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Describing Uncertainty . ”
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Figure3.8 Confidence level and alpha level for a 1-sided prediction interval
Probability of obtaining a new observation greater than Xy when the
distribution is unchanged is o.

Example 2, cont.
An arsenic concentration of 350 ppb is found in a New Hampshire well. Does this

indicate a change to larger values as compared to the distribution of concentrations for
the example 2 data? Use a = 0.10.

As only large concentrations are of interest, the new data point will be considered _
larger if it exceeds the & = 0.10 one-sided prediction interval, or upper 90th percentile of
the existing data. Xp gge26 = X234. By linear mterpolauon this corresponds to a
concentration of

X3 + 0.4'()(24—2(23) = 300 + 0.4°(40) =-316.

In other words, a concentration of 316 or greater will occur approximately 10 percent of
the time if the distribution of data has not increased. Therefore a concentration of 350
Ppb is considered larger than the existing data at an a level of 0.10.

3.6 Parametric Prediction Intervals

Parametric prediction intervals are also used to determine whether a new observation
is likely to come from a different distribution than previously-collected data.
However, an assumption is now made about the shape of that distribution. This
assumption provides more information with which to construct the interval, as long
as the assumption is valid. If the data do not approximately follow the assumed
distribution, the prediction interval may be quite inaccurate.
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Prob (W <3) + Prob (W = 13) = 0.048 + 0.048 = 0.095 £0.1. _
Note that for a two-sided test, the critical values are farther from the expected value
than in a one-sided test at the same « level.

It should be recognized that p-values are also influenced by sample size. For a given
magnitude of difference between the x and y data, and a given amount of variability in
the data, p values will tend to be smaller when the sample size is large. In the extreme
case where vast amounts of data are available, it is a virtual certainty that p values will
be small even if the differences between x and y are what might be called "of no
practical significance.”

Most statistical tables are set up for one-sided tests. That is, the rejection region o or
the p-value is given in only one direction. When a two-sided test at significance level
a is performed, the tables must be entered using /2. In this way rejection can occur
with a probability of /2 on either side, and an overall probability of c. Similarly,
tabled p-values must be doubled to get p-values for a two-sided test. Modern statistical
software often reports p-values with its output, eliminating the need for tables. Be
sure to know whether it is one-sided or two-sided p-values being reported.

4.4 Tests for Normality

The primary reason to test whether data follow a normal distribution is to determine if
parametric test procedures may be employed. The null hypothesis for all tests of
normality is that the data are normally distributed. Rejection of Hy says that this is
doubtful. Failure to reject Hp, however, does not prove that the data do follow a
normal distribution, especially for small sample sizes. It simply says normality cannot
be rejected with the evidence at hand. Use of a larger a-level (say 0.1) will increase the
power to detect non-normality, especially for small sample sizes, and is recommended
when testing for normality. ’

The test for normality used in this book is the probability plot correlation coefficient
(PPCC) test discussed by Looney and Gulledge (1985a). Remember from Chapter 2 that
the more normal a data set is, the closer it plots to a straight line on a normal
probability plot. To test for normality, this linearity is tested by computing the linear
correlation coefficient between data and their normal quantiles (or "normal scores”,
the linear scale on a probability plot). Samples from a normal distribution will have a
correlation coefficient very close to 1.0. As data depart from normality, their
correlation coefficient will decrease below 1. To perform a test of Hy: the data are
normal versus Hi: they are not, the correlation coefficient (r) between the data and
their normal quantiles is tested to see if it is significantly less than 1. For a sample size
of n, if r is smaller than the critical value r* of table B3 for the desired a-level, reject Ho.
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The test statistic S measures the monotonic dependence of y on x. Kendall's S is
calculated by subtracting the number of "discordant pairs” M, the number of (x,y) pairs
where y decreases as x increases, from the number of "concordant pairs" P, the number

of (x,y) pairs where y increases with increasing x:
=

where P= “number of pluses”, the number of times the y's increase as the x's
increase, or the number of yj < yj for alli<j,
M= "number of minuses," the number of times the y's decrease as the
X's increase, or the number of yj > yjfori<j.
foralli=1,..(n—1)andj= (i+1),...n.

Note that there are n(n—1)/2 possible comparisons to be made among the n data pairs.
If all y values increased along with the x values, S = n(n—-1)/2. In this situation, the
correlation coefficient © should equal +1. When all y values decrease with increasing x,
§ = —n(n—1)/2 and 7 should equal -1. Therefore dividing S by n(n-1) /2 will give a
value always falling between —1 and +1. This then is the definition of t, measuring the
strength of the monotonic association between two variables:

Kendall's tau correlation coefficient 821
S

®= n(n-1)/2

To test for significance of 1, S is compared to what would be expected when the null
hypothesis is true. If it is further from 0 than expected, Hp is rejected. Forn =< 10 an
exact test should be computed. The table of exact critical values is found in table B8 of
the Appendix. '

8.2.2 Large Sample Approximation
For n > 10 the test statistic can be modified to be closely approximated by a normal
distribution. This large sample approximation Zg is the same form of approximation
as used in Chapter 5 for the rank-sum test, where now
d 2 (S can vary only in jumps of 2),
Hs 0, and
s = V (n/18)e(n-1)*(2n+5).

[0}
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TABLE B8 -- Quantiles (p-values) for Kendall's tau
correlation coefficient
(from Kendall, 1975).
© Hodder & Stoughton Pub. Used with permission.

p =Prob [S = x] = Prob [S £—x]

Number of data pairs =n Number of data pairs =n
4 5 8 9 6 (7 10

X X :
0 0625 0592 0548  0.540 1 0.500 0.500 0.500
2 0375 0408 0452  0.460 3 0.360 0.386 0.431
4 0167 0242 0360 0.381 5 0.235 0.281 0.364
6 0.042 0117 0274 0.306 7 0.136 0.191 0.300
8

0.042  0.199  0.238 9 0.068 0.119 0.242
10 0.0083 0.138 0.179 11 0.028 . 0.068 0.190
12 0.089  0.130 13 0.0083 0.035 0.146
14 0.054  0.090 15 0.0014 0.015 0.108
16 0.031  0.060 17 0.0054 0.078
18 0.016 0.038 19 0.0014  0.054
20 0.0071 0.022 21 0.0002  0.036
22 0.0028 0.012 23 0.023
24 0.0009 0.0063 25 0.014
26 0.0002  0.0029 27 ; 0.0083
28 <0.0001 0.0012 29 0.0046
30 0.0004 31 0.0023
32 0.0001 33 0.0011
35 0.0005

37 0.0002
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' Trend Analysis

—

Concentrations and loads of phosphorus have been observed at numerous tributaries
{o an important estuary over a 20-year period. Have concentrations and/or loads
changed over time? Have concentrations changed when changing flow conditions are
taken into account (the early years were during a very dry period), or are all changes
simply due to more precipitation in the latter years? Is there an observable effect
associated with a ban on phosphorus compounds in detergents which was
implemented in the middle of the period of record?’

Groundwater levels were recorded for many wells in a study area over 14 years.
During the ninth year development of the area increased withdrawals dramatically. Is
there evidence of decreasing water levels in the region's wells after versus before the

increased pumpage?

Benthic invertebrate and fish population data were collected at twenty stations along

one hundred miles of a major river. Do these data change in a consistent manner

going downstream? What is the overall rate of change in population numbers over

the one hundred miles?

Procedures for trend analysis build on those in previous chapters on regression and
hypothesis testing. The explanatory variable of interest is usually time, though spatial
or directional trends (such as downstream order or distance downdip) may also be
investigated. Tests for trend have been of keen interest in environmental sciences
over the last 10-15 years. Detection of both sudden and gradual trends over time with
and without adjustment for the effects of confounding variables have been employed.

In this chapter the various tests are dassified, and their strengths and weaknesses

compared.

oSS

it
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12.1 General Structure of Trend Tests

1211 Purpose of Trend Testing
A series of observations of a random variable (concentration,
diversity, etc.) have been collected over some period of time.

unit well yield, biologic
We would like to

determine if their values generally increase or decrease (getting "better" or "worse").

In statistical terms this is a determination of whether the probability distribution from

which they arise has changed over time. We would also like

to describe the amount

or rate of that change, in terms of changes in some central value of the distribution
such as a mean or median. Interest may be in data at one location, or all across the

country. Figure 12.1 presents an example of the results of trend tests for bacteria at sites

throughout the United States.

EXPLANATION

— —— Boundary of Regional Drainage Basin
Trend in Flow-Adjusted Concentration
‘ .Increase
V Decrease
e No Trend

Figure 12.1 Trends in flow-adjusted concentrations of fecal streptococcus bacteria,

1974-1981 (from Smith et al., 1987).

The null hypothesis: Hp is that there is no trend. However, any given test brings with

it a precise mathematical definition of what is meant by "no trend”, including a set of
background assumptions usually related to type of distribution and serial correlation.

The outcome of the test is a "decision” — either Hy is rejected or not rejected. “Failing

Trend Analysis

to reject HQ does no
statement that the e
Table 12.1 summariz
analysis.

Decision

Fail to reject Hy.
"No trend"
Reject Hp.
"Trend"
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_- 1o reject HO does not mean that it was "proven” that there is no trend. Rather, it is a

55 statement that the evidence available is not sufficient to conclude that there is a trend.
© Table 12.1 summarizes the possible outcomes of a statistical test in the context of trend

 analysis.
True Situation
—— No trend. Hg true. Trend exists. Hp false.
Fail to reject Hp. Probability = (Type Il error)
"No trend" I-a B
. [Reject Ho. (Type I error) (Power)
4 "Trend" significance level « 1-B

Table 12.1 Probabilities associated with possible outcomes of a trend test.
o =Prob (reject Ho|Hp true) and 1-p =Prob (reject Ho | Hp false)

The power (1-B) for the test can only be evaluated if the nature of the violation of Hp
that actually exists is known. This is never known in reality (if it were we wouldn't
need a test), so a test must be found which has high power for the kind of data expected
to be encountered. If a test is slightly more powerful in one instance but much less
powerful than its alternatives in some other reasonable cases then it should not be
used. The test selected should therefore be robust — it should have relatively high
power over all situations and types of data that might reasonably be expected to occur.

Some of the characteristics commonly found in water resources data, and discussed in

this chapter, are:

Distribution (normal, skewed, symmetric, heavy tailed)

Outliers (wild values that can't be shown to be measurement error)
Cycles (seasonal, weekly, tidal, diurnal) .
Missing values (a few isolated values or large gaps)
Censored data (less-than'values, historical floods)

Serial Correlation

1212 Approaches to Trend Testing

Five types of trend tests are presented in table 12.2. They are classified based on two
factors. The first, shown in the rows of the table, is whether the test is entirely
Parametric, entirely nonparametric, or a mixture of procedures. The second factor
(columns) is whether there is some attempt to remove variation caused by other
associated variables. The table uses the following notation:
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Y = the random response variable of interest in the trend test,

X = an exogenous variable expected to affect the value of Y,
R = the residuals from a regression or LOWESS of Y versus X, and

T = time (often expressed in years).
Simple trend tests (not adjusted for X) are discussed in section 12.2. Tests adjusted for

X are discussed in section 12.3.

Not Adjusted for X

Adjusted for X

Nonparametric

Mann-Kendall trend test
ony

Mann-Kendall trend test
on residuals R from
LOWESS of Y on X

Mixed

Mann-Kendall trend test
on residuals R from

regression of Y on X

Regression of Y
onXand T

Table 12.2  Classification of five types of tests for trend

Parametric Regression of Y on T

If the trend is spatial rather than temporal, T will be downstream order, distance
downdip, etc. Examples of X and Y include the following:
® For trends in surface water quality, Y would be concentration, X would be
streamflow, and R would be called the flow-adjusted concentration;
* For trends in flood flows, Y would be streamflow, X would be the precipitation
amount, and R would be called the precipitation-adjusted flow (the duration of
( precipitation used must be appropriate to the flow variable under consideration.
¥ For example, if Y is the annual flood peak from a 10 square mile basin then X
might be the 1-hour maximum rainfall, whereas if Y is the annual flood peak
for a 10,000 square mile basin then X might be the 24-hour maximum rainfall).
' * For trends in groundwater levels, Y would be the change in monthly water
level, X the monthly precipitation, and R would be called the precipitation-
IJ S adjusted change in water level.

122 Trend Tests With No Exogenous Variable

122.1 Nonparametric Mann-Kendall Test

Mann (1945) first suggested using the test for significance of Kendall's tau where the X
] variable is time as a test for trend. This was directly analogous to regression, where the
I ' test for significance of the correlation coefficient r is also the significance test for a

Tre

sim
for -

No ¢
resu.
to de
the ¢
ama
prod
units.
varia
value
data.

Figure ;



1 for

of
on.

S yend Analysis 327

mple linear regression. The Mann-Kendall test can be stated most generally as a test
for whether Y values tend to increase or decrease with T (monotonic change).

Hp:  Prob [Yj>Yil = 0.5, where time Tj> Tj.

Hi: Prob[Yj>Yil#05 (2-sided test).

No assumption of normality is required, but there must be no serial correlation for the
. resulting p-values to be correct. Typically the test is used for a more specific purpose —
to determine whether the central value or median changes over time. The spread of
the distribution must remain constant, though not necessarily in the original units. If
a monotonic transformation such as the ladder of powers is all that is required to

E produce constant variance, the test statistic will be identical to that for the original

: units. For example, in figure 12.2 a lognormal Y variable is plotted versus time. The
variance of data around the trend is increasing. A Mann-Kendall test on Y has a p-
value identical to that for the data of figure 12.3 — the logarithms of the figure 12.2
data. The logs show an increasing median with constant variance. Only the central
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Figure 12.3 Logarithms of Y versus Time. The variance of Y is constant over time.
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location changes. The Mann-Kendall test possesses the useful property of other
nonparametric tests in that it is invariant to (monotonic) power transformations such
as those of the ladder of powers. Since only the data or any power fransformation of
the data need be distributed similarly over T except for their central location in order
to use the Mann-Kendall test, it is applicable in many situations.

To perform the test, Kendall's S statistic is computed from the Y,T data pairs (see
Chapter 10). The null hypothesis of no change is rejected when S (and therefore
Kendall's © of Y versus T) is significantly different from zero. We then conclude that
there is a monotonic trend in Y over time.

An estimate of the rate of change in Y is also usually desired. If Y or some
transformation of Y has a linear pattern versus T, the null hypothesis can be stated as a
test for the slope coefficient B1 = 0. B7 is the rate of change in Y, or transformation of Y,
over time.

12.2.2 Parametric Regression of Y on T
Simple linear regression of Y on T is a test for trend

Y=0p+BieT+e¢
The null hypothesis is that the slope coefficient B; = 0. Regression makes stronger
assumptions about the distribution of Y over time than does Mann-Kendall. It must
be checked for normality of residuals, constant variance and linearity of the
relationship (best done with residuals plots - see Chapter 9). If Y is not linear over
time, a transformation will likely be necessary. If all is ok, the t-statistic on b1 is tested
to determine if it is significantly different from 0. If the slope is nonzero, the null
hypothesis of zero slope over time is rejected, and we conclude that there is a linear
trend in Y over time. Unlike Mann-Kendall, the test results for regression will not be
the same before and after a transformation of Y.

12.2.3 Comparison of Simple Tests for Trend

If the model form specified in a regression equation were known to be correct (Y is
linear with T) and the residuals were truly normal, then fully-parametric regression
would be optimal (most powerful and lowest error variance for the slope). Of course
we can never know this in any real world situation. If the actual situation departs,
even to a small extent, from these assumptions then the Mann-Kendall procedures
will perform either as well or better (see Chapter 10, and Hirsch et. al., 1991, p.805—806)-

There are practical cases where the regression approach is preferable, particularly in the
multiple regression context (see next section). A good deal of care needs to be taken to
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insure it is correctly applied and to demonstrate that to the audience. When one is
forced, by the sheer number of analyses that must be performed (say a many-station,
many-variable trend study) to work without detailed case-by-case checking of
assumptions, then nonparametric procedures are ideal. They are always nearly as
powerful as regression, and the failure to edit out or correctly transform a small

percentage of outlying data will not have a substantial effect on the results.

Example 1
Appendix C10 lists phosphorus loads and streamflow during 1974-1985 on the Illinois

River at Marseilles, IL. The Mann-Kendall and regression lines are plotted along with
the data in figure 12.4. Both lines have slopes not significantly different from zero at
o = 0.05. The large load at the beginning of the record and non-normality of data
around the regression line are the likely reasons the regression is considerably less
significant. Improvements to the model are discussed in the next sections.

100+
>
<
S o REGRESSION _
z = MANN-KENDALL
=
=
- 60
2
o
=
0 40+
=
o
O
R
& 20+
@]
s
o
0 I i i 1 I 1
1974 1976 1978 1980 1982 1984 1986
TIME, IN YEARS _
Figure 12.4 Mann-Kendall and regression trend lines (data in Appendix C10).
Regression:  Load = 16.8 — 0.46°time =-1.09 p=028

Mann-Kendall: Load = 12.2 - 0.33etime tau =~0.12 p=0.08.

123 Accounting for Exogenous Variables

Variables other than time trend often have considerable influence on the response
variable Y. These "exogenous" variables are usually natural, random phenomena
such as rainfall, temperature or streamflow. By removing the variation in Y caused by

= PR
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these variables, the background variability or "noise" is reduced so that any trend
"signal” present can be seen. The ability (power) of 2 frend test to discern changes in Y
with T is then increased. The removal process involves modelling, and thus
explaining, the effect of exogenous variables with regression or LOWESS (for
computation of LOWESS, see Chapter 10). This is the rationale for using the methods
in the right-hand column of table 12.2.

For example, figure 12.52 presents a test for trend in dissolved solids at the James River
in South Dakota. No adjustment for discharge was employed. The p-value for the test
equals 0.47, so no trend is able to be seen. The Theil estimate of slope is plotted,

DISSOLVED SOLIDS
JAMES RIVER NEAR SCOTLAND, SD

SLOPE = 13.8 mg/L/ YR, p=0.47

2500 + i .
=
g 2000¢ _ .
l& = a E
E_: 1500 ¢ . T ) " - -:
z -‘g} | | | | | | -
a k
g 1000+ .. -:‘:._"_ N -
5 " i o W
a) o 5001+ . . > ]
= ]
0 : : 1 - ! ! ; 1
1974 1978 1982 1986 1990
YEAR
FLOW-ADJUSTED DISSOLVED SOLIDS
JAMES RIVER NEAR SCOTLAND, SD
»500.  SLOPE=20mg/L/YR, p=0.0001
3 20004
g : -
£J 15001
& E
O 1000+
o)
b) O 500+
u
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Figure 125 Trend tests a) before adjustment for flow. b) after adjustment for flow.
(from Hirsch et al., 1991)
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showing the line to be surrounded by a lot of data scatter. In figure 12.5b, the same data
are plotted after using regression to remove the variation due to discharge. Note that
the amount of scatter has decreased. The same test for trend now has a p-value of
0.0001; for a given magnitude of flow, dissolved solids are increasing over time.

When removing the effect of one or more exogenous variables X, the probability
distribution of the Xs is assumed to be unchanged over the period of record. Consider
aregression of Y versus X (figures 12.6a and 6b). The residuals R from the regression
describe the values for the Y variable "adjusted for" exogenous variables (figure 12.6c).
In other words, the effect of other variables is removed by using residuals — residuals
express the variation in Y over and above that due to the variation caused by changes
in the exogenous variables. A trend in R implies a trend in the relationship between
X and Y (figure 12.6d). This in turn implies a trend in the distribution of Y over time
while accounting for X. However, if the probability distribution of the Xs has changed
over the period of record, a trend in the residuals may not necessarily be due to a trend
inY.
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12.6b. Ln of concentration vs. exogenous variable: In of streamflow (Q).
Strong linear relation shown by regression line.
Expect higher concentrations at higher flows.




