This is the html version of the file

http://www.slc.ca.gov/Reports/Carlsbad_Desalinization_Plant_Response/March_response/Minimization_Plan_030608_Chapt_4_2.pdf.

Google automatically generates html versions of documents as we crawl the web.

Page 1

4.3 ALTERNATIVE POWER PLANT INTAKE & SCREENING TECHNOLOGIES

A number of alternative intake and screening technologies were evaluated to determine whether they offer a viable and cost-effective reduction of impingement and entrainment associated with the desalination plant operations under the conditions of a complete shutdown of EPS operations. As indicated previously, under these conditions, the EPS intake facilities (combination of screens and pumps) will be operated to collect a total flow of 304 MGD which is 38 percent of the **installed** EPS intake pump capacity.

Under the stand-alone desalination plant operations, the existing **power** plant intake facilities will be operated at reduced flow and fewer pumps will be collecting water through the same existing intake screening facilities. The velocity of the water flowing into the intake would be reduced to 0.5 fps or less. This alone will substantially reduce the impingement impacts associated with the desalination plant operations to a level that the Coastal Commission acknowledged is "a *de minimis* impact."

Technologies listed in Table 4-1 have been evaluated based upon feasibility for implementation at the facility, including the following:

- Ability to achieve a significant reduction in impingement and entrainment (IM&E) for all species, taking into account variations in abundance of all life stages;
- · Feasibility of implementation at the facility;
- Cost of implementation (including installed costs and annual O&M costs);
- · Impact upon facility operations.

4.3.1 Fish Screens and Fish Handling and Return System

This alternative would include the replacement of the existing traveling screens within the tunnel system with new traveling screens that have features that could enhance fish survival are designed with the latest fish removal features, including the Fletcher type buckets on the **screen** baskets (**Ristroph**-type screens), dual pressure spray systems (low pressure to remove fish, and high pressure to remove remaining debris), and separate sluicing systems for discarding trash

Europe provider, of convenience to the period of the period to the contract of the contract of

and the second s

romannian de la company de la

AN XX

ong nyanggar ong tamil ne general proyecta, sajaraknise nin lasa (sa Sichembol in emila e salaran lan so balan

A Company of the second of the

The Market and The American State of the Market and The Market and

and the state of t

Cara de la companya de la calendar a postera a diffre partire di Magneta Servata de la Servata de la companya della companya della companya de la companya de la companya della companya d

tes dissiminations or trace?

person I Self. A concernance the Righteria colline of the Western State of the Collins of the Co

Mark the Garage and Server

as the manufacture and thought the present of the first

the second of th

the second of th

4.3 ALTERNATIVE POWER PLANT INTAKE & SCREENING TECHNOLOGIES

A number of alternative intake and screening technologies were evaluated to determine whether they offer a viable and cost-effective reduction of impingement and entrainment associated with the desalination plant operations under the conditions of a complete shutdown of EPS operations. As indicated previously, under these conditions, the EPS intake facilities (combination of screens and pumps) will be operated to collect a total flow of 304 MGD which is 38 percent of the installed EPS intake pump capacity.

Under the stand-alone desalination plant operations, the existing power plant intake facilities will be operated at reduced flow and fewer pumps will be collecting water through the same existing intake screening facilities. The velocity of the water flowing into the intake would be reduced to 0.5 fps or less. This alone will substantially reduce the impingement impacts associated with the desalination plant operations to a level that the Coastal Commission acknowledged is "a de minimis impact."

Technologies listed in Table 4-1 have been evaluated based upon feasibility for implementation at the facility, including the following:

- Ability to achieve a significant reduction in impingement and entrainment (IM&E) for all species, taking into account variations in abundance of all life stages;
- · Feasibility of implementation at the facility;
- Cost of implementation (including installed costs and annual O&M costs);
- Impact upon facility operations.

4.3.1 Fish Screens and Fish Handling and Return System

This alternative would include the replacement of the existing traveling screens within the tunnel system with new traveling screens that have features that could enhance fish survival are designed with the latest fish removal features, including the Fletcher type buckets on the screen baskets (Ristroph-type screens), dual pressure spray systems (low pressure to remove fish, and high pressure to remove remaining debris), and separate sluicing systems for discarding trash and returning the impinged fish back to the Aqua Hedionda Lagoon (AHL) or the ocean.

1

⁷ See Id. at 46.

TABLE 4-1
POTENTIAL IMPINGEMENT/ENTRAINMENT REDUCTION TECHNOLOGIES

	Impact Reduction Potential	
Technology	Impingement	Entrainment
Modified traveling screens with fish return	Yes	No
Replacement of existing traveling screens with fine mesh screens	Yes	Yes
New fine mesh screening structure	Yes	Yes
Cylindrical wedge-wire screens - fine slot width	Yes	Yes
Fish barrier net	Yes	No
Aquatic filter barrier (e.g. Gunderboom)	Yes	Yes
Fine mesh dual flow screens	Yes	Yes
Modular inclined screens	Yes	No
Angled screen system – fine mesh	Yes	Yes
Behavior barriers (e.g. light, sound, bubble curtain)	Maybe	No

The modified screening system could potentially improve impingement survival. This system however will have a negative effect in terms of entrainment reduction, because the intake pumps will need to collect more source water (3 MGD) to service the dual pressure spray system of the new screens. In addition, a fish return system is required as part of this scenario to transport fish washed from the screens alive back to the water body to a location where they would not be subject to re-entrainment into the intake.

The capital cost associated with this impingement reduction alternative is estimated at: US\$5.7 million. The annual O&M costs for such system are estimated at \$200,000 over the costs of operation of the existing intake screening system.

Poseidon considers this alternative to be infeasible for the following reasons:

- The impingement impacts of the proposed Project (0.96 kgs per day of fish species that are highly abundant in the area) have been found by the Coastal Commission, CEQA lead and others to be insignificant.
- Substantial construction costs for a limited benefit;
- The implementation of this alternative will result in increased entrainment because of the significant volume of additional seawater needed to be collected to operate the screen.

4.3.2 New Power Plant Intake and Fine Mesh Screening Structure

Fine mesh traveling screens have been tested and found to retain and collect fish larvae with some success. Application of fine mesh traveling screen technology for EPS would require the

construction of a complete new screen structure located at the south shore of the lagoon, including both coarse and fine mesh traveling screen systems and fish collection and return systems. This alternative would replace the existing trash rack structure with a much larger screening structure. Major modifications to the existing tunnel system would be required. Additionally, an appropriate and suitable location to return collected fish, shellfish, and their eggs and larvae would have to be constructed.

The demolition of the existing intake structure; removal of the existing screens; construction of a new intake structure; and installation of new coarse and fine mesh screens equipped with fish collection and return systems; would require a total construction expenditure of \$53.3 million. Similar to the previous technology, the implementation of this alternative will also require additional intake flow (4 MGD to 5 MGD) for the operation of the coarse and fine mesh screen organism retrieval and return systems. The additional O&M costs associated with the operation of this system are \$300,000 per year.

Poseidon considers this alternative infeasible for the following reasons:

- The impingement and entrainment impacts of the proposed Project have been found by the CEQA lead and others to be insignificant.
- Poseidon has committed to restore and enhance at least 37 of marine wetlands habitat that significantly overcompensates for the limited impact of the Project to marine resources.
- Uncertain survival of the captured marine organisms.
- Substantial increase in Project construction costs for a very limited benefit.

4.3.3 Cylindrical Wedge-Wire Screens - Fine Slot Width

Wedge-wire screens are passive intake systems, which operate on the principle of achieving very low approach velocities at the screening media. Wedge-wire screens installed with small slot openings reduce impingement and entrainment and is an EPA approved technology for compliance with the US EPA 316(b) Phase II rule provided the following conditions exist:

- The cooling water intake structure is located in a freshwater river or stream;
- The cooling water intake structure is situated such that sufficient ambient counter currents exist to promote cleaning of the screen face;
- The through screen design intake velocity is 0.5 ft/s or less;
- The slot size is appropriate for the size of eggs, larvae, and juveniles of any fish and shellfish to be protected at the site; and
- The entire water flow is directed through the technology.

Wedge-wire screens are designed to be placed in a water body where significant prevailing ambient cross flow current velocities (≥ 1 ft/s) exist. This cross flow allows organisms that would otherwise be impinged on the wedge-wire intake to be carried away with the flow. An integral part of a typical wedge-wire screen system is an air burst back-flush system, which directs a charge of compressed air to each screen unit to blow off debris and impinged organisms back into the water body where they would be carried away from the screen unit by the ambient cross flow currents.

The EPS, located on the tidal Agua Hedionda Lagoon, would not meet the first two EPA criteria discussed above. First, the intake is not located on a freshwater river. Second, there is not sufficient crosscurrent in the lagoon to sweep organisms and debris away from the screen units; so debris and organisms back-flushed from the screens would immediately re-impinge on the screens following the back-flush cycle. For these reasons, Poseidon considers this alternative infeasible.

4.3.4 Fish Net Barrier

A fish net barrier, as it would be applied to the EPS intake system, is a mesh curtain installed in the source water body in front of the exiting intake structure such that all flow to the intake screens passes through the net, blocking entrance to the intake of all aquatic life forms large enough to be blocked by the net mesh. The net barrier is sized large enough to have very low approach and through net velocities to preclude impingement of juvenile fish with limited swimming ability. The mesh size must be large enough to preclude excessive fouling during operation, while at the same time small enough to keep the marine organisms out of the intake system. These conditions typically limit the mesh size such that adult and a percentage of juvenile fish can be blocked. The mesh is not fine enough to block most larvae and eggs. The fish net barrier could potentially reduce impingement; however, it would not meet reduce the entrainment of eggs and larvae.

The fish net barrier technology is still experimental, with very few successful installations. Using a 20 gpm/ft² design loading rate, a net area of approximately 30,000 ft² would be required for EPS. Maintaining such a large net moored in the lagoon is not practical. In addition, the fish barrier is a passive screening device, which is subject to fouling and has no means for self-cleaning. This technology would be rapidly clogged with kelp and other debris. The services of a diving contractor would be required to remove the net for cleaning onshore and to replace the fouled net with a clean net on each cleaning cycle. For these reasons, this technology is not practically feasible for implementation at EPS and further evaluation is not warranted.

4.3.5 Aquatic Filter Barrier

An aquatic filter barrier system, such as the Gunderboom Marine Life Exclusion System (MLES)TM, is a moored water permeable barrier with fine mesh openings that is designed to prevent both impingement and entrainment of ichthyoplankton and juvenile aquatic life. An integral part of the MLES is an air-burst back flush system similar in concept to the air burst

system used with wedge-wire screen systems to back flush impinged organisms and debris into the water body to be carried away by ambient cross currents.

The MLES has much smaller mesh openings and would block fish eggs and larvae from being entrained into the intake. These smaller organisms would be impinged permanently on the barrier due to the lack of cross currents to carry them away. Consequently, this technology is not feasible for implementation at the existing EPS intake and further evaluation is not warranted.

4.3.6 Fine Mesh Dual Flow Screens

A modified dual flow traveling water screen is similar to the through flow design, but this type of screen would be turned 90 degrees to the direction of the flow so that its two faces would be parallel to the incoming water flow. When equipped with fine mesh screening media, the average 0.5 fps approach velocity to the screen face would have to be met by the dual flow screen design. Water flow enters the dual flow screen through both the ascending and the descending screen faces, and then flows out between the two faces. All of the fish handling features of the Ristroph screen design would be incorporated in the dual flow screen design.

The dual flow screen configuration has been shown to produce low survival rates for fish larvae. This is because of the longer impingement time endured by organisms impinged on the descending face of the screen. This longer impingement time is suspected to result in higher mortality rates than similar fine mesh screens with a flow through screen design.

The primary advantage of this screen configuration is the elimination of debris carryover into the circulating water system. Also, because both ascending and descending screen faces are utilized, there is greater screening area available for a given screen width than with the conventional through-flow configuration.

However, the dual flow screen can create adverse flow conditions in the approach flow to the circulating water pumps. The flow exiting the dual flow screens is turbulent with an exit velocity of greater than 3 fps. Modifications to the pump bays downstream of the screens, usually in the form of baffles to break up and laterally distribute the concentrated flow prior to reaching the circulating water pumps would be required.

The implementation of this technology to the EPS CWIS would require an entirely new intake screen structure similar to the fine mesh through flow intake screen structure discussed previously. The dual flow fine mesh screen configuration offers no advantages in terms reduction of impingement and entrainment mortality as compared to through flow fine mesh traveling screens discussed above and in fact would probably not perform as well as the through flow design. The design concept for the dual flow screen structure would be similar to the through flow fine mesh screen structure with trash racks, coarse mesh traveling screens and fine mesh traveling screens in each screen train. The implementation cost and operation and maintenance costs for this facility would be of the same order of magnitude as for the through flow screen structure. Dual flow screen technology does not offer a significant performance or cost

advantage as compared with through flow screen technology. Therefore, the use of this technology for the EPS is not recommended.

4.3.7 Modular Inclined Screens

Modular Inclined Screen (MIS) is a fish protection technology for water intakes developed and tested by the Electric Power Research Institute (EPRI). This technology was developed specifically to bypass fish around turbines at hydro-electric stations. The MIS is a modular design including an inclined section of wedge-wire screen mounted on a pivot shaft and enclosed within a modular structure. The pivot shaft enables the screen to be tilted to back-flush debris from the screen. The screen is enclosed within a self-contained module, designed to provide a uniform velocity distribution along the length of the screen surface. Transition guide walls taper in along the downstream third of the screen, which guide fish to a bypass flume. A full size prototype module would be capable of screening up to 800 cfs (518 MGD) at an approach velocity of 10 ft/sec.

The MIS design underwent hydraulic model studies and biological effectiveness testing at Alden Research Laboratory to refine the hydraulic design and test its capability to divert fish alive. Eleven species of freshwater fish were tested including Atlantic salmon smolt, coho salmon, Chinook salmon, brown trout, rainbow trout, blueback herring, American shad and others. After some refinements in the design were made during this testing, the results showed that most of these species and sizes of fish can be safely diverted.

Following laboratory testing, the MIS design was field tested at the Green Island Hydroelectric Project on the Hudson River in New York in the fall of 1995. In addition to the MIS, the effectiveness of a strobe light system was also studied to determine its ability to divert blueback herring from the river to the MIS. Results for rainbow trout, golden shiner and blueback herring, which were released directly into the MIS module were similar to the laboratory test results in terms of fish survivability. The limited amount of naturally entrained blueback herring did not allow reliable evaluation of test results.

The MIS technology, as tested, does not address entrainment of eggs and larvae. Also, this technology has never been tested for, or installed in, a power station with a seawater intake system. Further research would be required to evaluate the efficacy of this technology for application to a seawater intake system. MIS is not a suitable and proven technology, at this time, for retrofit to the EPS intake system. Therefore, this technology is not found viable the desalination plant intake impact.

4.3.8 Angled Screen System - Fine Mesh

Angled screens are a special application of through-flow screens where the screen faces are arranged at an angle of approximately 25 degrees to the incoming flow. The conventional through-flow screen arrangement would place the screen faces normal or 90 degrees to the incoming flow. The objective of the angled-screen arrangement is to divert fish to a fish bypass

system without impinging them on the screens. Most fish would not be lifted out of the water but would be diverted back to the receiving water by screw-type centrifugal or jet pumps.

Using fine screen mesh on the traveling screens minimizes entrainment, but increases potential for impingement of organisms that would have otherwise passed through the power plant condenser tubes. Application of this technology would require construction of new angled screen structure at the south shore of the lagoon similar to the new fine mesh screen intake structure discussed previously. The angled screen facility would not provide a significant performance advantage in terms of reducing impingement and entrainment as compared to the fine mesh screen structure, and would be at least as large and a significantly more complex structure. This facility would be potentially more costly to implement and maintain than the fine mesh screen facility. Therefore, further evaluation of this technology for the EPS is not warranted.

4.3.9 Behavior Barriers

A behavioral barrier relies on avoidance or attraction responses of the target aquatic organisms to a specific stimulus to reduce the potential of entrainment or impingement. Most of the stimuli tested to date are intended to repulse the organism from the vicinity of the intake structure.

Nearly all the behavioral barrier technologies are considered to be experimental or limited in effectiveness to a single target species. There are a large number of behavioral barriers that have been evaluated at other sites, and representative examples these are discussed separately below.

4.3.10 Offshore Intake Velocity Cap

This is a behavioral technology associated with a submerged offshore intake structure(s). The velocity cap redirects the area of water withdrawal for an offshore intake located at the bottom of the water body. The cap limits the vertical extent of the offshore intake area of withdrawal and avoids water withdrawals from the typically more productive aquatic habitat closer to the surface of the water body.

This technology operates by redirecting the water withdrawal laterally from the intake (rather than vertically from an intake on the bottom), and as a result, the water entering the intake is accelerated laterally and is more likely to provide horizontal velocity cues to fish and allow fish to respond and move away from the intake. Potentially susceptible juvenile and adult fish that are able to identify these changes in water velocity as a result of their lateral line sensory system are able to respond and actively avoid the highest velocity areas near the mouth of the intake structure.

This technology potentially reduces impingement of fish by stimulating a behavioral response. The technology does not necessarily reduce entrainment, except when the redirected withdrawal takes water from closer to the bottom of the water body and where that location has lower plankton abundance.

Application of this technology to the EPS, to be fully effective, would require development of an entirely new intake system with a submerged intake structure and connecting intake conduit system installed out into the Pacific Ocean. For the reasons previously discussed, this is not a practically feasible consideration for the EPS. Therefore, further evaluation of this technology is not warranted.

4.3.11 Air Bubble Curtain

Air bubble curtains have been tested alone and in combination with strobe lights to elicit and avoidance response in fish that might otherwise be drawn into the cooling water intake. Generally, results of testing the bubble curtain have been poor based on testing completed by EPRI. Therefore, further evaluation of this technology is not warranted.

4.3.12 Strobe Lights

There has been a great deal of research with this stimulus over the last 15 years to guide fish away from intake structures. The Electric Power Research Institute has co-funded a series of research projects and reviewed the results of research in this field as well. In both laboratory studies and field applications, strobe lights were shown to effectively move selected species of fish away from the flashing lights. Most of the studies conducted to date have been with riverine fish species and for projects associated with hydroelectric generating facilities. One early study was conducted at the Roseton Generating Facility on the Hudson River in New York, another study was conducted on Lake Cayuga in New York, and others for migratory stages of Atlantic and Pacific salmon. Few species similar to those occurring in the Agua Hedionda Lagoon have been tested for avoidance response either in the lab or in actual field studies.

Laboratory testing was done for an application of strobe lights for the San Onofre Nuclear Generating Facility. Testing was conducted for white croaker, Pacific sardine and northern anchovy. The testing demonstrated no conclusive results and the California Coastal Commission found this device not useful at this station. Therefore, further evaluation of this technology is not warranted.

4.3.13 Other Lighting

Incandescent and mercury vapor lights have also been tested as a behavioral stimulus to direct fish away from an intake structure. Mercury lights have generally been tested as a means of drawing fish to a safe bypass of the intake structure as generally the light has an attractive effect on fish. Tests have not demonstrated a uniform and clearly repeatable pattern of attraction for all fish species. The mercury lights have been somewhat effective in attracting European eel, Atlantic salmon, and Pacific salmon. But results with other species including American shad, blue back herring and alewife had more variable results. One test with different life stages of Coho salmon shows both attraction and repulsion from the mercury light for the different life

stages of the coho. Testing with incandescent, sodium vapor and fluorescent lamps was more limited but also had variable and species specific results.

Other lighting systems, as with most all the behavioral barrier alternatives, have not been tested with the species of fish common in Agua Hedionda Lagoon. As a result there is no basis to recommend these lights systems as an enhancement to reduce impingement or entrainment at the EPS.

4.3.14 Sound

Sound has also been extensively tested in the last 15 years as a method to alter fish impingement rates at water intake structures. Three basic groups of sound systems including percussion devices (hammer, or poppers), transducers with a wide range of frequency output, and low frequency or infrasound generators, have all been tested on a variety of fish species.

Of all the recently studied behavioral devices the sound technology has demonstrated some success with at least one group of fish species. Clupeids, such as alewife, demonstrate a clear repulsion to a specific range of high frequency sound. A device has been installed in the Fitzpatrick Nuclear Generating station on Lake Ontario in New York State, which has been effective in reducing impingement of landlocked alewives. The results were repeated with alewife at a coastal site in New Jersey. Similar results with a high frequency generator also reported a strong avoidance response for another clupeid species, the blue back herring, in a reservoir in South Carolina.

Testing of this high frequency device on many other species including weakfish, spot, Atlantic croaker, bay anchovy, American shad, blue back herring, alewife, white perch, and striped bass demonstrated a similar and strong avoidance response by American shad and blue back herring. Alewife and sockeye salmon have also been reported to be repelled by a hammer percussion device at another facility. But testing of this same device at other facilities with alewife did not yield similar results.

Although high frequency sound has potential for eliciting an avoidance response by the Alosid family of fish species, there is no data to demonstrate a clear avoidance response for the species of fish common to the Agua Hedionda Lagoon. Therefore there is no basis to use sound as a viable method to reduce impingement of fish at the EPS.

4.3.15 Installation of Variable Frequency Drives on Existing Power Plant Intake Pumps

Under this alternative, variable frequency drives would be installed on the EPS intake cooling water pumps to minimize the volume of water collected for the desalination plant operations. As indicated previously, the total volume of seawater that is required for the normal operation of the desalination plant is 304 MGD. Of this flow, 104 MGD will be collected for production of fresh water, while the remaining 200 MGD of seawater will be used to dilute the concentrated seawater from the desalination plant.

As indicated in Table 2-1, the EPS has ten cooling water pumps of total capacity of 794.9 MGD. Currently, all of these pumps are equipped with constant speed motors. Each of the five existing power generation units is coupled with two cooling pumps per unit and both pumps are operated when a given power generator is in service. Because the individual power generation units are designed to operate efficiently only at a steady-state near constant rate of electricity production and therefore, near constant thermal discharge load, reducing cooling flow by VFD in order to diminish entrainment would result in an increased temperature of the thermal discharge which in turn would have a detrimental effect on the marine organisms in the discharge area. The installation of VFDs is also limited by physical site constraints. The VFD units would need to be located near the pump motors in the existing concrete pump pit, which would need to be enlarged in order to accommodate this equipment. The cost associated with such mayor structural modifications along with the cost of the VFDs would exceed \$8.5 million. Taking into consideration the limited useful life of the existing power plant, such large expenditures at this time are not prudent.

Under stand-alone operational conditions of the desalination plant, the power plant intake pumps would be operated as described in the precious section (Section 3 – Design). The cooling water pump operations will be decoupled from the condenser operations, which would substantially reduce the seawater velocity through screens. Under these conditions, the intake flow of the desalination plant (and associated entrainment) would be controlled by the VFD system of the desalination plant intake pump station. Installing an additional VDF system on the power plant intake pumps would have a negligible benefit.

In summary, installation of variable frequency drives on existing power plant intake pumps would provide limited benefits to marine life while significantly interfering with ongoing power plant operations. Taking into account economic, environmental and technological factors, this alternative has been determined to be infeasible.

4.3.16 Summary Evaluation of Power Plant Intake and Screening Alternatives

Implementation of the alternatives associated with the modification of the existing power plant intake and screening facilities were found to be infeasible because they would interfere with, or interrupt, power plant scheduled operations. Such significant modifications of the existing intake, and prolonged periods of power plant downtime are difficult to justify given the limited environmental benefit. The extended disruption to power plant operations and significant expenditures associated such modifications would not yield commensurate benefits for the following key reasons:

1. Impingement. The impingement impact of the stand-alone operation of the desalination plant has been found to be insignificant by both the City of Carlsbad (Project EIR) and de minimis according to the Coastal Commission (Draft CDP Findings) (approximately 2

lbs/day of fish). ⁸ Therefore, complex and costly intake modifications to reduce this already minimal impingement impact are not prudent. In addition, operational modifications of the existing EPS intake system under stand-alone CDP operation would reduce the fine screen-flow through velocity to further minimize impingement.

2. Entrainment. The entrainment impact of the stand-alone CDP operation is mainly driven by the volume of intake flow needed to produce fresh drinking water. In contrast with power plant operations, where water is not essential to produce electricity, in seawater desalination, seawater has to be collected and used to produce fresh water. Therefore, CDP entrainment effects cannot be avoided completely or minimized drastically by modifying the existing power plant intake facilities. Quite the opposite, many of the impingement reduction scenarios (see Sections 4.3.1, 2 &3 and 4.3.6,7&8) could increase the total flow needed for stand-alone desalination plant operations, thereby trading negligible impingement reduction benefits for incremental increase in entrainment.

Taking into account these economic, environmental and technological factors, the power plant intake screening alternatives are not capable of being accomplished in a successful manner within a reasonable period of time; and therefore, have been determined to be infeasible. The Coastal Commission draft findings agree with this conclusion: "The impingement impact of the stand-alone operation of the desalination plant has been found to be *de minimis* and insignificant"; and "the Commission finds that Poseidon's proposal is using all feasible methods to minimize or reduce its entrainment impacts."

When the EPS permanently ceases the use of the once-through cooling water system, additional entrainment and impingement technologies may become feasible. While no timeline has been established as to when this might occur, SLC staff is recommending that in ten years Poseidon would be required to evaluate and implement those additional technologies it determines are appropriate in light of an environmental review it would undertake at that time:

1 The draft State Lands Commission lease would require, ten years after the lease is issued, that the CDP be subject to further environmental review to ensure its operations at that time are using technologies that may reduce any impacts.

4.4 DESALINATION TECHNOLOGIES FOR IMPROVED SURVIVAL OF MARINE LIFE

Seawater desalination treatment processes and technologies differ significantly from these used in once-trough cooling power generation. In power plant installations, all of the entrained organisms pass through a complex system of power generation equipment and piping, and are exposed to thermal stress caused by high-temperature heat exchangers before they exit the power

⁹ See Coastal Commission Recommended Revised Findings Coastal Development Permit for Poseidon Carlsbad Desalination Project, page 40 of 108; http://documents.coastal.ca.gov/reports/2008/3/W25a-3-2008.pdf

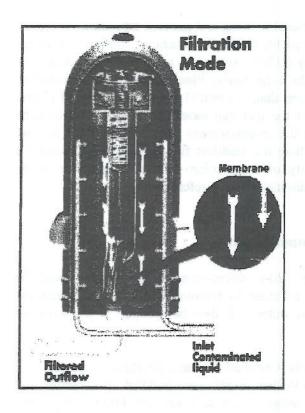
⁸ See Final Environmental Impact Report EIR 03-05 and Coastal Commission Recommended Revised Findings Coastal Development Permit for Poseidon Carlsbad Desalination Project, page 40 of 108; http://documents.coastal.ca.gov/reports/2008/3/W25a-3-2008.pdf

¹¹ State Lands Commission October 24, 2007 recommended Amendment of Lease PRC 8727.1.

plant with the discharge. Therefore, typically a 100 percent mortality of marine organisms is assumed during the once-through cooling power generation process. State-of-the art reverse osmosis seawater desalination plants, such as the CDP, differ by the following key features:

- 1. Seawater is not heated in order to produce drinking water, which eliminates the thermal stress of marine organisms entrained in the source water flow;
- Marine organisms are captured in the first stage of treatment (pretreatment) and therefore, do not pass through most of the desalination plant facilities, which in turn increases their chance of survival. The captured marine organisms are returned to the ocean.

The Carlsbad seawater desalination plant will incorporate a number of technologies that would reduce entrainment and increase the potential to capture marine organisms and to successfully return them to the ocean. These technologies are described below.


4.4.1 Installation of Variable Frequency Drives on Desalination Plant Intake Pumps

The desalination plant intake pump station will be equipped with variable frequency drive system to closely control the volume of the collected seawater. As water demand decreases during certain periods of the day and the year, the variable frequency drive system will automatically reduce the intake pump motor speed thereby decreasing intake pump flow to the minimum level needed for water production.

As in any other water treatment plant, the desalination plant production would vary diurnally and seasonally in response to water demand fluctuations. If variable frequency drive system is not available, the CDP intake pumps would collect a constant flow corresponding to the highest flow requirements of the CDP. The installation of VFD system at the intake pump station would reduce the total intake flow of the desalination plant compared to constant speed-design, which in turns would result in proportional decrease in entrainment associated with desalination plant operations. Pump motor operation at reduced speed during off-peak demand periods also would increase the chance for survival of the marine organisms entrained in the source seawater.

4.4.2 Installation of Micro-screens Ahead of Seawater Pretreatment Facilities

A very fine screen (120 micron/0.12 mm) or also known as micro-screen filtration technology is planned to be installed to filter out most of the marine organisms entrained by the desalination plant intake pumps. The micro-screens are equipped with polypropylene discs, which are diagonally grooved on both sides to a specific micron size. A series of these discs are stacked and compressed on a specially designed spine. The groove on the top of the disks runs opposite to the groove below, creating a filtration element with series of valleys and traps for marine particulates. The stack is enclosed in corrosion and pressure resistant housing. Filtration occurs while water is percolating from the peripheral end to the core of the element (Figure 4-8).

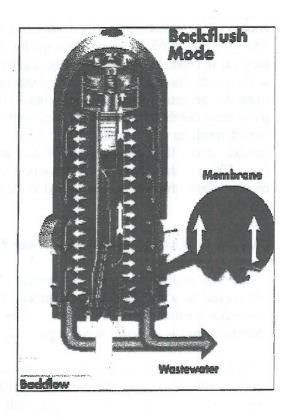


Figure 4-8. Microscreens in filtration and backwash flow modes

Since the intake seawater is already pre-screened by the 3/8 to 5/8- inch power plant intake screens, the seawater directed to the disk filters will contain debris and marine organisms smaller than 3/8-inch (9500 microns) (5/8-inch = 15.8 mm = 15,800 microns). During the filtration mode, seawater debris and marine organisms larger than 15,800 microns but smaller than 120 microns will be retained and accumulated in the cavity between the filter disks and the outer shell of the filters, thereby increasing the head loss through the filters. Once the filter head loss reaches a preset level (typically 5 psi or less) the filters enter backwash mode. All debris and marine organisms retained on the outer side of the filters are then flushed by tangential water jets of filtered seawater flow under 2 to 3 psi of pressure and the flush water is directed to a pipe, which returns the debris and marine organisms retained on the filters back to the ocean.

Because of the small size and relatively low differential pressure, these filters are likely to minimize entrainment and impingement mortality of the marine organisms in the source seawater. Since the disk filtration system is equipped with a wash water/organism return pipe, the impinged marine organisms are returned back to the ocean, thereby increasing their chance of survival. Based on US EPA source (US EPA, 2002, Technical Development Document for the Proposed Section 316 (b) Phase II Existing Facilities Rule, EPA 821-R-02003) fine mesh screens show promise for both impingement and entrainment control and "can reduce entrainment by 80 % or more". According to this source, the use of 0.5 mm (500 μ) screen at the Big Bend Power Plant in Tampa Bay area, "the system efficiency in screening fish eggs (primarily drums and bay anchovy) exceeded 95 % with 80 % latent survival for drum and 93 % efficiency for bay

anchovy. For larvae (primarily drums, bay anchovies, blennies, and gobies), screening efficiency was 86 % with 65 % latent survival for drum and 66 % for bay anchovy. (Note that latent survival in control samples was also approximately 60 %). According to the same source, a full-scale test by the Tennessee Valley Authority at the John Sevier Plant showed less than half as many larvae entrained with a 0.5-mm (500 μ) screen than 1.0 mm (1,000 μ) and 2.0 mm (2,000 μ) screens combined. These data are indicative of the fact that most likely using finer screens would result in lower entrainment effect. Since the micro-screens proposed for the Carlsbad project have 120 μ openings which are smaller than the smallest fine screens used elsewhere (i.e., 500 μ), the entrainment reduction capability of these micro-screens is expected to be comparable to the fine screens tested at the full scale installations referenced above.

4.4.3 Use of Low Pressure Membrane Pretreatment System

After the source seawater is screened by the $120-\mu$ micro-screens, this water would be conveyed to a membrane pretreatment system in order to remove practically all remaining suspended solids and particulates. The filtered water will then be pumped to the seawater reverse osmosis system for salt separation.

The pretreatment system planned to be used for the Carlsbad seawater desalination project will consist of submerged ultrafiltration (UF) hollow-fiber membranes bundled in cassettes and operated under slight vacuum – typically in a range of 2.5 to 6 psi (see Figure 4-9). The nominal fiber pore size of the UF membranes is 0.02 μ . Practically all marine organisms that were not removed by the 120- μ micro-screens (mostly algae and other phyto- and zooplankton) would be retained by the UF membranes and would periodically be returned back to the ocean during the backwash cycle of these membranes. Membrane backwash would typically be completed with air and water once every 20 to 40 minutes. No chemicals are planned to be applied for seawater conditioning prior to filtration.

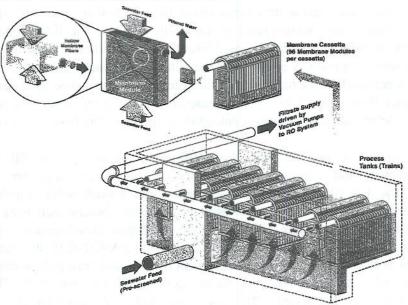


Figure 4-9 - Ultrafiltration Pretreatment System

Evaluation of the same UF pretreatment technology at the Carlsbad seawater desalination pilot plant indicates that the UF system retains all plankton and has potential to be effective entrainment reduction measure. Initial microscopic analysis of the phytoplankton in the UF system backwash completed by M-REP Consulting shows that over 70 % of algal cells maintain their integrity after passing through the micro-screens and the ultrafiltration process (see Figure 4-10). 12

Figure 4-10 - Algae Removed by the UF Pretreatment System

4.5 SUMMARY OF THE FEASIBILITY ASSESSMENT OF TECHNOLOGY FEATURES TO MINIMIZE IMPACTS TO MARINE LIFE

A combination of intake, screening and treatment technologies were found to be feasible for the site-specific conditions of the proposed Project. The technology features are included in the CDP to minimize impacts to marine life are summarized in Table 4-2.

¹² M-Rep Consulting, Update on the preliminary results of the Carlsbad Pilot Algal Study, February 27, 2008.

TABLE 4-2
DESIGN FEATURES TO MINIMIZE IMPACTS TO MARINE LIFE

Category	Feature	Result Reduce the total intake flow for the desalination facility to no more than that needed at any given time, thereby minimizing the entrainment of marine organisms.	
1. Technology	Installation of VFDs on CDP intake pumps		
2. Technology	Installation of micro-screens	Micro-screens (120 μ) minimize entrainment and impingement impacts to marine organisms by screening the fish larvae and plankton from the seawater.	
3. Technology	Installation of low impact prefitration technology	The desalination facility will rely on low pressure, chemical free membrane pretreatment filtration technology to minimize entrainment and impingement impacts to marine organisms that have passed through the micro-screens by filtering the organisms from the seawater.	
4. Technology	Return to the ocean of marine organisms captured by the screens and filters	Substantial reduction in entrainment and impingement impacts to marine organisms captured by the screens and membrane filter by returning the organisms to the ocean. Studies indicate potential for survival of 80 percent or more of the larvae captured	
		by the micro-screens and 70 percent of the algae and other phyto- and zooplankton captured by the membrane filter.	
5. Technology	Ten years after the lease is issued, that the CDP will be subject to further environmental review by the State Lands Commission (SLC) to analyze all environmental effects of facility operations and alternative technologies that may reduce any impacts found.	SLC may require additional requirements as are reasonable and as are consistent with applicable state and federal laws and regulations. This ensures that the CDP operations at that time are using technologies that the SLC determines may reduce any impacts and are appropriate in light of environmental review.	

In addition, taking into account economic, environmental and technological factors previously discussed, the following technology alternatives intake are not capable of being accomplished in a successful manner within a reasonable period of time; and therefore, have been determined to be infeasible.

- Installation of subsurface intakes (beach wells, slant wells, infiltration galleries, etc.) is infeasible for the site-specific conditions of the Carlsbad project because of the limited production capacity, poor water quality of the coastal aquifer, extensive environmental damage associated with the implementation of such intakes and excess cost.
- Construction of new open ocean intake in the vicinity of the project site was found more environmentally damaging than the use of the existing intake located in Agua Hedionda Lagoon. This alternative is also cost-prohibitive.
- Major physical or structural modifications to the existing power plant intake facilities were found to be infeasible because of the very limited potential of impingement and entrainment benefits they could offer as well as practical constraints with their implementation while the power plant is in operation.
- Installation of variable frequency drives on existing power plant intake pumps would provide limited benefits to marine life while significantly interfering with ongoing power plant operations. Taking into account economic, environmental and technological factors, this alternative has been determined to be infeasible.

and a supplementary of the supplementary and the supplementary of the su

The second of th

not a a comparation to a confidence of the confi

The state of the second section of the second second section of the second secon