Remediation General Permit Appendix IV

Chloride & Total Recoverable Metals Limitations (ug/L) at Selected Dilution Ranges & Technology-Based Ceiling Limitations for Facilities Located in Massachusetts and New Hampshire

For Facilities Located in Massachusetts (for discharges to freshwater at Hardness = 50 mg/L CaCO3)¹

	Chloride & Total Recoverable Metal Limitations (ug/l) by Dilution Factor Range							
Parameter	$1 - 5^{6}$	>5 - 10	>10 - 50	>50 - 100	>100	Ceiling Value ²		
38. Chloride	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor		
39. Antimony	5.6	30	60	141	141	141 ³		
40. Arsenic	10	50	100	500	540	540 4		
41. Cadmium	0.2	1	2	10	20	260		
42. ChromiumIII (Trivalent)	48.8	244	489	1,710	1,710	1,710		
43. ChromiumVI (Hexavalent)	11.4	57	114	570	1,140	1,710 ⁵		
44. Copper	5.2	26	52	260	520	2,070		
45. Lead	1.3	6.5	13	66	132	430		
46. Mercury	0.9	2.3	2.3	2.3	2.3	2.3 ³		
47. Nickel	29	145	290	1,451	2,380	2,380		
48. Selenium	5	25	50	250	408	408 ³		
49. Silver	1.2	6	12	57	115	240		
50. Zinc	66.6	333	666	1,480	1,480	1,480		
51. Iron	1,000	5,000	5,000	5,000	5,000	5,000		

Footnotes for Massachusetts:

- 1. Based on 7Q10 Flow.
- The Ceiling Value for Cadmium, Chromium, Copper, Lead, Nickel, Silver, and Zinc is a Technology Based Value and represents the "Best Available Control Technology" (BAT) for the Metal Finishing Industry, 40 CFR Section 433.14 (monthly average concentration).
- 3. Based on 40 CFR 437.42, "The Centralized Waste Treatment Point Source Category Subpart D -Multiple Wastestreams Best Practicable Control Technology" (BPT) daily maximum.
- 4. Based on 40 CFR 445.11, "RCRA Subtitle C Landfill Best Practicable Control Technology" (BPT) for Arsenic.
- 5. Assumes Hexavalent Chromium reduced to Tri-valent Chromium in treatment.
- 6. For a Dilution Factor Range from 1 to 5, metals limits are calculated using DF times the base limit for the metal. For example, iron limits for DF 1-5 are equal to the base limit of 1,000 ug/L times the DF. For example, if DF is 1.5, the iron limit will be 1,500 ug/L; DF 2, then iron limit =1,000 x 2 = 2,000 ug/L, etc. not to exceed the DF=5.

	Chloride & Total Recoverable Metal Limitations (ug/l) by Dilution Factor Range							
Parameter	$1 - 5^{6}$	>5 - 10	>10 - 50	>50 - 100	>100	Ceiling Value ²		
38. Chloride ⁷	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor		
39. Antimony	5.6	30	60	141	141	141 ³		
40. Arsenic	10	50	100	500	540	540 4		
41. Cadmium	0.8	4	8	16	32	260		
42. ChromiumIII (Trivalent)	27.7	138	277	1,385	1,710	1,710		
43. ChromiumVI (Hexavalent)	11.4	57	114	570	1,140	1,710 ⁵		
44. Copper	2.9	14.5	29	142	285	2,070		
45. Lead	0.5	2.5	5	27	55	430		
46. Mercury	0.9	2.3	2.3	2.3	2.3	2.3 ³		
47. Nickel	16.1	80.5	161	807	1,614	2,380		
48. Selenium	5.0	25	50	250	408	408 ³		
49. Silver	0.4	2	4	17	35	240		
50. Zinc	37	185	370	1,480	1,480	1,480		
51. Iron	1,000	5,000	5,000	5,000	5,000	5,000		

For Facilities Located in New Hampshire (for discharges to freshwater at Hardness = 25 mg/L CaCO3)¹

Footnotes for New Hampshire:

1. Based on 7Q10 Flow.

- The Ceiling Value for Cadmium, Chromium, Copper, Lead, Nickel, Silver, and Zinc is a Technology Based Value and represents the "Best Available Control Technology" (BAT) for the Metal Finishing Industry, 40 CFR Section 433.14 (monthly average concentration).
- 3. Based on 40 CFR 437.42, "The Centralized Waste Treatment Point Source Category Subpart D -Multiple Wastestreams Best Practicable Control Technology" (BPT) daily maximum.
- 4. Based on 40 CFR 445.11, "RCRA Subtitle C Landfill Best Practicable Control Technology" (BPT) for Arsenic.
- 5. Assumes Hexavalent Chromium reduced to Tri-valent Chromium in treatment.
- 6. For a Dilution Factor Range from 1 to 5, metals limits are calculated using DF times the base limit for the metal. For example, iron limits for 1-5 DF are equal to the base limit of 1,000 ug/L times the DF. For example, if DF is 1.5, the iron limit will be 1,500 ug/L; DF 2, then iron limit = 1,000 x 2 = 2,000 ug/L, etc. not to exceed the DF = 5.
- 7. Subject additional water quality certification requirements by the State of New Hampshire Department of Environmental Services (NHDES).