
| 2-chlorophenol                                    | 71.7                  | 30-130                      | ok            |
| 1,3-dichlorobenzene                               | 61.0                  | 40-140                      | ok            |
| 1,4-dichlorobenzene                               | 63.8                  | 40-140                      | ok            |
| 1,2-dichlorobenzene                               | 63.2                  | 40-140                      | ok            |
| 2-methylphenol                                    | 69.8                  | 30-130                      | ok            |
| bis(2-chloroisopropyl)ether                       | 64.3                  | 40-140                      | ok            |
| 3&4-methylphenol                                  | 62.3                  | 30-130                      | ok            |
| acetophenone                                      | 73.7                  | 40-140                      | ok            |
| hexachloroethane                                  | 59.0                  | 40-140                      | ok            |
| nitrobenzene                                      | 72.4                  | 40-140                      | ok            |
| isophrone                                         | 72.1                  | 40-140                      | ok            |
| 2-nitrophenol                                     | 79.0                  | 30-130                      | ok            |
| 2,4-dimethylphenol                                | 75.1                  | 30-130                      | ok            |
| bis(2-chloroethoxy)methane                        | 79.1                  | 40-140                      | ok            |
| 2,4-dichlorophenol                                | 74.1                  | 30-130                      | ok            |
| 1,2,4-trichlorobenzene                            | 62.4                  | 40-140                      | ok            |
| naphthalene                                       | 68.1                  | 40-140                      | ok            |
| 4-chloroaniline                                   | 78.3                  | 40-140                      | ok            |
| hexachlorobutadiene                               | 58.2                  | 40-140                      | ok            |
| 2-methylnaphthalene aniline                       | 71.3<br>68.1          | 40-140                      | ok            |
| 2,4,6-trichlorophenol                             | 76.9                  | 40-140<br>30-130            | ok<br>ok      |
| 2,4,5-trichlorophenol                             | 82.6                  | 30-130                      | ok            |
| 2-chloronaphthalene                               | 72.7                  | 40-140                      | ok            |
| dimethylphthalate                                 | 78.7                  | 40-140                      | ok            |
| acenaphthylene                                    | 73.2                  | 40-140                      | ok            |
| 2,6-dinitrotoluene                                | 78.7                  | 40-140                      | ok            |
| acenaphthene                                      | 70.9                  | 40-140                      | ok            |
| 2,4-dinitrophenol                                 | 73.5                  | 30-130                      | ok            |
| dibenzofuran                                      | 73.1                  | 40-140                      | ok            |
| 4-nitrophenol                                     | 38.7                  | 30-130                      | ok            |
| 2,4-dinitrotoluene                                | 81.1                  | 40-140                      | ok            |
| diethylphthalate                                  | 77.2                  | 40-140                      | ok            |
| fluorene                                          | 73.7                  | 40-140                      | ok            |
| azobenzene                                        | 74.9                  | 40-140                      | ok            |
| 4-bromophenyl phenyl ether                        | 77.1                  | 40-140                      | ok            |
| hexachlorobenzene                                 | 78.0                  | 40-140                      | ok            |
| pentachlorophenol                                 | 79.1                  | 30-130                      | ok            |
| phenanthrene                                      | 77.7                  | 40-140                      | ok            |
| anthracene                                        | 75.8                  | 40-140                      | ok            |
| di-n-butylphthalate                               | 76.8                  | 40-140                      | ok            |
| fluoranthene                                      | 81.0                  | 40-140                      | ok            |
| pyrene                                            | 80.0                  | 40-140                      | ok            |
| butylbenzylphthalate                              | 78.5                  | 40-140                      | ok            |
| benz [a] anthracene                               | 80.7                  | 40-140                      | ok            |
| 3,3'-dichlorobenzidine                            | 85.3                  | 40-140                      | ok            |
| chrysene                                          | 78.6<br>81.3          | 40-140<br>40-140            | ok<br>ok      |
| bis(2-ethylhexyl)phthalate<br>di-n-octylphthalate | 81.3<br>79.1          | 40-140<br>40-140            | ok<br>ok      |
| benzo [b] fluoranthene                            | 79.1<br>79.2          | 40-140                      | ok            |
| benzo [k] fluoranthene                            | 79.2<br>81.8          | 40-140                      | ok            |
| benzo [a] pyrene                                  | 80.4                  | 40-140                      | ok            |
| indeno [1,2,3-cd] pyrene                          | 81.3                  | 40-140                      | ok            |
| dibenz [a,h] anthracene                           | 80.7                  | 40-140                      | ok            |
| benzo [ghi] perylene                              | 81.2                  | 40-140                      | ok            |
| Surrogates:                                       | Recovery (%)          | Acceptance Limits           | Verdict       |
| 2-FLUOROPHENOL                                    | 49.4                  | 15-110                      | ok            |
| PHENOL-D6                                         | 3/1                   | 15-110                      | ok            |

Page 2 of 2 Report Generated: 12/8/2010 9:55 AM

34.1

72.9

69.8

83.9

75.4

15-110

30-130

30-130

15-110

30-130

ok

ok

ok

ok

ok

PHENOL-D6

NITROBENZENE-D5

2-FLUOROBIPHENYL

p-TERPHENYL-D14

2,4,6-TRIBROMOPHENOL

#### GZA GeoEnvironmental, Inc. 106 South Street Hopkinton, MA 01748

EPA Method 8260 / 524.2 Aqueous Method Blank (MB) and Laboratory Control Sample/Duplicate (LCS/LCSD) Data

#### Method Blank

### **Laboratory Control Sample**

| Date Analyzed:                                  | 12/4/2010      |                  | Date Analyzed:                                   | 12/4/2010    |                   |          |
|-------------------------------------------------|----------------|------------------|--------------------------------------------------|--------------|-------------------|----------|
| Volatile Organics                               | Conc. ug/L     | Acceptance Limit | Spike Concentration = 20ug/L                     | % Recovery   | Acceptance Limits | Verdict  |
| dichlorodifluoromethane                         | < 1.0          | < 1.0            | dichlorodifluoromethane                          | 125          | 70-130            | ok       |
| chloromethane                                   | < 1.0          | < 1.0            | chloromethane                                    | 112          | 70-130            | ok       |
| vinyl chloride                                  | < 0.5<br>< 1.0 | < 0.5<br>< 1.0   | vinyl chloride<br>bromomethane                   | 103<br>95.2  | 80-120            | ok<br>ok |
| bromomethane<br>chloroethane                    | < 0.5          | < 0.5            | chloroethane                                     | 95.2<br>101  | 70-130<br>70-130  | ok<br>ok |
| trichlorofluoromethane                          | < 1.0          | < 1.0            | trichlorofluoromethane                           | 111          | 70-130            | ok       |
| diethyl ether                                   | < 2.5          | < 2.5            | diethyl ether                                    | 74.9         | 70-130            | ok       |
| acetone                                         | < 10           | < 10             | acetone                                          | 85.5         | 70-130            | ok       |
| 1,1-dichloroethene                              | < 0.5          | < 0.5            | 1,1-dichloroethene                               | 102          | 80-120            | ok       |
| carbon disulfide                                | < 5.0          | < 5.0            | carbon disulfide                                 | 99.8         | 70-130            | ok       |
| dichloromethane                                 | < 1.0          | < 1.0            | dichloromethane                                  | 87.2         | 70-130            | ok       |
| tert-butyl alcohol (TBA)                        | < 13           | < 13             | tert-butyl alcohol (TBA)                         | 74.8         | 70-130            | ok       |
| methyl-tert-butyl-ether                         | < 0.5          | < 0.5            | methyl-tert-butyl-ether                          | 86.6         | 70-130            | ok       |
| trans-1,2-dichloroethene                        | < 0.5          | < 0.5            | trans-1,2-dichloroethene                         | 88.4         | 70-130            | ok       |
| 1,1-dichloroethane                              | < 0.5          | < 0.5            | 1,1-dichloroethane                               | 93.5         | 70-130            | ok       |
| di-isopropyl ether (DIPE)                       | < 1.0          | < 1.0            | di-isopropyl ether (DIPE)                        | 90.8         | 70-130            | ok       |
| ethyl tert-butyl ether (EtBE)                   | < 1.0          | < 1.0            | ethyl tert-butyl ether (EtBE)                    | 89.5         | 70-130            | ok       |
| 2-butanone                                      | < 10           | < 10             | 2-butanone                                       | 82.2         | 70-130            | ok       |
| 2,2-dichloropropane                             | < 0.5          | < 0.5            | 2,2-dichloropropane                              | 102          | 70-130            | ok       |
| cis-1,2-dichloroethene                          | < 0.5          | < 0.5            | cis-1,2-dichloroethene                           | 92.1         | 70-130            | ok       |
| chloroform                                      | < 0.5          | < 0.5            | chloroform                                       | 89.3         | 80-120            | ok       |
| bromochloromethane                              | < 0.5          | < 0.5            | bromochloromethane                               | 93.3         | 70-130            | ok       |
| tetrahydrofuran                                 | < 5.0<br>< 0.5 | < 5.0<br>< 0.5   | tetrahydrofuran                                  | 86.3<br>98.2 | 70-130            | ok<br>ok |
| 1,1,1-trichloroethane 1,1-dichloropropene       | < 0.5          | < 0.5            | 1,1,1-trichloroethane<br>1,1-dichloropropene     | 96.2         | 70-130<br>70-130  | ok       |
| carbon tetrachloride                            | < 0.5          | < 0.5            | carbon tetrachloride                             | 104          | 70-130            | ok       |
| 1,2-dichloroethane                              | < 0.5          | < 0.5            | 1,2-dichloroethane                               | 97.1         | 70-130            | ok       |
| benzene                                         | < 0.5          | < 0.5            | benzene                                          | 94.7         | 70-130            | ok       |
| tert-amyl methyl ether (TAME)                   | < 1.0          | < 1.0            | tert-amyl methyl ether (TAME)                    | 87.7         | 70-130            | ok       |
| trichloroethene                                 | < 0.5          | < 0.5            | trichloroethene                                  | 102          | 70-130            | ok       |
| 1,2-dichloropropane                             | < 0.5          | < 0.5            | 1,2-dichloropropane                              | 94.4         | 80-120            | ok       |
| bromodichloromethane                            | < 0.5          | < 0.5            | bromodichloromethane                             | 93.3         | 70-130            | ok       |
| 1,4-Dioxane                                     | < 50           | < 50             | 1,4-Dioxane                                      | 81.2         | 70-130            | ok       |
| dibromomethane                                  | < 0.5          | < 0.5            | dibromomethane                                   | 90.9         | 70-130            | ok       |
| 4-methyl-2-pentanone                            | < 10           | < 10             | 4-methyl-2-pentanone                             | 93.0         | 70-130            | ok       |
| cis-1,3-dichloropropene                         | < 0.5          | < 0.5            | cis-1,3-dichloropropene                          | 91.8         | 70-130            | ok       |
| toluene                                         | < 0.5          | < 0.5            | toluene                                          | 97.8         | 80-120            | ok       |
| trans-1,3-dichloropropene                       | < 1.0          | < 1.0            | trans-1,3-dichloropropene                        | 89.5         | 70-130            | ok       |
| 1,1,2-trichloroethane                           | < 0.5          | < 0.5            | 1,1,2-trichloroethane                            | 85.5         | 70-130            | ok       |
| 2-hexanone                                      | < 10           | < 10             | 2-hexanone                                       | 90.6         | 70-130            | ok       |
| 1,3-dichloropropane                             | < 0.5          | < 0.5            | 1,3-dichloropropane                              | 88.6         | 70-130            | ok       |
| tetrachloroethene                               | < 0.5<br>< 0.5 | < 0.5<br>< 0.5   | tetrachloroethene                                | 93.4<br>90.3 | 70-130<br>70-130  | ok<br>ok |
| dibromochloromethane<br>1,2-dibromoethane (EDB) | < 1.0          | < 1.0            | dibromochloromethane<br>1,2-dibromoethane (EDB)  | 90.3<br>97.2 | 70-130<br>70-130  | ok       |
| chlorobenzene                                   | < 0.5          | < 0.5            | chlorobenzene                                    | 98.1         | 70-130            | ok       |
| 1,1,1,2-tetrachloroethane                       | < 0.5          | < 0.5            | 1,1,1,2-tetrachloroethane                        | 91.9         | 70-130            | ok       |
| ethylbenzene                                    | < 0.5          | < 0.5            | ethylbenzene                                     | 97.6         | 80-120            | ok       |
| 1,1,2,2-tetrachloroethane                       | < 0.5          | < 0.5            | 1,1,2,2-tetrachloroethane                        | 87.4         | 70-130            | ok       |
| m&p-xylene                                      | < 1.0          | < 1.0            | m&p-xylene                                       | 96.7         | 70-130            | ok       |
| o-xylene                                        | < 0.5          | < 0.5            | o-xylene                                         | 92.0         | 70-130            | ok       |
| styrene                                         | < 0.5          | < 0.5            | styrene                                          | 94.1         | 70-130            | ok       |
| bromoform                                       | < 1.0          | < 1.0            | bromoform                                        | 86.1         | 70-130            | ok       |
| isopropylbenzene                                | < 0.5          | < 0.5            | isopropylbenzene                                 | 94.6         | 70-130            | ok       |
| 1,2,3-trichloropropane                          | < 0.5          | < 0.5            | 1,2,3-trichloropropane                           | 87.7         | 70-130            | ok       |
| bromobenzene                                    | < 0.5          | < 0.5            | bromobenzene                                     | 90.7         | 70-130            | ok       |
| n-propylbenzene                                 | < 0.5          | < 0.5            | n-propylbenzene                                  | 95.2         | 70-130            | ok       |
| 2-chlorotoluene                                 | < 0.5          | < 0.5            | 2-chlorotoluene                                  | 93.6         | 70-130            | ok       |
| 1,3,5-trimethylbenzene                          | < 0.5          | < 0.5            | 1,3,5-trimethylbenzene                           | 94.2         | 70-130            | ok       |
| 4-chlorotoluene                                 | < 0.5          | < 0.5            | 4-chlorotoluene                                  | 95.5         | 70-130            | ok       |
| tert-butyl-benzene                              | < 0.5          | < 0.5            | tert-butyl-benzene                               | 95.4         | 70-130            | ok       |
| 1,2,4-trimethylbenzene                          | < 0.5          | < 0.5            | 1,2,4-trimethylbenzene                           | 94.1         | 70-130            | ok       |
| sec-butyl-benzene                               | < 0.5          | < 0.5            | sec-butyl-benzene                                | 93.9         | 70-130            | ok       |
| p-isopropyltoluene                              | < 0.5          | < 0.5            | p-isopropyltoluene                               | 96.6         | 70-130            | ok       |
| 1,3-dichlorobenzene                             | < 0.5          | < 0.5            | 1,3-dichlorobenzene 1.4-dichlorobenzene          | 93.0         | 70-130            | ok       |
| 1,4-dichlorobenzene<br>n-butylbenzene           | < 0.5<br>< 0.5 | < 0.5<br>< 0.5   |                                                  | 93.3         | 70-130<br>70-130  | ok       |
| n-butylbenzene<br>1,2-dichlorobenzene           | < 0.5<br>< 0.5 | < 0.5<br>< 0.5   | n-butylbenzene<br>1,2-dichlorobenzene            | 97.8<br>92.4 | 70-130<br>70-130  | ok<br>ok |
| 1,2-dibromo-3-chloropropane                     | < 2.5          | < 2.5            | 1,2-dichloropenzerie 1,2-dibromo-3-chloropropane | 83.0         | 70-130            | ok       |
| 1,2,4-trichlorobenzene                          | < 0.5          | < 0.5            | 1,2,4-trichlorobenzene                           | 94.7         | 70-130            | ok       |
| hexachlorobutadiene                             | < 0.5          | < 0.5            | hexachlorobutadiene                              | 100          | 70-130            | ok       |
| naphthalene                                     | < 1.0          | < 1.0            | naphthalene                                      | 87.8         | 70-130            | ok       |
| 1,2,3-trichlorobenzene                          | < 0.5          | < 0.5            | 1,2,3-trichlorobenzene                           | 87.3         | 70-130            | ok       |
|                                                 |                |                  |                                                  |              |                   |          |
|                                                 |                |                  |                                                  |              |                   |          |

| Surrogates:            | Recovery (%) | Acceptance Limits | 3                      | Recovery (%) | Acceptance Limits | Verdict |
|------------------------|--------------|-------------------|------------------------|--------------|-------------------|---------|
| DIBROMOFLUOROMETHANE   | 109          | 70-130            | DIBROMOFLUOROMETHANE   | 109          | 70-130            | ok      |
| 1,2-DICHLOROETHANE-D4  | 110          | 70-130            | 1,2-DICHLOROETHANE-D4  | 98.2         | 70-130            | ok      |
| TOLUENE-D8             | 110          | 70-130            | TOLUENE-D8             | 111          | 70-130            | ok      |
| 4-BROMOFLUOROBENZENE   | 98.9         | 70-130            | 4-BROMOFLUOROBENZENE   | 97.8         | 70-130            | ok      |
| 1,2-DICHLOROBENZENE-D4 | 97.4         | 70-130            | 1,2-DICHLOROBENZENE-D4 | 99.6         | 70-130            | ok      |

CONTAINER TYPE (P-Plastic, G-Glass, V-Vial, T-Teflon, O-Other)\* PRESERVATIVE (CI-HCI, M-Methanol, N-HNO3, S-H2SO4, Na-NaOH, O-Other) \* CHUENT NELVEN 5701 01/25/11 mosand Da Sample I.D. Project Manager: RL JONES & 1005 GZA GEOENVIRONMENTAL, INC. 11/24/00 1900 DUDBUSCOM 11/29/10 106 South Street Hopkinton, MA 01748 (781) 278-4700 FAX (508)435-9912 **Laboratory Division** Date/Time Sampled 0900 0900 RECEIVED BY COC P=Product SW=Surface W WW=Waste W DW=Drinking W GW=Ground W S E (specify) A=Air Other 3) Metals: Sb, As, Cd, Cr, CL, Pb, Hg, N, Se, Ag, Zn, Fe ( ) □ pH □ Cond Didnot collect metall for Abstracts who so 1) RUN FULL REP SUITE OF TESTS FUL LISTED MCD SITE. NOTES: (Unless otherwise noted, all samples have been refrigerated to 4 +/- 2°C) "Specify "Other" preservatives and container types in this space. GZA FILE KIO 219030.90 TURNAROUND TIME: Standard Rust COLLECTOR(S) LOCATION PROJECT GC Methane, Ethane, Ethene EPA 8260 EPA 8260-8010 List (Chlor.) EPA 8260-8021 list DEEAMILAND THEATER NAWTUCKET, MA EPA 8021-8020 List (BTEX) DAY ID IMA ZZEI EPA 524.2 DW VOCs EPA 624 WW VOCs ☐ 601 ☐ 602 WW VOCs 8270 EPA 8270 SVOCs 3 Days, Approved by: EPA 8270 🗆 PAH 🚨 A 🗀 BN EPA 625 WW SVOCs TASK NO: PCB 608 EPA-8082-PCBs ANALYSIS REQUIRED x 1009 EPA 8081-Pest TPH-GC (Mod. 8100) TPH-GC w/FING EPH (MA DEP) VPH (MA DEP) Metals 🗆 PPM-13 🔲 R-8 SHEET MCP 14 Metals - 44 36 1° Metals (List Below) \*\* TEMP. OF COOLER LAB USE: P.O. NO. TCLP - Specify Below SPLP - Specify Below EPA 300 🗆 Cl 🗀 NO3 🗀 SO3 V HEXAVALENT CHROMIUM 4 유 2N N CYANDE PAH SM CHLORIDE TPH-1664  $\overline{r}$ റ് J 1 Temp Blank Cooler Air 17 otal 4 Cont. No.

1/1/2/

CHAIN-OF-CUSTODY RECORD

W.O.#

(for lab use only)

Note #

93

نة



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Michelle Mirenda GZA GeoEnvironmental, Inc. (MA) 106 South Street Hopkinton, MA 01748

**RE:** Dreamland Theater (01.0019030.90)

ESS Laboratory Work Order Number: 1011376

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

Digitally signed by Laurel Stoddard Date: 2010.12.06 13:04:29 -05'00'

#### **Analytical Summary**

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

ESS Laboratory certifies that the test results meet the requirements of NELAC and A2LA, except where noted within this project narrative.



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. (MA)

Client Project ID: Dreamland Theater ESS Laboratory Work Order: 1011376

## **SAMPLE RECEIPT**

The following samples were received on November 29, 2010 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the Guidelines Establishing Test Procedures for the Analysis of Pollutants, 40 CFR Part 136, as amended.

Sample 1011376-02 was cancelled per client's request.

Lab Number SampleName Matrix **Analysis** 1011376-01 Influent Ground Water 1664A, 2540D, 4500 CN CE, 4500Cl D, 608, 8270C SIM

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. (MA)

Client Project ID: Dreamland Theater ESS Laboratory Work Order: 1011376

### **PROJECT NARRATIVE**

**Classical Chemistry** 

1011376-01 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

No other observations noted.

**End of Project Narrative.** 

### **DATA USABILITY LINKS**

**Definitions of Quality Control Parameters** 

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

**Volatile Organics Surrogate Information** 

EPH and VPH Alkane Lists



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. (MA)

All methods used are in accordance with 40 CFR 136.

Client Project ID: Dreamland Theater

Client Sample ID: Influent

Date Sampled: 11/24/10 09:00 Percent Solids: N/A

Final Volume: 5

Extraction Method: 3510C

Initial Volume: 1000

ESS Laboratory Work Order: 1011376 ESS Laboratory Sample ID: 1011376-01

Sample Matrix: Ground Water

Units: ug/L Analyst: SEP

Prepared: 11/30/10 12:00

## 608 Polychlorinated Biphenyls (PCB)

| Analyte Aroclor 1016          | Results (MRL) | !         |           | <u>Limit</u> | <u><b>DF</b></u> | Analyzed 12/01/10 23:46 | Sequence | Batch<br>CK02912 |
|-------------------------------|---------------|-----------|-----------|--------------|------------------|-------------------------|----------|------------------|
| Aroclor 1221                  | ND (0.50)     |           |           |              | 1                | 12/01/10 23:46          |          | CK02912          |
| Aroclor 1232                  | ND (0.50)     |           |           |              | 1                | 12/01/10 23:46          |          | CK02912          |
| Aroclor 1242                  | ND (0.50)     |           |           |              | 1                | 12/01/10 23:46          |          | CK02912          |
| Aroclor 1248                  | ND (0.50)     |           |           |              | 1                | 12/01/10 23:46          |          | CK02912          |
| Aroclor 1254                  | ND (0.50)     |           |           |              | 1                | 12/01/10 23:46          |          | CK02912          |
| Aroclor 1260                  | ND (0.50)     |           |           |              | 1                | 12/01/10 23:46          |          | CK02912          |
| Aroclor 1262                  | ND (0.50)     |           |           |              | 1                | 12/01/10 23:46          |          | CK02912          |
| Aroclor 1268                  | ND (0.50)     |           |           |              | 1                | 12/01/10 23:46          |          | CK02912          |
|                               |               | %Recovery | Qualifier | Limits       |                  |                         |          |                  |
| Surrogate: Decachlorobiphenyl |               | 97 %      |           | 30-150       |                  |                         |          |                  |

|                                      | •    |        |
|--------------------------------------|------|--------|
| Surrogate: Decachlorobiphenyl        | 97 % | 30-150 |
| Surrogate: Decachlorobiphenyl [2C]   | 97 % | 30-150 |
| Surrogate: Tetrachloro-m-xylene      | 83 % | 30-150 |
| Surrogate: Tetrachloro-m-xylene [2C] | 89 % | 30-150 |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. (MA)

All methods used are in accordance with 40 CFR 136.

Client Project ID: Dreamland Theater

Client Sample ID: Influent Date Sampled: 11/24/10 09:00

Percent Solids: N/A Initial Volume: 1000 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1011376 ESS Laboratory Sample ID: 1011376-01

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 11/30/10 12:00

## 8270C(SIM) Polynuclear Aromatic Hydrocarbons

| <u>Analyte</u>                    | Results (MRL) |           |           | <u>Limit</u> | <u>DF</u> | <b>Analyzed</b> | Sequence | <b>Batch</b> |
|-----------------------------------|---------------|-----------|-----------|--------------|-----------|-----------------|----------|--------------|
| 2-Methylnaphthalene               | ND (0.20)     |           |           | ·            | 1         | 12/01/10 17:47  | CTL0004  | CK02913      |
| Acenaphthene                      | ND (0.20)     |           |           |              | 1         | 12/01/10 17:47  | CTL0004  | CK02913      |
| Acenaphthylene                    | ND (0.20)     |           |           |              | 1         | 12/01/10 17:47  | CTL0004  | CK02913      |
| Anthracene                        | ND (0.20)     |           |           |              | 1         | 12/01/10 17:47  | CTL0004  | CK02913      |
| Benzo(a)anthracene                | ND (0.05)     |           |           |              | 1         | 12/01/10 17:47  | CTL0004  | CK02913      |
| Benzo(a)pyrene                    | ND (0.05)     |           |           |              | 1         | 12/01/10 17:47  | CTL0004  | CK02913      |
| Benzo(b)fluoranthene              | ND (0.05)     |           |           |              | 1         | 12/01/10 17:47  | CTL0004  | CK02913      |
| Benzo(g,h,i)perylene              | ND (0.20)     |           |           |              | 1         | 12/01/10 17:47  | CTL0004  | CK02913      |
| Benzo(k)fluoranthene              | ND (0.05)     |           |           |              | 1         | 12/01/10 17:47  | CTL0004  | CK02913      |
| Chrysene                          | ND (0.05)     |           |           |              | 1         | 12/01/10 17:47  | CTL0004  | CK02913      |
| Dibenzo(a,h)Anthracene            | ND (0.05)     |           |           |              | 1         | 12/01/10 17:47  | CTL0004  | CK02913      |
| Fluoranthene                      | ND (0.20)     |           |           |              | 1         | 12/01/10 17:47  | CTL0004  | CK02913      |
| Fluorene                          | ND (0.20)     |           |           |              | 1         | 12/01/10 17:47  | CTL0004  | CK02913      |
| Indeno(1,2,3-cd)Pyrene            | ND (0.05)     |           |           |              | 1         | 12/01/10 17:47  | CTL0004  | CK02913      |
| Naphthalene                       | ND (0.20)     |           |           |              | 1         | 12/01/10 17:47  | CTL0004  | CK02913      |
| Phenanthrene                      | ND (0.20)     |           |           |              | 1         | 12/01/10 17:47  | CTL0004  | CK02913      |
| Pyrene                            | ND (0.20)     |           |           |              | 1         | 12/01/10 17:47  | CTL0004  | CK02913      |
| -                                 |               | %Recovery | Qualifier | Limits       |           |                 |          |              |
| Surrogate: 1,2-Dichlorobenzene-d4 |               | 65 %      |           | 30-130       |           |                 |          |              |
| Surrogate: 2-Fluorobiphenyl       |               | 62 %      |           | 30-130       |           |                 |          |              |
| Surrogate: Nitrobenzene-d5        |               | 57 %      |           | 30-130       |           |                 |          |              |
| Surrogate: p-Terphenyl-d14        |               | OF 04     |           | 20 120       |           |                 |          |              |

|                                   | %Recovery | Qualifier | LIMITS |
|-----------------------------------|-----------|-----------|--------|
| Surrogate: 1,2-Dichlorobenzene-d4 | 65 %      |           | 30-130 |
| Surrogate: 2-Fluorobiphenyl       | 62 %      |           | 30-130 |
| Surrogate: Nitrobenzene-d5        | 57 %      |           | 30-130 |
| Surrogate: p-Terphenyl-d14        | 95 %      |           | 30-130 |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. (MA)

Client Project ID: Dreamland Theater

Client Sample ID: Influent Date Sampled: 11/24/10 09:00

Percent Solids: N/A

ESS Laboratory Work Order: 1011376 ESS Laboratory Sample ID: 1011376-01

Sample Matrix: Ground Water

### All methods used are in accordance with 40 CFR 136.

## **Classical Chemistry**

| Analyte Total Cyanide (LL)    | Results (MRL)<br>ND (0.0050) | Method<br>4500 CN CE | <u>Limit</u> | <u><b>DF</b></u> | Analyst<br>EEM | Analyzed<br>12/02/10 15:10 | Units<br>mg/L | Batch<br>CL00206 |
|-------------------------------|------------------------------|----------------------|--------------|------------------|----------------|----------------------------|---------------|------------------|
| Total Petroleum Hydrocarbon   | ND (5)                       | 1664A                |              | 1                | LRF            | 11/30/10 13:00             | mg/L          | CK03010          |
| Total Residual Chlorine       | ND (0.02)                    | 4500Cl D             |              | 1                | EEM            | 11/29/10 17:05             | mg/L          | CK02930          |
| <b>Total Suspended Solids</b> | 7 (5)                        | 2540D                |              | 1                | EEM            | 12/01/10 13:00             | mg/L          | CL00105          |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. (MA)

Client Project ID: Dreamland Theater ESS Laboratory Work Order: 1011376

## **Quality Control Data**

|         |        |     |       | Spike | Source |      | %REC   |     | RPD   |           |
|---------|--------|-----|-------|-------|--------|------|--------|-----|-------|-----------|
| Analyte | Result | MRL | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifier |

### 608 Polychlorinated Biphenyls (PCB)

| Batch CK02912 - 3510C                                                   |       |      |      |        |     |        |   |    |  |
|-------------------------------------------------------------------------|-------|------|------|--------|-----|--------|---|----|--|
| Blank                                                                   |       |      |      |        |     |        |   |    |  |
| Aroclor 1016                                                            | ND    | 0.50 | ug/L |        |     |        |   |    |  |
| Aroclor 1221                                                            | ND    | 0.50 | ug/L |        |     |        |   |    |  |
| Aroclor 1232                                                            | ND    | 0.50 | ug/L |        |     |        |   |    |  |
| Aroclor 1242                                                            | ND    | 0.50 | ug/L |        |     |        |   |    |  |
| Aroclor 1248                                                            | ND    | 0.50 | ug/L |        |     |        |   |    |  |
| Aroclor 1254                                                            | ND    | 0.50 | ug/L |        |     |        |   |    |  |
| Aroclor 1260                                                            | ND    | 0.50 | ug/L |        |     |        |   |    |  |
| Aroclor 1262                                                            | ND    | 0.50 | ug/L |        |     |        |   |    |  |
| Aroclor 1268                                                            | ND    | 0.50 | ug/L |        |     |        |   |    |  |
| Surrogate: Decachlorobiphenyl                                           | 0.214 |      | ug/L | 0.2500 | 86  | 30-150 |   |    |  |
| Surrogate: Decachlorobiphenyl [2C]                                      | 0.226 |      | ug/L | 0.2500 | 91  | 30-150 |   |    |  |
| Surrogate: Decachioropiphenyi [2C] Surrogate: Tetrachloro-m-xylene      | 0.203 |      | ug/L | 0.2500 | 81  | 30-150 |   |    |  |
| Surrogate: Tetrachioro-m-xylene<br>Surrogate: Tetrachioro-m-xylene [2C] | 0.221 |      | ug/L | 0.2500 | 88  | 30-150 |   |    |  |
| LCS                                                                     | -     |      |      |        |     |        |   |    |  |
| Aroclor 1016                                                            | 4.93  | 0.50 | ug/L | 5.000  | 99  | 40-140 |   |    |  |
| Aroclor 1260                                                            | 4.40  | 0.50 | ug/L | 5.000  | 88  | 40-140 |   |    |  |
|                                                                         | 0.224 |      |      | 0.3500 | 02  | 20.150 |   |    |  |
| Surrogate: Decachlorobiphenyl                                           | 0.234 |      | ug/L | 0.2500 | 93  | 30-150 |   |    |  |
| Surrogate: Decachlorobiphenyl [2C]                                      | 0.242 |      | ug/L | 0.2500 | 97  | 30-150 |   |    |  |
| Surrogate: Tetrachloro-m-xylene                                         | 0.228 |      | ug/L | 0.2500 | 91  | 30-150 |   |    |  |
| Surrogate: Tetrachloro-m-xylene [2C]                                    | 0.241 |      | ug/L | 0.2500 | 97  | 30-150 |   |    |  |
| LCS Dup                                                                 |       |      |      |        |     |        |   |    |  |
| Aroclor 1016                                                            | 5.06  | 0.50 | ug/L | 5.000  | 101 | 40-140 | 3 | 50 |  |
| Aroclor 1260                                                            | 4.48  | 0.50 | ug/L | 5.000  | 90  | 40-140 | 2 | 50 |  |
| Surrogate: Decachlorobiphenyl                                           | 0.226 |      | ug/L | 0.2500 | 90  | 30-150 |   |    |  |
| Surrogate: Decachlorobiphenyl [2C]                                      | 0.239 |      | ug/L | 0.2500 | 96  | 30-150 |   |    |  |
| Surrogate: Tetrachloro-m-xylene                                         | 0.232 |      | ug/L | 0.2500 | 93  | 30-150 |   |    |  |
| Surrogate: Tetrachloro-m-xylene [2C]                                    | 0.247 |      | ug/L | 0.2500 | 99  | 30-150 |   |    |  |

### 8270C(SIM) Polynuclear Aromatic Hydrocarbons

| Batch CK02913 - 3510C |  |
|-----------------------|--|
| Blank                 |  |
|                       |  |

| DIGIIK               |    |      |      |
|----------------------|----|------|------|
| 2-Methylnaphthalene  | ND | 0.20 | ug/L |
| Acenaphthene         | ND | 0.20 | ug/L |
| Acenaphthylene       | ND | 0.20 | ug/L |
| Anthracene           | ND | 0.20 | ug/L |
| Benzo(a)anthracene   | ND | 0.05 | ug/L |
| Benzo(a)pyrene       | ND | 0.05 | ug/L |
| Benzo(b)fluoranthene | ND | 0.05 | ug/L |
| Benzo(g,h,i)perylene | ND | 0.20 | ug/L |
| Benzo(k)fluoranthene | ND | 0.05 | ug/L |
| Chrysene             | ND | 0.05 | ug/L |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486 ◆ Service http://www.ESSLaboratory.com



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. (MA)

Client Project ID: Dreamland Theater ESS Laboratory Work Order: 1011376

## **Quality Control Data**

|                                              |        |     |       | Spike | Source |      | %REC   |     | RPD   |           |
|----------------------------------------------|--------|-----|-------|-------|--------|------|--------|-----|-------|-----------|
| Analyte                                      | Result | MRL | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifier |
| 8270C(SIM) Polynuclear Aromatic Hydrocarbons |        |     |       |       |        |      |        |     |       |           |

| 8270C(SIM) Polynuclear Aromatic Hydrocarbons |       |      |      |        |     |        |     |    |  |
|----------------------------------------------|-------|------|------|--------|-----|--------|-----|----|--|
| Batch CK02913 - 3510C                        |       |      |      |        |     |        |     |    |  |
| Dibenzo(a,h)Anthracene                       | ND    | 0.05 | ug/L |        |     |        |     |    |  |
| Fluoranthene                                 | ND    | 0.20 | ug/L |        |     |        |     |    |  |
| Fluorene                                     | ND    | 0.20 | ug/L |        |     |        |     |    |  |
| Indeno(1,2,3-cd)Pyrene                       | ND    | 0.05 | ug/L |        |     |        |     |    |  |
| Naphthalene                                  | ND    | 0.20 | ug/L |        |     |        |     |    |  |
| Phenanthrene                                 | ND    | 0.20 | ug/L |        |     |        |     |    |  |
| Pyrene                                       | ND    | 0.20 | ug/L |        |     |        |     |    |  |
| Surrogate: 1,2-Dichlorobenzene-d4            | 0.670 |      | ug/L | 0.6250 | 107 | 30-130 |     |    |  |
| Surrogate: 2-Fluorobiphenyl                  | 0.605 |      | ug/L | 0.6250 | 97  | 30-130 |     |    |  |
| Surrogate: Nitrobenzene-d5                   | 0.600 |      | ug/L | 0.6250 | 96  | 30-130 |     |    |  |
| Surrogate: p-Terphenyl-d14                   | 0.705 |      | ug/L | 0.6250 | 113 | 30-130 |     |    |  |
| LCS                                          |       |      |      |        |     |        |     |    |  |
| 2-Methylnaphthalene                          | 0.542 | 0.20 | ug/L | 0.5000 | 108 | 40-140 |     |    |  |
| Acenaphthene                                 | 0.435 | 0.20 | ug/L | 0.5000 | 87  | 40-140 |     |    |  |
| Acenaphthylene                               | 0.380 | 0.20 | ug/L | 0.5000 | 76  | 40-140 |     |    |  |
| Anthracene                                   | 0.415 | 0.20 | ug/L | 0.5000 | 83  | 40-140 |     |    |  |
| Benzo(a)anthracene                           | 0.422 | 0.05 | ug/L | 0.5000 | 84  | 40-140 |     |    |  |
| Benzo(a)pyrene                               | 0.398 | 0.05 | ug/L | 0.5000 | 80  | 40-140 |     |    |  |
| Benzo(b)fluoranthene                         | 0.410 | 0.05 | ug/L | 0.5000 | 82  | 40-140 |     |    |  |
| Benzo(g,h,i)perylene                         | 0.358 | 0.20 | ug/L | 0.5000 | 72  | 40-140 |     |    |  |
| Benzo(k)fluoranthene                         | 0.388 | 0.05 | ug/L | 0.5000 | 78  | 40-140 |     |    |  |
| Chrysene                                     | 0.420 | 0.05 | ug/L | 0.5000 | 84  | 40-140 |     |    |  |
| Dibenzo(a,h)Anthracene                       | 0.332 | 0.05 | ug/L | 0.5000 | 66  | 40-140 |     |    |  |
| Fluoranthene                                 | 0.470 | 0.20 | ug/L | 0.5000 | 94  | 40-140 |     |    |  |
| Fluorene                                     | 0.442 | 0.20 | ug/L | 0.5000 | 88  | 40-140 |     |    |  |
| Indeno(1,2,3-cd)Pyrene                       | 0.340 | 0.05 | ug/L | 0.5000 | 68  | 40-140 |     |    |  |
| Naphthalene                                  | 0.420 | 0.20 | ug/L | 0.5000 | 84  | 40-140 |     |    |  |
| Phenanthrene                                 | 0.400 | 0.20 | ug/L | 0.5000 | 80  | 40-140 |     |    |  |
| Pyrene                                       | 0.392 | 0.20 | ug/L | 0.5000 | 78  | 40-140 |     |    |  |
| Surrogate: 1,2-Dichlorobenzene-d4            | 0.632 |      | ug/L | 0.6250 | 101 | 30-130 |     |    |  |
| Surrogate: 2-Fluorobiphenyl                  | 0.600 |      | ug/L | 0.6250 | 96  | 30-130 |     |    |  |
| Surrogate: Nitrobenzene-d5                   | 0.562 |      | ug/L | 0.6250 | 90  | 30-130 |     |    |  |
| Surrogate: p-Terphenyl-d14                   | 0.675 |      | ug/L | 0.6250 | 108 | 30-130 |     |    |  |
| LCS Dup                                      |       |      |      |        |     |        |     |    |  |
| 2-Methylnaphthalene                          | 0.542 | 0.20 | ug/L | 0.5000 | 108 | 40-140 | 0   | 20 |  |
| Acenaphthene                                 | 0.428 | 0.20 | ug/L | 0.5000 | 86  | 40-140 | 2   | 20 |  |
| Acenaphthylene                               | 0.375 | 0.20 | ug/L | 0.5000 | 75  | 40-140 | 1   | 20 |  |
| Anthracene                                   | 0.412 | 0.20 | ug/L | 0.5000 | 82  | 40-140 | 0.6 | 20 |  |
| Benzo(a)anthracene                           | 0.432 | 0.05 | ug/L | 0.5000 | 86  | 40-140 | 2   | 20 |  |
| Benzo(a)pyrene                               | 0.412 | 0.05 | ug/L | 0.5000 | 82  | 40-140 | 4   | 20 |  |
| Benzo(b)fluoranthene                         | 0.415 | 0.05 | ug/L | 0.5000 | 83  | 40-140 | 1   | 20 |  |
| Benzo(g,h,i)perylene                         | 0.358 | 0.20 | ug/L | 0.5000 | 72  | 40-140 | 0   | 20 |  |
| Benzo(k)fluoranthene                         | 0.390 | 0.05 | ug/L | 0.5000 | 78  | 40-140 | 0.6 | 20 |  |
| Chrysene                                     | 0.422 | 0.05 | ug/L | 0.5000 | 84  | 40-140 | 0.6 | 20 |  |
| Dibenzo(a,h)Anthracene                       | 0.360 | 0.05 | ug/L | 0.5000 | 72  | 40-140 | 8   | 20 |  |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

http://www.ESSLaboratory.com



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. (MA)

Client Project ID: Dreamland Theater ESS Laboratory Work Order: 1011376

## **Quality Control Data**

| <u> </u>                            |        |              |             | Spike     | Source   |      | %REC   |     | RPD   |          |
|-------------------------------------|--------|--------------|-------------|-----------|----------|------|--------|-----|-------|----------|
| Analyte                             | Result | MRL          | Units       | Level     | Result   | %REC | Limits | RPD | Limit | Qualifie |
|                                     | 827    | OC(SIM) Poly | nuclear Arc | omatic Hy | drocarbo | ns   |        |     |       |          |
| Batch CK02913 - 3510C               |        |              |             |           |          |      |        |     |       |          |
| Fluoranthene                        | 0.475  | 0.20         | ug/L        | 0.5000    |          | 95   | 40-140 | 1   | 20    |          |
| Fluorene                            | 0.428  | 0.20         | ug/L        | 0.5000    |          | 86   | 40-140 | 3   | 20    |          |
| Indeno(1,2,3-cd)Pyrene              | 0.362  | 0.05         | ug/L        | 0.5000    |          | 72   | 40-140 | 6   | 20    |          |
| Naphthalene                         | 0.425  | 0.20         | ug/L        | 0.5000    |          | 85   | 40-140 | 1   | 20    |          |
| Phenanthrene                        | 0.398  | 0.20         | ug/L        | 0.5000    |          | 80   | 40-140 | 0.6 | 20    |          |
| Pyrene                              | 0.402  | 0.20         | ug/L        | 0.5000    |          | 80   | 40-140 | 3   | 20    |          |
| Surrogate: 1,2-Dichlorobenzene-d4   | 0.595  |              | ug/L        | 0.6250    |          | 95   | 30-130 |     |       |          |
| Surrogate: 2-Fluorobiphenyl         | 0.560  |              | ug/L        | 0.6250    |          | 90   | 30-130 |     |       |          |
| Surrogate: Nitrobenzene-d5          | 0.545  |              | ug/L        | 0.6250    |          | 87   | 30-130 |     |       |          |
| -<br>Surrogate: p-Terphenyl-d14     | 0.692  |              | ug/L        | 0.6250    |          | 111  | 30-130 |     |       |          |
|                                     |        | Cl           | assical Che | mistry    |          |      |        |     |       |          |
| Batch CK02930 - General Preparation |        |              |             |           |          |      |        |     |       |          |
| Blank                               |        |              |             |           |          |      |        |     |       |          |
| Total Residual Chlorine             | ND     | 0.02         | mg/L        |           |          |      |        |     |       |          |
| LCS                                 |        |              |             |           |          |      |        |     |       |          |
| Total Residual Chlorine             | 2.12   |              | mg/L        | 2.090     |          | 101  | 85-115 |     |       |          |
| Batch CK03010 - General Preparation |        |              |             |           |          |      |        |     |       |          |
| Blank                               |        |              |             |           |          |      |        |     |       |          |
| Total Petroleum Hydrocarbon         | ND     | 5            | mg/L        |           |          |      |        |     |       |          |
| LCS                                 |        |              |             |           |          |      |        |     |       |          |
| Total Petroleum Hydrocarbon         | 20     | 5            | mg/L        | 19.22     |          | 105  | 66-114 |     |       |          |
| Batch CL00105 - General Preparation |        |              |             |           |          |      |        |     |       |          |
| Blank                               |        |              |             |           |          |      |        |     |       |          |
| Total Suspended Solids              | ND     | 5            | mg/L        |           |          |      |        |     |       |          |
| LCS                                 |        |              |             |           |          |      |        |     |       |          |
| Total Suspended Solids              | 28     |              | mg/L        | 30.70     |          | 91   | 80-120 |     |       |          |
| Batch CL00206 - TCN Prep            |        |              |             |           |          |      |        |     |       |          |
| Blank                               |        | ·            |             |           | · ·      |      |        |     |       |          |
| Total Cyanide (LL)                  | ND     | 0.0050       | mg/L        |           |          |      |        |     |       |          |
| LCS                                 |        |              |             |           |          |      |        |     |       |          |
| Total Cyanide (LL)                  | 0.0212 | 0.0050       | mg/L        | 0.02006   |          | 105  | 90-110 |     |       |          |
| LCS                                 |        |              |             |           |          |      |        |     |       |          |
| Total Cyanide (LL)                  | 0.148  | 0.0050       | mg/L        | 0.1504    |          | 98   | 90-110 |     |       |          |
| .CS Dup                             |        |              |             |           |          |      |        |     |       |          |
| Fotal Cyanide (LL)                  | 0.149  | 0.0050       | mg/L        | 0.1504    | -        | 99   | 90-110 | 0.8 | 20    |          |



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. (MA)

Client Project ID: Dreamland Theater ESS Laboratory Work Order: 1011376

### **Notes and Definitions**

|     | Notes and Definitions                                                                                      |
|-----|------------------------------------------------------------------------------------------------------------|
| U   | Analyte included in the analysis, but not detected                                                         |
| HT  | The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and Residual |
|     | Chlorine is fifteen minutes.                                                                               |
| ND  | Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes            |
| dry | Sample results reported on a dry weight basis                                                              |
| RPD | Relative Percent Difference                                                                                |
| MDL | Method Detection Limit                                                                                     |
| MRL | Method Reporting Limit                                                                                     |
| LOD | Limit of Detection                                                                                         |
| LOQ | Limit of Quantitation                                                                                      |
| DL  | Detection Limit                                                                                            |
| I/V | Initial Volume                                                                                             |
| F/V | Final Volume                                                                                               |

§ Subcontracted analysis; see attached report

Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range.

Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. (MA)

Client Project ID: Dreamland Theater ESS Laboratory Work Order: 1011376

#### ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

#### **ENVIRONMENTAL**

Department of Defense (DoD) Environmental Laboratory Accreditation Program (ELAP)

A2LA Accredited: Testing Cert# 2864.01

<a href="http://www.a2la.org/scopepdf/2864-01.pdf">http://www.a2la.org/scopepdf/2864-01.pdf</a>

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/labs/waterlabs-instate.php

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 <a href="http://www.ct.gov/dph/lib/dph/environmental\_health/environmental\_laboratories/pdf/out\_state.pdf">http://www.ct.gov/dph/lib/dph/environmental\_health/environmental\_laboratories/pdf/out\_state.pdf</a>

Maine Potable and Non Potable Water: RI0002 http://www.maine.gov/dep/blwq/topic/vessel/lab\_list.pdf

Massachusetts Potable and Non Potable Water: M-RI002 <a href="http://public.dep.state.ma.us/labcert/labcert.aspx">http://public.dep.state.ma.us/labcert/labcert.aspx</a>

New Hampshire (NELAP accredited) Potable and Non PotableWater, Solid and Hazardous Waste: 2424 http://www4.egov.nh.gov/des/nhelap/namesearch.asp

New York (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

United States Department of Agriculture Soil Permit: S-54210

Maryland Potable Water: 301 http://www.mde.state.md.us/assets/document/WSP\_labs-2009apr20.pdf

South Carolina Volatile Organic Compounds in Potable Water: 78003

New Jersey Potable (VOA) and Non Potable Water (RCRA), Solids and Hazardous Waste: RI002 <a href="http://www.nj.gov/dep/oqa/certlabs.htm">http://www.nj.gov/dep/oqa/certlabs.htm</a>

Pensylvania Potable and Non Potable Water, Solid and Hazardous Waste: 68-01752 http://files.dep.state.pa.us/RegionalResources/Labs/LabsPortalFiles/2009-0911 accredited laboratories.pdf

#### **CHEMISTRY**

A2LA Accredited: Testing Cert # 2864.01
Lead in Paint, Phthalates, Lead in Children's Metals Products (Including Jewelry)
<a href="http://www.A2LA.org/dirsearchnew/newsearch.cfm">http://www.A2LA.org/dirsearchnew/newsearch.cfm</a>

CPSC ID# 1141
Lead Paint, Lead in Children's Metals Jewelry
<a href="http://www.cpsc.gov/cgi-bin/labapplist.aspx">http://www.cpsc.gov/cgi-bin/labapplist.aspx</a>

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

CHAIN-OF-CUSTODY RECORD

| S  |  |
|----|--|
| AB |  |
| Ą۲ |  |
|    |  |
| Ŋ  |  |
| Ń  |  |
| -1 |  |

(for lab use only)

W.O.#

|                   |                                                                                                |                 |                 | <br> |      | -    |          |          | , | <br>•                                                                  |                                                                 |                                                                                                                                              |                                                           |                                                  |             |                                   | 7           |               |                   |               |              |
|-------------------|------------------------------------------------------------------------------------------------|-----------------|-----------------|------|------|------|----------|----------|---|------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|-------------|-----------------------------------|-------------|---------------|-------------------|---------------|--------------|
|                   | Note #                                                                                         |                 |                 |      |      |      |          |          |   |                                                                        |                                                                 |                                                                                                                                              |                                                           |                                                  |             |                                   |             |               |                   |               |              |
|                   | Total No. Cont.                                                                                | S               | 0               |      |      |      |          |          |   |                                                                        |                                                                 |                                                                                                                                              |                                                           |                                                  |             | Temp Blank<br>Cooler Air          |             |               |                   |               | _            |
|                   |                                                                                                | ×               | 7               |      |      |      |          |          |   | $\Box$                                                                 | $\Box$                                                          |                                                                                                                                              |                                                           |                                                  |             | 15 g                              |             |               | -                 |               | 1            |
|                   | CAVAIDE                                                                                        | X               | ×               |      |      |      |          |          | ļ | <br>ž                                                                  | 4                                                               |                                                                                                                                              |                                                           |                                                  |             |                                   |             |               |                   |               | I            |
|                   | PCB-608                                                                                        | ×               | ×               |      |      | <br> |          |          |   | <br>                                                                   | Ö                                                               |                                                                                                                                              |                                                           |                                                  |             | ပ                                 | 1           | 2             |                   |               |              |
|                   | PPH-1664                                                                                       | ×               | ×               |      |      |      | <br>     |          |   |                                                                        | ပ                                                               |                                                                                                                                              |                                                           |                                                  |             |                                   | 13          | 1             | -                 |               |              |
|                   | ТВС                                                                                            | Х               | ×               |      |      |      |          | L        |   | <br>- 1                                                                | 4                                                               |                                                                                                                                              |                                                           |                                                  |             |                                   | I iv        |               |                   |               |              |
|                   | EPA 300 🗆 CI 🗆 NO3 🖸 SO4                                                                       |                 |                 |      |      |      |          | ļ        |   | <br>1                                                                  |                                                                 |                                                                                                                                              |                                                           |                                                  |             | LER                               | 8           |               |                   |               | 1            |
|                   | SPLP - Specify Below                                                                           |                 |                 |      |      |      |          |          |   | 1                                                                      | $\perp$                                                         |                                                                                                                                              |                                                           |                                                  | _           |                                   |             |               |                   |               |              |
|                   | TCLP - Specify Below                                                                           |                 |                 |      | <br> |      |          |          |   |                                                                        | 4                                                               |                                                                                                                                              |                                                           |                                                  | ΛŠ          | LAB USE:<br>TEMP. OF COOLER       |             | Ö.            |                   |               |              |
|                   | Metals (List Below)                                                                            |                 |                 |      |      |      |          | <u> </u> |   | <br>$\dashv$                                                           | 4                                                               |                                                                                                                                              |                                                           | /                                                | η.          | AB USE<br>TEMP. OI                |             | P.O. NO.      |                   |               | ,            |
|                   | MCP 14 Metals (MA)                                                                             |                 |                 |      | <br> |      | <br>ļ    |          |   | $\dashv$                                                               | -                                                               |                                                                                                                                              |                                                           |                                                  | 13          | IF/Fi                             | $\parallel$ | ı             |                   |               | SHEET        |
|                   | Metals (1 PPM-13   R-8                                                                         | <u> </u>        |                 |      |      |      |          |          |   | <br>$\dashv$                                                           | $\dashv$                                                        |                                                                                                                                              |                                                           | -                                                | 2           | O € K                             |             |               |                   |               | S            |
|                   | VPH (MA DEP)                                                                                   |                 |                 |      |      | <br> |          |          |   | +                                                                      | -                                                               | ES: (Unless otherwise noted, all samples have been refrigerated to 4 +/- 2°C) scify "Other" preservatives and container types in this space. |                                                           | 1                                                | 1400        | E.                                |             |               |                   |               |              |
| SQUIRED           | EPH (MA DEP)                                                                                   |                 |                 |      | -    |      | <br>     | ļ        |   | $\dashv$                                                               | $\dashv$                                                        | +                                                                                                                                            |                                                           | and the second                                   |             |                                   |             |               |                   | -             | .            |
|                   | TPH-GC WFING.                                                                                  |                 | -               |      |      |      | -        |          |   | $\dashv$                                                               | -                                                               | 9                                                                                                                                            |                                                           |                                                  | 100         | \\                                |             |               |                   | ŀ             |              |
|                   | TPH-GC (Mod. 8100)                                                                             |                 |                 |      |      |      | <br>     |          | - | $\vdash$                                                               | 4                                                               | ratec                                                                                                                                        |                                                           |                                                  | 1.5         | ed b                              | 1           | 1             |                   |               |              |
| IS RE             | EPA 8081-Pest                                                                                  | _               |                 |      |      |      | -        |          |   | <br>$\vdash$                                                           | -                                                               | frige<br>race.                                                                                                                               | ş                                                         |                                                  | //          | Approved by:                      | 1           | Ö             |                   |               |              |
| ANALYSIS REQUIRED | Eby 8087-PCBs                                                                                  |                 |                 |      | <br> |      |          |          |   | $\vdash$                                                               | -                                                               | NOTES: (Unless otherwise noted, all samples have been refrige<br>*Specify "Other" preservatives and container types in this space            | Report Method Blank and Laboratory Control Sample Results | <u>S</u>                                         | (           | ₹ 1                               |             | TASK NO:      |                   |               |              |
|                   | Eby 625 ww svoc <sub>s</sub>                                                                   | - 4             |                 |      |      |      | <u> </u> |          |   | $\mid \cdot \mid$                                                      | g                                                               | bee<br>in th                                                                                                                                 | . ele                                                     | 6. CYANIDE via SM4500 CN CE                      | 2           | $\mathbb{N}$                      |             | F.            |                   |               | DM           |
|                   |                                                                                                | ×               | ×               |      |      | <br> | <br>_    | -        |   | <br>H                                                                  | $\exists$                                                       | pes                                                                                                                                          | amı                                                       | 1450                                             | E S         | silved.                           |             |               |                   |               |              |
|                   | EPA 8270 SVOCs                                                                                 |                 |                 |      |      |      | ļ        |          | - | $\dashv$                                                               | $\dashv$                                                        | er ty                                                                                                                                        | rol S                                                     | a SIM                                            |             | 1/41                              |             |               |                   |               |              |
|                   | □ 001 □ 002 WW VOCs                                                                            |                 |                 |      |      |      | <u> </u> |          | - | <br>$\vdash$                                                           | $\dashv$                                                        | samp<br>rtain                                                                                                                                | Cont                                                      | 6. CYANIDE via SM4500                            | 1           | TE S                              |             | 0.90          |                   |               |              |
|                   | EBY 624 WW VOCs                                                                                |                 | _               |      | <br> |      | <br>     |          | - | <br>$\vdash \vdash$                                                    | $\dashv$                                                        | 3 m 3                                                                                                                                        | Š                                                         | N S                                              | 2           | TURNAROUND TIME: Standard - Reish |             | 01.0019030.90 | ter               |               |              |
|                   | Eby 254.2 DW VOCs                                                                              | _               |                 |      |      |      | -        | -        |   | $\vdash \vdash$                                                        | $\dashv$                                                        | oted,<br>s and                                                                                                                               | orate                                                     | CYA                                              |             | Idan Idan                         |             | 9             | Dreamland Theater | MA            |              |
|                   | EPA 8021- 8020 List (BTEX)                                                                     |                 |                 |      | <br> | <br> | <br>     |          |   | $\vdash \vdash$                                                        | $\dashv$                                                        | se n.<br>ative:                                                                                                                              | Labo                                                      | 9 7                                              | ţ           | Star                              |             | ٦             | , pue             | Nantucket, MA |              |
|                   | EPA 8021- 8010 List (Chlor.)                                                                   |                 |                 |      |      |      |          |          |   | Ш                                                                      |                                                                 | erwii                                                                                                                                        | pue                                                       |                                                  |             | 夏                                 |             |               | aml               | ntuc          |              |
|                   | EPA 8021- Full List                                                                            |                 |                 |      |      |      |          |          |   |                                                                        |                                                                 | s oth<br>Pres                                                                                                                                | ink;                                                      | vel<br>u                                         |             | D TI                              |             |               | Dre               | Na            | S)           |
|                   | EPA 8260- 8010 List                                                                            |                 |                 |      |      |      |          |          |   |                                                                        |                                                                 | nless<br>ther"                                                                                                                               | 3 Bis                                                     | MA-MCPs  1. PAH-SIM Low Level 2. TDC; SM4500C1 D |             | 5                                 |             | GZA FILE NO:  |                   | Z             | COLLECTOR(S) |
|                   | Eb 8 8 8 8 9 0                                                                                 |                 |                 |      |      |      |          |          |   |                                                                        |                                                                 | ĎĎ.                                                                                                                                          | tho                                                       | 1 Lo                                             | 4           | VARC                              |             | FILE          | ECT               | \TIO          | ECT          |
|                   | GC Methane, Ethane, Ethene                                                                     |                 |                 |      |      |      |          |          |   |                                                                        | 7                                                               | TES                                                                                                                                          | ¥ Me                                                      | CPs<br>-SIN                                      | 4. TPH-1664 | KS KS                             |             | ZAI           | PROJECT           | LOCATION      | 70LL         |
|                   |                                                                                                |                 |                 |      |      | <br> | <br>-    |          |   | $\dashv$                                                               | $\dashv$                                                        | S Å                                                                                                                                          | PDOL                                                      | MA-MCPs<br>1. PAH-SIN                            | TPH         |                                   | '           | 0             | ۵.                | 7             | 0            |
|                   | Hq 🗅                                                                                           |                 |                 |      |      |      | <br>ļ    |          | _ | $\vdash \vdash$                                                        | +                                                               | 1                                                                                                                                            | 7                                                         | 1 <u>z</u>                                       | 4 4         | 5                                 |             |               |                   |               |              |
|                   | Matrix  A=Air S=Soil GW=Ground W. SW=Surbace W. WW-Waste W. DW=Drinking W. P=Product (specify) | ВW              | GW              |      |      |      |          |          |   | I, O-Other) *                                                          |                                                                 | KECEIVED BY:                                                                                                                                 | RECEIVED BY:                                              |                                                  |             |                                   | S           |               |                   |               |              |
|                   | Date/Time<br>Sampled                                                                           | 11/24/10 @ 0900 | 11/24/10 @ 0900 |      |      |      |          |          |   | PRESERVATIVE (CI-HCI, M-Methanol, N-HNO3, S-H2SO4, Na-NaOH, O-Other) * | CONTAINER TYPE (P-Plastic, G-Glass, V-Vial, T-Teflon, O-Other)* |                                                                                                                                              |                                                           |                                                  |             |                                   |             | 508-435-9244  | FAX 508-435-9912  |               |              |
|                   | Sample I.D.                                                                                    | Influent        | Effluent        |      |      |      |          |          |   | PRESERVATIVE (CI-HCI, M-M                                              | CONTAINER TYPE (P-Plastic, C                                    | IN MILE WITCH                                                                                                                                | MENED BY                                                  |                                                  |             | Project Manager:                  | GZA         |               |                   |               |              |

ESS LABS

CHAIN-OF-CUSTODY RECORD

5

W.O.#

911376

1011-00193 (for lab use only)

Note # Temp Blank Total No. of Cont. Cooler Air S 0 CAMIDE ž × 1 Ç 24° PCB-608 G TPH-1664 × ы TRC × TEMP. OF COOLER EPA 300 🗆 CI 🗀 NO3 🗀 SO4 SPLP · Specify Below TCLP - Specify Below P.O. NO. LAB USE: (Vetals (List Below) SHEET NCP 14 Metals (MA) Metals 🗆 PPM-13 🗇 R-8 E. Ouk VPH (MA DEP) NOTES: (Unless otherwise noted, all samples have been refrigerated to 4 +/- 2°C) \*Specify "Other" preservatives and container types in this space. EPH (MA DEP) TPH-GC WFING. ANALYSIS REQUIRED Approved by: TPH-GC (Mod. 8100) 3294-1808 A9E TASK NO: Report Method Blank and Laboratory Control Sample Results EPA 8082-PCBs 6. CYANIDE via SM4500 CN CE EPA 625 WW SVOCs Σ Ġ EPA 8270 KPAH CI A CI BN × EPA 8270 SVOCs C 901 🗆 905 MM AOC TURNAROUND TIME: Standard Reish 01.0019030.90 EBY 624 MM AGG? Dreamland Theater EPA 524.2 DW VOCs Nantucket, MA EPA 8021-8020 List (BTEX) EPA 8021-8010 List (Chlor.) 1. PAH-SIM Low Level
3. TRC via SM4500CLD
4. TPH-1664 EPA 8021- Full List COLLECTOR(S) GZA FILE NO: EPA 8260- 8010 List LOCATION PROJECT 0978 A¶3 MA-MCPs 5. PCB-608 GC Methane, Ethane, Ethene Hq D A=Air S=Soil GW=Ground W. SW=Surface W. WW=Waste W. DW=Drinking W. Lens P=Product (specify) Matrix RECEIVED BY EIVED BY: ß₩ GΨ PRESERVATIVE (CI-HCI, M-Methanol, N-HNO3, S-H2SO4, Na-NaOH, O-Other) \* ß GZA GEOENVIRONMENTAL, INC. CONITAINER TYPE (P-Plastic, G-Glass, V-Vial, T-Tellon, O-Other)\* 106 South Street Hopkinton, MA 01748 508-435-9244 FAX 508-435-9912 Michelle Mirenda 11/24/10 @ 0900 11/24/10 @ 0900 Date/Time Sampled Project Manager: Sample 1.D. Influent Effluent

C:\Documents and Settings\luis.galindo\Desktop\ESS-Duffys COC.x\sx

Page 13 of 13

## **ATTACHMENT 5**

TREATMENT SYSTEM PROCESS FLOW DIAGRAM

PROPOSED DEWATERING TREATMENT SYSTEM

CHECKED BY:

NOT TO SCALE

REVISION NO.

**Dreamland Theater Foundation** 

## ATTACHMENT 6

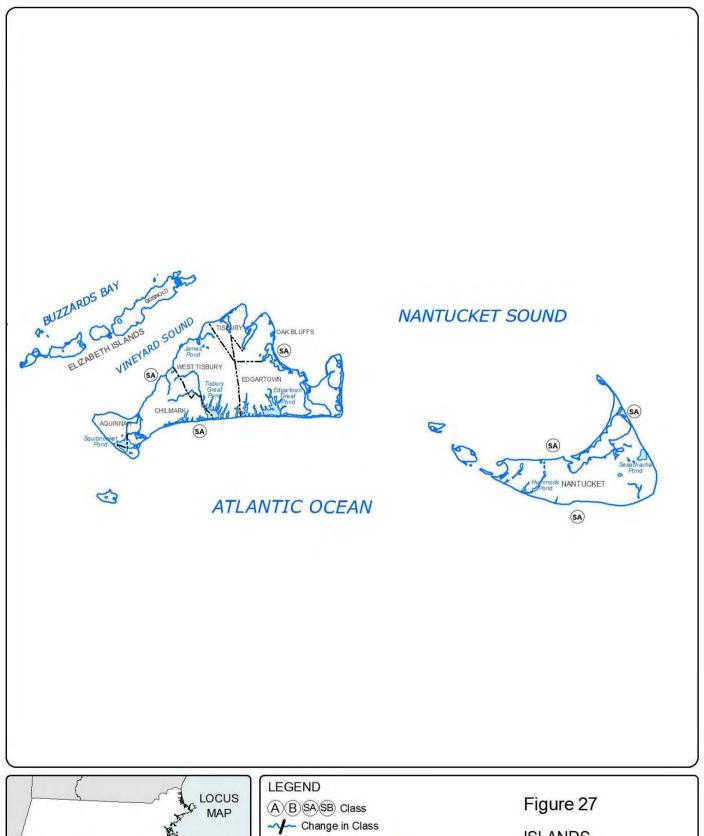
SUPPLEMENTAL INFORMATION

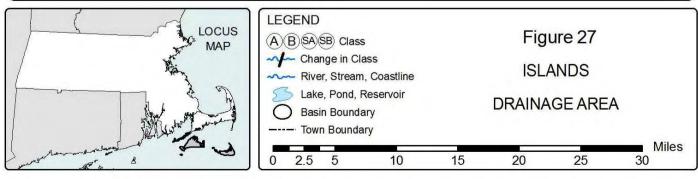


Source: MassGIS (www.mass.gov/mgis). Maps and photos are for planning purposes only.

WARNING: This map does not meet national map accuracy standards, and cannot be used for engineering purposes. Please consult conditions of use at http://www.state.ma.us/ingis/

## Nantucket MA


## NHESP


| V        | Potential Vernal Pools                                                                                |  |
|----------|-------------------------------------------------------------------------------------------------------|--|
|          | Potential Vernal Pools                                                                                |  |
| ~        | NHESP Priority Habitats of Rare Species  NHESP MA Priority Habitats for State- Protected Rare Species |  |
| <b>'</b> | NHESP Natural Communities  NHESP Natural Communities                                                  |  |
| <b>Y</b> | NHESP Estimated Habitats of Rare Wildlife  NHESP MA Estimated Habitats of Rare Wildlife               |  |
| ~        | * NHESP MA Certified Vernal Pools  * NHESP MA Certified Vernal Pools                                  |  |
| ~        | Living Waters Critical Supporting Watersheds  Living Waters Critical Supporting Watersheds            |  |
|          | Living Waters Core Habitats  Living Waters Core Habitats                                              |  |
| <b>V</b> | BioMap Supporting Natural Landscape Outlines  BioMap Supporting Natural Landscape Outlines            |  |
| ~        | BioMap Supporting Natural Landscape  BioMap Supporting Natural Landscape                              |  |
| <b>V</b> | BioMap Core Habitat Outlines  BioMap Core Habitat Outlines                                            |  |
| V        | BioMap Core Habitat BioMap Core Habitat                                                               |  |
| <b>Y</b> | Massachusetts Towns  MA Town BoundariesOutlines                                                       |  |
|          |                                                                                                       |  |

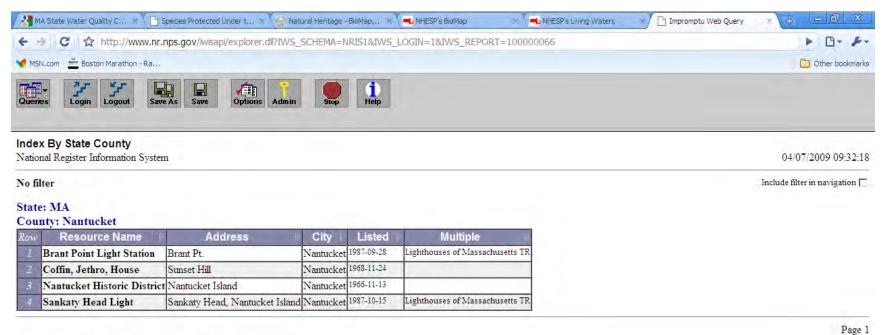




4.06: continued






## 314 CMR 4.00 : DIVISION OF WATER POLLUTION CONTROL

4.06: continued

## TABLE 27 ISLANDS COASTAL DRAINAGE AREAS

| BOUNDARY                                                                                               | MILE POINT | <u>CLASS</u> | <b>QUALIFIERS</b>                             |
|--------------------------------------------------------------------------------------------------------|------------|--------------|-----------------------------------------------|
| Surface waters adjacent* to the Elizabeth Islands subject to the rise and fall of the tide             | -          | SA           | Shellfishing<br>Outstanding Resource<br>Water |
| All surface waters subject to the rise and fall of the tide of Dukes County and Nantucket Drainage Are | as         | SA           | Shellfishing                                  |

<sup>\*</sup> Area within 1,000 feet seaward of mean low water.













Application to the HISTORIC DISTRICT COMMISSION, Nantucket, Massachusetts, for a CERTIFICATE OF APPROPRIATENESS for structural work.

All blanks must be filled in using BLUE OR BLACK INK (no pencil) or marked N/A.

NOTE: It is strongly recommended that the applicant be familiar with the HDC guidelines, Building with Nantucket in Mind, prior to submittal of application.

Please see other side for submittal requirements. Incomplete applications will not be reviewed by the HDC.

This is a contractual agreement and must be filled out in ink. An application is hereby made for issuance of a Certificate of Appropriateness under Chapter 395 of the Acts and Resolves of Mass., 1970, for proposed work as described herein and on plans, drawings and photographs accompanying this application and made a part hereof by reference. The certificate is valid for three years from date of issuance. No structure may differ from the approved application. Violation may impede issuance of Certificate of Occi-

| The seranda is valid for all se years from date of issuance. No structure may differ from                                                                                         | m the approved application. Violation may impede issuance of Certificate of Occupant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                   | FOR OFFICE USE ONLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PROPERTY DESCRIPTION                                                                                                                                                              | Date application received: 1/30/09 Fee Paid: \$ 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TAX MAP N°: 42,3   PARCEL N°. 11,14   11,14                                                                                                                                       | Must be acted on by: $3/24$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Street & Number of Proposed Work: 175. WATER ST/13 EASYST.                                                                                                                        | Extended to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Owner of record: MANTURET DEFAM JOHO FOUNDATION                                                                                                                                   | Approved: Dîsapproved:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mailing Address: St (EMRE St. 29 Flow                                                                                                                                             | Chairman: All Chairman: Chairman:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MAMURIET MA OZITA                                                                                                                                                                 | Member: A Occur (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Contact Phone #: E-mail:                                                                                                                                                          | Member: Was Was and American A |
| AGENT INFORMATION (if applicable)                                                                                                                                                 | Member:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Name:                                                                                                                                                                             | Member: XIII 3 112 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mailing Address:                                                                                                                                                                  | Notes - Comments - Restrictions - Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                   | 1 Con Con Constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Contact Phone #: E-mail:                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DESCRIPTION OF WO                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                   | RK TO BE PERFORMED uired documentation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ☐ New Dwelling ☐ Addition ☐ Garage ☐ Garage/Apartment ☐                                                                                                                           | X Commercial ☐ Historical Renovation ☐ Deck ☐ Steps ☐ Shed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ☐ Color Change       ☐ Fence       ☐ Gate       ☐ Paving       ☐ Move Building         ☐ Roof       ☐ Other                                                                       | ☐ Demolition ☐ Revisions to previous Cert. No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Size of Structure or Addition: Length: 194'-536 Sq. Footage 1st floor: 9423                                                                                                       | Decks: Size: Oli 1st floor 22nd floor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Width: TY'-8" Sq. footage 2nd floor: 447                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sq. footage 3rd floor: 628                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Difference between existing grade and proposed finish grade: North                                                                                                                | _ South East West                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Height of ridge above final finish grade: North VANIEC South VANI                                                                                                                 | IEC East 44-11" West 45'-11"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Additional Remarks REVISIONS* 1. East E                                                                                                                                           | levation 1. 2 PROFESTION PARE FAXIA 2. SOUTH ELEVATION  PROFESTION DESCRIPTION OF PROFESTION PROFILEMENT PROFILEMENT PROFILEMENT OF PROFESTION OF PROFILEMENT OF PROFILEMEN |
| Historic Name: (DEDTN) AND TIEMEN (describe) 2-South                                                                                                                              | Elevation I & EUISVED RULDEN OSSUS. 3.5 " LINES INSTALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Original Date: \3<7                                                                                                                                                               | Elevation 3.7 ADJUSTED AMET REALINE  2.3 DEVISED EATER  EVENT BUILD OF DIMENSION  2.4 ALTERIED EXTEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Original Builder: HICKSITE GURKIEN 4. North E                                                                                                                                     | Elevation 4.1 ADJUSTED POST PITCH Z. 4 AITESTED EXTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Is there an HDC survey form for this building attached?  Yes N/A *Cloud or                                                                                                        | Elevation 4 12 A 510-STED TO SEFET, FREY IR IRANE TO SEE TWINDOWN IN INTERIOR PLENT SEAR OF WHITE ENEMENT OF A TRANSPORT OF A STED OF A SEAR OF A  |
| , Cloud of                                                                                                                                                                        | orawings and submit photographs of existing elevations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Foundation: Height Exposed   RIF! Block Block Parged Brick                                                                                                                        | (type) Poured Concrete Piers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Masonry Chimney: ☐ Block Parged ☐ Brick (type)                                                                                                                                    | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Roof Pitch: Main Mass 23/4/12 Secondary Mass 25/12 Dor                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Roofing material: ☐ Asphalt: ☐ 3-Tab ☐ Architectural ☐ Wood (Type: Red Cedar, White Cedar, Shakes, etc.)                                                                          | Fence: Height:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ☐ Wood (Type: Red Cedar, White Cedar, Shakes, etc.)                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Skylights (flat only): Manufacturer Rough Opening                                                                                                                                 | Length:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Manufacturer Rough Opening                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Gutters: ☒ Wood ☐ Aluminum ☐ Copper ☒ Leaders (material) 下面                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Leaders (material and circle Dal MTFO At MANAL to SIZE: To DE                                                                                                                     | Oli pizzon arti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sidewall: White cedar shingles (NEATHERED T" EXPLAID TO Clapboar                                                                                                                  | rd (exposure: TX MATCH inches) Front Side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Other                                                                                                                                                                             | HISTORIA CABIE OSTIMAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Trim: A. Wood □ Pine □ Redwood □ Cedar □ Other                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| B. Treatment                                                                                                                                                                      | B: 1'7"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C. Dimensions: Fascia Rake Rake Soffit (Overh                                                                                                                                     | nang) A: A'' Corner boards A: 7" Frieze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| State State Door Tame Str Sett.                                                                                                                                                   | Solutilis / Fosts. Hourid Square $\underline{\chi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Windows*:   ☐ Double Hung ☐ Casement ☐ All Wood ☐ Other                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| True Divided Lights(muntins) ☐ SDL's (Simulated Divided Lights) N  Doors* (type and material): Front MARTH EXHIVIZ Rear                                                           | Manufacturer GRIZEN MIZWITAM CR ECONIANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| _                                                                                                                                                                                 | SEE SCH. Side SEE SCH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Garage Door(s): Type Materia  Hardscape materials: Driveways P37V102 B0107 Walkw                                                                                                  | aug 2012)Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| * Note: Complete door and window schedules are required.                                                                                                                          | ays SRICK Walls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                   | ORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sidewall Clapboard (if applicable)                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Trim WAITE Sash WHITE                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Deck Foundation                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| * Attach manufacturer's color samples if color is not from HDC approval list.                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| I hereby authorize the agent named above to act on my behalf to make changes in the                                                                                               | e specifications or the plans contained in this application in order to bring the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| application into compliance with the HDC guidelines. I hereby agree to abide by and c submission of any revisions to this application will initiate a new sixty-day review period | comply with the terms and conditions of this application. I hereby agree that the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Date Signature of owner of record                                                                                                                                                 | Signed under penalties of perjury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                   | Signed under perialities of perjury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |