AR-1335

GZA GeoEnvironmental, Inc. Engineers and Scientists

VIA EMAIL

February 3, 2012 File No. 04.0029307.00

Ms. Amy Daigneault Pretreatment Coordinator Lowell Regional Wastewater Utility 451 First St Blvd (Rte-110) Lowell, Massachusetts 01850

380 Harvey Road Manchester New Hampshire 03103-3347 603-623-3600 FAX 603-624-9463 www.gza.com Re: Analytical Results January 2012 Merrimack Station Public Service of New Hampshire Bow, New Hampshire

Dear Ms. Daigneault:

On behalf of Public Service of New Hampshire (PSNH), GZA GeoEnvironmental, Inc. (GZA) is pleased to submit this report in response to your email dated January 27, 2012. We understand the Lowell Regional Wastewater Utility (Utility) conducts weekly monitoring of the hauled waste stream generated at Merrimack Station. Two samples which were collected and analyzed by the Utility in January 2012 included results for silver which exceed the Local Limit of 0.053 milligrams per liter.

We have reviewed the data collected to date and have the following comments.

- The attached table summarizes historical silver concentrations from analyses conducted by the Utility's contract laboratory, and under the direction of GZA by and Eastern Analytical, Inc. (EAI) and Frontier Global Sciences (Frontier). The analytical results demonstrate an inconsistency between the analytical programs. Concentrations as detected by the Utility are greater than those detected by EAI and Frontier. Silver has not been detected in any analysis conducted under the direction of GZA to date.
 - As discussed in the two data reports submitted to the Utility on behalf of PSNH by GZA, Flue Gas Desulfurization (FGD) wastewater requires specialized analytical techniques to overcome matrix interference on certain trace metals analyses. The United States Environmental Protection Agency (EPA) developed a draft procedure that contains further guidance and is applicable to the analysis of 13 metals, including silver. The draft procedure specifies the use of EPA Method 200.8 or Method 1638, ICP-MS modified for Dynamic Reaction Cell (DRC) or Collision Cell (CC).

Copyright © 2012 GZA GeoEnvironmental, Inc.

The samples collected for the analysis of metals by the Utility to date have utilized EPA Method 200.7—Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP - AES) while the monitoring program conducted under the direction of GZA has utilized analytical laboratories with the capability of analyzing metals in accordance with the draft EPA procedure to overcome matrix interference. The inconsistency between the GZA and Utility data sets appear to support EPA's findings and recommendations for the use of DRC or CC methods of analyzing metals in FGD wastewater.

ANALYTICAL DISCUSSION

FGD wastewater requires specialized analytical techniques to overcome matrix interference on some trace metals analysis. Many analytical laboratories may be unaware of this. We offer an excerpt below from the EPA's web site and a link to their draft procedure that contains further guidance.

LABORATORY ANALYSIS OF FGD WASTEWATER

Wastewater from FGD systems can contain constituents known to cause matrix interferences. EPA has observed that, during inductively coupled plasma – mass spectrometry (ICP-MS) analysis of FGD wastewater, certain elements commonly present in the wastewater may cause polyatomic interferences that bias the detection and/or quantization of certain elements of interest. These potential interferences may become significant when measuring trace elements at concentrations in the low parts-per-billion range.

As part of a recent sampling effort for the steam electric power generating effluent guidelines rulemaking, EPA developed a standard operating procedure (SOP) that was used in conjunction with EPA Method 200.8 to conduct ICP-MS analyses of FGD wastewater. The SOP describes critical technical and quality assurance procedures that were implemented to mitigate anticipated interferences and generate reliable data for FGD wastewater. EPA regulations at 40 CFR 136.6 already allow the analytical community flexibility to modify approved methods to lower the costs of measurements, overcome matrix interferences, or otherwise improve the analysis. The draft SOP developed for FGD wastewater takes a proactive approach toward looking for and taking steps to mitigate matrix interferences, including using specialized interference check solutions (i.e., a synthetic FGD wastewater matrix). EPA's draft SOP is being made available to laboratories contemplating ICP-MS analysis of FGD wastewater, either for adoption as currently written or to serve as a framework for developing their own laboratory-specific SOPs. For further information, see:

Standard Operating Procedure: Inductively Coupled Plasma/Mass Spectrometry for Trace Element Analysis in Flue Gas Desulfurization Wastewaters (30 pp, 174K) http://water.epa.gov/scitech/wastetech/guide/upload/steam_draft_sop.pdf, EPA May 2011.

Based on the available regulatory guidance pertaining to metals analysis of FGD wastewater and the silver monitoring results collected to date, it is GZA's opinion that the analytical results obtained using the EPA draft SOP are most representative of the metals concentrations in this wastewater and that each analytical result obtained in accordance with the EPA draft SOP has demonstrated compliance with the Utility's Local Limit for silver.

Should you have any questions concerning this report, please do not hesitate to contact me at (603) 232-8744.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

Ronald A. Breton, P.E.

Ronald A. Breton, P. Principal

RAB:mm P:04Jobs/0029300s/04.0029307.00/Work/SAMPLING AND REPORTING/REPORTS/Lowell/Exceedance Reports/FINAL 04.0029307 LRWU AgLTR 020212.docx

Attachment: Table

Alexandra and a second sequence second methods and a second se

÷.

TABLE

SUMMARY OF HISTORICAL SILVER CONCENTRATIONS

Public Service Company of New Hampshire Merrimack Station Bow, New Hampshire

PARAMETER	RESULTS (mg/L) 12/05/2012 by Lowell	RESULTS (mg/L) 12/12/2012 by Lowell	RESULTS (mg/L) 12/16/2011 EAI/Frontier	RESULTS (mg/L) 12/19/2012 by Lowell	RESULTS (mg/L) 12/27/2012 by Lowell	RESULTS (mg/L) 1/05/2012 EAI/Frontier	RESULTS (mg/L) 01/16/2012 by Lowell	RESULTS (mg/L) 01/20/2012 by Lowell	RESULTS (mg/L) 1/26/2012 EAI/Frontier
Silver	0.021	0.001	< 0.000100	0.004	0.004	< 0.000100	0.058	0.087	< 0.000400
Analysis in accordance with EPA Draft SOP? ¹	NO	NO	YES	NO	NO	YES	NO	NO	YES

NOTES:

1. FGD wastewater requires specialized analytical techniques to overcome matrix interference on some trace metals analysis. We offer an excerpt below from the Environmental Protection Agency's (EPA's) web site and a link to the draft EPA SOP that contains further guidance.

Laboratory Analysis of FGD Wastewater

Wastewater from FGD systems can contain constituents known to cause matrix interferences. EPA has observed that, during inductively coupled plasma – mass spectrometry (ICP-MS) analysis of FGD wastewater, certain elements commonly present in the wastewater may cause polyatomic interferences that bias the detection and/or quantization of certain elements of interest. These potential interferences may become significant when measuring trace elements at concentrations in the low parts-per-billion range.

As part of a recent sampling effort for the steam electric power generating effluent guidelines rulemaking, EPA developed a standard operating procedure (SOP) that was used in conjunction with EPA Method 200.8 to conduct ICP-MS analyses of FGD wastewater. The SOP describes critical technical and quality assurance procedures that were implemented to mitigate anticipated interferences and generate reliable data for FGD wastewater. EPA regulations at 40 CFR 136.6 already allow the analytical community flexibility to modify approved methods to lower the costs of measurements, overcome matrix interferences, or otherwise improve the analysis. The draft SOP developed for FGD wastewater takes a proactive approach toward looking for and taking steps to mitigate matrix interferences, including using specialized interference check solutions (i.e., a synthetic FGD wastewater matrix). EPA's draft SOP is being made available to laboratories contemplating ICP-MS analysis of FGD wastewater, either for adoption as currently written or to serve as a framework for developing their own laboratory-specific SOPs. Standard Operating Procedure: Inductively Coupled Plasma/Mass Spectrometry for Trace Element Analysis in Flue Gas Desulfurization Wastewaters (30 pp, 174K), http://water.epa.gov/scitech/wasteech/guide/upload/steam draft sop.pdf, EPA, May 2011

P:04Jobs/0029300s/04.0029307.00/Work/SAMP/LING AND REPORTING/DATA/04.0029307.00 RESULTS 012412.xbsx

GZA GeoEnvironmental, Inc.

95	
<u></u>	
.×	

eastern analytical

protessional allocators services

Paul Pepler GZA GeoEnvironmental, Inc. (NH) 380 Harvey Road Manchester, NH 03103

Subject: Laboratory Report

Eastern Analytical, Inc. ID: 107170 Client Identification: Wastewater Analysis - Weekly Date Received: 1/26/2012

Dear Mr. Pepler:

Enclosed please find the laboratory report for the above identified project. All analyses were performed in accordance with our QA/QC Program. Unless otherwise stated, holding times, preservation techniques, container types, and sample conditions adhered to EPA Protocol. Samples which were collected by Eastern Analytical, Inc. (EAI) were collected in accordance with approved EPA procedures. Eastern Analytical, Inc. certifies that the enclosed test results meet all requirements of NELAP and other applicable state certifications. Please refer to our website at www.eailabs.com for a copy of our NELAP certificate and accredited parameters.

The following standard abbreviations and conventions apply to all EAI reports:

Solid samples are reported on a dry weight basis, unless otherwise noted

- < : "less than" followed by the reporting limit
- > : "greater than" followed by the reporting limit
- %R: % Recovery

Eastern Analytical Inc. maintains certification in the following states: Connecticut (PH-0492), Maine (NH005), Massachusetts (M-NH005), New Hampshire/NELAP (1012), Rhode Island (269) and Vermont (VT1012).

The following information is contained within this report: Sample Conditions summary, Analytical Results/Data, Quality Control data (if requested) and copies of the Chain of Custody. This report may not be reproduced except in full, without the the written approval of the laboratory.

If you have any questions regarding the results contained within, please feel free to directly contact me or the chemist(s) who performed the testing in question. Unless otherwise requested, we will dispose of the sample(s) 30 days from the sample receipt date.

We appreciate this opportunity to be of service and look forward to your continued patronage.

Sincerely,

Lorraine Olashaw, Lab Director

2-812 Date

of pages (excluding cover letter)

and sold firster.

 $1 \le (1 + 1)^{1+\alpha} \le (1 + 1) + (1 + 1) + (1 + 1)^{\alpha} + (1$

Eastern Analytical, Inc. 2011, and 104

Client Designation: Wastewater Analysis - Weekly

Temperature upon receipt (°C): Acceptable temperature range (°C): 0-6		4.5		Re	eceived	on ice or cold packs (Yes/No): Y
Lab ID	Sample ID	Date Received	Date Sampled	Sample Matrix	% Dry Weight	Exceptions/Comments (other than thermal preservation)
107170.01	Effluent Field Blank	1/26/12	1/26/12	aqueous		Adheres to Sample Acceptance Policy
107170.02	Treat Tank Effluent	1/26/12	1/26/12	aqueous		Adheres to Sample Acceptance Policy

Tan Part I

a similar to test a more survey and the second s

to the second state of the second second second

CONTRACTOR AND AND AND AND ADDRESS TO AND ADDRESS AND ADDRESS ADDR

CONTRACT DOL

(a) If recarding the second s Second se Second s

in the twenty or account of the state of will be required on the state of the state

a provide any disease and an automatical framework in the next or information from a feature of a second se second sec

Samples were properly preserved and the pH measured when applicable unless otherwise noted. Analysis of solids for pH, Flashpoint, Ignitibility, Paint Filter, Corrosivity, Conductivity and Specific Gravity are reported on an "as received" basis.

All results contained in this report relate only to the above listed samples.

References include:

1) EPA 600/4-79-020, 1983

2) Standard Methods for Examination of Water and Wastewater : Inorganics, 19th Edition, 1995; Microbiology, 20th Edition, 1998 3) Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB

4) Hach Water Analysis Handbook, 2nd edition, 1992

eastern analytical, inc.

LABORATORY REPORT

1

Client: GZA GeoEnvironmental, Inc. (NH)

Client Designation: Wastewater Analysis - Weekly

Shere we are the second state of the second st			the second se	Contraction in the second second
Sample ID:	Treat Tank Effluent			
Lab Sample ID:	107170.02			
Matrix:	aqueous			
Dete Compled:	1/26/12			
Date Sampled.	1/26/12			
Date Received.	11.00/1			
Units:	4/07/40			
Date of Analysis:	1/2//12			
Analyst:	KJP			
Method:	624			
Dilution Factor:	1			
Chloromethane	< 5			
Vinyl chloride	< 2			
Bromomethane	<2			
Chloroethane	< 5			
Acrolein	< 50			
Acetone	< 50			
1,1-Dichloroethene	<1			
Methylene chloride	< 5			
Carbon disulfide	< 5			
Methyl-t-hutyl ether(MTBE)	< 10			
trans-1,2-Dichloroethene	< 2			
Vinyl acetate	< 10			
1,1-Dichloroethane	< 2			
cis-1,2-Dichloroethene	<2			
Chloroform	<2			
1,1,1-Trichloroethane	< 2			
Carbon tetrachloride	< 2			
Benzene	< 1			
1,2-Dichloroethene	<2			
1,2-Dichloropropane	<2			
Bromodichloromethane	< 2			
2-Chloroethylvinylether	< 2			
4-Methyl-2-pentanone(MIBK)	< 10			
Toluene	2			
trans-1,3-Dichloropropene	< 2			
1,1,2-Trichloroethane	< 2			
2-Hexanone	< 10			
Dibromochloromethane	<2			
Chlorobenzene	<2			
Ethylbenzene	<1			
mp-Xylene	<1			
o-Xylene	<1			
Styrene	<1			
1.1.2.2-Tetrachloroethane	<2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
1,3-Dichlorobenzene	<1			
1,4-Dichlorobenzene	<1			
1,2-Dichlorobenzene	<1			
4-Bromonuorobenzene (surr)	93 %R			
Toluene-d8 (surr)	99 %R			

eastern analytical, inc.

-

Client Designation: Wastewater Analysis - Weekly

Parameter Name	Blank	LCS	LCSD	Analysis Date	Units	Limits	RPD	Method
Chloromethane	< 5	22 (110 %R)	22 (108 %R) (2 RPD)	1/27/2012	ug/l	0 - 273	20	624
Vinyl chloride	< 2	20 (99 %R)	19 (94 %R) (5 RPD)	1/27/2012	ug/l	0 - 251	20	624
Bromomethane	< 2	21 (106 %R)	21 (103 %R) (3 RPD)	1/27/2012	ug/l	0 - 242	20	624
Chloroethane	< 5	26 (129 %R)	25 (123 %R) (5 RPD)	1/27/2012	ua/l	14 - 230	20	624
Trichlorofluoromethane	< 5	25 (124 %R)	23 (116 %R) (7 RPD)	1/27/2012	ua/l	17 - 181	20	624
Acrolein	< 50	< 50 (%R N/A)	< 50 (%R N/A) (RPD N/A)	1/27/2012	ug/l		(00434	624
Acetone	< 50	< 50 (100 %R)	< 50 (97 %R) (3 RPD)	1/27/2012	ug/l			624
1,1-Dichloroethene	< 1	24 (122 %R)	23 (115 %R) (6 RPD)	1/27/2012	ug/l	0 - 234	20	624
Methylene chloride	< 5	26 (129 %R)	25 (126 %R) (2 RPD)	1/27/2012	ug/l	0 - 221	20	624
Carbon disulfide	< 5	22 (%R)	22 (%R) (RPD)	1/27/2012	ug/l			624
Acrylonitrile	< 50	< 50 (%R)	< 50 (%R) (RPD)	1/27/2012	ug/l			624
Methyl-t-butyl ether(MTBE)	< 10	20 (%R)	20 (%R) (RPD)	1/27/2012	ug/l			624
trans-1,2-Dichloroethene	< 2	25 (124 %R)	24 (121 %R) (2 RPD)	1/27/2012	ug/l	54 - 156	20	624
Vinyl acetate	< 10	30 (%R)	30 (%R) (RPD)	1/27/2012	ug/l			624
1,1-Dichloroethane	< 2	24 (118 %R)	23 (113 %R) (4 RPD)	1/27/2012	ug/l	59 - 155	20	624
cis-1,2-Dichloroethene	< 2	22 (%R)	21 (%R) (RPD)	1/27/2012	ug/l			624
2-Butanone(MEK)	< 10	20 (%R)	20 (%R) (RPD)	1/27/2012	ug/l			624
Chloroform	< 2	22 (109 %R)	21 (106 %R) (3 RPD)	1/27/2012	ug/l	51 - 138	20	624
1,1,1-Trichloroethane	< 2	23 (115 %R)	22 (110 %R) (4 RPD)	1/27/2012	ug/l	52 - 162	20	624
Carbon tetrachloride	< 2	26 (132 %R)	26 (129 %R) (2 RPD)	1/27/2012	ug/l	70 - 140	20	624
Benzene	< 1	22 (110 %R)	21 (107 %R) (3 RPD)	1/27/2012	ug/l	37 - 151	20	624
1,2-Dichloroethane	< 2	21 (103 %R)	20 (99 %R) (4 RPD)	1/27/2012	ug/l	49 - 155	20	624
Trichloroethene	< 2	21 (105 %R)	20 (101 %R) (4 RPD)	1/27/2012	ug/l	71 - 157	20	624
1,2-Dichloropropane	< 2	21 (105 %R)	21 (103 %R) (2 RPD)	1/27/2012	ug/l	0 - 210	20	624
Bromodichloromethane	< 2	21 (104 %R)	20 (101 %R) (3 RPD)	1/27/2012	ug/l	35 - 155	20	624
2-Chloroethylvinylether	< 2	< 2 (%R N/A)	< 2 (%R N/A) (RPD N/A)	1/27/2012	ug/l	0 - 305	20	624
4-Methyl-2-pentanone(MIBK)	< 10	20 (%R)	20 (%R) (RPD)	1/27/2012	ug/l			624
cis-1,3-Dichloropropene	< 2	20 (102 %R)	20 (102 %R) (0 RPD)	1/27/2012	ug/l	0 - 227	20	624
Toluene	< 1	22 (109 %R)	21 (106 %R) (3 RPD)	1/27/2012	ug/I	47 - 150	20	624
trans-1,3-Dichloropropene	< 2	21 (103 %R)	20 (101 %R) (2 RPD)	1/27/2012	ug/l	17 - 183	20	624
1,1,2-Trichloroethane	< 2	23 (113 %R)	22 (109 %R) (4 RPD)	1/27/2012	ug/l	52 - 150	20	624
2-Hexanone	< 10	20 (%R)	20 (%R) (RPD)	1/27/2012	ug/l			624
Tetrachloroethene	<2	24 (120 %R)	23 (116 %R) (3 RPD)	1/27/2012	ug/l	64 - 148	20	624
Dibromochloromethane	< 2	24 (118 %R)	23 (115 %R) (3 RPD)	1/27/2012	ug/l	53 - 149	20	624
Chlorobenzene	< 2	22 (111 %R)	22 (108 %R) (3 RPD)	1/27/2012	ug/l	37 - 160	20	624
Ethylbenzene	<1	23 (113 %R)	22 (110 %R) (3 RPD)	1/27/2012	ug/l	37 - 162	20	624
mp-Xylene	< 1	47 (117 %R)	45 (112 %R) (4 RPD)	1/27/2012	ug/l	70 - 130	20	624
o-Xylene	< 1	23 (115 %R)	22 (109 %R) (5 RPD)	1/27/2012	ug/l	70 - 130	20	624
Styrene	< 1	23 (%R)	22 (%R) (RPD)	1/27/2012	ug/l			624
Bromoform	<2	25 (125 %R)	25 (123 %R) (2 RPD)	1/27/2012	ug/l	45 - 169	20	624
1,1,2,2-Tetrachloroethane	<2	20 (101 %R)	20 (100 %R) (1 RPD)	1/27/2012	ug/l	46 - 157	20	624
1,3-Dichlorobenzene	< 1	22 (110 %R)	21 (106 %R) (4 RPD)	1/27/2012	ug/l	59 - 156	20	624
1,4-Dichlorobenzene	< 1	22 (108 %R)	21 (107 %R) (1 RPD)	1/27/2012	ug/l	18 - 190	20	624
1,2-Dichlorobenzene	< 1	21 (105 %R)	21 (104 %R) (1 RPD)	1/27/2012	ug/l	18 - 190	20	624
4-Bromofluorobenzene (surr)	93 %R	99 %R	102 %R	1/27/2012	% Rec	70 - 130	Contraction of the	624

eastern analytical, inc.

ş

1

r.

Client Designation: Wastewater Analysis - Weekly

Parameter Name	Blank	LCS	LCSD Ana	alysis Date U	nits Limits RPD Method
1,2-Dichlorobenzene-d4 (surr)	103 %R	99 %R	99 %R	1/27/2012 %	Rec 70 - 130 624
Toluene-d8 (surr)	99 %R	101 %R	100 %R	1/27/2012 %	Rec 70 - 130 624
			3		

Samples were extracted and analyzed within holding time limits.

Instrumentation was calibrated in accordance with the method requirements.

The method blanks were free of contamination at the reporting limits.

Sample surrogate recoveries met the above stated criteria.

The associated matrix spikes and/or Laboratory Control Samples met acceptance criteria.

There were no exceptions in the analyses, unless noted.

*/! Flagged analyte recoveries deviated from the QA/QC limits. Any impact to data is addressed below.

Meres a

1. 1015.1.1046.1

Client Designation: Wastewater Analysis - Weekly

Sample ID:	Treat Tank Effluent	1600	10.1	in a left	north and and
Lab Sample ID:	107170.02				
Matrix:					
IVIAU IX.	aqueous				
Date Sampled:	1/26/12				
Date Received:	1/26/12				
Units:	ug/l				
Date of Extraction/Preparation	1/27/12				
Date of Analysis:	1/30/12				
Analyst:	IMR				
Method	625mod				
	02511100				
Dilution Factor:	1				
Phenol	< 1				
2-Chlorophenol	< 1				
2,4-Dichlorophenol	< 1				
2,4,5-Irichlorophenol	< 1				
2,4,6-I richiorophenol	< 1				
2 Nitrophenol	< 5				
4-Nitrophenol	~ 1				
2 4-Dinitrophenol	< 5				
2-Methylphenol	<1				
3/4-Methylphenol	<1				
2,4-Dimethylphenol	< 1				
4-Chloro-3-methylphenol	<1				
4,6-Dinitro-2-methylphenol	< 5				
Benzoic Acid	< 50				
N-Nitrosodimethylamine	< 1				
n-Nitroso-di-n-propylamine	< 1				
n-Nitrosodiphenylamine	< 1				
bis(2-Chloroethyl)ether	<1				
bis(2-chloroisopropyl)ether	<1				
bis(2-Chloroethoxy)methane	<1				
1.4 Dichlorobenzene	<1				
1.2-Dichlorobenzene	- 1				
1 2 4-Trichlorobenzene	< 1				
2-Chloronaphthalene	<1				
4-Chlorophenyl-phenylether	< 1				
4-Bromophenyl-phenylether	< 1				
Hexachloroethane	< 1				
Hexachlorobutadiene	< 1				
Hexachlorocyclopentadiene	< 5				
Hexachlorobenzene	< 1				
4-Chloroaniline	< 1				
2-Nitroaniline	< 5				
3-Nitroaniline	< 1				
Benzyl alcohol	<5				
Nitrohenzene	< 1				
Isophorone	<1				
2.4-Dinitrotoluene	<1				
2.6-Dinitrotoluene	<1				
Benzidine (estimated)	< 5				
3,3'-Dichlorobenzidine	< 1				
Pyridine	< 5				
Azobenzene	< 1				

Client: GZA GeoEnvironmental, Inc. (NH) Client Designation: Wastewater Analysis - Weekly

Sample ID:	Treat Tank Effluent		
	107170.02		
Lab Sample ID:	107170.02		
Matrix:	aqueous		
Date Sampled:	1/26/12		
Date Received:	1/26/12		
Units:	ug/l		
Date of Extraction/Preparation	n 1/27/12		
Date of Analysis:	1/30/12		
Analyst:	IMR		
Mothod	625mod		
method.	0201100		
Dilution Factor:	State Contraction		
Carbazole	<1		
Dimethylphthalate	21		
Di-n-butylohthalate	< 5		
Butylbenzylphthalate	< 1		
bis(2-Ethylhexyl)phthalate	< 5		
Di-n-octylphthalate	<1		
Dibenzofuran	<1		
Naphthalene	<1		
Acenanhthylene	< 1		
Acenaphthene	< 1		artistic for a constant of the
Fluorene	< 1		
Phenanthrene	< 1		
Anthracene	< 1		
Pyrana	<1		
Benzolalanthracene	< 1		
Chrysene	<1		
Benzo[b]fluoranthene	< 1		
Benzo[k]fluoranthene	<1		Services Secure 121 1
Benzo[a]pyrene	<1		
Dibenzia blanthracene			
Benzola h ilperviene	<1		
2-Fluorophenol (surr)	40 %R		
Phenol-d6 (surr)	29 %R		
2,4,6-Tribromophenol (surr)	79 %R		
Nitrobenzene-D5 (surr)	81 %R		
2-riuoropipnenyi (surr)	81 %R		
P-reiphenyi-D r4 (Suit)	32 70R		

eastern analytical, inc.

100000

1.11

.

Client Designation: Wastewater Analysis - Weekly

Batch ID: 734529-39483/A012712ABN1

Parameter Name	Blank	LCS	LCSD	Analysis Date	Units	Limits	RPD	Method
Phenol	< 1	15 (30 %R)	15 (30 %R) (0 RPD)	1/30/2012	ua/l	15 - 130	20	625mod
2-Chlorophenol	< 1	30 (61 %R)	31 (61 %R) (0 RPD)	1/30/2012	ug/l	30 - 130	20	625mod
2,4-Dichlorophenol	< 1	36 (72 %R)	36 (73 %R) (1 RPD)	1/30/2012	ug/l	30 - 130	20	625mod
2,4,5-Trichlorophenol	< 1	21 (85 %R)	21 (84 %R) (1 RPD)	1/30/2012	ua/l	30 - 130	20	625mod
2,4,6-Trichlorophenol	< 1	38 (76 %R)	37 (75 %R) (1 RPD)	1/30/2012	ua/l	30 - 130	20	625mod
Pentachlorophenol	< 5	49 (97 %R)	46 (93 %R) (4 RPD)	1/30/2012	ua/l	30 - 130	20	625mod
2-Nitrophenol	< 1	36 (73 %R)	36 (72 %R) (1 RPD)	1/30/2012	ua/l	30 - 130	20	625mod
4-Nitrophenol	< 5	16 (33 %R)	18 (36 %R) (9 RPD)	1/30/2012	ug/l	15 - 130	20	625mod
2,4-Dinitrophenol	< 5	38 (76 %R)	41 (83 %R) (9 RPD)	1/30/2012	ua/l	15 - 130	20	625mod
2-Methylphenol	< 1	16 (64 %R)	16 (65 %R) (2 RPD)	1/30/2012	ug/l	30 - 130	20	625mod
3/4-Methylphenol	< 1	14 (55 %R)	14 (56 %R) (2 RPD)	1/30/2012	ug/l	30 - 130	20	625mod
2,4-Dimethylphenol	< 1	34 (67 %R)	33 (67 %R) (0 RPD)	1/30/2012	uo/l	30 - 130	20	625mod
4-Chloro-3-methylphenol	< 1	39 (77 %R)	40 (79 %R) (3 RPD)	1/30/2012	ug/l	30 - 130	20	625mod
4,6-Dinitro-2-methylphenol	< 5	44 (89 %R)	48 (95 %R) (7 RPD)	1/30/2012	ug/l	30 - 130	20	625mod
Benzoic Acid	< 50	< 50 (33 %R)	< 50 (35 %R) (6 RPD)	1/30/2012	ug/l	15 - 140	20	625mod
N-Nitrosodimethylamine	< 1	14 (55 %R)	13 (51 %R) (8 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
n-Nitroso-di-n-propylamine	< 1	19 (76 %R)	18 (73 %R) (4 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
n-Nitrosodiphenylamine	< 1	25 (101 %R)	25 (100 %R) (1 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
bis(2-Chloroethyl)ether	< 1	17 (67 %R)	17 (67 %R) (0 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
bis(2-chloroisopropyl)ether	< 1	17 (70 %R)	17 (69 %R) (1 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
bis(2-Chloroethoxy)methane	< 1	18 (72 %R)	17 (70 %R) (3 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
1,3-Dichlorobenzene	< 1	15 (59 %R)	14 (54 %R) (9 RPD)	1/30/2012	ua/l	40 - 140	20	625mod
1,4-Dichlorobenzene	< 1	15 (59 %R)	14 (55 %R) (7 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
1,2-Dichlorobenzene	< 1	15 (60 %R)	14 (56 %R) (7 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
1,2,4-Trichlorobenzene	< 1	16 (65 %R)	15 (61 %R) (6 RPD)	1/30/2012	ua/l	40 - 140	20	625mod
2-Chloronaphthalene	< 1	18 (73 %R)	18 (71 %R) (3 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
4-Chlorophenyl-phenylether	< 1	20 (79 %R)	20 (80 %R) (1 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
4-Bromophenyl-phenylether	< 1	21 (84 %R)	21 (84 %R) (0 RPD)	1/30/2012	ua/l	40 - 140	20	625mod
Hexachloroethane	< 1	13 (54 %R)	13 (51 %R) (6 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
Hexachlorobutadiene	< 1	15 (61 %R)	14 (56 %R) (9 RPD)	1/30/2012	ua/l	40 - 140	20	625mod
Hexachlorocyclopentadiene	< 5	12 (49 %R)	11 (45 %R) (9 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
Hexachlorobenzene	< 1	22 (88 %R)	20 (82 %R) (7 RPD)	1/30/2012	ua/l	40 - 140	20	625mod
4-Chloroaniline	< 1	20 (82 %R)	20 (81 %R) (1 RPD)	1/30/2012	ug/l	15 - 140	20	625mod
2-Nitroaniline	< 5	19 (77 %R)	20 (79 %R) (3 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
3-Nitroaniline	< 1	20 (79 %R)	20 (82 %R) (4 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
4-Nitroaniline	< 1	19 (74 %R)	22 (88 %R) (17 RPD)	1/30/2012	ug/i	40 - 140	20	625mod
Benzyl alcohol	< 5	17 (70 %R)	17 (69 %R) (1 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
Nitrobenzene	< 1	18 (71 %R)	18 (71 %R) (0 RPD)	1/30/2012	ug/1	40 - 140	20	625mod
Isophorone	< 1	22 (86 %R)	21 (84 %R) (2 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
2,4-Dinitrotoluene	< 1	22 (88 %R)	23 (92 %R) (4 RPD)	1/30/2012	uo/l	40 - 140	20	625mod
2,6-Dinitrotoluene	< 1	21 (82 %R)	21 (85 %R) (4 RPD)	1/30/2012	uo/l	40 - 140	20	625mod
Benzidine (estimated)	< 5	19 (76 %R)	10 (39 %R) (64 RPD)	1/30/2012	ugh	15 - 168	20	625mod
3,3'-Dichlorobenzidine	< 1	22 (87 %R)	22 (88 %R) (1 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
Pyridine	< 5	14 (54 %R)	12 (48 %R) (12 RPD)	1/30/2012	ug/i	40 - 140	20	625mod
Azobenzene	< 1	21 (82 %R)	20 (82 %R) (0 RPD)	1/30/2012	ug/i	40.140	20	625mod
C. C. S.				10012012	uun		20	0201100

eastern analytical, inc.

Batch ID: 734529-39483/A012712ABN1

m

Client: GZA GeoEnvironmental, Inc. (NH)

Client Designation: Wastewater Analysis - Weekly

Parameter Name	Blank	LCS	LCSD	Analysis Date	Units	Limits	RPD	Method
Carbazole	< 1	22 (87 %R)	22 (90 %R) (3 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
Dimethylphthalate	< 1	20 (80 %R)	20 (82 %R) (2 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
Diethylphthalate	< 1	21 (82 %R)	21 (85 %R) (4 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
Di-n-butylphthalate	< 5	22 (87 %R)	22 (89 %R) (2 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
Butylbenzylphthalate	< 1	21 (85 %R)	22 (88 %R) (3 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
bis(2-Ethylhexyl)phthalate	< 5	21 (86 %R)	22 (89 %R) (3 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
Di-n-octylphthalate	< 1	21 (85 %R)	22 (89 %R) (5 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
Dibenzofuran	< 1	19 (75 %R)	19 (74 %R) (1 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
Naphthalene	< 1	19 (77 %R)	18 (74 %R) (4 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
2-Methylnaphthalene	< 1	18 (71 %R)	17 (69 %R) (3 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
Acenaphthylene	< 1	19 (76 %R)	19 (74 %R) (3 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
Acenaphthene	< 1	20 (81 %R)	20 (80 %R) (1 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
Fluorene	< 1	21 (83 %R)	21 (83 %R) (0 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
Phenanthrene	< 1	22 (86 %R)	22 (86 %R) (0 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
Anthracene	< 1	21 (85 %R)	22 (87 %R) (2 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
Fluoranthene	< 1	22 (86 %R)	22 (88 %R) (2 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
Pyrene	< 1	20 (82 %R)	21 (83 %R) (1 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
Benzo[a]anthracene	< 1	21 (84 %R)	22 (86 %R) (2 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
Chrysene	< 1	22 (87 %R)	22 (87 %R) (0 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
Benzo[b]fluoranthene	< 1	20 (81 %R)	21 (83 %R) (2 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
Benzo[k]fluoranthene	< 1	22 (90 %R)	22 (89 %R) (1 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
Benzo[a]pyrene	< 1	21 (83 %R)	21 (84 %R) (1 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
Indeno[1,2,3-cd]pyrene	< 1	21 (86 %R)	22 (87 %R) (1 RPD)	1/30/2012	ug/I	40 - 140	20	625mod
Dibenz[a,h]anthracene	< 1	23 (91 %R)	23 (92 %R) (1 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
Benzo[g,h,i]perylene	< 1	22 (89 %R)	22 (88 %R) (1 RPD)	1/30/2012	ug/l	40 - 140	20	625mod
2-Fluorophenol (surr)	42 %R	41 %R	40 %R	1/30/2012	% Rec	21 - 110	20	625mod
Phenol-d6 (surr)	29 %R	30 %R	30 %R	1/30/2012	% Rec	15 - 94	20	625mod
2,4,6-Tribromophenol (surr)	76 %R	93 %R	95 %R	1/30/2012	% Rec	15 - 110	20	625mod
Nitrobenzene-D5 (surr)	80 %R	79 %R	78 %R	1/30/2012	% Rec	35 - 114	20	625mod
2-Fluorobiphenyl (surr)	86 %R	81 %R	77 %R	1/30/2012	% Rec	43 - 116	20	625mod
p-Terphenyl-D14 (surr)	92 %R	97 %R	95 %R	1/30/2012	% Rec	33 - 130	20	625mod

Samples were extracted and analyzed within holding time limits.

Instrumentation was calibrated in accordance with the method requirements.

The method blanks were free of contamination at the reporting limits.

Sample surrogate recoveries met the above stated criteria.

The associated matrix spikes and/or Laboratory Control Samples met acceptance criteria.

There were no exceptions in the analyses, unless noted.

*/!Flagged analyte recoveries deviated from the QA/QC limits.

eastern analytical, inc.

EAI ID#: 107170

8

Client: GZA GeoEnvironmental, Inc. (NH)

Client Designation: Wastewater Analysis - Weekly

		Tro	of Took	Fall	1.75.7 1.029.1
Sample ID:			Effluent		
Lab Sample	e ID:	107	170.02		
Matrix:		a	queous		
Date Sampl	led:		1/26/12		
Date Receiv	ved:	a chàig	1/26/12		
Units:			mg/L		
Date of Ext	raction/Prep:		1/30/12		
Date of Ana	alysis:		1/30/12		
Analyst:	A 47		LAS		
Method:			1664A		
Dilution Fac	ctor:	*	1		
	1997 (m. 1997)				
Oil & Grease	e (HEM)	æ	< 5		

eastern analytical, inc.

www.eailabs.com

9

371

Client: GZA GeoEnvironmental, Inc. (NH)

Client Designation: Wastewater Analysis - Weekly

Batch ID: 734532-40799/A013012OG1661

 Parameter Name
 Blank
 LCS
 LCSD
 Analysis Date
 Units
 Limits
 RPD
 Method

 Oil & Grease (HEM)
 < 5</td>
 37 (92 % R)
 36 (90 % R) (2 RPD)
 1/30/2012
 mg/L
 78 - 114
 18
 1664A

Samples were extracted and analyzed within holding time limits.

Instrumentation was calibrated in accordance with the method requirements.

The method blanks were free of contamination at the reporting limits.

Sample surrogate recoveries met the above stated criteria.

The associated matrix spikes and/or Laboratory Control Samples met acceptance criteria.

There were no exceptions in the analyses, unless noted.

*/! Flagged analyte recoveries deviated from the QA/QC limits.

1

Client Designation: Wastewater Analysis - Weekly

Sample ID:	Treat Tank		strate rate
	Effluent		
Lab Sample ID:	107170.02		
Matrix:	aqueous		
Date Sampled: Date Received:	1/26/12 1/26/12		
Units:	ug/l		
Date of Extraction/Prep:	1/27/12		
Date of Analysis:	1/27/12		
Analyst:	JW		
Method:	608		
Dilution Factor:	1		
PCB-1016	< 0.3		
PCB-1221	< 0.3		
PCB-1232	< 0.3		
PCB-1242	< 0.3		
PCB-1248	< 0.3		
PCB-1254	< 0.3		
PCB-1260	< 0.3		
TMX (surr)	87 %R		
DCB (surr)	86 %R		

eastern analytical, inc.

Batch ID: 734529-35119/A012712E608P2

Client Designation: Wastewater Analysis - Weekly

Parameter Name	Blank	LCS	LCSD	Analysis Date	Units	Limits	RPD	Method
PCB-1016	< 0.3	2.0 (101 %R)	2.0 (99 %R) (2 RPD)	1/27/2012	ug/l	50 - 114	20	608
PCB-1221	< 0.3	< 0.3 (%R N/A)	< 0.3 (%R N/A) (RPD N/A)	1/27/2012	ug/l			608
PCB-1232	< 0.3	< 0.3 (%R N/A)	< 0.3 (%R N/A) (RPD N/A)	1/27/2012	ug/l			608
PCB-1242	< 0.3	< 0.3 (%R N/A)	< 0.3 (%R N/A) (RPD N/A)	1/27/2012	ug/l			608
PCB-1248	< 0.3	< 0.3 (%R N/A)	< 0.3 (%R N/A) (RPD N/A)	1/27/2012	ug/l			608
PCB-1254	< 0.3	< 0.3 (%R N/A)	< 0.3 (%R N/A) (RPD N/A)	1/27/2012	ug/l			608
PCB-1260	< 0.3	1.9 (95 %R)	1.9 (93 %R) (2 RPD)	1/27/2012	ug/l	8 - 127	20	608
TMX (surr)	93 %R	92 %R	89 %F	1/27/2012	% Rec	30 - 150		608
DCB (surr)	104 %R	103 %R	96 %F	1/27/2012	% Rec	30 - 150		608

Samples were extracted and analyzed within holding time limits.

Instrumentation was calibrated in accordance with the method requirements.

The method blanks were free of contamination at the reporting limits.

Sample surrogate recoveries met the above stated criteria.

The associated matrix spikes and/or Laboratory Control Samples met acceptance criteria.

There were no exceptions in the analyses, unless noted.

*/! Flagged analyte recoveries deviated from the QA/QC limits.

LABORATORY REPORT

Client: GZA GeoEnvironmental, Inc. (NH)

ž

8

STREAM STREAM

Client Designation: Wastewater Analysis - Weekly

Sample ID:	Treat Tank Effluent						
Lab Sample ID:	107170.02						
Matrix:	aqueous						
Date Sampled:	1/26/12			Ana	alysis		
Date Received:	1/26/12		Units	Date	Time	Method	Analyst
Fluoride Chloride Nitrate-N Cyanide Total Ammonia-N BOD COD Total Phenols pH	6.2 9500 68 0.01 1.2 < 6 180 < 0.5 7.6		mg/L mg/L mg/L mg/L mg/L mg/L SU	2/01/12 1/30/12 1/27/12 1/31/12 1/30/12 1/27/12 2/02/12 1/31/12 1/27/12	13:35 13:33 9:15 9:15 15:15 15:15 17:30 16:15 9:00 15:56	300.0 4500CIE 353.2 4500CNE 4500NH3C 5210E H8000 420. ⁻ 4500H+E	KL DLS DLS DLS KJR SEL SEL SKC SKC JCC SEL

Total Phenols: The reporting limit has been elevated due to matrix interference.

Cyanide: Cyanide was re-analyzed on 2/8/20121 per client request. The re-analysis confirmed the cyanide hit. A matrix spike/matrix spike duplicate performed on this sample had acceptable recoveries.

eastern analytical, inc.

Client Designation: Wastewater Analysis - Weekly

					Date of			
Parameter Name	Blank	LCS	LCSD	Units	Analysis	Limits	RPD	Method
Fluoride	< 0.1	2.0 (101 %R)	2.0 (101 %R) (0 RPD)	mg/L	1/31/12	90 - 110	20	300.0
Chloride	< 1	26 (102 %R)	25 (101 %R) (1 RPD)	mg/L	1/30/12	90 - 110	20	4500CIE
Nitrate-N	< 0.5	5.1 (103 %R)	5.2 (103 %R) (0 RPD)	mg/L	1/27/12	90 - 110	20	353.2
Cyanide Total	< 0.01	0.22 (89 %R)		mg/L	. 1/31/12	85 - 115	20	4500CNE
Ammonia-N	< 0.05	2.1 (104 %R)	2.2 (109 %R) (5 RPD)	mg/L	1/30/12	90 - 110	20	4500NH3DN
BOD	< 6	330 (84 %R)	360 (89 %R) (6 RPD)	mg/L	1/27/12	84 - 115	20	5210B
COD	< 10	100 (102 %R)	100 (100 %R) (2 RPD)	mg/L	. 2/2/12	85 - 115	20	H8000
Total Phenols	< 0.05	0.24 (94 %R)	0.27 (106 %R) (12 RPD)	mg/L	. 1/31/12	85 - 115	20	420.1
pН		7.99	7.97	SL	1/27/12	7.95 - 8.07	10	4500H+B

Samples were analyzed within holding times unless noted on the sample results page. Instrumentation was calibrated in accordance with the method requirements. The method blanks were free of contamination at the reporting limits.

The associated matrix spikes and/or Laboratory Control Samples met the above stated criteria. Exceptions to the above statements are flagged or noted above or on the QC Narrative page. */! Flagged analyte recoveries deviated from the QA/QC limits.

eastern analytical, inc.

FRONTIER GLOBAL SCIENCES

414 Pontius Ave North Seattle, WA 98109 Ph: 206-622-6960 Fx: 206-622-6870

03 February 2012

di.

Jeff Gagne Eastern Analytical, Inc 25 Chenell Drive Concord, NH 03301 RE: Merrimack Station

Enclosed are the analytical results for samples received by Frontier Global Sciences. All quality control measurements are within established control limits and there were no analytical difficulties encountered with the exception of those listed in the case narrative section of this report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lig Liska

Liz Siska Project Manager

stratem analysical metals

h

ž

in more

414 Pontius Ave North Seattle, WA 98109 Ph: 206-622-6960 Fx: 206-622-6870

ANALYTICAL REPORT FOR SAMPLES

Laboratory: Frontier Global Sciences, Inc. Client: Eastern Analytical, Inc	SD Proje	G: ect: <u>Merrimac</u>	k Station	
Sample ID	Lab ID	Matrix	Date Sampled	Date Received
C-3024 Effluent Field Blank	1201361-01	Water	26-Jan-12 09:15	27-Jan-12 09:42
Treat Tank Effluent	1201361-02	Water	26-Jan-12 09:20	27-Jan-12 09:42
	k húti oonen (
Frontier Global Sciences, Inc.	The results in this rep chain of custody doc	port only apply to ument. This analys	the samples analyzed in ac tical report must be reprod	cordance with the uced in its entirety.
Liz Siska			P 1201361 F	age 1 of 19 inal Report
				02/03/2012

CASE NARRATIVE

SAMPLE RECEIPT

Samples were received at Frontier Global Sciences (FGS) on January 27th, 2012. The samples were received intact, on-ice with temperatures measured at 2.9 degrees Celsius.

SAMPLE PREPARATION AND ANALYSIS

Samples were prepared and analyzed for total metals in accordance with FGS-054/EPA 1638.

Samples were prepared and analyzed for total mercury in accordance with EPA Method 1631E.

ANALYTICAL ISSUES

The Effluent Field Blank was greater than the PQL, however the because the associated sample was a non-detect, re-analysis was not required.

All analytes pass according to the QC parameters of EPA Method 200.8.

Liquid spikes were prepared for every preparation as a measure of accuracy. All liquid spikes and certified reference material were within the control limits.

As an additional measure of the accuracy of the methods utilized for analysis and to check for matrix interference, matrix spikes (MS) and matrix spike duplicates (MSD) were digested and analyzed. All of the matrix spike recoveries were within the control limits with the exception of any QC flagged and described in the notes and definitions section of the following report.

A reasonable measure of the precision of the analytical methods utilized for analysis is the relative percent difference (RPD) between matrix spike and matrix spike duplicate recoveries and between laboratory control sample and laboratory control sample duplicate recoveries. All of the relative percent differences were within the control limits with the exception of any QC flagged and described in the notes and definitions section of the following report.

Frontier Global Sciences, Inc.

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 2 of 19 1201361 Final Report 02/03/2012

Liz Siska, Project Manager

CHAIN OF CUSTODY FORMS

¢.	COBAL SCU	INCES	Contac	TTO G		Par	ge <u>l</u> o	f_L_			1 4	-0		1	http://www.FrontierGS.co
idres oject sport idres	To: Score South States To: Score Score Score Score	Eassig/22F 4591	Phone E-mail: Contrai Invoice Addres Phone.	CUPO: TO: SAM	Fax: aritebo ariteb	32	591	d By	(tered (Y/N)	eserved; HO BrO Other (%)	Metals.	afyses	Requ	iested	Dete: 1/26/2012 TAT (business days):20 (st 15 (0) 5 4 3 2 24 hr (fm 1AT - 10 clavs, context p Surdrages antif to expedite IAT Saturday delivery? D Y (DN (If yes, clease contact PM) EDD XTY (D N
0.	Engraved Bottle 1D	Sample ID	<u>r -11011</u>	# of Bottles	Matrix	Date 8	& Time'	Sample	Field Fi	Field P	1717				Comments
1 C C 3 1 5 6 7 8 9 10 11 12	- 30-44 30-44 C-50-57 C-30-70	ETAlwent Field Blo Treat Tone ERIs	nk sat	1 3	461	1/20/24, 1/20/24,	42 55 75 2 507 Ab	32/56 72/55	22	-	* ×				1) Hockels Include: Al, 36, Ao, Ba, Ba, Cd, Cr, Cu, Fo, th, Min, Hy, Mo, Ni, Si, Ag, TI, 2n 2) Plansa and Consision Cellin- FGD as Shan to 3) Prograd - Specific major and - sample usine planta
COC Coole Carrie VTSP # of	For Labor Seal: 1/0 er: 1/1-5 :: 0927 Coolers: 1/6/02	Comments: 710 942	2 / j 3	Ma FWI Fresh V WWI Wash SBI Sen and SSI Soll and TSI Plant at HCI Hydroc TRI Trop OT: Other	trix Code Nater • Water 8 Brackish 1 Sediment 14 Animal arbons	ts: Water Fissue	Rehnan Name Organi Date 8	zation:	iv: Caru Cartina A Carlan Der: 1	bulshis/ <u>2 1046</u> Z X	Name Organ Date H	Ization SQU	22	Clan AI W/D RC	Name: UPS Name: UPS Organization: UPS Organization: UPS SQT 9534
	ple Disposal: aturn (shipping fe andard Disposal	es may apply) - 30 Days after repo	or1		-44	1-02		By su you à	uthorize	ou decla FGS to	perform	you n the		with Fied ana	GS' terms and conditions, and alyses.

Frontier Global Sciences, Inc.

Sis 2 he

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> Page 3 of 19 1201361 Final Report 02/03/2012

Liz Siska, Project Manager

ģ

ĩ

414 Pontius Ave North Seattle, WA 98109 Ph: 206-622-6960 Fx: 206-622-6870

ANALYTICAL RESULTS

C-3024 Effluent Field Blank

Matrix: Water

Laboratory ID: 1201361-01

Analyte	Result	MDL	MRL	Units	Dilution	Batch	Sequence	Analyzed	Method	Notes
Aluminum	ND	0.4	4.0	μg/L	1	F201252	2B02001	02/01/12	FGS-054	U
Antimony	ND	0.005	0.020	µg/L	1	F201252	2B02001	02/01/12	FGS-054	U
Arsenic	ND	0.05	0.15	μg/L	1	F201252	2B02001	02/01/12	FGS-054	U
Barium	ND	0.03	0.20	µg/L	1	F201252	2B02001	02/01/12	FGS-054	U
Beryllium	ND	0.023	0.060	μg/L	1	F201252	2B02001	02/01/12	FGS-054	U
Cadmium	ND	0.004	0.020	μg/L	1	F201252	2B02001	02/01/12	FGS-054	U
Chromium	ND	0.009	0.10	μg/L	1	F201252	2B02001	02/01/12	FGS-054	U
Copper	ND	0.01	0.10	µg/L	1	F201252	2B02001	02/01/12	FGS-054	U
Iron	ND	1.3	10.0	μg/L	1	F201252	2B02001	02/01/12	FGS-054	U
Lead	ND	0.004	0.040	µg/L	1	F201252	2B02001	02/01/12	FGS-054	U
Manganese	ND	0.007	0.10	µg/L	1	F201252	2B02001	02/01/12	FGS-054	U
Mercury	ND	0.08	0.50	ng/L	1	F202015	2B03001	02/02/12	EPA 1631E	U
Molybdenum	ND	0.006	0.06	μg/L	1	F201252	2B02001	02/01/12	FGS-054	U
Nickel	ND	0.008	0.10	μg/L	1	F201252	2B02001	02/01/12	FGS-054	U
Selenium	ND	0.19	0.60	μg/L	1	F201252	2B02001	02/01/12	FGS-054	U
Silver	ND	0.006	0.020	µg/L	1	F201252	2B02001	02/01/12	FGS-054	U
Thallium	ND	0.001	0.005	µg/L	1	F201252	2B02001	02/01/12	FGS-054	QB-02, U
Zinc	0.25	0.02	0.20	μg/L	1	F201252	2B02001	02/01/12	FGS-054	

Frontier Global Sciences, Inc.

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> Page 4 of 19 1201361 Final Report 02/03/2012

Liz Siska, Project Manager

16.6

1. 10

19

Name of

414 Pontius Ave North Seattle, WA 98109 Ph: 206-622-6960 Fx: 206-622-6870

ANALYTICAL RESULTS

Treat Tank Effluent

Matrix: Water

Laboratory ID: 1201361-02

		11.74				-		780000000000000000000000000000000000000		100000
Analyte	Result	MDL	MRL	Units	Dilution	Batch	Sequence	Analyzed	Method	Notes
Aluminum	ND	8.9	80.0	μg/L	20	F201252	2B02001	02/01/12	FGS-054	U
Antimony	0.758	0.092	0.400	μg/L	20	F201252	2B02001	02/01/12	FGS-054	
Arsenic	9.56	1.02	3.00	µg/L	20	F201252	2B02001	02/01/12	FGS-054	
Barium	208	0.54	4.00	µg/L	20	F201252	2B02001	02/01/12	FGS-054	
Beryllium	ND	0.454	1.20	µg/L	20	F201252	2B02001	02/01/12	FGS-054	U
Cadmium	0.587	0.083	0.400	μg/L	20	F201252	2B02001	02/01/12	FGS-054	
Chromium	ND	0.18	2.00	μg/L	20	F201252	2B02001	02/01/12	FGS-054	U
Copper	2.61	0.20	2.00	μg/L	20	F201252	2B02001	02/01/12	FGS-054	
Iron	ND	26.0	200	µg/L	20	F201252	2B02001	02/01/12	FGS-054	U
Lead	ND	0.078	0.800	μg/L	20	F201252	2B02001	02/01/12	FGS-054	U
Manganese	349	0.15	2.00	µg/L	20	F201252	2B02001	02/01/12	FGS-054	
Mercury	12.2	0.34	2.02	ng/L	4	F202015	2B03001	02/02/12	EPA 1631E	
Molybdenum	373	0.12	1.20	μg/L	20	F201252	2B02001	02/01/12	FGS-054	
Nickel	7.76	0.16	2.00	μg/L	20	F201252	2B02001	02/01/12	FGS-054	
Selenium	104	3.88	12.0	µg/L	20	F201252	2B02001	02/01/12	FGS-054	
Silver	ND	0.120	0.400	μg/L	20	F201252	2B02001	02/01/12	FGS-054	U
Thallium	5.65	0.022	0.100	µg/L	20	F201252	2B02001	02/01/12	FGS-054	QB-01
Zinc	ND	0.33	4.00	µg/L	20	F201252	2B02001	02/01/12	FGS-054	QB-02, U

Frontier Global Sciences, Inc.

h 1

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> Page 5 of 19 1201361 Final Report 02/03/2012

Liz Siska, Project Manager

WANTERS AN

ά,

1

414 Pontius Ave North Seattle, WA 98109 Ph: 206-622-6960 Fx: 206-622-6870

MATRIX DUPLICATES/TRIPLICATES

SOURCE: 1201316-03

Batch: F202015

Sequence: 2B03001

Preparation: BrCl Oxidation

Lab Number: F202015-DUP1

Analyte		Sample Concentration ng/L	Duplicate Concentration ng/L	MRL	% RPD	RPD Limit	Method	Notes
Mercury		6.99	5.98	1.00	15.6	24	EPA 1631E	and a second

Frontier Global Sciences, Inc.

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> Page 6 of 19 1201361 Final Report 02/03/2012

Liz Siska, Project Manager

- 2010 Sec. - 192 C

21

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY AND RPD

SOURCE: 1201361-02

Batch: F201252

Preparation: Closed Vessel Nitric Oven Digestion

Sequence: 2B02001

Lab Number: F201252-MS/MSD1

	IN THE REPORT OF A	City of the second second second						
Analyte	Sample Concentrat (µg/L)	Spike tion Added (µg/L)	Conc (j	MS entration ug/L)	MS % Recovery	Recovery Limits	Method	Notes
Beryllium	ND	2.0200	2	2.214	110	75 - 125	FGS-054	
Aluminum	66.2	151.50	2	213.7	97.4	80 - 115	FGS-054	
Chromium	0.57	7.0700	1.1.1	7.92	104	85 - 115	FGS-054	
Manganese	348.7	6.0600		53.9	86.1	80 - 120	FGS-054	
Iron	ND	505.00	4	94.7	98.0	75 - 125	FGS-054	
Nickel	7.76	4.0400	1	1.66	96.7	68 - 134	FGS-054	
Copper	2.61	4.0400		6.22	89.4	51 - 145	FGS-054	
Zinc	ND	10,100		9.96	98.6	46 - 146	FGS-054	
Arsenic	9.56	15,150	2	4.20	96.6	85 - 115	FGS-054	
Selenium	104.4	30 300	1	27.8	77 1	50 - 140	FGS 054	
Molybdenum	373.5	2 0200		75 9	110	90 - 115	FGS 054	0) (02
Silver	ND	1 5150		280	85.1	74 110	FGS-054	QM-02
Cadmium	0.587	0.80800		2209	70.5	74 - 119	FGS-054	01 (07
Antimony	0.758	0.80800	1	520	19.5	64 - 113	FGS-054	QM-07
Barium	208.4	10 100		14 5	90.7	79 - 122	FGS-054	
Thallium	5 650	10.100	4	: 007	60.3	80 - 120	FGS-054	QM-02
1 Haman	5.050	0.40400	2	.907	03.0	64 - 137	FGS-054	QB-01,
Lead	ND	1.5150	1	.488	98.2	72 - 143	FGS-054	QM-02
Analyte	Spike Added (µg/L)	MSD Concentration (µg/L)	MSD % Recovery	% RPD	Recovery Limits	RPD Limit	Method	Notes
Beryllium	2.0200	2.256	112	1.88	75 - 125	20	FGS-054	
Aluminum	151.50	213.6	97.3	0.0484	80 - 115	20	FGS-054	
Chromium	7.0700	7.58	99.1	4.45	85 - 115	20	FGS-054	
Manganese	6.0600	355.8	118	0.544	80 - 120	20	FGS-054	
Iron	505.00	489.5	96.9	1.06	75 - 125	20	FGS-054	
Nickel	4.0400	11.39	89.9	2.39	68 - 134	20	FGS-054	
Copper	4.0400	6.23	89.5	0.117	51 - 145	20	FGS-054	
Zinc	10.100	9.23	91.4	7.53	46 - 146	20	FGS-054	
Arsenic	15.150	25.81	107	6.44	85 - 115	20	FGS-054	
Selenium	30.300	130.8	86.9	2.28	59 - 149	20	FGS-054	
wolypdenum	2.0200	377.7	210	0.491	80 - 115	20	FGS-054	QM-02

Frontier Global Sciences, Inc.

este

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 7 of 19 1201361 Final Report 02/03/2012

Liz Siska, Project Manager

22

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY AND RPD

SOURCE: 1201361-02

Preparation: Closed Vessel Nitric Oven Digestion

Batch: F201252

Sequence: <u>2B02001</u>

sed Vessel Nitric Oven Digestion

Lab Number: F201252-MS/MSD1

Analyte	Spike Added (μg/L)	MSD Concentration (µg/L)	MSD % Recovery	% RPD	Recovery Limits	RPD Limit	Method	Notes
Silver	1.5150	1.273	84.0	1.28	74 - 119	20	FGS-054	
Cadmium	0.80800	1.102	63.8	10.8	84 - 113	20	FGS-054	OM-07
Antimony	0.80800	1.618	107	5.02	79 - 122	20	FGS-054	
Barium	10.100	219.6	110	2.32	80 - 120	20	FGS-054	
Thallium	0.40400	6.127	118	3.66	64 - 137	20	FGS-054	OB-01
Lead	1.5150	1.502	99.1	0.946	72 - 143	20	FGS-054	40 01

Frontier Global Sciences, Inc.

-

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> Page 8 of 19 1201361 Final Report 02/03/2012

Liz Siska, Project Manager

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY AND RPD

SOURCE: 1201361-02

Batch: F201252

Sequence: <u>2B02001</u>

Lab Number: F201252-MS/MSD3

Preparation: Closed Vessel Nitric Oven Digestion

Analyte	Sample Concentrat (µg/L)	Spike ion Added (µg/L)	۲ Conce (بی	AS ntration g/L)	MS % Recovery	Recovery Limits	Method	Notes
Beryllium	 ND	20.200	18	8.23	90.2	75 - 125	FGS-054	AS
Aluminum	66.2	4040.0	3	986	97.0	80 - 115	FGS-054	AS
Chromium	0.57	404.00	41	11.3	102	85 - 115	FGS-054	AS
Manganese	348.7	404.00	7:	55.7	101	80 - 120	FGS-054	AS
Iron	ND	2020.0	2	012	99.6	75 - 125	FGS-054	AS
Nickel	7.76	505.00	4	88.7	95.2	68 - 134	FGS-054	AS
Copper	2.61	505.00	4	59.9	90.6	51 - 145	FGS-054	AS
Zinc	ND	1010.0	8	70.1	86.1	46 - 146	FGS-054	AS
Arsenic	9.56	404.00	40	08.2	98.7	85 - 115	FGS-054	AS
Selenium	104.4	404.00	4	80.3	93.0	59 - 149	FGS-054	AS
Molybdenum	373.5	202.00	5	74.9	99.7	80 - 115	FGS-054	45
Silver	ND	20,200	1'	7.43	86.3	74 - 119	FGS-054	AS
Cadmium	0.587	40,400	3	7.52	91.4	84 - 113	FGS-054	45
Antimony	0.758	20,200	20	0.06	95.5	79 - 122	FGS-054	AS
Barium	208.4	808.00	9	871	96.4	80 - 120	FGS-054	AS
Thallium	5.650	20,200	2	5 86	100	64 - 137	FGS-054	AS OB 01
Lead	ND	101.00	9	7 63	96.7	72 - 143	FGS-054	AS, QD-01
Analyte	 Spike Added (µg/L)	MSD Concentration (µg/L)	MSD % Recovery	% RPD	Recovery Limits	RPD Limit	Method	Notes
Beryllium	20.200	18.26	90.4	0.151	75 - 125	20	FGS-054	AS
Aluminum	4040.0	3956	96.3	0.751	80 - 115	20	FGS-054	AS
Chromium	404.00	408.1	101	0.780	85 - 115	20	FGS-054	AS
Manganese	404.00	752.0	99.8	0.487	80 - 120	20	FGS-054	AS
Iron	2020.0	1989	98.5	1.13	75 - 125	20	FGS-054	AS
Nickel	505.00	485.4	94.6	0.681	68 - 134	20	FGS-054	AS
Copper	505.00	459.2	90.4	0.161	51 - 145	20	FGS-054	AS
Zinc	1010.0	870.5	86.2	0.0542	46 - 146	20	FGS-054	AS
Arsenic	404.00	412.0	99.6	0.916	85 - 115	20	FGS-054	AS
Molubdonu	404.00	470.1	90.5	2.15	59 - 149	20	FGS-054	AS
Silver	202.00	17.50	99.5 86.6	0.0697	80 - 115 74 - 119	20 20	FGS-054 FGS-054	AS AS

Frontier Global Sciences, Inc.

sk 0

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 9 of 19 1201361 Final Report 02/03/2012

Liz Siska, Project Manager

K

(March 1981)

414 Pontius Ave North Seattle, WA 98109 Ph: 206-622-6960 Fx: 206-622-6870

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY AND RPD

SOURCE: 1201361-02

Batch: F201252

Preparation: Closed Vessel Nitric Oven Digestion

Sequence: <u>2B02001</u> Lab Number: <u>F201252-MS/MSD3</u>

Analyte	taquite Social		Spike Added (µg/L)	MSD Concentration (µg/L)	MSD % Recover	% y RPD	Recovery Limits	RPD Limit	Method	Notes
Cadmium			40.400	38.59	94.1	2.81	84 - 113	20	FGS-054	AS
Antimony		1	20.200	20.14	95.9	0.386	79 - 122	20	FGS-054	AS
Barium		1	808.00	994.4	97.3	0.729	80 - 120	20	FGS-054	AS
Thallium			20.200	25.85	100	0.0375	64 - 137	20	FGS-054	AS, QB-01
Lead		- 95	101.00	97.56	96.6	0.0774	72 - 143	20	FGS-054	AS
2										
									÷ .	

Frontier Global Sciences, Inc.

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 10 of 19 1201361 Final Report 02/03/2012

i.

p

ĩ

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY AND RPD

SOURCE: 1201316-03

Batch:	F202015				Sequence	e: <u>2B03001</u>			
Preparation:	BrCl Oxidation			Lat	Number	r: <u>F202015-</u>	MS/MSD1		
Analyte		Sample Concentra (ng/L)	Spike tion Added (ng/L)	Conce (1	MS entration ng/L)	MS % Recovery	Recovery Limits	Method	Notes
Mercury		6.99	20.200	2	2.10	74.8	71 - 125	EPA 1631E	
Analyte	4	Spike Added (ng/L)	MSD Concentration (ng/L)	MSD % Recovery	% RPD	Recovery Limits	RPD Limit	Method	Notes
Mercury		20.200	20.97	69.2	5.22	71 - 125	24	EPA 1631E	QM-05

Frontier Global Sciences, Inc.

Sisks 2

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> Page 11 of 19 1201361 Final Report 02/03/2012

Liz Siska, Project Manager

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY AND RPD

SOURCE: 1201361-02

Batch: F202015

Preparation: BrCl Oxidation

Sequence: <u>2B03001</u>

Lab Number: F202015-MS/MSD2

Analyte	Sample Concentrat (ng/L)	Spike ion Added (ng/L)	r Conce (n	VIS ntration g/L)	MS % Recovery	Recovery Limits	Method	Notes
Mercury	12.20	40.800	5	2.32	98.3	71 - 125	EPA 1631E	
Analyte	Spike Added (ng/L)	MSD Concentration (ng/L)	MSD % Recovery	% RPD	Recovery Limits	RPD Limit	Method	Notes
Mercury	40.800	52.12	97.8	0.379	71 - 125	24	EPA 1631E	

Frontier Global Sciences, Inc.

Liz Siska, Project Manager

1.61

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> Page 12 of 19 1201361 Final Report 02/03/2012

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY AND RPD

SOURCE: 1201359-01

Batch: Preparation:	F202015 BrCl Oxidation	on				L	Sequence b Number	:: <u>2B03001</u> :: <u>F202015</u>	- <u>MS/MSD4</u>		
Analyte		-	San Concen (ng	nple tration /L)	Spike Addeo (ng/L)	: 1 Con) (MS centration (ng/L)	MS % Recovery	Recovery Limits	Method	Notes
Mercury			11	71	1530.0)	2618	94.6	71 - 125	EPA 1631E	
Analyte	ales, i Maria		Spike Added (ng/L)	I Co	MSD ncentration (ng/L)	MSD % Recovery	% RPD	Recovery Limits	RPD Limit	Method	Notes
Mercury			1530.0)	2594	93.1	0.888	71 - 125	24	EPA 1631E	100.0
Frontier Global	Sciences, Inc.					The result chain of c	ts in this repor ustody docum	t only apply to ent. This analy	the samples an tical report mus	alyzed in accordanc it be reproduced in i	e with the its entirety.

Page 13 of 19 1201361 Final Report 02/03/2012

1788.488.

con

LABORATORY CONTROL SAMPLE/ LABORATORY CONTROL SAMPLE DUPLICATE

RECOVERY AND RPD

Batch: F201252

Sequence: 2B02001

Preparation: Closed Vessel Nitric Oven Digestion

Lab Number: <u>F201252-BS/BSD1</u> LCS Source: <u>Blank Spike</u>

Analyte				Spike Added (µg/L)	LCS Concentra (µg/L	ation)	LCS % Recovery	Recovery Limits	Method	Notes
Beryllium		111	1.199	2.0000	1.962	and the second	98.1	75 - 125	FGS-054	9,040
Aluminum				150.00	146.0	C i ga	97.3	85 - 115	FGS-054	
Chromium				7.0000	6.47		92.5	85 - 115	FGS-054	
Manganese				6.0000	5.83		97.1	85 - 115	FGS-054	
Iron				500.00	459.4		91.9	80 - 120	FGS-054	
Nickel				4.0000	3.92		98.0	68 - 134	FGS-054	
Copper	÷.			4.0000	4.17		104	51 - 145	FGS-054	
Zinc				10.000	10.48	:	105	46 - 146	FGS-054	
Arsenic				15.000	14.27	,	95.1	85 - 115	FGS-054	
Selenium				30.000	28.04		93.5	59 - 149	FGS-054	
Molybdenum				2.0000	1.88		93.8	85 - 115	FGS-054	
Silver				1.5000	1.490)	99.3	74 - 119	FGS-054	
Cadmium				0.80000	0.825	;	103	84 - 113	FGS-054	
Antimony				0.80000	0.780)	97.5	79 - 122	FGS-054	
Barium				10.000	9.78		97.8	85 - 115	FGS-054	
Thallium				0.40000	0.417	1	104	64 - 134	FGS-054	QB-01
Lead				1.5000	1.517	1	101	72 - 143	FGS-054	
Analyte			Spike Added (µg/L)	LCSD Concentration (µg/L)	LCSD % Recovery	% RPD	Recovery Limits	v RPD Limit	Method	Notes
Beryllium			2.0000	1.944	97.2	0.928	75 - 125	20	FGS-054	
Aluminum			150.00	145.9	97.2	0.0872	85 - 115	20	FGS-054	

Beryllium	2.0000	1.944	97.2	0.928	75 - 125	20	FGS-054	
Aluminum	150.00	145.9	97.2	0.0872	85 - 115	20	FGS-054	
Chromium	7.0000	6.46	92.2	0.275	85 - 115	20	FGS-054	
Manganese	6.0000	5.74	95.6	1.55	85 - 115	20	FGS-054	
Iron	500.00	458.2	91.6	0.251	80 - 120	20	FGS-054	
Nickel	4.0000	3.96	99.0	1.01	68 - 134	20	FGS-054	
Copper	4.0000	4.16	104	0.0881	51 - 145	20	FGS-054	
Zinc	10.000	10.39	104	0.846	46 - 146	20	FGS-054	
Arsenic	15.000	14.17	94.4	0.731	85 - 115	20	FGS-054	

Frontier Global Sciences, Inc.

is Sisk 0

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 14 of 19 1201361 Final Report 02/03/2012

Liz Siska, Project Manager

LABORATORY CONTROL SAMPLE/ LABORATORY CONTROL SAMPLE DUPLICATE

RECOVERY AND RPD

Batch: F201252

Sequence: <u>2B02001</u>

Preparation: Closed Vessel Nitric Oven Digestion

Lab Number: <u>F201252-BS/BSD1</u> LCS Source: <u>Blank Spike Dup</u>

Analyte		Spike Added (µg/L)	LCSD Concentration (µg/L)	LCSD % Recovery	% RPD	Recovery Limits	RPD Limit	Method	Notes
Selenium	Los and	30.000	27.98	93.3	0.184	59 - 149	20	FGS-054	
Molybdenum		2.0000	1.86	92.8	1.11	85 - 115	20	FGS-054	
Silver		1.5000	1.501	100	0.752	74 - 119	20	FGS-054	
Cadmium		0.80000	0.757	94.7	8.56	84 - 113	20	FGS-054	
Antimony		0.80000	0.797	99.6	2.18	79 - 122	20.	FGS-054	
Barium		10.000	9.76	97.6	0.247	85 - 115	20	FGS-054	
Thallium		0.40000	0.410	103	1.51	64 - 134	20	FGS-054	OB-01
Lead		1.5000	1.524	102	0.433	72 - 143	20	FGS-054	

Frontier Global Sciences, Inc.

Liz Siska, Project Manager

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 15 of 19 1201361 Final Report 02/03/2012

.1

h

3

-1

Analyte

414 Pontius Ave North Seattle, WA 98109 Ph: 206-622-6960 Fx: 206-622-6870

Notes

LABORATORY CONTROL SAMPLE/ LABORATORY CONTROL SAMPLE DUPLICATE

RECOVERY AND RPD

Batch: F202015 Sequence: 2B03001 Preparation: BrCl Oxidation Lab Number: F202015-BS/BSD1 LCS Source: Nist 1641d Spike LCS LCS Added Concentration % Recovery (ng/L) (ng/L)Recovery Limits Method 15 679 15.11 96.4 80 - 120 EPA 1631E

Mercury		15.679	15.1	11	96.4	80 - 120	EPA 1631E	10000
Analyte	Spike Added (ng/L)	LCSD Concentration (ng/L)	LCSD % Recovery	% RPD	Recovery Limits	RPD Limit	Method	Notes
Mercury	15.679	14.79	94.3	2.16	80 - 120	24	EPA 1631E	1.1

Frontier Global Sciences, Inc.

4

Liz Siska, Project Manager

-

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> Page 16 of 19 1201361 Final Report 02/03/2012

ie.

414 Pontius Ave North Seattle, WA 98109 Ph: 206-622-6960 Fx: 206-622-6870

PREPARATION BLANKS

Instrument: ICPMS-6

Sequence: 2B02001

Preparation: Closed Vessel Nitric Oven Digestion

	Lab Sample ID	Analyte		Found	MRL	Units	Batch	Method	Notes
-	F201252-BLK1	Beryllium	1.200	-0.0003	0.060	μg/L	F201252	FGS-054	U
	F201252-BLK1	Aluminum		0.01	4.0	μg/L	F201252	FGS-054	U
	F201252-BLK1	Chromium		-0.04	0.10	μg/L	F201252	FGS-054	U
	F201252-BLK1	Manganese		-0.0007	0.10	µg/L	F201252	FGS-054	U
	F201252-BLK1	Iron		-0.4	10.0	μg/L	F201252	FGS-054	U
	F201252-BLK1	Nickel		0.004	0.10	µg/L	F201252	FGS-054	U
	F201252-BLK1	Copper		0.02	0.10	µg/L	F201252	FGS-054	U
	F201252-BLK1	Zinc		0.32	0.20	µg/L	F201252	FGS-054	QB-10
	F201252-BLK1	Arsenic		-0.15	0.15	μg/L	F201252	FGS-054	U
	F201252-BLK1	Selenium		0.14	0.60	µg/L	F201252	FGS-054	U
	F201252-BLK1	Molybdenum		0.004	0.06	µg/L	F201252	FGS-054	U
	F201252-BLK1	Silver		-0.001	0.020	μg/L	F201252	FGS-054	U
	F201252-BLK1	Cadmium		-0.010	0.020	μg/L	F201252	FGS-054	U
	F201252-BLK1	Antimony		-0.0003	0.020	µg/L	F201252	FGS-054	U
	F201252-BLK1	Barium		0.07	0.20	μg/L	F201252	FGS-054	U
	F201252-BLK1	Thallium		0.002	0.005	μg/L	F201252	FGS-054	QB-02, U
	F201252-BLK1	Lead		0.0003	0.040	µg/L	F201252	FGS-054	U

Frontier Global Sciences, Inc.

Siska a

Liz Siska, Project Manager

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 17 of 19 1201361 Final Report 02/03/2012

32

1

PREPARATION BLANKS

Instrument: Hg-17 Sequence: 2B03001 Preparation: BrCl Oxidation Lab Sample ID Analyte Found MRL Units Batch Notes Method F202015-BLK1 Mercury 0.06 0.50 F202015 EPA 1631E ng/L U F202015-BLK2 Mercury 0.03 0.50 ng/L F202015 EPA 1631E U F202015-BLK3 Mercury 0.05 0.50 ng/L F202015 U EPA 1631E F202015-BLK4 Mercury 0.06 0.50 ng/L F202015 EPA 1631E QB-04, U

Frontier Global Sciences, Inc.

Disko

Liz Siska, Project Manager

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> Page 18 of 19 1201361 Final Report 02/03/2012

Notes and Definitions

U Analyte included in the analysis, but not detected

- QM-07 The spike recovery was outside control limits for the MS and/or MSD. The batch was accepted based on LCS and LCSD recoveries within control limits and, when analysis permits, acceptable AS/ASD.
- QM-05 The spike recovery was outside acceptance limits for the MS/MSD and or AS/ASD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.
- QM-02 The MS and/or MSD recoveries outside acceptance limits, due to spike concentration less than 1 times the sample concentration. The batch was accepted based on LCS and LCSD recoveries within control limits and, when analysis permits, acceptable AS/ASD.
- QB-10 The method blank and/or initial/continuing calibration blank contains analyte at a concentration above the MRL. Only report sample results greater than 10 times the contamination value (QB-01), or samples less than the MRL (QB-02).
- QB-04 The blank was preserved to 2% BrCl rather than 1%. The control limit for blanks preserved to greater than 1% BrCl is the preservation percentage multiplied by the MRL.
- QB-02 The method blank and/or initial/continuing calibration blank contains analyte at a concentration above the MRL. However, the sample concentrations are less than the MRL.
- QB-01 The method blank and/or initial/continuing calibration blank contains analyte at a concentration above the MRL. However, the blank concentration(s) are less than 10% of the sample result.
- AS This MS and/or MSD is an analytical spike and/or an analytical spike duplicate.
- DET Analyte Detected
- MDL Minimum Detection Limit
- MRL Minimum Reporting Limit
- ND Analyte Not Detected at or above the reporting limit
- wet Sample results reported on a wet weight basis
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- RSD Relative Standard Deviation

Frontier Global Sciences, Inc.

Liz Siske

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> Page 19 of 19 1201361 Final Report 02/03/2012

34

Liz Siska, Project Manager

	eastern analytical,	inc.			107170
Sample IDs	professional laboratory ser Date/Time Composites need start and stop dates/times	vices Matrix	Parameters and Sample Notes		# of contain
Effluent Field Blank	1/26/12 9:15	aqueous Grab or Comp	AqTot/SWLLMetalsSub		
Sampler confir	ms ID and parameters	are accurate	Circle preservative/s: HCL HNO3 H2SO4 NaOH MEOH Na	a,S,O, ICE	Dissolved Sample Field Filtered
Treat Tank Effluent	9:20	aqueous Grab or Comp	AqTot/SWLLMetalsSub/NH3/BOD/Cl/COD/CyanT/F/NO	3/OG1664/V624A/E625/E608F	AT CUSTOMUTS REQUEST Dissolved Sample Field Filtered
the prof. Detroitions					
Please en	sure this auto COC i	s accurate, a	dheres to permit or sampling requirements for t	his sampling event, and n	nodify as necessary.
Please en EAI Project ID 390	sure this auto COC i 2	s accurate, a	dheres to permit or sampling requirements for the Product of the sampling requirements for the	his sampling event, and n ReportingOptions	nodify as necessary.
Please en EAI Project ID 390 Project Name Wa State NH Client (Pro Mgr) Pa Customer Gi Address 38 City Mi Phone 623-3600	sure this auto COC i 2 stewater Analysis - Wee ul Pepler ZA GeoEnvironmental, 0 Harvey Road anchester NH 03103 Fax 624-94	s accurate, a kly Inc. (NH) 63 (37)	dheres to permit or sampling requirements for the Results Needed by: Preferred date $\frac{\int A - \frac{1}{2} g _{12}}{Notes about project: (i.e. Special Limits, Billing info if different) Subcontract ALL metals to Frontier Global Sciences. Metals include Total AI,Sb,As,Ba,Be,Cd,Cr,Cu,Fe,Pb,Mn,Hg,Mo,Ni,Se,Ag,Tl, Zn. Metals analyses require project-specific MS/MSD. 624, 625, 608 results needed\frac{2/4}{2072}QC deliverables$	his sampling event, and n ReportingOptions M HC EDD PDF EDD email PDF prelim, NO FAX e-mail Login Confirmation NO FAX Samples collected by: Relfinguished by	PONumber: 02259252 Quote No: Temperature Ice present JCS JC 1/2 cl/12 10:45 Date/Time Received by

The second second