AR-13367

GZA GeoEnvironmental, Inc. Engineers and Scientists

#### VIA EMAIL

March 9, 2012 File No. 04.0029307.00



380 Harvey Road Manchester

New Hampshire

www.gza.com

03103-3347 603-623-3600 FAX 603-624-9463 Ms. Nancy Lesieur Industrial Pretreatment Coordinator Winnipesaukee River Basin Program Wastewater Treatment Plant Water Division New Hampshire Department of Environmental Services 528 River Street Franklin, New Hampshire 03235

Re: Wastewater Discharge Monitoring Report Treated Wastewater Merrimack Station Public Service of New Hampshire Bow, New Hampshire

Dear Ms. Lesieur:

On behalf of Public Service of New Hampshire (PSNH), GZA GeoEnvironmental, Inc. is pleased to submit the attached Analytical Data Report for sampling conducted on February 9, 2012, in accordance with Special Agreement – PSNH and WRBP Wastewater Treatment Plant, which requires that "Any testing results on the proposed discharge after start up at your facility will need to be forwarded to us for our review and files."

#### ANALYTICAL DISCUSSION

Flue Gas Desulfurization (FGD) wastewater requires specialized analytical techniques to overcome matrix interference for certain analysis of trace metals. To assist you in evaluating this issue further, we offer an excerpt below from the United States Environmental Protection Agency (EPA) web site and a link to their draft Standard Operating Procedure (SOP) for trace metals analysis of FGD wastewater that contains further guidance.

#### LABORATORY ANALYSIS OF FGD WASTEWATER

Wastewater from FGD systems can contain constituents known to cause matrix interferences. EPA has observed that, during inductively coupled plasma – mass spectrometry (ICP-MS) analysis of FGD wastewater, certain elements commonly present in the wastewater may cause polyatomic interferences that bias the detection and/or quantization of certain elements of interest. These potential interferences may become significant when measuring trace elements at concentrations in the low parts-per-billion range.

As part of a recent sampling effort for the steam electric power generating effluent guidelines rulemaking, EPA developed an SOP that was used in conjunction with EPA Method 200.8 to conduct ICP-MS analyses of FGD wastewater. The SOP describes critical technical and quality assurance procedures that were implemented to mitigate anticipated interferences and generate reliable data for FGD wastewater.

Copyright © 2012 GZA GeoEnvironmental, Inc.

An Equal Opportunity Employer M/F/V/H

EPA regulations at 40 CFR 136.6 already allow the analytical community flexibility to modify approved methods to lower the costs of measurements, overcome matrix interferences, or otherwise improve the analysis. The draft SOP developed for FGD wastewater takes a proactive approach toward looking for and taking steps to mitigate matrix interferences, including using specialized interference check solutions (i.e., a synthetic FGD wastewater matrix). EPA's draft SOP is being made available to laboratories contemplating ICP-MS analysis of FGD wastewater, either for adoption as currently written or to serve as a framework for developing their own laboratory-specific SOP. For further information, see:



Standard Operating Procedure: Inductively Coupled Plasma/Mass Spectrometry for Trace Element Analysis in Flue Gas Desulfurization Wastewaters (30 pp, 174K), http://water.epa.gov/scitech/wastetech/guide/upload/steam\_draft\_sop.pdf, EPA May 2011.

Considering that specialized analytical techniques are necessary to overcome matrix interference for certain analysis of trace metals in FDG wastewater, we recommend any analysis on FGD wastewater be conducted in accordance with the EPA draft SOP for trace metals analysis of FGD wastewater.

Should you have any questions concerning this report, please do not hesitate to contact me at (603) 232-8744.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

onold a. Breton

Ronald A. Breton, P.E. Principal

RAB:tmd

P:\04Jobs\0029300s\04.0029307.00\Work\SAMPLING AND REPORTING\REPORTS\Franklin\REPORT\FINAL 04.0029307 Franklin DATA RPT 030812.docx

Attachment: Analytical Data Report

agatora analytical

. .



### ANALYTICAL DATA REPORT

# eastern analytical

Paul Pepler GZA GeoEnvironmental, Inc. (NH) 380 Harvey Road Manchester, NH 03103



Subject: Laboratory Report

Eastern Analytical, Inc. ID: 107558 Client Identification: Wastewater Analysis - Weekly Date Received: 2/9/2012

Dear Mr. Pepler:

Enclosed please find the laboratory report for the above identified project. All analyses were performed in accordance with our QA/QC Program. Unless otherwise stated, holding times, preservation techniques, container types, and sample conditions adhered to EPA Protocol. Samples which were collected by Eastern Analytical, Inc. (EAI) were collected in accordance with approved EPA procedures. Eastern Analytical, Inc. certifies that the enclosed test results meet all requirements of NELAP and other applicable state certifications. Please refer to our website at www.eailabs.com for a copy of our NELAP certificate and accredited parameters.

The following standard abbreviations and conventions apply to all EAI reports:

Solid samples are reported on a dry weight basis, unless otherwise noted

- < : "less than" followed by the reporting limit
- > : "greater than" followed by the reporting limit
- %R: % Recovery

Eastern Analytical Inc. maintains certification in the following states: Connecticut (PH-0492), Maine (NH005), Massachusetts (M-NH005), New Hampshire/NELAP (1012), Rhode Island (269) and Vermont (VT1012).

The following information is contained within this report: Sample Conditions summary, Analytical Results/Data, Quality Control data (if requested) and copies of the Chain of Custody. This report may not be reproduced except in full, without the the written approval of the laboratory.

If you have any questions regarding the results contained within, please feel free to directly contact me or the chemist(s) who performed the testing in question. Unless otherwise requested, we will dispose of the sample(s) 30 days from the sample receipt date.

We appreciate this opportunity to be of service and look forward to your continued patronage.

Sincerely,

1.34

Lorraine Olashaw, Lab Director

THE ALL AND

# of pages (excluding cover letter)

1 - Set 1 -----

www.cailabs.com

報告がしました。

#### Client: GZA GeoEnvironmental, Inc. (NH)

1

Client Designation: Wastewater Analysis - Weekly

| Temperat   | ture upon receipt (°C): 2   | 0                |                 | Re               | eceived         | on ice or cold packs (Yes/No): Y                      |
|------------|-----------------------------|------------------|-----------------|------------------|-----------------|-------------------------------------------------------|
| Acceptable | temperature range (°C): 0-6 |                  |                 |                  |                 |                                                       |
| Lab ID     | Sample ID                   | Date<br>Received | Date<br>Sampled | Sample<br>Matrix | % Dry<br>Weight | Exceptions/Comments (other than thermal preservation) |
| 107558.01  | Effluent Field Blank        | 2/9/12           | 2/9/12          | aqueous          |                 | Adheres to Sample Acceptance Policy                   |
| 107558.02  | Treat Tank Effluent         | 2/9/12           | 2/9/12          | aqueous          |                 | Adheres to Sample Acceptance Policy                   |

Samples were properly preserved and the pH measured when applicable unless otherwise noted. Analysis of solids for pH, Flashpoint, Ignitibility, Paint Filter, Corrosivity, Conductivity and Specific Gravity are reported on an "as received" basis.

All results contained in this report relate only to the above listed samples.

References include:

1) EPA 600/4-79-020, 1983

2) Standard Methods for Examination of Water and Wastewater : Inorganics, 19th Edition, 1995; Microbiology, 20th Edition, 1998 3) Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB

4) Hach Water Analysis Handbook, 2nd edition, 1992

eastern analytical, inc.

www.eailabs.com



## Client: GZA GeoEnvironmental, Inc. (NH)

Client Designation: Wastewater Analysis - Weekly

| Sample ID:     | Treat Tank Effluent |  |  |       |         |        |         |         |
|----------------|---------------------|--|--|-------|---------|--------|---------|---------|
| Lab Sample ID: | 107558.02           |  |  |       |         |        |         |         |
| Matrix:        | aqueous             |  |  |       |         |        |         |         |
| Date Sampled:  | 2/9/12              |  |  |       | An      | alysis |         |         |
| Date Received: | 2/9/12              |  |  | Units | Date    | Time   | Method  | Analyst |
| рН             | 7.2                 |  |  | SU    | 2/09/12 | 10:56  | 4500H+I | B CJJ   |

eastern analytical, inc.

www.eailabs.com

#### Client: GZA GeoEnvironmental, Inc. (NH)

Client Designation: Wastewater Analysis - Weekly

| Parameter Name | Blank | LCS          | LCSD                 | Units | Date of<br>Analysis | Limits      | RPD | Method  |
|----------------|-------|--------------|----------------------|-------|---------------------|-------------|-----|---------|
| рН             |       | 6.0 (101 %R) | 6.0 (101 %R) (0 RPD) | SL    | J 2/9/12            | 5.95 - 6.07 | 10  | 4500H+B |
|                |       |              |                      |       |                     |             |     |         |

Samples were analyzed within holding times unless noted on the sample results page. Instrumentation was calibrated in accordance with the method requirements. The method blanks were free of contamination at the reporting limits. The associated matrix spikes and/or Laboratory Control Samples met the above stated criteria.

The associated matrix spikes and/or Laboratory Control Samples met the above stated criteria. Exceptions to the above statements are flagged or noted above or on the QC Narrative page. \*/! Flagged analyte recoveries deviated from the QA/QC limits.

## eastern analytical, inc.

1078.9

www.eailabs.com



27 February 2012

Jeff Gagne Eastern Analytical, Inc 25 Chenell Drive Concord, NH 03301 RE: Merrimack Station 200.8

Enclosed are the analytical results for samples received by Frontier Global Sciences. All quality control measurements are within established control limits and there were no analytical difficulties encountered with the exception of those listed in the case narrative section of this report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lig Siska

Liz Siska Project Manager



# ANALYTICAL REPORT FOR SAMPLES

|--|

SDG:

Client: Eastern Analytical, Inc.

Project: Merrimack Station 200.8

| Sample ID            | Lab ID     | Matrix | Date Sampled    | Date Received   |
|----------------------|------------|--------|-----------------|-----------------|
| Effluent Field Blank | 1202140-01 | Water  | 09-Feb-12 00:00 | 10-Feb-12 09:25 |
| Treat Tank Effluent  | 1202140-02 | Water  | 09-Feb-12 00:00 | 10-Feb-12 09:25 |

Frontier Global Sciences, Inc.

he 3

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Liz Siska, Project Manager

CANCE SAME

Page 1 of 23 Final Report



#### CASE NARRATIVE

#### SAMPLE RECEIPT

Samples were received at Frontier Global Sciences (FGS) on February 10th, 2012. The samples were received intact, on-ice with temperatures measured at 2.0 degrees Celsius.

#### SAMPLE PREPARATION AND ANALYSIS

Samples were prepared and analyzed for total metals in accordance with EPA Method 200.8 (modified).

Samples were prepared and analyzed for total mercury in accordance with EPA Method 1631E.

#### ANALYTICAL ISSUES

Liquid spikes were prepared for every preparation as a measure of accuracy. All liquid spikes and certified reference material were within the control limits.

As an additional measure of the accuracy of the methods utilized for analysis and to check for matrix interference, matrix spikes (MS) and matrix spike duplicates (MSD) were digested and analyzed. All of the matrix spike recoveries were within the control limits with the exception of any QC flagged and described in the notes and definitions section of the following report.

A reasonable measure of the precision of the analytical methods utilized for analysis is the relative percent difference (RPD) between matrix spike and matrix spike duplicate recoveries and between laboratory control sample and laboratory control sample duplicate recoveries. All of the relative percent differences were within the control limits with the exception of any QC flagged and described in the notes and definitions section of the following report.

Frontier Global Sciences, Inc.

Sisk

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Liz Siska, Project Manager

Page 2 of 23 Final Report



# CHAIN OF CUSTODY FORMS

|                                 | CLOBAL SCIEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VČES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                      |                                                                                           | Page             | 1_1_of                                      | -1-                             |                      |                                                         | 2.0                               | <u> </u> | 40                                         |      | http://www.Frontiert55.con                                                                                                                                                                                             |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------|---------------------------------------------|---------------------------------|----------------------|---------------------------------------------------------|-----------------------------------|----------|--------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ddi<br>oje<br>epo<br>ddi<br>mor | Contract Manual Ma<br>Manual Manual Manu | Station Phone<br>Plane Phone<br>Pla | Cushara of<br>Boltes                                                                                 | Fax:<br>cile (->.<br>2 778<br>Fax:<br>Matrix                                              | Jan 195          | EL.                                         | Sampled By                      | Field Filtered (Y/N) | Field Preserved:<br>HNO <sub>5</sub> HCI BrCI Other (%) | Total Metrils                     | Nyses R  | equeste                                    | d    | Date: 4 (g1/2,<br>TAT (husiness days):20 (sid<br>15 (10) 5 4 3 2 24 hrs<br>(rea TAT - 10 dive, contact PM<br>Sadurday delivery? □ Y □N<br>(i) yes, usese contact PM<br>EOD @ Y □ N<br>QA □ Standard □ High<br>Comments |
| L                               | C-3042 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Feluent Field Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                    | AQ                                                                                        | alaliz           | 6                                           | -121                            | .N .                 | 1 1                                                     | X                                 |          | -                                          | 1.   | Metals Include                                                                                                                                                                                                         |
|                                 | C-3062, C-3012 TT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | icat Tent Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                    | ww                                                                                        | 219/12           | -6                                          | =[2N                            | N.                   |                                                         | ~                                 | -        |                                            |      | Ni, Se, Ag, En                                                                                                                                                                                                         |
|                                 | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                      |                                                                                           |                  | -                                           |                                 |                      |                                                         |                                   | -        |                                            |      | 2) Add'I volume provided for<br>Project-specific ns/MOD                                                                                                                                                                |
| -                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | en production de la companya de la c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                      |                                                                                           |                  |                                             |                                 |                      |                                                         |                                   | ** *     |                                            |      | >) Please we ElA 200 fulce<br>FGD Effluent.                                                                                                                                                                            |
| 10                              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                      |                                                                                           |                  |                                             |                                 | ******<br>           |                                                         |                                   |          |                                            | -    | Acid Al and Aln                                                                                                                                                                                                        |
| 1 1.2                           | a and analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                      |                                                                                           |                  | 6                                           |                                 | 1 6 51 1<br>1 6 6 6  | 13 x<br>1 - 140                                         |                                   | -        | 11 (a) |      | 2-14-12 AMB, FE                                                                                                                                                                                                        |
| 1010 010                        | For Laborator<br>C Seal: $N_{\beta}$<br>bler Temp: 2 0<br>trier: $UF \leq$<br>SR: $Uf : 2 \leq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ory Use Only<br>Comments:<br>12 X46 54901<br>1210 8582<br>110:0268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ma<br>FWI Fresh<br>WW: Waste<br>SB: Sea and<br>SS: Sol and<br>TS: Plant ar<br>HC: Hydrod<br>TB: Trap | trix Code<br>Vater<br>Water<br>I Brickish<br>I Sediment<br>of Animal Sediment<br>arbons'. | Water<br>Filssue | Relinquis<br>Manie: G<br>Organiza<br>Date & | short<br>Step<br>Step<br>ation: | Then EAI             | rn 29                                                   | Receiv<br>Name<br>Organ<br>Date 1 | ed By:   | Hers.<br>Ens                               | Iden | Received By: A MR 2-1<br>A-Y3C<br>Manne: ALEXA BAIM, AND<br>Organization: FCS<br>Date & Time: 2-10-12 (                                                                                                                |

Frontier Global Sciences, Inc.

Siste -

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

7

Liz Siska, Project Manager



1

đ

414 Pontius Ave North Seattle, WA 98109 Ph: 206-622-6960 Fx: 206-622-6870

## ANALYTICAL RESULTS

### **Effluent Field Blank**

Matrix: Water

Laboratory ID: 1202140-01

| Analyte    | Result | MDL   | MRL   | Units | Dilution | Batch   | Sequence | Analyzed | Method        | Notes    |
|------------|--------|-------|-------|-------|----------|---------|----------|----------|---------------|----------|
| Aluminum   | ND     | 0.4   | 4.0   | μg/L  | 1        | F202131 | 2B18016  | 02/17/12 | EPA 200.8 Mod | U        |
| Arsenic    | ND     | 0.05  | 0.15  | μg/L  | 1        | F202131 | 2B18016  | 02/17/12 | EPA 200.8 Mod | U        |
| Cadmium    | ND     | 0.004 | 0.020 | μg/L  | 1        | F202215 | 2B21010  | 02/21/12 | EPA 200.8 Mod | U        |
| Chromium   | ND     | 0.009 | 0.10  | µg/L  | 1        | F202131 | 2B18016  | 02/17/12 | EPA 200.8 Mod | U        |
| Copper     | ND     | 0.01  | 0.10  | μg/L  | 1        | F202131 | 2B18016  | 02/17/12 | EPA 200.8 Mod | QM-12, U |
| Lead       | ND     | 0.004 | 0.040 | μg/L  | 1        | F202131 | 2B18016  | 02/17/12 | EPA 200.8 Mod | U        |
| Manganese  | ND     | 0.007 | 0.10  | μg/L  | 1        | F202131 | 2B18016  | 02/17/12 | EPA 200.8 Mod | U        |
| Mercury    | ND     | 0.08  | 0.50  | ng/L  | 1        | F202196 | 2B17024  | 02/17/12 | EPA 1631E     | U        |
| Molybdenum | ND     | 0.006 | 0.06  | μg/L  | 1        | F202131 | 2B18016  | 02/17/12 | EPA 200.8 Mod | U        |
| Nickel     | ND     | 0.008 | 0.10  | µg/L  | 1        | F202131 | 2B18016  | 02/17/12 | EPA 200.8 Mod | U        |
| Selenium   | ND     | 0.19  | 0.60  | µg/L  | 1        | F202131 | 2B18016  | 02/17/12 | EPA 200.8 Mod | QM-12, U |
| Silver     | ND     | 0.006 | 0.020 | µg/L  | 1        | F202149 | 2B15001  | 02/14/12 | EPA 200.8 Mod | QM-12, U |
| Zinc       | ND     | 0.02  | 0.20  | μg/L  | 1        | F202215 | 2B21010  | 02/21/12 | EPA 200.8 Mod | U        |

Frontier Global Sciences, Inc.

iska

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Liz Siska, Project Manager

Page 4 of 23 Final Report



i

\*

## ANALYTICAL RESULTS

## Treat Tank Effluent

Matrix: Water

Laboratory ID: 1202140-02

|            |        |       |      |       |          |         |          |          | τ.            |          |
|------------|--------|-------|------|-------|----------|---------|----------|----------|---------------|----------|
| Analyte    | Result | MDL   | MRL  | Units | Dilution | Batch   | Sequence | Analyzed | Method        | Notes    |
| Aluminum   | ND     | 22.2  | 200  | μg/L  | 50       | F202131 | 2B18016  | 02/17/12 | EPA 200.8 Mod | U        |
| Arsenic    | ND     | 2.55  | 7.50 | µg/L  | 50       | F202131 | 2B18016  | 02/17/12 | EPA 200.8 Mod | U        |
| Cadmium    | ND     | 0.208 | 1.00 | µg/L  | 50       | F202215 | 2B21010  | 02/21/12 | EPA 200.8 Mod | U        |
| Chromium   | ND     | 0.45  | 5.00 | μg/L  | 50       | F202131 | 2B18016  | 02/17/12 | EPA 200.8 Mod | U        |
| Copper     | ND     | 0.50  | 5.00 | µg/L  | 50       | F202131 | 2B18016  | 02/17/12 | EPA 200.8 Mod | OM-12. U |
| Lead       | ND     | 0.195 | 2.00 | μg/L  | 50       | F202131 | 2B18016  | 02/17/12 | EPA 200.8 Mod | U        |
| Manganese  | 1730   | 0.37  | 5.00 | µg/L  | 50       | F202131 | 2B18016  | 02/17/12 | EPA 200.8 Mod |          |
| Mercury    | 20.9   | 0.17  | 1.01 | ng/L  | 2        | F202196 | 2B17024  | 02/17/12 | EPA 1631E     |          |
| Molybdenum | 110    | 0.30  | 3.00 | μg/L  | 50       | F202131 | 2B18016  | 02/17/12 | EPA 200.8 Mod |          |
| Nickel     | 12.6   | 0.40  | 5.00 | μg/L  | 50       | F202131 | 2B18016  | 02/17/12 | EPA 200.8 Mod |          |
| Selenium   | 82.2   | 9.69  | 30.0 | μg/L  | 50       | F202131 | 2B24005  | 02/23/12 | EPA 200.8 Mod |          |
| Silver     | ND     | 0.300 | 1.00 | μg/L  | 50       | F202149 | 2B15001  | 02/14/12 | EPA 200.8 Mod | OM-12, U |
| Zinc       | ND     | 0.82  | 10.0 | μg/L  | 50       | F202215 | 2B21010  | 02/21/12 | EPA 200.8 Mod | U        |

Frontier Global Sciences, Inc.

0

Liz Siska, Project Manager

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



l

13

414 Pontius Ave North Seattle, WA 98109 Ph: 206-622-6960 Fx: 206-622-6870

## MATRIX DUPLICATES/TRIPLICATES

# SOURCE: 1202140-02RE1

| and a state                 | Sample | Duplicate   |               | A A A A A A A A A A A A A A A A A A A |  |
|-----------------------------|--------|-------------|---------------|---------------------------------------|--|
| Preparation: BrCl Oxidation |        | Lab Number: | F20219        | 6-DUP1                                |  |
| Batch: F202196              |        | Sequence:   | <u>2B1702</u> | 4                                     |  |

| Analyte | ng/L  | ng/L  | MRL  | RPD  | Limit | Method    | Notes |
|---------|-------|-------|------|------|-------|-----------|-------|
| Mercury | 24.34 | 22.57 | 10.1 | 7.52 | 24    | EPA 1631E |       |

Frontier Global Sciences, Inc.

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Liz Siska, Project Manager

Page 6 of 23 Final Report 10 02/27/2012



## MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY AND RPD

## SOURCE: 1202140-02

Batch: F202131

Sequence: 2B18016

| Preparation: Closed Vessel Nitric Oven Dis | igestion |
|--------------------------------------------|----------|
|--------------------------------------------|----------|

Lab Number: F202131-MS/MSD1

| Analyte    | 20032      | eren<br>Mer | Sample<br>Concentrati<br>(µg/L) | Spike<br>on Added<br>(µg/L)    | N<br>Conce<br>(µ     | AS<br>ntration<br>g/L) | MS<br>%<br>Recovery | Recovery<br>Limits | Method        | Notes           |
|------------|------------|-------------|---------------------------------|--------------------------------|----------------------|------------------------|---------------------|--------------------|---------------|-----------------|
| Aluminum   |            |             | 48.4                            | 151.50                         | 19                   | 9.9                    | 100                 | 70 - 130           | EPA 200.8 Mod |                 |
| Chromium   |            |             | 1.07                            | 7.0700                         | 8                    | .66                    | 107                 | 70 - 130           | EPA 200.8 Mod |                 |
| Manganese  |            |             | 1735                            | 6.0600                         | 1                    | 712                    | -373                | 70 - 130           | EPA 200.8 Mod | QM-02           |
| Nickel     |            |             | 12.62                           | 4.0400                         | 1                    | 7.66                   | 125                 | 70 - 130           | EPA 200.8 Mod |                 |
| Copper     |            |             | 0.83                            | 4.0400                         | 5                    | .07                    | 105                 | 70 - 130           | EPA 200.8 Mod |                 |
| Zinc       |            |             | 2.32                            | 10.100                         | 8                    | 1.69                   | 786                 | 70 - 130           | EPA 200.8 Mod | QM-07           |
| Arsenic    |            |             | 5.61                            | 15.150                         | 2                    | 1.94                   | 108                 | 70 - 130           | EPA 200.8 Mod |                 |
| Selenium   |            |             | 97.17                           | 30.300                         | 1:                   | 23.0                   | 85.2                | 70 - 130           | EPA 200.8 Mod |                 |
| Molybdenum |            |             | 110.1                           | 2.0200                         | 1                    | 11.5                   | 71.9                | 70 - 130           | EPA 200.8 Mod |                 |
| Lead       |            |             | ND                              | 1.5150                         | 1                    | .567                   | 103                 | 70 - 130           | EPA 200.8 Mod |                 |
| Analyte    | and at     | 419<br>110  | Spike<br>Added<br>(µg/L)        | MSD<br>Concentration<br>(µg/L) | MSD<br>%<br>Recovery | %<br>RPD               | Recovery<br>Limits  | RPD<br>Limit       | Method        | Notes           |
| Aluminum   | 12 1302 24 | 1           | 151.50                          | 203.2                          | 102                  | 1.64                   | 70 - 130            | 20                 | EPA 200.8 Mod |                 |
| Chromium   |            |             | 7.0700                          | 8.56                           | 106                  | 1.15                   | 70 - 130            | 20                 | EPA 200.8 Mod |                 |
| Manganese  |            |             | 6.0600                          | 1727                           | -131                 | 0.852                  | 70 - 130            | 20                 | EPA 200.8 Mod | QM-02           |
| Nickel     | *          |             | 4.0400                          | 16.18                          | 88.1                 | 8.76                   | 70 - 130            | 20                 | EPA 200.8 Mod |                 |
| Copper     |            |             | 4.0400                          | 4.84                           | 99.3                 | 4.59                   | 70 - 130            | 20                 | EPA 200.8 Mod |                 |
| Zinc       |            |             | 10.100                          | 16.88                          | 144                  | 131                    | 70 - 130            | 20                 | EPA 200.8 Mod | QM-07,<br>OR-08 |
| Arsenic    |            |             | 15.150                          | 24.85                          | 127                  | 12.4                   | 70 - 130            | 20                 | EPA 200.8 Mod |                 |
| Selenium   |            |             | 30.300                          | 135.1                          | 125                  | 9.38                   | 70 - 130            | 20                 | EPA 200.8 Mod |                 |
| Molybdenum |            |             | 2.0200                          | 112.5                          | 119                  | 0.846                  | 70 - 130            | 20                 | EPA 200.8 Mod |                 |
| Lead       |            |             | 1.5150                          | 1.468                          | 96.9                 | 6.56                   | 70 - 130            | 20                 | EPA 200.8 Mod |                 |

Frontier Global Sciences, Inc.

2

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Liz Siska, Project Manager



## MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY AND RPD

### SOURCE: 1202140-02

Batch: F202131

Preparation: Closed Vessel Nitric Oven Digestion

Sequence: <u>2B18016</u> Lab Number: <u>F202131-MS/MSD2</u>

| nalyte                       | Sample<br>Concentration<br>(µg/L) | Spike<br>Added<br>(µg/L)   | MS<br>Concentration<br>(µg/L) | MS<br>%<br>Recovery | Recovery<br>Limits               | Method                                          | Notes |
|------------------------------|-----------------------------------|----------------------------|-------------------------------|---------------------|----------------------------------|-------------------------------------------------|-------|
| luminum                      | 48.4                              | 10100                      | 10380                         | 102                 | 70 - 130 1                       | EPA 200.8 Mod                                   | AS    |
| hromium                      | 1.07                              | 1010.0                     | 1060                          | 105                 | 70 - 130 1                       | EPA 200.8 Mod                                   | AS    |
| langanese                    | 1735                              | 1010.0                     | 2770                          | 102                 | 70 - 130 J                       | EPA 200.8 Mod                                   | AS    |
| ickel                        | 12.62                             | 1262.5                     | 1303                          | 102                 | 70 - 130 1                       | EPA 200.8 Mod                                   | AS    |
| opper                        | 0.83                              | 1262.5                     | 1253                          | 99.2                | 70 - 130                         | EPA 200.8 Mod                                   | AS    |
| inc                          | 2.32                              | 2525.0                     | 2530                          | 100                 | 70 - 130                         | EPA 200.8 Mod                                   | AS    |
| rsenic                       | 5.61                              | 1010.0                     | 1073                          | 106                 | 70 - 130                         | EPA 200.8 Mod                                   | AS    |
| elenium                      | 97.17                             | 1010.0                     | 1127                          | 102                 | 70 - 130                         | EPA 200.8 Mod                                   | AS    |
| folybdenum                   | 110.1                             | 505.00                     | 630.5                         | 103                 | 70 - 130                         | EPA 200.8 Mod                                   | AS    |
| ead                          | ND                                | 252.50                     | 251.4                         | 99.5                | 70 - 130                         | EPA 200.8 Mod                                   | AS    |
| elenium<br>folybdenum<br>ead | 97.17<br>110.1<br>ND              | 1010.0<br>505.00<br>252.50 | 1127<br>630.5<br>251.4        | 102<br>103<br>99.5  | 70 - 130<br>70 - 130<br>70 - 130 | EPA 200.8 Mod<br>EPA 200.8 Mod<br>EPA 200.8 Mod |       |

| Analyte    | Added<br>(µg/L) | Concentration<br>(µg/L) | %<br>Recovery | %<br>RPD | Recovery<br>Limits | RPD<br>Limit | Method        | Notes |
|------------|-----------------|-------------------------|---------------|----------|--------------------|--------------|---------------|-------|
| Aluminum   | 10100           | 10120                   | 99.8          | 2.52     | 70 - 130           | 20           | EPA 200.8 Mod | AS    |
| Chromium   | 1010.0          | 1050                    | 104           | 0.947    | 70 - 130           | 20           | EPA 200.8 Mod | AS    |
| Manganese  | 1010.0          | 2755                    | 101           | 0.548    | 70 - 130           | 20           | EPA 200.8 Mod | AS    |
| Nickel     | 1262.5          | 1302                    | 102           | 0.101    | 70 - 130           | 20           | EPA 200.8 Mod | AS    |
| Copper     | 1262.5          | 1258                    | 99.6          | 0.384    | 70 - 130           | 20           | EPA 200.8 Mod | AS    |
| Zinc       | 2525.0          | 2511                    | 99.3          | 0.770    | 70 - 130           | 20           | EPA 200.8 Mod | AS    |
| Arsenic    | 1010.0          | 1092                    | 108           | 1.73     | 70 - 130           | 20           | EPA 200.8 Mod | AS    |
| Selenium   | 1010.0          | 1169                    | 106           | 3.69     | 70 - 130           | 20           | EPA 200.8 Mod | AS    |
| Molybdenum | 505.00          | 616.8                   | 100           | 2.18     | 70 - 130           | 20           | EPA 200.8 Mod | AS    |
| Lead       | 252.50          | 249.9                   | 99.0          | 0.581    | 70 - 130           | 20           | EPA 200.8 Mod | AS    |

Frontier Global Sciences, Inc.

sh

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Liz Siska, Project Manager

Page 8 of 23 Final Report 12



100

.

414 Pontius Ave North Seattle, WA 98109 Ph: 206-622-6960 Fx: 206-622-6870

# MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY AND RPD

## SOURCE: 1202140-02RE1

Batch: F202149

Sequence: 2B15001

| Preparation: | Closed V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>/essel</b>         | Nitric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Oven | Digestion                                    |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------|
|              | and the second se | and the second second | and the second se |      | Section in the section of the section of the |

| Preparation: | Closed Vesse | igestion                     | La                               | Land a set of the second |                          |                     |                    |               |       |
|--------------|--------------|------------------------------|----------------------------------|--------------------------|--------------------------|---------------------|--------------------|---------------|-------|
| Analyte      | funte 1      | Sampl<br>Concentra<br>(µg/L) | e Spike<br>ation Addeo<br>(μg/L) | I Conc                   | MS<br>entration<br>µg/L) | MS<br>%<br>Recovery | Recovery<br>Limits | ,<br>Method   | Notes |
| Silver       |              | ND                           | 1.5180                           | )                        | 1.529                    | 101                 | 70 - 130           | EPA 200.8 Mod |       |
| Analyte      |              | Spike<br>Added<br>(µg/L)     | MSD<br>Concentration<br>(µg/L)   | MSD<br>%<br>Recovery     | %<br>RPD                 | Recovery<br>Limits  | RPD<br>Limit       | Method        | Notes |
| Silver       |              | 1.5180                       | 1.577                            | 104                      | 3.13                     | 70 - 130            | 20                 | EPA 200.8 Mod |       |

Frontier Global Sciences, Inc.

the

Liz Siska, Project Manager

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



I

## MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY AND RPD

#### SOURCE: 1202140-02RE1

#### Batch: F202149

Sequence: 2B15001

Preparation: Closed Vessel Nitric Oven Digestion

Lab Number: F202149-MS/MSD2

| Analyte | Sample<br>Concentrati<br>(µg/L) | Spike<br>ion Added<br>(µg/L)   | М<br>Conce<br>(щ     | AS<br>ntration<br>g/L) | MS<br>%<br>Recovery | Recovery<br>Limits | Method        | Notes |
|---------|---------------------------------|--------------------------------|----------------------|------------------------|---------------------|--------------------|---------------|-------|
| Silver  | ND                              | 50.500                         | 44                   | 4.17                   | 87.5                | 70 - 130           | EPA 200.8 Mod | AS    |
| Analyte | Spike<br>Added<br>(µg/L)        | MSD<br>Concentration<br>(µg/L) | MSD<br>%<br>Recovery | %<br>RPD               | Recovery<br>Limits  | RPD<br>Limit       | Method        | Notes |
| Silver  | 50.500                          | 43.81                          | 86.8                 | 0.808                  | 70 - 130            | 20                 | EPA 200.8 Mod | AS    |

Frontier Global Sciences, Inc.

he

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Liz Siska, Project Manager

Page 10 of 23 Final Report 07/77/2012



# MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY AND RPD

## SOURCE: 1202223-02

Batch: F202196

Sequence: 2B17024

| Prenaration. | BrCl Oxidation |
|--------------|----------------|
| ricparation. | DICIONIdation  |

| Preparation: BrCl Ox | ridation                         |                                | Lab                  | Number                 | r: <u>F202196</u> - | MS/MSD1            |           |       |
|----------------------|----------------------------------|--------------------------------|----------------------|------------------------|---------------------|--------------------|-----------|-------|
| Analyte              | Sample<br>Concentratio<br>(ng/L) | Spike<br>on Added<br>(ng/L)    | N<br>Conce<br>(ng    | AS<br>ntration<br>g/L) | MS<br>%<br>Recovery | Recovery<br>Limits | Method    | Notes |
| Mercury              | 39.63                            | 102.00                         | 14                   | 15.3                   | 104                 | 71 - 125           | EPA 1631E |       |
| Analyte              | Spike<br>Added<br>(ng/L)         | MSD<br>Concentration<br>(ng/L) | MSD<br>%<br>Recovery | %<br>RPD               | Recovery<br>Limits  | RPD<br>Limit       | Method    | Notes |
| Mercury              | 102.00                           | 143.6                          | 102                  | 1.12                   | 71 - 125            | 24                 | EPA 1631E |       |

Frontier Global Sciences, Inc.

Liz Siska, Project Manager

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



1

414 Pontius Ave North Seattle, WA 98109 Ph: 206-622-6960 Fx: 206-622-6870

# MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY AND RPD

### SOURCE: 1202140-02RE1

| Batch: F202196<br>Preparation: BrCl Oxidation |                                |                                | Lab                  | Sequence<br>Number      | e: <u>2B17024</u><br>r: <u>F202196-</u> | MS/MSD2            |           |       |
|-----------------------------------------------|--------------------------------|--------------------------------|----------------------|-------------------------|-----------------------------------------|--------------------|-----------|-------|
| Analyte                                       | Sample<br>Concentrat<br>(ng/L) | Spike<br>tion Added<br>(ng/L)  | T<br>Conce<br>(n     | VIS<br>ntration<br>g/L) | MS<br>%<br>Recovery                     | Recovery<br>Limits | Method    | Notes |
| Mercury                                       | 24.34                          | 71.400                         | 9                    | 6.61                    | 101                                     | 71 - 125           | EPA 1631E |       |
| Analyte                                       | Spike<br>Added<br>(ng/L)       | MSD<br>Concentration<br>(ng/L) | MSD<br>%<br>Recovery | %<br>RPD                | Recovery<br>Limits                      | RPD<br>Limit       | Method    | Notes |
| Mercury                                       | 71.400                         | 96.20                          | 101                  | 0.422                   | 71 - 125                                | 24                 | EPA 1631E |       |

Frontier Global Sciences, Inc.

sh

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Liz Siska, Project Manager

Page 12 of 23 Final Report 02/27/2012



## MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY AND RPD

## SOURCE: 1202140-02RE1

| Batch:       | F202215       |                                     |                                |                      | Sequence                 | : <u>2B21010</u>    |                    |               |       |
|--------------|---------------|-------------------------------------|--------------------------------|----------------------|--------------------------|---------------------|--------------------|---------------|-------|
| Preparation: | Closed Vessel | Closed Vessel Nitric Oven Digestion |                                | Lal                  | o Number                 | : F202215-          | MS/MSD1            |               |       |
| Analyte      | 1.000         | Sample<br>Concentrat<br>(µg/L)      | spike<br>tion Added<br>(μg/L)  | Conce<br>(1          | MS<br>entration<br>1g/L) | MS<br>%<br>Recovery | Recovery<br>Limits | Method        | Notes |
| Zinc         |               | ND                                  | 10.100                         |                      | 9.65                     | 95.5                | 70 - 130           | EPA 200.8 Mod |       |
| Cadmium      |               | 0.216                               | 0.80800                        | ) 1                  | .142                     | 115                 | 70 - 130           | EPA 200.8 Mod |       |
| Analyte      |               | Spike<br>Added<br>(µg/L)            | MSD<br>Concentration<br>(µg/L) | MSD<br>%<br>Recovery | %<br>RPD                 | Recovery<br>Limits  | RPD<br>Limit       | Method        | Notes |
| Zinc         |               | 10.100                              | 9.99                           | 98.9                 | 3.47                     | 70 - 130            | 20                 | EPA 200.8 Mod |       |
| Cadmium      |               | 0.80800                             | 1.189                          | 120                  | 4.07                     | 70 - 130            | 20                 | EPA 200.8 Mod |       |

Frontier Global Sciences, Inc.

Liz Siska, Project Manager

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



\*1

4

NUMBER

414 Pontius Ave North Seattle, WA 98109 Ph: 206-622-6960 Fx: 206-622-6870

1

## MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY AND RPD

## SOURCE: 1202140-02RE1

| Batch:<br>Preparation: | F202215<br>Closed Vesse | l Nitric Oven Dig              | Lab                            | Sequence<br>Number   | :: <u>2B21010</u><br>:: <u>F202215</u> - | اب این کارکندگی<br>مستخل او دو در دان |                    |               |       |
|------------------------|-------------------------|--------------------------------|--------------------------------|----------------------|------------------------------------------|---------------------------------------|--------------------|---------------|-------|
| Analyte                |                         | Sample<br>Concentrat<br>(µg/L) | Spike<br>tion Added<br>(µg/L)  | Γ<br>Conce<br>(μ     | VIS<br>ntration<br>g/L)                  | MS<br>%<br>Recovery                   | Recovery<br>Limits | Method        | Notes |
| Zinc                   |                         | ND                             | 2525.0                         | 2                    | 297                                      | 91.0                                  | 70 - 130           | EPA 200.8 Mod | AS    |
| Cadmium                |                         | 0.216                          | 101.00                         | 8                    | 7.31                                     | 86.2                                  | 70 - 130           | EPA 200.8 Mod | AS    |
| Analyte                | turin de                | Spike<br>Added<br>(µg/L)       | MSD<br>Concentration<br>(µg/L) | MSD<br>%<br>Recovery | %<br>RPD                                 | Recovery<br>Limits                    | RPD<br>Limit       | Method        | Notes |
| Zinc                   |                         | 2525.0                         | 2300                           | 91.1                 | 0.162                                    | 70 - 130                              | 20                 | EPA 200.8 Mod | AS    |
| Cadmium                |                         | 101.00                         | 89.53                          | 88.4                 | 2.50                                     | 70 - 130                              | 20                 | EPA 200.8 Mod | AS    |

Frontier Global Sciences, Inc.

she

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Liz Siska, Project Manager

Page 14 of 23 Final Report 02/27/2012



1

# LABORATORY CONTROL SAMPLE/ LABORATORY CONTROL SAMPLE DUPLICATE

## **RECOVERY AND RPD**

Batch: F202131

Preparation: Closed Vessel Nitric Oven Digestion

# Sequence: <u>2B18016</u>

Lab Number: F202131-BS/BSD1

LCS Source: Blank Spike

| Analyte    | Spike<br>Added<br>(µg/L) | LCS<br>Concentration<br>(µg/L) | LCS<br>%<br>Recovery | Recovery<br>Limits | Method        | Notes          |
|------------|--------------------------|--------------------------------|----------------------|--------------------|---------------|----------------|
| Aluminum   | 150.00                   | 145.9                          | 97.3                 | 85 - 115           | EPA 200.8 Mod | NIA CONTRACTOR |
| Chromium   | 7.0000                   | 6.94                           | 99.1                 | 85 - 115           | EPA 200.8 Mod |                |
| Manganese  | 6.0000                   | 5.91                           | 98.5                 | 85 - 115           | EPA 200.8 Mod |                |
| Nickel     | 4.0000                   | 4.19                           | 105                  | 85 - 115           | EPA 200.8 Mod |                |
| Copper     | 4.0000                   | 4.40                           | 110                  | 85 - 115           | EPA 200.8 Mod |                |
| Zinc       | 10.000                   | 11.13                          | 111                  | 85 - 115           | EPA 200.8 Mod |                |
| Arsenic    | 15.000                   | 15.05                          | 100                  | 85 - 115           | EPA 200.8 Mod |                |
| Selenium   | 30.000                   | 30.61                          | 102                  | 85 - 115           | EPA 200.8 Mod |                |
| Molybdenum | 2.0000                   | 1.93                           | 96.6                 | 85 - 115           | EPA 200.8 Mod |                |
| Lead       | 1.5000                   | 1.560                          | 104                  | 85 - 115           | EPA 200.8 Mod |                |

| Analyte    | Spike<br>Added<br>(µg/L) | LCSD<br>Concentration<br>(µg/L) | LCSD<br>%<br>Recovery | %<br>RPD | Recovery<br>Limits | RPD<br>Limit | Method        | Notes |
|------------|--------------------------|---------------------------------|-----------------------|----------|--------------------|--------------|---------------|-------|
| Aluminum   | 150.00                   | 147.3                           | 98.2                  | 0.925    | 85 - 115           | 20           | EPA 200.8 Mod |       |
| Chromium   | 7.0000                   | 6.94                            | 99.1                  | 0.0117   | 85 - 115           | 20           | EPA 200.8 Mod |       |
| Manganese  | 6.0000                   | 6.00                            | 99.9                  | 1.48     | 85 - 115           | 20           | EPA 200.8 Mod |       |
| Nickel     | 4.0000                   | 4.23                            | 106                   | 1.04     | 85 - 115           | 20           | EPA 200.8 Mod |       |
| Copper     | 4.0000                   | 4.43                            | 111                   | 0.541    | 85 - 115           | 20           | EPA 200.8 Mod |       |
| Zinc       | 10.000                   | 10.92                           | 109                   | 1.97     | 85 - 115           | 20           | EPA 200.8 Mod |       |
| Arsenic    | 15.000                   | 14.83                           | 98.9                  | 1.46     | 85 - 115           | 20           | EPA 200.8 Mod |       |
| Selenium   | 30.000                   | 32.03                           | 107                   | 4.53     | 85 - 115           | -20          | EPA 200.8 Mod |       |
| Molybdenum | 2.0000                   | 1.91                            | 95.4                  | 1.17     | 85 - 115           | 20           | EPA 200.8 Mod |       |
| Lead       | 1.5000                   | 1.586                           | 106                   | 1.66     | 85 - 115           | 20           | EPA 200.8 Mod |       |

Frontier Global Sciences, Inc.

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Liz Siska, Project Manager

Page 15 of 23 Final Report



S.

1

•

12"TANS. ....

12386.21

No. include

414 Pontius Ave North Seattle, WA 98109 Ph: 206-622-6960 Fx: 206-622-6870

1

## LABORATORY CONTROL SAMPLE/ LABORATORY CONTROL SAMPLE DUPLICATE

## **RECOVERY AND RPD**

Batch: F202149

Sequence: <u>2B15001</u> Lab Number: <u>F202149-BS/BSD1</u>

Preparation: Closed Vessel Nitric Oven Digestion

LCS Source: Blank Spike

| Analyte | an said a said           | 3-     | Spike<br>Added<br>(µg/L)        | LC<br>Concent<br>(µg/ | S<br>tration<br>L) | LCS<br>%<br>Recovery | Recovery<br>Limits | Method        | Notes |
|---------|--------------------------|--------|---------------------------------|-----------------------|--------------------|----------------------|--------------------|---------------|-------|
| Silver  |                          |        | 1.5000                          | 1.70                  | 114                | 85 - 115             | EPA 200.8 Mod      |               |       |
| Analyte | Spike<br>Added<br>(µg/L) |        | LCSD<br>Concentration<br>(µg/L) | LCSD<br>%<br>Recovery | %<br>RPD           | Recovery<br>Limits   | RPD<br>Limit       | Method        | Notes |
| Silver  |                          | 1.5000 | 1.738                           | 116                   | 1.68               | 85 - 115             | 20                 | EPA 200.8 Mod | QM-12 |

Frontier Global Sciences, Inc.

Aisk de

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Liz Siska, Project Manager

Page 16 of 23 Final Report 02/27/2012



# LABORATORY CONTROL SAMPLE/ LABORATORY CONTROL SAMPLE DUPLICATE

### **RECOVERY AND RPD**

Batch: F202196

Preparation: BrCl Oxidation

Sequence: <u>2B17024</u>

Lab Number: F202196-BS/BSD1

|         |                          |                                 | LC                    | S Sourc              | e: LCS               |                    |           |       |
|---------|--------------------------|---------------------------------|-----------------------|----------------------|----------------------|--------------------|-----------|-------|
| Analyte | and and                  | Spike<br>Added<br>(ng/L)        | LC<br>Concen<br>(ng/  | CS<br>tration<br>/L) | LCS<br>%<br>Recovery | Recovery<br>Limits | Method    | Notes |
| Mercury |                          |                                 | 16.                   | 16.27 104            |                      | 80 - 120           | EPA 1631E |       |
| Analyte | Spike<br>Added<br>(ng/L) | LCSD<br>Concentration<br>(ng/L) | LCSD<br>%<br>Recovery | %<br>RPD             | Recovery<br>Limits   | RPD<br>Limit       | Method    | Notes |
| Mercury | 15.679                   | 16.20                           | 103                   | 0.396                | 80 - 120             | 24                 | EPA 1631E |       |

Frontier Global Sciences, Inc.

Liz Siska, Project Manager

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 17 of 23 Final Report 07/77/2012



rf.

414 Pontius Ave North Seattle, WA 98109 Ph: 206-622-6960 Fx: 206-622-6870

## LABORATORY CONTROL SAMPLE/ LABORATORY CONTROL SAMPLE DUPLICATE

## **RECOVERY AND RPD**

Batch: F202215

Preparation: Closed Vessel Nitric Oven Digestion

Sequence: <u>2B21010</u> Lab Number: <u>F202215-BS/BSD1</u>

LCS Source: Blank Spike

| Analyte |                          | Spike<br>Added<br>(μg/L)        | LC:<br>Concent<br>(µg/l | S<br>ration<br>L) | LCS<br>%<br>Recovery | Recovery<br>Limits | Method        | Notes |
|---------|--------------------------|---------------------------------|-------------------------|-------------------|----------------------|--------------------|---------------|-------|
| Zinc    |                          | 10.000                          | 9.99                    | )                 | 99.9                 | 85 - 115           | EPA 200.8 Mod |       |
| Cadmium |                          | 0.80000                         | 0.89                    | 2                 | 112                  | 85 - 115           | EPA 200.8 Mod |       |
| Analyte | Spike<br>Added<br>(µg/L) | LCSD<br>Concentration<br>(µg/L) | LCSD<br>%<br>Recovery   | %<br>RPD          | Recovery<br>Limits   | RPD<br>Limit       | Method        | Notes |
| Zinc    | 10.000                   | 9.93                            | 99.3                    | 0.528             | 85 - 115             | 20                 | EPA 200.8 Mod |       |
| Cadmium | 0.80000                  | 0.897                           | 112                     | 0.517             | 85 - 115             | 20                 | EPA 200.8 Mod |       |

Frontier Global Sciences, Inc.

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Liz Siska, Project Manager

Page 18 of 23 Final Report 07/27/2012



## PREPARATION BLANKS

Instrument: ICPMS-6

Sequence: 2B15001

Preparation: Closed Vessel Nitric Oven Digestion

| Lab Sample ID | Analyte | Found   | MRL   | Units | Batch   | Method        | Notes |
|---------------|---------|---------|-------|-------|---------|---------------|-------|
| F202149-BLK1  | Silver  | -0.0002 | 0.020 | μg/L  | F202149 | EPA 200.8 Moc | U     |

Frontier Global Sciences, Inc.

Li iste

Liz Siska, Project Manager

į,

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



1

2-15

414 Pontius Ave North Seattle, WA 98109 Ph: 206-622-6960 Fx: 206-622-6870

## **PREPARATION BLANKS**

| Instrument: <u>Hg-16</u> |         |       | Seq<br>Prepa | uence: <u>2B</u><br>ration: <u>Br</u> | <u>17024</u><br>Cl Oxidation |           |          |
|--------------------------|---------|-------|--------------|---------------------------------------|------------------------------|-----------|----------|
| Lab Sample ID            | Analyte | Found | MRL          | Units                                 | Batch                        | Method    | Notes    |
| F202196-BLK1             | Mercury | 0.04  | 0.50         | ng/L                                  | F202196                      | EPA 1631E | U        |
| F202196-BLK2             | Mercury | 0.04  | 0.50         | ng/L                                  | F202196                      | EPA 1631E | U        |
| F202196-BLK3             | Mercury | 0.05  | 0.50         | ng/L                                  | F202196                      | EPA 1631E | U        |
| F202196-BLK4             | Mercury | 0.08  | 0.50         | ng/L                                  | F202196                      | EPA 1631E | QB-04, U |

Frontier Global Sciences, Inc.

he

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Liz Siska, Project Manager

Page 20 of 23 Final Report



\$

## **PREPARATION BLANKS**

Instrument: ICPMS-6

Sequence: 2B18016

Preparation: Closed Vessel Nitric Oven Digestion

|   | Lab Sample ID | Analyte    | Found | MRL   | Units | Batch   | Method        | Notes |
|---|---------------|------------|-------|-------|-------|---------|---------------|-------|
| - | F202131-BLK1  | Aluminum   | 0.09  | 4.0   | μg/L  | F202131 | EPA 200.8 Moc | IJ    |
|   | F202131-BLK1  | Chromium   | -0.02 | 0.10  | μg/L  | F202131 | EPA 200.8 Moc | U     |
|   | F202131-BLK1  | Manganese  | 0.004 | 0.10  | μg/L  | F202131 | EPA 200.8 Moc | U     |
|   | F202131-BLK1  | Nickel     | 0.004 | 0.10  | μg/L  | F202131 | EPA 200.8 Moc | Ŭ     |
|   | F202131-BLK1  | Copper     | 0.005 | 0.10  | μg/L  | F202131 | EPA 200.8 Moc | U     |
|   | F202131-BLK1  | Zinc       | 0.07  | 0.20  | μg/L  | F202131 | EPA 200.8 Moc | U     |
|   | F202131-BLK1  | Arsenic    | -0.10 | 0.15  | μg/L  | F202131 | EPA 200.8 Moc | Ū     |
|   | F202131-BLK1  | Selenium   | -0.06 | 0.60  | μg/L  | F202131 | EPA 200.8 Moc | U     |
| Ð | F202131-BLK1  | Molybdenum | 0.01  | 0.06  | µg/L  | F202131 | EPA 200.8 Moc | U     |
|   | F202131-BLK1  | Lead       | 0.002 | 0.040 | μg/L  | F202131 | 3PA 200.8 Moc | Ū     |
|   |               |            |       |       |       |         |               |       |

Frontier Global Sciences, Inc.

he

Liz Siska, Project Manager

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



1

2

414 Pontius Ave North Seattle, WA 98109 Ph: 206-622-6960 Fx: 206-622-6870

## PREPARATION BLANKS

Instrument: ICPMS-6

Sequence: 2B21010

Preparation: Closed Vessel Nitric Oven Digestion

|    | Lab Sample ID | Analyte | Found  | MRL   | Units | Batch   | Method        | Notes |
|----|---------------|---------|--------|-------|-------|---------|---------------|-------|
| 12 | F202215-BLK1  | Zinc    | -0.03  | 0.20  | µg/L  | F202215 | EPA 200.8 Moc | U     |
|    | F202215-BLK1  | Cadmium | -0.001 | 0.020 | μg/L  | F202215 | EPA 200.8 Moc | U     |
|    |               |         |        |       |       |         |               |       |

Frontier Global Sciences, Inc.

Sista 0

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Liz Siska, Project Manager

100

Page 22 of 23 Final Report 07/27/2012



## **Notes and Definitions**

U Analyte included in the analysis, but not detected

- QR-08 The RPD value for the MS/MSD was outside of acceptance limits. Batch QC acceptable based on matrix duplicate and/or LCS/LCSD RPD values within control limits.
- QM-12 Initial or continuing calibration verification and/or blank spike/blank spike duplicate recoveries above upper control limits. All reported sample concentrations were below the reporting limit.
- QM-07 The spike recovery was outside control limits for the MS and/or MSD. The batch was accepted based on LCS and LCSD recoveries within control limits and, when analysis permits, acceptable AS/ASD.
- QM-02 The MS and/or MSD recoveries outside acceptance limits, due to spike concentration less than 1 times the sample concentration. The batch was accepted based on LCS and LCSD recoveries within control limits and, when analysis permits, acceptable AS/ASD.
- QB-04 The blank was preserved to 2% BrCl rather than 1%. The control limit for blanks preserved to greater than 1% BrCl is the preservation percentage multiplied by the MRL.
- AS This MS and/or MSD is an analytical spike and/or an analytical spike duplicate.
- DET Analyte Detected
- MDL Minimum Detection Limit
- MRL Minimum Reporting Limit
- ND Analyte Not Detected at or above the reporting limit
- wet Sample results reported on a wet weight basis
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- RSD Relative Standard Deviation

Frontier Global Sciences, Inc.

Liz Siske

Liz Siska, Project Manager

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



27 February 2012

Jeff Gagne Eastern Analytical, Inc 25 Chenell Drive Concord, NH 03301 RE: Merrimack Station 200.8

Enclosed are the analytical results for samples received by Frontier Global Sciences. All quality control measurements are within established control limits and there were no analytical difficulties encountered with the exception of those listed in the case narrative section of this report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lig Siska

Liz Siska Project Manager



ī

414 Pontius Ave North Seattle, WA 98109 Ph: 206-622-6960 Fx: 206-622-6870

# ANALYTICAL REPORT FOR SAMPLES

|--|

SDG:

Client: Eastern Analytical, Inc

Project: Merrimack Station 200.8

| Sample ID            | Lab ID     | Matrix | Date Sampled    | Date Received   |
|----------------------|------------|--------|-----------------|-----------------|
| Effluent Field Blank | 1202140-01 | Water  | 09-Feb-12 00:00 | 10-Feb-12 09:25 |
| Treat Tank Effluent  | 1202140-02 | Water  | 09-Feb-12 00:00 | 10-Feb-12 09:25 |

Frontier Global Sciences, Inc.

Liz Siska, Project Manager

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 1 of 12 1202140 Final Report B, Co, V 29 02/27/2012



#### CASE NARRATIVE

#### SAMPLE RECEIPT

ż

Samples were received at Frontier Global Sciences (FGS) on February 10th, 2012. The samples were received intact, on-ice with temperatures measured at 2.0 degrees Celsius.

#### SAMPLE PREPARATION AND ANALYSIS

Samples were prepared and analyzed for total metals in accordance with EPA Method 200.8 (modified).

#### ANALYTICAL ISSUES

Liquid spikes were prepared for every preparation as a measure of accuracy. All liquid spikes and certified reference material were within the control limits.

As an additional measure of the accuracy of the methods utilized for analysis and to check for matrix interference, matrix spikes (MS) and matrix spike duplicates (MSD) were digested and analyzed. All of the matrix spike recoveries were within the control limits with the exception of any QC flagged and described in the notes and definitions section of the following report.

A reasonable measure of the precision of the analytical methods utilized for analysis is the relative percent difference (RPD) between matrix spike and matrix spike duplicate recoveries and between laboratory control sample and laboratory control sample duplicate recoveries. All of the relative percent differences were within the control limits with the exception of any QC flagged and described in the notes and definitions section of the following report.

Frontier Global Sciences, Inc.

isho

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Liz Siska, Project Manager

Page 2 of 12 1202140 Final Report B, Co, V 30 02/27/2012



# CHAIN OF CUSTODY FORMS

|                                  | GLOBAL SCIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NCES                                                           |                                                                |                                                                                                         |                                                                    | Pag                                         | e_[_p                                 | 1_1_              |                      | 1                                             | 21                          | 202                        | 140               | >           | http://www.FrontierG5.com                                                                                        |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------|---------------------------------------|-------------------|----------------------|-----------------------------------------------|-----------------------------|----------------------------|-------------------|-------------|------------------------------------------------------------------------------------------------------------------|
| dd<br>roj<br>ep<br>dd<br>ho<br>m | A: Casters Analys<br>est: 25 Chenett<br>Contrast MH<br>ect Name: Merrical<br>bort To: Science<br>ess:<br>he: Columnes 25 F<br>all:Customes 25 F<br>Engraved<br>Botte ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | axder/200 4571<br>E enclosed<br>Sample ID                      | E-mail:<br>Contract<br>Invoice<br>Address<br>Phone:<br>E-mailz | Jace Co<br>Jeligger<br>A/PO:<br>To: Same<br>S:<br>Cushing an<br>B of<br>Bottles                         | Fax:<br>Fax:<br>Z 775<br>s<br>Fax:<br>Matrix                       | Visi-41<br>com<br>0<br>secilation<br>Date B | Syl<br>cru<br>L Time                  | Sampled By        | Field Filtered (Y/N) | Field Preserved:<br>HAVOs HECT BrO. Other (%) | Total Metade                | nalyses                    | Reques            | ted         | Conuments                                                                                                        |
| 2                                | C-3042 (<br>C-3062 G302 )<br>C-3018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Effluent Field<br>Freat Tent Eff                               | blan F<br>lucht                                                | <br>3                                                                                                   | AQ<br>WW                                                           | 29/12                                       | )) ( w                                | 67/24<br>E5/24    | N<br>N               | 1 1                                           | XX                          |                            |                   |             | Metals Include<br>As, Cd, Cr, Cu, Pb, Hg, Mo,<br>Ni, Sc, Ag, En                                                  |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ana a la mati                                                  | 11.2222<br>1.222 (2.222)                                       |                                                                                                         |                                                                    |                                             |                                       |                   |                      |                                               |                             |                            |                   | -           | 4) Add'I volume provided for<br>Project-specific As/MSD                                                          |
|                                  | <ul> <li>a. The second sec</li></ul> | · · · · ·                                                      |                                                                |                                                                                                         |                                                                    |                                             |                                       |                   |                      | -                                             |                             | -                          |                   |             | S) Please we Eff. 200 Mulic<br>FGD Effluent.                                                                     |
| 1                                | a a a a a a a a a a a a a a a a a a a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n a la colar de la plana ann                                   |                                                                |                                                                                                         | (), e                                                              |                                             |                                       | -                 |                      | -                                             |                             |                            | -                 | -           | Add Al and Aln<br>per client                                                                                     |
| 1-2                              | in the standard ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | apatina di santa a                                             |                                                                | · · · · · · · · · · · · · · · · · · ·                                                                   | - Pase (8. (1988) (19                                              |                                             | e : 1 sa eeu                          |                   |                      | i na                                          | -                           |                            |                   | 50 a 1994 a | 2-10-12 AMB, F6<br>4150: B.Co. and                                                                               |
|                                  | For Labora<br>C Seal: Ng<br>oler Temp: 2.0<br>rrier: UFS<br>SR: UFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tory Use Only<br>Comments:<br>72 X46 544<br>9210 85<br>710:036 | 01<br>82 - K                                                   | Mal<br>FWI Freps V<br>WWI Waste<br>SB: Sea and<br>SS: Sol and<br>TS: Plant at<br>HC: Hydroc<br>TB: Trap | vater<br>Water<br>I Brackish<br>Sediment<br>d Antribit 1<br>arbons | es:<br>Water<br>Rissue                      | Relingu<br>Frame:<br>Organi<br>Date 8 | Gress<br>Ization: | H The                | r>~]                                          | Rece<br>Nam<br>Orga<br>Date | ei<br>Binization<br>& Time | hurs<br>EA<br>2/9 | Jehn<br>F   | Received By: A SAP 2-16<br>2-73C<br>Warne: ALEXA BAILM, (ANB)<br>Organization: FGS<br>StoDate & Time: 2-10-12 (C |

Frontier Global Sciences, Inc.

isk 1

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Liz Siska, Project Manager

Page 3 of 12 1202140 Final Report B, Co, V 31



5

414 Pontius Ave North Seattle, WA 98109 Ph: 206-622-6960 Fx: 206-622-6870

## ANALYTICAL RESULTS

## **Effluent Field Blank**

| Matrix: <u>Water</u> |        | Laboratory ID: <u>1202140-01</u> |      |       |          |         |          |          |               |                    |  |  |  |
|----------------------|--------|----------------------------------|------|-------|----------|---------|----------|----------|---------------|--------------------|--|--|--|
| Analyte              | Result | MDL                              | MRL  | Units | Dilution | Batch   | Sequence | Analyzed | Method        | Notes              |  |  |  |
| Boron                | ND     | 0.21                             | 3.00 | μg/L  | 1        | F202131 | 2B18016  | 02/17/12 | EPA 200.8 Mod | QB-02,<br>QM-12, U |  |  |  |
| Cobalt               | ND     | 0.007                            | 0.10 | μg/L  | 1        | F202131 | 2B18016  | 02/17/12 | EPA 200.8 Mod | Ŭ                  |  |  |  |
| Vanadium             | ND     | 0.01                             | 0.10 | μg/L  | 1        | F202131 | 2B18016  | 02/17/12 | EPA 200.8 Mod | U                  |  |  |  |

Frontier Global Sciences, Inc.

ska 1 \_\_\_

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Liz Siska, Project Manager

Page 4 of 12 1202140 Final Report B, Co, V 32



1 0× 50

2012 414 Pontius Ave North Seattle, WA 98109 Ph: 206-622-6960 Fx: 206-622-6870

ŝ

## ANALYTICAL RESULTS

## **Treat Tank Effluent**

| Mat      | rix: <u>Water</u> |        |      | Laboratory ID: <u>1202140-02</u> |       |          |         |          |          |               |       |  |  |
|----------|-------------------|--------|------|----------------------------------|-------|----------|---------|----------|----------|---------------|-------|--|--|
| Analyte  |                   | Result | MDL  | MRL                              | Units | Dilution | Batch   | Sequence | Analyzed | Method        | Notes |  |  |
| Boron    |                   | 357000 | 412  | 6000                             | μg/L  | 2000     | F202131 | 2B24005  | 02/23/12 | EPA 200.8 Mod |       |  |  |
| Cobalt   |                   | ND     | 0.34 | 5.00                             | μg/L  | 50       | F202131 | 2B18016  | 02/17/12 | EPA 200.8 Mod | U     |  |  |
| Vanadium |                   | ND     | 0.68 | 5.00                             | μg/L  | 50       | F202131 | 2B18016  | 02/17/12 | EPA 200.8 Mod | U     |  |  |

Frontier Global Sciences, Inc.

ha 3

Liz Siska, Project Manager

3

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



## MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY AND RPD

## SOURCE: 1202140-02

| Batch: F20213       | 1                              |                                                | 5                    | Sequence               | : <u>2B18016</u>    |                    |               |       |
|---------------------|--------------------------------|------------------------------------------------|----------------------|------------------------|---------------------|--------------------|---------------|-------|
| Preparation: Closed | Vessel Nitric Oven Di          | tic Oven Digestion Lab Number: F202131-MS/MSD1 |                      |                        |                     |                    |               |       |
| Analyte             | Sample<br>Concentrat<br>(µg/L) | Spike<br>tion Added<br>(µg/L)                  | N<br>Conce<br>(µ)    | AS<br>ntration<br>g/L) | MS<br>%<br>Recovery | Recovery<br>Limits | Method        | Notes |
| Vanadium            | 1.21                           | 5.0500                                         | 8                    | .07                    | 136                 | 70 - 130           | EPA 200.8 Mod | QM-07 |
| Cobalt              | 0.76                           | 5.0500                                         | 5                    | .83                    | 100                 | 70 - 130           | EPA 200.8 Mod |       |
| Analyte             | Spike<br>Added<br>(µg/L)       | MSD<br>Concentration<br>(µg/L)                 | MSD<br>%<br>Recovery | %<br>RPD               | Recovery<br>Limits  | RPD<br>Limit       | Method        | Notes |
| Vanadium            | 5.0500                         | 6.58                                           | 106                  | 20.2                   | 70 - 130            | 20                 | EPA 200.8 Mod | QR-08 |
| Cobalt              | 5.0500                         | 6.06                                           | 105                  | 3.84                   | 70 - 130            | 20                 | EPA 200.8 Mod |       |

Frontier Global Sciences, Inc.

he

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Liz Siska, Project Manager

1

Page 6 of 12 1202140 Final Report B, Co, V 34



1

Same States

# MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY AND RPD

### SOURCE: 1202140-02

Batch: F202131 -

....

Sequence: 2B18016

| Preparation: | Closed Vessel | Nitric Oven | Digestion |
|--------------|---------------|-------------|-----------|
|              |               |             |           |

. . .

| Preparation: | Closed Ves          | Lab Number: F202131-MS/MSD2     |                                |                      |                         |                     |                    |               |       |
|--------------|---------------------|---------------------------------|--------------------------------|----------------------|-------------------------|---------------------|--------------------|---------------|-------|
| Analyte      | budt (17            | Sample<br>Concentrati<br>(µg/L) | Spike<br>on Added<br>(µg/L)    | N<br>Conce<br>(بیا   | /IS<br>ntration<br>g/L) | MS<br>%<br>Recovery | Recovery<br>Limits | Method        | Notes |
| Vanadium     |                     | 1.21                            | 1010.0                         | 10                   | 097                     | 108                 | 70 - 130           | EPA 200.8 Mod | AS    |
| Cobalt       |                     | 0.76                            | 505.00                         | 51                   | 17.4                    | 102                 | 70 - 130           | EPA 200.8 Mod | AS    |
| Analyte      | Sanobi<br>Christian | Spike<br>Added<br>(µg/L)        | MSD<br>Concentration<br>(µg/L) | MSD<br>%<br>Recovery | %<br>RPD                | Recovery<br>Limits  | RPD<br>Limit       | Method        | Notes |
| Vanadium     |                     | 1010.0                          | 1052                           | 104                  | 4.20                    | 70 - 130            | 20                 | EPA 200.8 Mod | AS    |
| Cobalt       |                     | 505.00                          | 518.3                          | 102                  | 0.187                   | 70 - 130            | 20                 | EPA 200.8 Mod | AS    |

Frontier Global Sciences, Inc.

isha

Liz Siska, Project Manager

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



4

414 Pontius Ave North Seattle, WA 98109 Ph: 206-622-6960 Fx: 206-622-6870

### MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY AND RPD

## SOURCE: 1202140-02RE2

| Batch:       | F202131       |                                 |                                | 5                    | Sequence                | : <u>2B24005</u>    |                    |                   |       |
|--------------|---------------|---------------------------------|--------------------------------|----------------------|-------------------------|---------------------|--------------------|-------------------|-------|
| Preparation: | Closed Vessel | Nitric Oven Dig                 | estion                         | Lab                  | Number                  | : <u>F202131-</u>   | MS/MSD5            | at 7 Deptil 1990. |       |
| Analyte      | + 1           | Sample<br>Concentrati<br>(µg/L) | Spike<br>ion Added<br>(µg/L)   | М<br>Сопсе<br>(µ     | /IS<br>ntration<br>g/L) | MS<br>%<br>Recovery | Recovery<br>Limits | Method            | Notes |
| Boron        |               | 356800                          | 75.750                         | 35                   | 6500                    | -478                | 70 - 130           | EPA 200.8 Mod     | QM-02 |
| Analyte      |               | Spike<br>Added<br>(µg/L)        | MSD<br>Concentration<br>(µg/L) | MSD<br>%<br>Recovery | %<br>RPD                | Recovery<br>Limits  | RPD<br>Limit       | Method            | Notes |
| Boron        |               | 75.750                          | 359700                         | 3820                 | 0.909                   | 70 - 130            | 20                 | EPA 200.8 Mod     | QM-02 |

Frontier Global Sciences, Inc.

esh 0

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Liz Siska, Project Manager

Page 8 of 12 1202140 Final Report B, Co, V 36



## MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY AND RPD

| Batch:       | F202131         |                               | (\$5                            |                      | Sequence                 | e: 2B24005          |                    |               |       |
|--------------|-----------------|-------------------------------|---------------------------------|----------------------|--------------------------|---------------------|--------------------|---------------|-------|
| Preparation: | Closed Vessel 1 | Nitric Oven Di                | gestion                         | La                   | b Number                 |                     |                    |               |       |
| Analyte      | -               | Sample<br>Concentra<br>(µg/L) | e Spike<br>tion Added<br>(μg/L) | Cond                 | MS<br>entration<br>µg/L) | MS<br>%<br>Recovery | Recovery<br>Limits | Method        | Notes |
| Boron        |                 | 356800                        | 161600                          | 5                    | 30100                    | 107                 | 70 - 130           | EPA 200.8 Mod | AS    |
| Analyte      |                 | Spike<br>Added<br>(µg/L)      | MSD<br>Concentration<br>(µg/L)  | MSD<br>%<br>Recovery | %<br>RPD                 | Recovery<br>Limits  | RPD<br>Limit       | Method        | Notes |
| Boron        |                 | 161600                        | 497000                          | 86.8                 | 6.43                     | 70 - 130            | 20                 | EPA 200.8 Mod | AS    |

## SOURCE: 1202140-02RE2

Frontier Global Sciences, Inc.

he

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Liz Siska, Project Manager

Page 9 of 12 1202140 Final Report B, Co, V 37



## LABORATORY CONTROL SAMPLE/ LABORATORY CONTROL SAMPLE DUPLICATE

## **RECOVERY AND RPD**

Batch: F202131

Preparation: Closed Vessel Nitric Oven Digestion

Sequence: <u>2B18016</u> Lab Number: <u>F202131-BS/BSD1</u>

#### LCS Source: Blank Spike

| Analyte  | n <sup>ander</sup> schutzen er<br>Stillenst | Spike<br>Added<br>(µg/L)        | LCS<br>Concentra<br>(µg/L | ation<br>) | LCS<br>%<br>Recovery | Recovery<br>Limits | Method        | Notes |
|----------|---------------------------------------------|---------------------------------|---------------------------|------------|----------------------|--------------------|---------------|-------|
| Boron    |                                             | 75.000                          | 76.23                     | 1          | 102                  | 85 - 115           | EPA 200.8 Mod |       |
| Vanadium |                                             | 5.0000                          | 4.57                      |            | 91.4                 | 85 - 115           | EPA 200.8 Mod |       |
| Cobalt   |                                             | 5.0000                          | 5.06                      |            | 101                  | 85 - 115           | EPA 200.8 Mod |       |
| Analyte  | Spike<br>Added<br>(µg/L)                    | LCSD<br>Concentration<br>(µg/L) | LCSD<br>%<br>Recovery     | %<br>RPD   | Recovery<br>Limits   | RPD<br>Limit       | Method        | Notes |
| Boron    | 75.000                                      | 77.22                           | 103                       | 1.29       | 85 - 115             | 20                 | EPA 200.8 Mod |       |
| Vanadium | 5.0000                                      | 4.93                            | 98.6                      | 7.59       | 85 - 115             | 20                 | EPA 200.8 Mod |       |
| Cobalt   | 5.0000                                      | 5.15                            | 103                       | 1.81       | 85 - 115             | 20                 | EPA 200.8 Mod |       |

Frontier Global Sciences, Inc.

she

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Liz Siska, Project Manager

Page 10 of 12 1202140 Final Report B, Co, V 38



## PREPARATION BLANKS

Instrument: ICPMS-6

Sequence: 2B18016

Preparation: Closed Vessel Nitric Oven Digestion

|   | Lab Sample ID | Analyte  | Found  | MRL  | Units | Batch   | Method        | Notes |
|---|---------------|----------|--------|------|-------|---------|---------------|-------|
| - | F202131-BLK1  | Boron    | 1.13   | 3.00 | µg/L  | F202131 | EPA 200.8 Moc | U     |
|   | F202131-BLK1  | Vanadium | -0.06  | 0.10 | µg/L  | F202131 | EPA 200.8 Moc | U     |
|   | F202131-BLK1  | Cobalt   | 0.0001 | 0.10 | µg/L  | F202131 | EPA 200.8 Moc | U     |

Frontier Global Sciences, Inc.

3-Siska 2

Liz Siska, Project Manager

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



## **Notes and Definitions**

U Analyte included in the analysis, but not detected

- QR-08 The RPD value for the MS/MSD was outside of acceptance limits. Batch QC acceptable based on matrix duplicate and/or LCS/LCSD RPD values within control limits.
- QM-12 Initial or continuing calibration verification and/or blank spike/blank spike duplicate recoveries above upper control limits. All reported sample concentrations were below the reporting limit.
- QM-07 The spike recovery was outside control limits for the MS and/or MSD. The batch was accepted based on LCS and LCSD recoveries within control limits and, when analysis permits, acceptable AS/ASD.
- QM-02 The MS and/or MSD recoveries outside acceptance limits, due to spike concentration less than 1 times the sample concentration. The batch was accepted based on LCS and LCSD recoveries within control limits and, when analysis permits, acceptable AS/ASD.
- QB-02 The method blank and/or initial/continuing calibration blank contains analyte at a concentration above the MRL. However, the sample concentrations are less than the MRL.
- AS This MS and/or MSD is an analytical spike and/or an analytical spike duplicate.
- DET Analyte Detected
- MDL Minimum Detection Limit
- MRL Minimum Reporting Limit
- ND Analyte Not Detected at or above the reporting limit
- wet Sample results reported on a wet weight basis
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- RSD Relative Standard Deviation

Frontier Global Sciences, Inc.

Li, Siska

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Liz Siska, Project Manager

Page 12 of 12 1202140 Final Report B, Co, V 02/27/2012

| ΛΛΛ                  | eastern analytica                                          | l, inc.      | CHAIN-OF-CUSTODY RECORD                                       | 107558                          |
|----------------------|------------------------------------------------------------|--------------|---------------------------------------------------------------|---------------------------------|
|                      | professional laboratory se                                 | ervices      |                                                               | GZANH                           |
| Sample IDs           | Date/Time<br>Composites need start<br>and stop dates/times | Matrix       | Parameters and Sample Notes                                   | # of containers                 |
| Effluent Field Blank | 29/12                                                      | aqueous      | AqTot/SWLLMetalsSub                                           |                                 |
|                      | 08:52                                                      | Grabor Comp  |                                                               |                                 |
| Sampler confir       | ms ID and parameters                                       | are accurate | Circle preservative/s: HCL HNO, H,SO, NaOH MEOH Na,S,O, (ICE) | Dissolved Sample Field Filtered |
| Treat Tank Effluent  | 29/12                                                      | aqueous      | AqTot/SWLLMetalsSub/pH                                        | 4                               |
|                      | 09:15                                                      | Grabor Comp  |                                                               |                                 |
| Sampler confir       | I<br>ms ID and parameters                                  | are accurate | Circle preservative/s: HCL HNO, H2SO, NaOH MEOH Na2S2O, CE    | Dissolved Sample Field Filtered |

Please ensure this auto COC is accurate, adheres to permit or sampling requirements for this sampling event, and modify as necessary.

West in

| EAI Project ID 3902<br>Project Name Wastewater Analysis - Weekly                                | Results Needed by: Preferred date<br>Notes about project: (i.e. Special Limits, Billing info | ReportingOptions                                                                             | PONumber: 02259252   |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------|
| State NH                                                                                        | Subcontract ALL metals to Frontier Global Sciences                                           | EDD email                                                                                    |                      |
| Client (Pro Mgr) Paul Pepler                                                                    | Metals include Total As,Cd,Cr,Cu,Pb,Hg,Mo,Ni,Se,                                             | e-mail Login Confirmation                                                                    | Temperature          |
| Customer GZA GeoEnvironmental, Inc. (NH)<br>Address 380 Harvey Road<br>City Manchester NH 03103 | Ag,Zn. Metals analyses require project-specific<br>MS/MSD.                                   | NO FAX<br>Samples Collected by: <u>6-7/</u><br><u>Au</u> <u>2/9/12</u><br>Relinquished by Di | 100 Priso Prison     |
| Phone 623-3600 Fax 624-9463 (37)                                                                | 00 dellarentidas                                                                             |                                                                                              |                      |
| EmailAddress: paul.pepler@gza.com                                                               | □ A □ A+ ⊠ B □ B+ □ C □ PC                                                                   | Relinquished by Da                                                                           | ate/Time Received by |
| Eastern Analytical, Inc. 25 Cher                                                                | nell Dr. Concord, NH 03301 Phone: (603)228-05                                                | 25 1-800-287-0525 F                                                                          | ax: (603)228-4591    |