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Abstract

Extremes of water temperatures limit the presence of various fishes in streams and lakes.
Upper extreme water temperatures and their uncertainties are determined by several
statistical methods from a large field database. There are over 140000 weekly mean
fish/stream temperature matched pairs in the database. Three different techniques are
employed to estimate upper extremes of habitat temperatures for 12 fish species. To
quantify the uncertainty of the estimated extremes the bootstrap method, the method of
moments and the residual method are applied. The data above the maximum growth
temperature are matched well by a type III extremal or a three-parameter lognormal
distribution. Standard error of the estimated extreme habitat temperatures depends on
species and varies from 0.1°C to 0.6°C at the 95% cumulative probability of occurrence.

Keywords: Water temperatures; Temperature statistics; Fish growth; Temperature toler-
ance; Fish

1. Introduction

Among the many parameters which influence fish growth, survival and repro-
duction, water temperature may be the most fundamental. An upper extreme
habitat temperature (UEHT) is a key design parameter for many engineered
ecosystems. Values of this parameter have been difficult to establish with reliabil-
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ity, especially for fishes. To quantify the relationships between water temperatures
and fish responses, laboratory experiments are often conducted but exposure
conditions in the laboratory environment are far less complex than those that
occur in nature. To avoid the uncertainties associated with not knowing the
ecological significance of laboratory-derived values, the United States Environ-
mental Protection Agency Environmental Research Laboratory-Duluth
(USEPA /ERLD) has assembled an extensive field data base (Fish and Tempera-
ture Database Matching System, FTDMS) in which field observations of 29 fish
species are paired with mean weekly water temperature measurements made in
the same stream-reaches. There are now 141208 “Fish/Temperature (F/T)
matched pairs” in that database. The development of that database and its present
status is the topic of a recent paper by Eaton et al. (1995). Upper extreme habitat
temperatures for the various fishes can be estimated from the FTDMS. For
example, following an approach by Biesinger et al. (1979) the highest 95 percentile
value of the warmest week was selected as the maximum temperature value at
which a fish species or guild would be present in a water body. This approach was
also followed by Eaton et al. (1995) except that the highest 5% of all field data are
used instead of the warmest week. Using the 95th percentile seemed appropriate
(instead of the 100 percentile) in light of the wide geographic data distribution and
the range of time-scales over which measurements had been made. Possible
sources of error such as measurement errors, fish presence due to refugia, and lack
of temporal correspondence of fish and temperature records affect the database.
Upper extreme habitat temperatures obtained in this way compare favorably with
laboratory test results involving exposures of several days (e.g. FTDMS 95 per-
centile values are mostly 1° to 3°C lower than acute laboratory derived mortality
temperatures), but comparable to upper zero net growth temperatures (Stefan et
al., 1992). The presence or absence of a fish species or guild does not imply a
direct relationship to mortality because the upper lethal temperature is strongly
related to changes in physiology at high temperatures which can only be studied in
laboratory experiments.

This paper examines alternative methods for estimating UEHT from fish field
distribution data. The primary goal is to illustrate the applicability and usefulness
of some extreme value theories to the statistical analysis of extreme temperatures
for fish presence or absence. In so doing a special effort is made to quantify the
degree of uncertainty of the estimated extreme temperatures. To do this three
different techniques are employed, i.e. the method of moments, the bootstrap
method, and the residual method.

2. Methods
2.1. FTDMS database

The data analyzed herein are mean weekly water temperatures obtained from
stream sites at widely dispersed locations within the conterminous U.S. Stream
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temperatures are used because streams tend to be well mixed water masses where
temperatures are more likely to be homogenous insuring that water temperature
values match those of actual exposure temperatures of observed fish. All fish
observations used in these fish presence/ambient temperature matches were
made within a stream reach adjacent to the temperature gauging station. The fish
observations were made at any time of the year. Fish presence observations within
a year are matched temporally with stream weekly mean water temperatures for
that same year to create “F /T matched pairs”. To be accepted for creating an
F/T dataset, each selected fish collection station to be matched with a water
temperature data entry must be (Eaton et al., 1995): (1) on the same branch of a
river as the temperature station, (2) within 15 km of the temperature station, and
(3) with no tributaries joining the river branch between the two stations, as
determined by the Geographic Information System coverage of major rivers and
streams in the area. Separate data are kept for each species.

For most species the database contains water temperatures beginning at 0°C
and extends to the maximum recorded for that species. Fig. 1a displays as an
example the F/T sets for the walleye. To determine the upper extreme habitat
temperature for a species, the lower temperatures were excluded. Exclusion of
lower temperatures was done differently by each of the methods to be discussed.

The following describes how, why and the consequences of the three methods
used.

2.2. Extreme temperature computation procedure

2.2.1. Maximum 95th percentile weekly water temperature

An UEHT for each fish species was estimated following the approach suggested
by Biesinger et al. (1979). The estimated values are given for example by Stefan et
al. (1992). The 95th percentiles of the FTDMS temperatures for each week are
estimated for the entire year. The week with the largest measured 95th percentile
(shaded box in Fig. 1a) is retained, and the 95th percentile of this week is then
identified as the UEHT for the particular fish species. The foregoing procedure is
simple, but requires a large database. It is, however, not the only method by which
an extreme habitat temperature can be estimated from the database. We shall

examine some alternatives, and explain their respective advantages and disadvan-
tages.

2.2.2. Parametric method

A visual examination of the FTDMS database example in Fig. 1a shows that by
analyzing the data week by week and selecting only the week with the highest 95th
percentile FTDMS temperature, many high temperature values fail to make a
contribution to the calculated UEHT. This is especially disturbing when the
variability or confidence interval of the 95th percentile FTDMS temperature is
determined.

This real or perceived loss of information by weekly analysis is remedied in the
“threshold series” method. In this method, all temperatures above a certain
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Fig. 1. Fish/temperature observations for walleye in the Fish Temperature Database Management

System (FTDMS). (a) All data and week with maximum weekly 95% FTDMS temperature. (b) Data
above maximum growth (T,,,) temperature. (c) Residual data above weekly 95% FTDMS temperature.

(threshold) magnitude are retained for the extreme temperature analysis of the
particular fish species. The threshold magnitude is herein taken as the maximum
growth (optimum) temperature, i.e. all temperatures above the maximum growth
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~ temperature are included in the analysis (Fig. 1b). The maximum growth tempera-
ture is considered a meaningful threshold, because water temperatures above the
maximum growth temperature affect fish growth adversely. Examples of maximum
growth temperatures of 12 different fish species reported in the literature are
given in Table 1. The actual value of the maximum growth temperature has only
small relevance, because only the extreme upper end of the data is crucial to the
analysis. Therefore, if the optimum growth temperature is unknown for a given
species of fish it’s guild mean may be used, with little or no change in the final
analysis.

Continuous probability distributions are used to define the magnitude of the
extreme temperature corresponding to a given cumulative probability for the
particular fish species. To fit probability or frequency distributions to the data
(above the optimum temperature) two steps were necessary: (1) to find a probabil-
ity distribution, if any, which follows the data, and (2) to estimate the parameters
of the chosen probability distribution in order to minimize the differences between
observed and fitted temperatures. The data in the FTDMS are only a sample in
time and space, and subject to measurement errors, thus the fitting procedure
must minimize these errors in an efficient way.

Four probability distributions, i.e. type III extremal distribution (T3E), three-
parameter lognormal (LN3), Pearson type III, and log-Pearson type III distribu-
tions were considered potential candidates for the analysis. The type III extremal
distribution or the three parameter log-normal distributions were found to give the
best fits for 24 fish species (Stefan et al., 1994). Examples of cumulative probability
distributions of 12 fish species are given in Fig. 2. The type III extremal cumulative
probability distribution function is

P(x)=1-—exp " v/E-7" (1)
and the probability density function is
a—1
a [(x—vy »
plx)= exp"(x_?/ﬁ_‘)’) 2
(x) B—vy (B = ?] @)

where a is the scale parameter equal to the order of the lowest derivative of the
probability function that is not zero at x =y (Kite, 1986), B is the characteristic
temperature (location parameter), and vy is the lower limit to the water tempera-
ture (variable x). The probability density function for the three-parameter lognor-
mal distribution is

p(x) = exp U= —u, P /20]) 3)

(x—a)o,V2m

where o’ is the scale parameter (variance of the logarithms of (x — a)), u , is the
form parameter (mean of the logarithms of (x — a)), and “a” is the lower boundary
of x. The cumulative probability distribution was obtained numerically because Eq.
(3) is not analytically integrable.
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Fig. 2. Cumulative probability distributions of higher than threshold temperatures. Fitted values are

denoted by solid lines. Values derived from the FTDMS are denoted by dashed lines.

The method of moments and the method of maximum likelihood (Haan, 1977;
Kite, 1988) were used as techniques for the parameter estimation for the particular
distributions. Two criteria were used for the probability distribution acceptance.

The first is goodness of fit between the observed and predicted (fitted) tempera-
tures

N
Z(Tﬁt_ T)Z

D e (4)
Y(r-7y

i=1
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where Ty, is fitted temperature, T is observed temperature, T is an average of the
observed temperature, and N is the total number of data above the optimum
temperature. The second criterion was introduced in order to examine qualita-
tively the upper end of the probability distribution, i.e. the region where the upper
thermal tolerance limit is most likely to occur. For this purpose the quantile-quan-
tile (QQ) plots (Graedel and Kleiner, 1985) were used. The corresponding point on
the QQ plots is given by the coordinate pair

QQ(i)x[F—i(%);x(f)] (5)

where i is the coordinate number, F~! is the inverse of the theoretical probability
distribution, n is the number of observed temperatures for a particular class, N is
the total number of temperatures above the optimum temperature for a particular
species, and x(i) is the observed temperature. The first term in the square bracket
is the fitted (predicted) and the second term is observed temperature. A perfect fit
would be indicated by all points being on the line with a slope of 1:1.

2.2.3. Bootstrap method

The bootstrap method extends the basic idea of an estimate for the accuracy of
the mean, ie. standard deviation, to any estimator (Efron and Gong, 1983). An
estimator is customarily defined as a procedure for deriving an estimate from a
sample. We are concerned with extreme (95th percentile) temperatures; therefore,
the method was applied to the 95th percentile estimator. For each fish species a
bootstrap sample was drawn 1000 times and the 95th percentile estimator was
computed as

B ~
26 1
A b=
o= (6)

where b =1 is the first draw from the fish bootstrap sample, and B is the total
number of the bootstrap draws. Note that one bootstrap sample (b = 1) means

randomly sampling N times the temperature data set of size N for the particular
fish species.

2.3. Extreme temperature uncertainty estimation

2.3.1. Method of moments
A measure of the variability of the estimated extreme temperature is the
standard error of estimate. The standard error of estimate is defined (Kite, 1988)

as
Mo
SE=11/— T
mM=9 N @)
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where p, is the second statistical moment, and & is tabulated for the different
percentile levels and different probability distributions (Kite, 1988).

2.3.2. Bootstrap method

The bootstrap method is a nonparametric computational method for the stand-
ard error of a data-based prediction (Efron and Gong, 1983). The method was
applied to the standard error of the 95th percentile estimator. For each fish

species a bootstrap sample was drawn 1000 times and the standard error was
computed as

(‘b "3)2 2
g Tos — Tos
SEp=| YL ~——~ (8)

2.3.3. Residual method

A third method to estimate standard error of the of the 95th percentile FTDMS
value uses the temperature residuals above the 95th percentile value in all 52
weeks in a year. The graphical illustration of the residuals is given for walleye in
Fig. 1c. The method considers residual temperature values above the 95th per-
centile for all 52 weeks of the entire year, but could be applied to a smaller

number of weeks also. The standard error of estimate for the 95th percentiles is
defined as

for T, > f%,- (9)

where the fgs,‘ is the estimated 95th percentile for the particular week, T; is the
temperature above the 95th percentile, and SE, is the yearly standard error of
estimate for the 95th percentiles.

2.3.4. Confidence interval
Once the standard error of the estimate is computed it is often desirable to
estimate the confidence interval for the temperature percentile in question. In

order to proceed, the assumption is made that the distribution of the T-percentile
is normal so that the confidence interval is given by

Cl=T,+tSE (10)

where ¢ is the standard normal deviate for the desired confidence level (¢t = 1.96

for the 95% cumulative probability), and T,, is the temperature estimate for the
required cumulative probability.
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3. Results
3.1. Extreme temperature computation

3.1.1. Maximum 95th percentile weekly temperatures

Maximum 95th percentile temperature estimates for the week when the highest
95th percentile temperature occurred are given in Table 1 (under the column
“Maximum 95% Weekly Temperature”). Estimated UEHT values were lower than
the upper temperature tolerance limit (UTTL) from the laboratory experiments.
Average differences between weekly UEHT and UTTL temperatures were 2.1, 2.0,
and 4.5°C for fish in the cold-, cool-, and warmwater fish guilds, respectively. The
greater difference for the warmwater fishes is believed due to the fact that the data
for some species in this guild do not include higher temperatures from sites at the
extreme southern limits of their distribution, south of the U.S. border (Mexico),
where such fishes can still exist. Data collection does not extend south of the U.S.
border.

3.1.2. Probability distributions fitted to temperatures above maximum growth temper-
ature (Parametric method)

The parametric procedure was applied as an alternative second method for the
extreme temperature estimation. The “samples” contained all temperatures above
the maximum growth temperature for the particular fish species. Fitted and
“observed” cumulative probability distributions of the water temperatures for 12
fish species are given in Fig. 2. Good agreement between the observed and fitted
temperatures is evident. Quantile plots for the observed and fitted temperatures
are given in Fig. 3. Qualitative measures of agreement between the observed and
fitted temperature (Eq. 4), are given in Table 1 under the column “Goodness of
fit”. In most cases the “Goodness of fit” had an r? value above 0.95. This implies
that 95% of the observed temperature variability was explained by the fitted
probability distribution. For brown bulhead, channel catfish, freshwater drum, and
gizzard shad, the goodness of fit was not as close (Stefan et al., 1994). These less
well fitted data are mainly due to temperature “extremes” above the probability
distributions (Fig. 3). It is noteworthy that these extremes were always above the
estimated maximum 95th percentile weekly temperatures. This is one more justifi-
cation for selecting the 95th percentile rather than the very highest temperature
observed as a lethal temperature (maximum 95th percentile weekly temperatures
are also shown in Fig. 3 to illustrate how far below the very highest observed
temperatures they may be).

Cumulative probabilities above maximum growth temperature equivalent to the -
maximum 95th percentile temperature estimates were also determined and are
given in Table 1 under the heading “Equivalent probability”. Cold- and coolwater
fishes had equivalent cumulative probabilities from 92 to 99%. Warmwater fishes
had equivalent cumulative probabilities from 56% (smallmouth bass) to 97%
(white bass). A low cumulative percentile indicates that many high temperature
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Fig. 3. Quantile-quantile plots for distributions fitted by method of moments to fish /temperature pairs
in the FTDMS. Horizontal axes are observed and the vertical axes are fitted temperatures. The solid
line would be a perfect fit.

estimates were ignored in the maximum 95th percentile weekly temperature
estimate which then is not a relative value.

3.1.3. 95th and 99th percentile temperatures above maximum growth temperature

The parametric method and the bootstrap method were used to estimate the
95th and 99th percentiles of temperatures above the maximum growth tempera-
tures. Estimated temperatures are given in Table 2 under the heading “95%” or
“99%”. The temperatures estimated by the bootstrap and the parametric method
are very close. That is an indication that the fitted theoretical distributions
adequately describe the temperature samples.
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Table 2
95% and 99% temperatures and their standard errors as determined by the bootstrap method and by

the fitted cumulative probability function (parametric) method using temperature data above maximum
growth temperature

Species Bootstrap Parametric

95% SE 99% SE 95% SE 99% SE
(§(®) 0 O 0] O {®) O 0

Brown trout 24.6 0.4 27.0 0.5 24.7 0.2 27.0 0.4
Chum salmon 19.1 0.5 19.8 0.2 18.6 0.4 20.7 08
Coho salmon 21.9 0.2 235 0.2 22.1 0.2 239 0.3
Rainbow trout 239 0.1 25.1 0.2 236 0.1 254 03
Black crappie 29.6 0.2 30.8 0.2 29.7 0.2 31.0 03
Sauger 294 0.1 302 0.2 289 0.2 31.0 04
White crappie 31.2 0.1 321 0.3 31.2 0.1 32.6 0.2
Yellow perch 29.4 0.4 30.0 0.6 294 04 30.6 09
Carp 31.8 0.2 325 0.3 319 0.1 32.6 0.2
Freshwater drum 31.8 0.1 319 0.1 31.9 0.1 320 0.1
Golden shiner 30.2 0.1 31.0 0.3 30.0 02 31.7 03
Smallmouth bass 31.0 0.1 30.6 0.2 30.7 0.2 313 03

SE = standard error.

3.2. Uncertainty of extreme temperature computation

3.2.1. Method of moments

Standard errors of estimated maximum 95th percentiles weekly temperatures
are given in Table 1. These values were obtained by the method of moments. An
average standard error was 0.3, 0.3, and 0.1°C for the cold-, cool-, and warmwater
fishes, respectively. With these standard errors the confidence intervals (95%) for
the estimated maximum 95th percentile weekly temperatures were obtained and
are given in Table 1 under the heading “Confidence interval (CI)”.

The uncertainty of estimated extreme values (see Fig. 3) would be expected to
increase towards the higher temperatures. To test this increase, standard errors of
extreme water temperatures at cumulative probabilities of occurrence increasing
from 50 percentile to 99 percentile were also estimated by the method of moments.
The results for different fish species and different cumulative probability levels are
summarized in Fig. 4. Indeed the standard error increases less than 0.3°C at 50%
to up to 1°C at 99%, with considerable variation among species. The excedance
level, which is also shown in Fig. 4 is defined as 100-a, where « is the cumulative
probability.

3.2.2. Bootstrap method
Uncertainty was also computed by applying the bootstrap method. For the 95th
and 99th percentile cumulative probabilities the standard errors are given in Table

Fig. 4. Standard errors of temperature estimates for different cumulative probabilities or excedance
levels above maximum growth temperature.
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Table 3

Standard errors of maximum 95% weekly water temperatlires as determined by analysis of residuals
above maximum 95% weekly values

Coldwater species  SE(°C)  Coolwater species SE(°C) ~ Warmwater species ~ SE C)

Brook trout 13 Black crappie 15 Bluegill 1.1
Brown trout 1.0 Northern pike 0.5 Brown bullhead 15
Chinook salmon 0.9 Sauger 1.2 Carp 2.0
Chum salmon 0.8 Walleye 0.7 Channel catfish 1.4
Coho salmon 1.3 White crappie 0.8 Freshwater drum 1.6
Pink salmon 13 White sucker 2.0 Gizzard shad 0.7
Rainbow trout 1.5 Yellow perch 1.7 Golden shiner 1.0

Largemouth bass 1.6

Smallmouth bass 1.6

White bass 1.7

SE = standard error.

2 under the heading “Bootstrap”. The method of moments was applied to the
same sample for comparison. The estimated standard errors are given in Table 2
under the heading “Parametric”. The bootstrap estimates are in some cases
(walleye, white sucker, chum salmon, bluegill, brown bullhead, channel catfish,
largemouth bass, white bass) higher for the 95th percentile than for the 99th
percentile (Stefan et al., 1994). This unexplainable trend is considered to be a
deficiency of the bootstrap method in comparison to the parametric estimates.
Overall the two methods give very similar results for the same cumulative probabil-
ity levels.

3.2.3. Residual method

Prior to the uncertainty analysis by the method of moments and the bootstrap
method, a residual method had been applied. It used as a basic data set the
residual temperatures above the maximum weekly 95th percentile weekly tempera-
tures (see Fig. 1c, and Section 4.3) for all weeks of the year. The method makes
use of data from all seasons of the year. Standard errors of estimated maximum
95th percentile weekly temperatures obtained by residual method are given in
Table 3. The estimated standard error therefore reflects an annual average of
uncertainty for all 52 weekly 95 percentile temperature values, rather than the
maximum value of the year. To obtain an uncertainty estimate for the warmest
season, standard error a 5 week average around the week with the maximum 95th
percentile weekly temperature was also computed. These latter values are on the
average lower than the annual average error, but still higher than the standard
errors in Tables 1 and 2.

4. Discussion

Upper extreme habitat temperatures have to be known in aquaculture/ fish
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pond management, for setting of water temperature standards, for specification of
cooling water effluent mixing zones, and in climate effect studies. Herein, upper
extreme habitat water temperature values and their uncertainties are determined
by several statistical methods from a large field database (Fish and Temperature
Database Matching System, FTDMS, Eaton et al.,, 1995). The results place
previous estimates of UEHT in a broader statistical context, and provide confi-
dence intervals for these estimates. The reader should be aware that the FTDMS
database is continually growing and therefore that this paper presents options for
summarizing the data and not the final values for maximum habitat temperatures.

One expression of the UEHT was chosen to be the 95th percentile of weekly
mean temperatures occurring in the week with the highest weekly mean tempera-
ture for each fish species. Herein the data are reduced to only those temperature
values which lie above the maximum (optimum) growth temperature (threshold) of
a fish species. Above this threshold water temperature adversely affects fish
growth. The data above the maximum growth temperature are analyzed by two
different methods: (1) a parametric method, which fits a theoretical probability
distribution to the data, and (2) a non-parametric (bootstrap) method. The type III
extremal distribution or the three-parameter lognormal distribution provide a good
fit to the data (Figs. 2 and 3).

Extreme high temperature values and their uncertainties are determined by
both the parametric and the bootstrap method and give similar results. Examples
of the 95 and 99% cumulative probability levels are given in Table 2 for 12 fish
species. The increase of uncertainty with cumulative probability is illustrated in
Fig. 4. Standard error ranges from less than 0.3°C at 50% to more than 1°C at
99%, with a strong dependence on the species of fish. The higher uncertainties in
lethal temperature estimates as measured by the high standard error of estimate in
Fig. 4 for yellow perch, rainbow trout, pink salmon, and brown bullhead, are
caused by either the small sample size (54 temperature data points above maxi-
mum growth for yellow perch, and 26 for brown bullhead) and /or unusually poor
fit of the frequency distributions in the high temperature range as illustrated in
Figs. 2 and 3.

The uncertainty of the maximum 95th percentile weekly temperature value has
a standard error which has been estimated, by the method of moments from the
parametric (fitted) distributions, to be between 0.2 to 0.5°C for coldwater species,
0.2 to 0.4°C for coolwater fishes, and from 0.1 to 0.4°C for warmwater fishes. The
database for the warmwater fishes does not, however, extend far enough south to
include the high temperature extremes for some members of that guild.

In conclusion the significance of this study lies in the following main points:

(a) Known methods of extreme value analysis used in other fields (e.g. flood
frequency analysis) have been applied to broaden the usefulness of a large
fish /temperature field database.

(b) Extreme values for 12 fish species were found to follow two extreme value
frequency distributions. They are the type III extremal and the three-parame-
ter lognormal distributions. Therefore, smaller datasets can be used to esti-
mate more reliably UEHT values.
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(c) By providing a theoretically well-founded methodology, the uncertainty of the
UEHT values which are essential in the design and operation of
aquaculture /fish pond management systems has been established more ex-
actly.
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