Ambient Water Quality Criteria for Dissolved Oxygen
Ambient Aquatic Life Water Quality
Criteria for Dissolved Oxygen
(Freshwater)

U.S. Environmental Protection Agency
Office of Research and Development
Environmental Research Laboratories
Duluth, Minnesota
Narragansett, Rhode Island
NOTICES

This document has been reviewed by the Criteria and Standards Division, Office of Water Regulations and Standards, U.S. Environmental Protection Agency, and approved for publication.

Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

This document is available to the public through the National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield, Virginia 22161.
FOREWORD

Section 304(a)(1) of the Clean Water Act of 1977 (PL 95-217) requires the Administrator of the Environmental Protection Agency to publish water quality criteria that accurately reflect the latest scientific knowledge on the kind and extent of all identifiable effects on health and welfare that might be expected from the presence of pollutants in any body of water, including groundwater. This document is a revision of proposed criteria based upon a consideration of comments received from other Federal agencies, State agencies, special interest groups, and individual scientists. Criteria contained in this document replace any previously published EPA aquatic life criteria for the same pollutant(s).

The term "water quality criteria" is used in two sections of the Clean Water Act, Section 304(a)(1) and Section 303(c)(2). This term has a different program impact in each section. In Section 304, the term represents a non-regulatory, scientific assessment of ecological effects. Criteria presented in this document are such scientific assessments. If water quality criteria associated with specific stream uses are adopted by a State as water quality standards under Section 303, they become enforceable maximum acceptable pollutant concentrations in ambient waters within that State. Water quality criteria adopted in State water quality standards could have the same numerical values as criteria developed under Section 304. However, in many situations States might want to adjust water quality criteria developed under Section 304 to reflect local environmental conditions and human exposure patterns before incorporation into water quality standards. It is not until their adoption as part of State water quality standards that criteria become regulatory.

Guidelines to assist States in the modification of criteria presented in this document, in the development of water quality standards, and in other water-related programs of this agency, have been developed by EPA.

William A. Whittington
Director
Office of Water Regulations and Standards
ACKNOWLEDGEMENTS

Gary Chapman
Author
Environmental Research Laboratory
Narragansett, Rhode Island

Clerical Support: Nancy Lanpheare
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iv</td>
</tr>
<tr>
<td>Tables</td>
<td>vi</td>
</tr>
<tr>
<td>Figures</td>
<td>vii</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Salmonids</td>
<td>4</td>
</tr>
<tr>
<td>Physiology</td>
<td>4</td>
</tr>
<tr>
<td>Acute Lethal Concentrations</td>
<td>5</td>
</tr>
<tr>
<td>Growth</td>
<td>5</td>
</tr>
<tr>
<td>Reproduction</td>
<td>8</td>
</tr>
<tr>
<td>Early Life Stages</td>
<td>8</td>
</tr>
<tr>
<td>Behavior</td>
<td>10</td>
</tr>
<tr>
<td>Swimming</td>
<td>11</td>
</tr>
<tr>
<td>Field Studies</td>
<td>11</td>
</tr>
<tr>
<td>Non-Salmonids</td>
<td>12</td>
</tr>
<tr>
<td>Physiology</td>
<td>12</td>
</tr>
<tr>
<td>Acute Lethal Concentrations</td>
<td>12</td>
</tr>
<tr>
<td>Growth</td>
<td>13</td>
</tr>
<tr>
<td>Reproduction</td>
<td>17</td>
</tr>
<tr>
<td>Early Life Stages</td>
<td>17</td>
</tr>
<tr>
<td>Behavior</td>
<td>18</td>
</tr>
<tr>
<td>Swimming</td>
<td>19</td>
</tr>
<tr>
<td>Field Studies</td>
<td>19</td>
</tr>
<tr>
<td>Invertebrates</td>
<td>20</td>
</tr>
<tr>
<td>Other Consideration</td>
<td>23</td>
</tr>
<tr>
<td>Effects of Fluctuations</td>
<td>23</td>
</tr>
<tr>
<td>Temperature and Chemical Stress</td>
<td>25</td>
</tr>
<tr>
<td>Disease Stress</td>
<td>26</td>
</tr>
<tr>
<td>Conclusions</td>
<td>27</td>
</tr>
<tr>
<td>National Criterion</td>
<td>33</td>
</tr>
<tr>
<td>References</td>
<td>39</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>1.</td>
<td>Percent reproduction in growth rate of salmonids at various dissolved oxygen concentrations expressed as the median value from n tests with each species.</td>
</tr>
<tr>
<td>2.</td>
<td>Influence of temperature on growth rate of chinook salmon held at various dissolved oxygen concentrations.</td>
</tr>
<tr>
<td>3.</td>
<td>Influence of temperature on growth rate of coho salmon held at various dissolved oxygen concentrations.</td>
</tr>
<tr>
<td>4.</td>
<td>Percent reduction in growth rate of some nonsalmonid fish held at various dissolved oxygen concentrations expressed as the median value from n tests with each species.</td>
</tr>
<tr>
<td>5.</td>
<td>Effects of temperature on the percent reduction in growth rate of largemouth bass exposed to various dissolved oxygen concentrations in ponds.</td>
</tr>
<tr>
<td>6.</td>
<td>Acutely lethal concentrations of dissolved oxygen to aquatic insects.</td>
</tr>
<tr>
<td>7.</td>
<td>Survival of rainbow trout embryos as a function of intergravel dissolved oxygen concentrations and water velocity as compared to dissolved oxygen concentrations established as criteria or estimated as producing various levels of production impairment.</td>
</tr>
<tr>
<td>8.</td>
<td>Water quality criteria for ambient dissolved oxygen concentrations.</td>
</tr>
<tr>
<td>9.</td>
<td>Sample calculations for determining daily means and 7-day mean dissolved oxygen concentrations (30-day averages are calculated in a similar fashion using 30-day data).</td>
</tr>
</tbody>
</table>
FIGURES

1. Effect of continuous exposure to various mean dissolved oxygen concentrations on survival of embryos and larval stages of eight species of nonsalmonid fish. 14
Ambient Water Quality Criteria for Dissolved Oxygen

FRESHWATER AQUATIC LIFE

I. Introduction

A sizable body of literature on the oxygen requirements of freshwater aquatic life has been thoroughly summarized (Doudoroff and Shumway, 1967, 1970; Warren et al., 1973; Davis, 1975a,b; and Alabaster and Lloyd, 1980). These reviews and other documents describing the dissolved oxygen requirements of aquatic organisms (U.S. Environmental Protection Agency, 1976; International Joint Commission, 1976; Minnesota Pollution Control Agency, 1980) and more recent data were considered in the preparation of this document. The references cited below are limited to those considered to be the most definitive and most representative of the preponderance of scientific evidence concerning the dissolved oxygen requirements of freshwater organisms. The guidelines used in deriving aquatic life criteria for toxicants (Federal Register, 45 FR 79318, November 28, 1980) are not applicable because of the different nature of the data bases. Chemical toxicity data bases rely on standard 96-h LC50 tests and standard chronic tests; there are very few data of either type on dissolved oxygen.

Over the last 10 years the dissolved oxygen criteria proposed by various agencies and researchers have generally reflected two basic schools of thought. One maintained that a dynamic approach should be used so that the criteria would vary with natural ambient dissolved oxygen minima in the waters of concern (Doudoroff and Shumway, 1970) or with dissolved oxygen requirements of fish expressed in terms of percent saturation (Davis, 1975a,b). The other maintained that, while not ideal, a single minimum allowable concentration should adequately protect the diversity of aquatic life in fresh waters (U.S. Environmental Protection Agency, 1976). Both approaches relied on a simple minimum allowable dissolved oxygen concentration as the basis for their criteria. A simple minimum dissolved oxygen concentration was also the most practicable approach in waste load allocation models of the time.

Expressing the criteria in terms of the actual amount of dissolved oxygen available to aquatic organisms in milligrams per liter (mg/l) is considered more direct and easier to administer compared to expressing the criteria in terms of percent saturation. Dissolved oxygen criteria expressed as percent saturation, such as discussed by Davis (1975a,b), are more complex and could often result in unnecessarily stringent criteria in the cold months and potentially unprotective criteria during periods of high ambient temperature or at high elevations. Oxygen partial pressure is subject to the same temperature problems as percent saturation.
The approach recommended by Doudoroff and Shumway (1970), in which the criteria vary seasonally with the natural minimum dissolved oxygen concentrations in the waters of concern, was adopted by the National Academy of Sciences and National Academy of Engineering (NAS/NAE, 1973). This approach has some merit, but the lack of data (natural minimum concentrations) makes its application difficult, and it can also produce unnecessarily stringent or unprotective criteria during periods of extreme temperature.

The more simplistic approach to dissolved oxygen criteria has been supported by the findings of a select committee of scientists specifically established by the Research Advisory Board of the International Joint Commission to review the dissolved oxygen criterion for the Great Lakes (Magnuson et al., 1979). The committee concluded that a simple criterion (an average criterion of 6.5 mg/l and a minimum criterion of 5.5 mg/l) was preferable to one based on percent saturation (or oxygen partial pressure) and was scientifically sound because the rate of oxygen transfer across fish gills is directly dependent on the mean difference in oxygen partial pressure across the gill. Also, the total amount of oxygen delivered to the gills is a more specific limiting factor than is oxygen partial pressure per se. The format of this otherwise simple criterion was more sophisticated than earlier criteria with the introduction of a two-concentration criterion comprised of both a mean and a minimum. This two-concentration criteria structure is similar to that currently used for toxicants (Federal Register, 45 FR 79318, November 28, 1980). EPA agrees with the International Joint Commission's conclusions and will recommend a two-number criterion for dissolved oxygen.

The national criteria presented herein represent the best estimates, based on the data available, of dissolved oxygen concentrations necessary to protect aquatic life and its uses. Previous water quality criteria have either emphasized (Federal Water Pollution Control Administration, 1968) or rejected (National Academy of Sciences and National Academy of Engineering, 1972) separate dissolved oxygen criteria for coldwater and warmwater biota. A warmwater-coldwater dichotomy is made in this criterion. To simplify discussion, however, the text of the document is split into salmonid and non-salmonid sections. The salmonid-non-salmonid dichotomy is predicated on the much greater knowledge regarding the dissolved oxygen requirements of salmonids and on the critical influence of intergravel dissolved oxygen concentration on salmonid embryonic and larval development. Nonsalmonid fish include many other coldwater and coolwater fish plus all warmwater fish. Some of these species are known to be less sensitive than salmonids to low dissolved oxygen concentrations. Some other nonsalmonids may prove to be at least as sensitive to low dissolved oxygen concentrations as the salmonids; among the nonsalmonids of likely sensitivity are the herring (Clupeidae), the smelts (Osmeridae), the pikes (Esocidae), and the sculpins (Cottidae). Although there is little published data regarding the dissolved oxygen requirements of most nonsalmonid species, there is apparently enough anecdotal information to suggest that many coolwater species are more sensitive to dissolved oxygen depletion than are warmwater species. According to the American Fisheries Society (1978), the term "coolwater fishes" is not vigorously defined, but it refers generally to those species which are distributed by temperature preference between the "coldwater" salmonid communities to the north and the more diverse, often centrachid-dominated "warmwater" assem-
blages to the south. Many states have more stringent dissolved oxygen standards for colder waters, waters that contain either salmonids, nonsalmonid coolwater fish, or the sensitive centrarchid, the smallmouth bass.

The research and sociological emphasis for dissolved oxygen has been biased towards fish, especially the more economically important species in the family Salmonidae. Several authors (Doudoroff and Shumway, 1970; Davis, 1975a,b) have discussed this bias in considerable detail and have drawn similar conclusions regarding the effects of low dissolved oxygen on freshwater invertebrates. Doudoroff and Shumway (1970) stated that although some invertebrate species are about as sensitive as the moderately susceptible fishes, all invertebrate species need not be protected in order to protect the food source for fisheries because many invertebrate species, inherently more tolerant than fish, would increase in abundance. Davis (1975a,b) also concluded that invertebrate species would probably be adequately protected if the fish populations are protected. He stated that the composition of invertebrate communities may shift to more tolerant forms selected from the resident community or recruited from outside the community. In general, stream invertebrates that are requisite riffle-dwellers probably have a higher dissolved oxygen requirement than other aquatic invertebrates. The riffle habitat maximizes the potential dissolved oxygen flux to organisms living in the high water velocity by rapidly replacing the water in the immediate vicinity of the organisms. This may be especially important for organisms that exist clinging to submerged substrate in the riffles. In the absence of data to the contrary, EPA will follow the assumption that a dissolved oxygen criterion protective of fish will be adequate.

One of the most difficult problems faced during this attempt to gather, interpret, assimilate, and generalize the scientific data base for dissolved oxygen effects on fish has been the variability in test conditions used by investigators. Some toxicological methods for measuring the effects of chemicals on aquatic life have been standardized for nearly 40 years; this has not been true of dissolved oxygen research. Acute lethality tests with dissolved oxygen vary in the extreme with respect to types of exposure (constant vs. declining), duration of exposure (a few hours vs. a week or more), type of endpoint (death vs. loss of equilibrium), type of oxygen control (nitrogen stripping vs. vacuum degassing), and type of exposure chamber (open to the atmosphere vs. sealed). In addition there are the normal sources of variability that influence standardized toxicity tests, including seasonal differences in the condition of test fish, acclimation or lack of acclimation to test conditions, type and level of feeding, test temperature, age of test fish, and stresses due to test conditions. Chronic toxicity tests are typically of two types, full life cycle tests or early life stage tests. These have come to be rather rigorously standardized and are essential to the toxic chemical criteria established by EPA. These tests routinely are assumed to include the most sensitive life stage, and the criteria then presume to protect all life stages. With dissolved oxygen research, very few tests would be considered legitimate chronic tests; either they fail to include a full life cycle, they fail to include both embryo and larval stages, or they fail to include an adequate period of post-larval feeding and growth.
Instead of establishing year-round criteria to protect all life stages, it may be possible to establish seasonal criteria based on the life stages present. Thus, special early life stage criteria are routinely accepted for salmonid early life stages because of their usual intergravel environment. The same concept may be extended to any species that appear to have more stringent dissolved oxygen requirements during one period of their life history. The flexibility afforded by such a dichotomy in criteria carries with it the responsibility to accurately determine the presence or absence of the more sensitive stages prior to invocation of the less stringent criteria. Such presence/absence data must be more site-specific than national in scope, so that temperature, habitat, or calendar specifications are not possible in this document. In the absence of such site-specific determinations the default criteria would be those that would protect all life stages year-round; this is consistent with the present format for toxic chemical criteria.

II. Salmonids

The effects of various dissolved oxygen concentrations on the well-being of aquatic organisms have been studied more extensively for fish of the family Salmonidae (which includes the genera Coregonus, Oncorhynchus, Prosopium, Salmo, Salvelinus, Stenodus, and Thymallus) than for any other family of organisms. Nearly all these studies have been conducted under laboratory conditions, simplifying cause and effect analysis, but minimizing or eliminating potentially important environmental factors, such as physical and chemical stresses associated with suboptimal water quality, as well as competition, behavior, and other related activities. Most laboratory studies on the effects of dissolved oxygen concentrations on salmonids have emphasized growth, physiology, or embryonic development. Other studies have described acute lethality or the effects of dissolved oxygen concentration on swimming performance.

A. Physiology

Many studies have reported a wide variety of physiological responses to low dissolved oxygen concentrations. Usually, these investigations were of short duration, measuring cardiovascular and metabolic alterations resulting from hypoxic exposures of relatively rapid onset. While these data provide only minimal guidance for establishing environmentally acceptable dissolved oxygen concentrations, they do provide considerable insight into the mechanisms responsible for the overall effects observed in the entire organism. For example, a good correlation exists between oxygen dissociation curves for rainbow trout blood (Cameron, 1971) and curves depicting the reduction in growth of salmonids (Brett and Blackburn, 1981; Warren et al., 1973) and the reduction in swimming ability of salmonids (Davis et al., 1963). These correlations indicate that the blood's reduced oxygen loading capacity at lower dissolved oxygen concentrations limits the amount of oxygen delivered to the tissues, restricting the ability of fish to maximize metabolic performance.

In general, the significance of metabolic and physiological studies on the establishment of dissolved oxygen criteria must be indirect, because their applicability to environmentally acceptable dissolved oxygen concentrations requires greater extrapolation and more assumptions than those required for data on growth, swimming, and survival.
B. Acute Lethal Concentrations

Doudoroff and Shumway (1970) summarized studies on lethal concentrations of dissolved oxygen for salmonids; analysis of these data indicates that the test procedures were highly variable, differing in duration, exposure regime, and reported endpoints. Only in a few cases could a 96-hr LC50 be calculated. Mortality or loss of equilibrium usually occurred at concentrations between 1 and 3 mg/l.

Mortality of brook trout has occurred in less than one hour at 10°C at dissolved oxygen concentrations below 1.2 mg/l, and no fish survived exposure at or below 1.5 mg/l for 10 hours (Shepard, 1955). Lethal dissolved oxygen concentrations increase at higher water temperatures and longer exposures. A 3.5 hr exposure killed all trout at 1.1 and 1.6 mg/l at 10 and 20°C, respectively (Downing and Merkens, 1957). A 3.5-day exposure killed all trout at 1.3 and 2.4 mg/l at 10 and 20°C, respectively. The corresponding no-mortality levels were 1.9 and 2.7 mg/l. The difference between dissolved oxygen concentrations causing total mortality and those allowing complete survival was about 0.5 mg/l when exposure duration was less than one week. If the period of exposure to low dissolved oxygen concentrations is limited to less than 3.5 days, concentrations of dissolved oxygen of 3 mg/l or higher should produce no direct mortality of salmonids.

More recent studies confirm these lethal levels in chronic tests with early life stages of salmonids (Siefert et al., 1974; Siefert and Spoor, 1973; Brooke and Colby, 1980); although studies with lake trout (Carlson and Siefert, 1974) indicate that 4.5 mg/l is lethal at 10°C (perhaps a marginally acceptable temperature for embryonic lake trout).

C. Growth

Growth of salmonids is most susceptible to the effects of low dissolved oxygen concentrations when the metabolic demands or opportunities are greatest. This is demonstrated by the greater sensitivity of growth to low dissolved oxygen concentrations when temperatures are high and food most plentiful (Warren et al., 1973). A total of more than 30 growth tests have been reported by Herrmann et al. (1962), Fisher (1963), Warren et al. (1973), Brett and Blackburn (1981), and Spoor (1981). Results of these tests are not easily compared because the tests encompass a wide range of species, temperatures, food types, and fish sizes. These factors produced a variety of control growth rates which, when combined with a wide range of test durations and fish numbers, resulted in an array of statistically diverse test results.

The results from most of these 30-plus tests were converted to growth rate data for fish exposed to low dissolved oxygen concentrations and were compared to control growth rates by curve-fitting procedures (JRB Associates, 1984). Estimates of growth rate reductions were similar regardless of the type of curve employed, but the quadratic model was judged to be superior and was used in the growth rate analyses contained in this document. The apparent relative sensitivity of each species to dissolved oxygen depletion may be influenced by fish size, test duration, temperature, and diet. Growth rate data (Table 1) from these tests with salmon and trout fed unrestricted rations indicated median growth rate reductions of 7, 14, and 25 percent for fish held
at 6, 5, and 4 mg/l, respectively (JRB Associates, 1984). However, median growth rate reductions for the various species ranged from 4 to 9 percent at 6 mg/l, 11 to 17 percent at 5 mg/l, and 21 to 29 percent at 4 mg/l.

Table 1. Percent reduction in growth rate of salmonids at various dissolved oxygen concentrations expressed as the median value from n tests with each species (calculated from JRB Associates, 1984).

<table>
<thead>
<tr>
<th>Dissolved Oxygen (mg/l)</th>
<th>Species (number of tests)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chinook Salmon (6)</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>47</td>
</tr>
</tbody>
</table>

Median

Temp. (°C) 15 18 15 12 12 12

Considering the variability inherent in growth studies, the apparent reductions in growth rate sometimes seen above 6 mg/l are not usually statistically significant. The reductions in growth rate occurring at dissolved oxygen concentrations below about 4 mg/l should be considered severe; between 4 mg/l and the threshold of effect, which variably appears to be between 6 and 10 mg/l in individual tests, the effect on growth rate is moderate to slight if the exposures are sufficiently long.

Within the growth data presented by Warren et al. (1973), the greatest effects and highest thresholds of effect occurred at high temperatures (17.8 to 21.7°C). In two tests conducted at about 8.5°C, the growth rate reduction at 4 mg/l of dissolved oxygen averaged 12 percent. Thus, even at the maximum feeding levels in these tests, dissolved oxygen levels down to 5 mg/l probably have little effect on growth rate at temperatures below 10°C.

Growth data from Warren et al. (1973) included chinook salmon tests conducted at various temperatures. These data (Table 2) indicated that growth tests conducted at 10-15°C would underestimate the effects of low dissolved oxygen concentrations at higher temperatures by a significant margin. For example, at 5 mg/l growth was not affected at 13°C but was reduced by 34 percent if temperatures were as high as 20°C. Examination of the test temperatures associated with the growth rate reductions listed in Table 1 shows that most data represent temperatures between 12 and 15°C. At the higher temperatures often associated with low dissolved oxygen concentrations, the growth rate reductions would have been greater if the generalizations of
the chinook salmon data are applicable to salmonids in general. Coho salmon growth studies (Warren et al., 1973) showed a similar result over a range of temperatures from 9 to 18°C, but the trend was reversed in two tests near 22°C (Table 3). Except for the 22°C coho tests, the coho and chinook salmon results support the idea that effects of low dissolved oxygen become more severe at higher temperatures. This conclusion is supported by data on largemouth bass (to be discussed later) and by the increase in metabolic rate produced by high temperatures.

Table 2. Influence of temperature on growth rate of chinook salmon held at various dissolved oxygen concentrations (calculated from Warren et al., 1973; JRB Associates, 1984).

<table>
<thead>
<tr>
<th>Dissolved Oxygen (mg/l)</th>
<th>8.4°C</th>
<th>13.0°C</th>
<th>13.2°C</th>
<th>17.8°C</th>
<th>18.6°C</th>
<th>21.7°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>8</td>
<td>5</td>
<td>19</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>16</td>
<td>16</td>
<td>33</td>
<td>53</td>
<td>65</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>25</td>
<td>33</td>
<td>57</td>
<td>77</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>26</td>
<td>36</td>
<td>57</td>
<td>77</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>36</td>
<td>57</td>
<td>77</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Influence of temperature on growth rate of coho salmon held at various dissolved oxygen concentrations (calculated from Warren et al., 1973; JRB Associates, 1984).

<table>
<thead>
<tr>
<th>Dissolved Oxygen (mg/l)</th>
<th>8.6°C</th>
<th>12.9°C</th>
<th>13.0°C</th>
<th>18.0°C</th>
<th>21.6°C</th>
<th>21.8°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>27</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>10</td>
<td>13</td>
<td>27</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>17</td>
<td>29</td>
<td>36</td>
<td>51</td>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>42</td>
<td>51</td>
<td>67</td>
<td>6</td>
<td>37</td>
</tr>
</tbody>
</table>

Effects of dissolved oxygen concentration on the growth rate of salmonids fed restricted rations have been less intensively investigated. Thatcher (1974) conducted a series of tests with coho salmon at 15°C over a wide range of food consumption rates at 3, 5, and 8 mg/l of dissolved oxygen. The only significant reduction in growth rate was observed at 3 mg/l and food consump-
tion rates greater than about 70 percent of maximum. In these studies, Thatcher noted that fish at 5 mg/l appeared to expend less energy in swimming activity than those at 8 mg/l. In natural conditions, where fish may be rewarded for energy expended defending preferred territory or searching for food, a dissolved oxygen concentration of 5 mg/l may restrict these activities.

The effect of forced activity and dissolved oxygen concentration on the growth of coho salmon was studied by Hutchins (1974). The growth rates of salmon fed to repletion at a dissolved oxygen concentration of 3 mg/l and held at current velocities of 8.5 and 20 cm/sec were reduced by 20 and 65 percent, respectively. At 5 mg/l, no reduction of growth rate was seen at the slower velocity, but a 15 percent decrease occurred at the higher velocity.

The effects of various dissolved oxygen concentrations on the growth rate of coho salmon (~5 cm long) in laboratory streams with an average current velocity of 12 cm/sec have been reported by Warren et al. (1973). In this series of nine tests, salmon consumed aquatic invertebrates living in the streams. Results at temperatures from 9.5° to 15.5°C supported the results of earlier laboratory studies; at higher growth rates (40 to 50 mg/g/day), dissolved oxygen levels below 5 mg/l reduced growth rate, but at lower growth rates (0 to 20 mg/g/day), no effects were seen at concentrations down to 3 mg/l.

The applicability of these growth data from laboratory tests depends on the available food and required activity in natural situations. Obviously, these factors will be highly variable depending on duration of exposure, growth rate, species, habitat, season, and size of fish. However, unless effects of these variables are examined for the site in question, the laboratory results should be used. The attainment of critical size is vital to the smolting of anadromous salmonids and may be important for all salmonids if size-related transition to feeding on larger or more diverse food organisms is an advantage. In the absence of more definitive site-specific, species-specific growth data, the data summary in Tables 1, 2, and 3 represent the best estimates of the effects of dissolved oxygen concentration on the potential growth of salmonid fish.

D. Reproduction

No studies were found that described the effects of low dissolved oxygen on the reproduction, fertility, or fecundity of salmonid fish.

E. Early Life Stages

Determining the dissolved oxygen requirements for salmonids, many of which have embryonic and larval stages that develop while buried in the gravel of streams and lakes, is complicated by complex relationships between the dissolved oxygen supplies in the gravel and the overlying water. The dissolved oxygen supply of embryos and larvae can be depleted even when the dissolved oxygen concentration in the overlying body of water is otherwise acceptable. Intergravel dissolved oxygen is dependent upon the balance between the combined respiration of gravel-dwelling organisms, from bacteria
to fish embryos, and the rate of dissolved oxygen supply, which is dependent upon rates of water percolation and convection, and dissolved oxygen diffusion.

Water flow past salmonid eggs influences the dissolved oxygen supply to the microenvironment surrounding each egg. Regardless of dissolved oxygen concentration in the gravel, flow rates below 100 cm/hr directly influence the oxygen supply in the microenvironment and hence the size at hatch of salmonid fish. At dissolved oxygen levels below 6 mg/l the time from fertilization to hatch is longer as water flow decreases (Silver et al., 1963; Shumway et al., 1984).

The dissolved oxygen requirements for growth of salmonid embryos and larvae have not been shown to differ appreciably from those of older salmonids. Under conditions of adequate water flow (>=100 cm/hr), the weight attained by salmon and trout larvae prior to feeding (swimup) is decreased less than 10 percent by continuous exposure to concentrations down to 3 mg/l (Brannon, 1965; Chapman and Shumway, 1978). The considerable developmental delay which occurs at low dissolved oxygen conditions could have survival and growth implications if the time of emergence from gravel, or first feeding, is critically related to the presence of specific food organisms, stream flow, or other factors (Carlson and Siefert, 1974; Siefert and Spoor, 1974). Effects of low dissolved oxygen on early life stages are probably most significant during later embryonic development when critical dissolved oxygen concentrations are highest (Alderdice et al., 1958) and during the first few months post-hatch when growth rates are usually highest. The latter authors studied the effects of 7-day exposure of embryos to low dissolved oxygen at various stages during incubation at otherwise high dissolved oxygen concentrations. They found no effect of 7-day exposure at concentrations above 2 mg/l (at a water flow of 85 cm/hr).

Embryos of mountain whitefish suffered severe mortality at a mean dissolved oxygen concentration of 3.3 mg/l (2.8 mg/l minimum) and some reduction in survival was noted at 4.6 mg/l (3.8 mg/l minimum); at 4.6 mg/l, hatching was delayed by 1 to 2 weeks (Siefert et al., 1974). Delayed hatching resulted in poorer growth at the end of the test, even at dissolved oxygen concentrations of 6 mg/l.

Evaluating intergravel dissolved oxygen concentrations is difficult because of the great spatial and temporal variability produced by differences in stream flow, bottom topography, and gravel composition. Even within the same redd, dissolved oxygen concentrations can vary by 5 or 6 mg/l at a given time (Koski, 1965). Over several months, Koski repeatedly measured the dissolved oxygen concentrations in over 30 coho salmon redds and the overlying stream water in three small, forested (unlogged) watersheds. The results of these measurements indicated that the average intraredd dissolved oxygen concentration was about 2 mg/l below that of the overlying water. The minimum concentrations measured in the redds averaged about 3 mg/l below those of the overlying water and probably occurred during the latter period of intergravel development when water temperatures were warmer, larvae larger, and overlying dissolved oxygen concentrations lower.
Coble (1961) buried steelhead trout eggs in streambed gravel, monitored nearby intergravel dissolved oxygen and water velocity, and noted embryo survival. There was a positive correlation between dissolved oxygen concentration, water velocity, and embryo survival. Survival ranged from 16 to 26 percent whenever mean intergravel dissolved oxygen concentrations were below 6 mg/l or velocities were below 20 cm/hr; at dissolved oxygen concentrations above 6 mg/l and velocities over 20 cm/hr, survival ranged from 36 to 62 percent. Mean reductions in dissolved oxygen concentration between stream and intergravel waters averaged about 5 mg/l as compared to the 2 mg/l average reduction observed by Koski (1965) in the same stream. One explanation for the different results is that the intergravel water flow may have been higher in the natural redds studied by Koski (not determined) than in the artificial redds of Coble's investigation. Also, the density of eggs near the sampling point may have been greater in Coble's simulated redds.

A study of dissolved oxygen concentrations in brook trout redds was conducted in Pennsylvania (Hollander, 1981). Brook trout generally prefer areas of groundwater upwelling for spawning sites (Witzel and MacCrimmon, 1983). Dissolved oxygen and temperature data offer no indication of groundwater flow in Hollander's study areas, however, so that differences between water column and intergravel dissolved oxygen concentrations probably represent intergravel dissolved oxygen depletion. Mean dissolved oxygen concentrations in redds averaged 2.1, 2.8, and 3.7 mg/liter less than the surface water in the three portions of the study. Considerable variation of intergravel dissolved oxygen concentration was observed between redds and within a single redds. Variation from one year to another suggested that dissolved oxygen concentrations will show greater intergravel depletion during years of low water flow.

Until more data are available, the dissolved oxygen concentration in the intergravel environment should be considered to be at least 3 mg/l lower than the oxygen concentration in the overlying water. The 3 mg/l differential is assumed in the criteria, since it reasonably represents the only two available studies based on observations in natural redds (Koski, 1965; Hollander, 1981). When siltation loads are high, such as in logged or agricultural watersheds, lower water velocity within the gravel could additionally reduce dissolved oxygen concentrations around the eggs. If either greater or lesser differentials are known or expected, the criteria should be altered accordingly.

F. Behavior

Ability of chinook and coho salmon to detect and avoid abrupt differences in dissolved oxygen concentrations was demonstrated by Whitmore et al. (1960). In laboratory troughs, both species showed strong preference for oxygen levels of 9 mg/l or higher over those near 1.5 mg/l; moderate selection against 3.0 mg/l was common and selection against 4.5 and 6.0 mg/l was sometimes detected.

The response of young Atlantic salmon and brown trout to low dissolved oxygen depended on their age; larvae were apparently unable to detect and avoid water of low dissolved oxygen concentration, but fry 6-16 weeks of age showed a marked avoidance of concentrations up to 4 mg/l (Bishai, 1962). Older fry (26 weeks of age) showed avoidance of concentrations up to 3 mg/l.
In a recent study of the rainbow trout sport fishery of Lake Taneycomo, Missouri, Weithman and Haas (1984) have reported that reductions in minimum daily dissolved oxygen concentrations below 6 mg/l are related to a decrease in the harvest rate of rainbow trout from the lake. Their data suggest that lowering the daily minimum from 6 mg/l to 5, 4, and 3 mg/l reduces the harvest rate by 20, 40, and 60 percent, respectively. The authors hypothesized that the reduced catch was a result of reduction in feeding activity. This mechanism of action is consistent with Thatcher's (1974) observation of lower activity of coho salmon at 5 mg/l in laboratory growth studies and the finding of Warren et al. (1973) that growth impairment produced by low dissolved oxygen appears to be primarily a function of lower food intake.

A three-year study of a fishery on planted rainbow trout was published by Heimer (1984). This study found that the catch of planted trout increased during periods of low dissolved oxygen in American Falls reservoir on the Snake River in Idaho. The author concluded that the fish avoided areas of low dissolved oxygen and high temperature and the increased catch rate was a result of the fish concentrating in areas of more suitable oxygen supply and temperature.

G. Swimming

Effects of dissolved oxygen concentrations on swimming have been demonstrated by Davis et al. (1963). In their studies, the maximum sustained swimming speeds (in the range of 30 to 45 cm/sec) of juvenile coho salmon were reduced by 8.4, 12.7, and 19.9 percent at dissolved oxygen concentrations of 6, 5, and 4 mg/l, respectively. Over a temperature range from 10 to 20°C, effects were slightly more severe at cooler temperatures. Jones (1971) reported 30 and 43 percent reductions of maximal swimming speed of rainbow trout at dissolved oxygen concentrations of 5.1 (14°C) and 3.8 (22°C) mg/l, respectively. At lower swimming speeds (2 to 4 cm/sec), coho and chinook salmon at 20°C were generally able to swim for 24 hours at dissolved oxygen concentrations of 3 mg/l and above (Katz et al., 1958). Thus, the significance of lower dissolved oxygen concentrations on swimming depends on the level of swimming performance required for the survival, growth, and reproduction of salmonids. Failure to escape from predation or to negotiate a swift portion of a spawning migration route may be considered an indirect lethal effect and, in this regard, reductions of maximum swimming performance can be very important. With these exceptions, moderate levels of swimming activity required by salmonids are apparently little affected by concentrations of dissolved oxygen that are otherwise acceptable for growth and reproduction.

H. Field Studies

Field studies of salmonid populations are almost non-existent with respect to effects of dissolved oxygen concentrations. Some of the systems studied by Ellis (1937) contained trout, but of those river systems in which trout or other salmonids were most likely (Columbia River and Upper Missouri River) no stations were reported with dissolved oxygen concentrations below 5 mg/l, and 90 percent of the values exceeded 7 mg/l.
III. Non-Salmonids

The amount of data describing effects of low dissolved oxygen on non-salmonid fish is more limited than that for salmonids, yet must cover a group of fish with much greater taxonomic and physiological variability. Salmonid criteria must provide for the protection and propagation of 38 species in 7 closely related genera; the non-salmonid criteria must provide for the protection and propagation of some 600 freshwater species in over 40 diverse taxonomic families. Consequently, the need for subjective technical judgment is greater for the non-salmonids.

Many of the recent, most pertinent data have been obtained for several species of Centrarchidae (sunfish), northern pike, channel catfish, and the fathead minnow. These data demonstrate that the larval stage is generally the most sensitive life stage. Lethal effects on larvae have been observed at dissolved oxygen concentrations that may only slightly affect growth of juveniles of the same species.

A. Physiology

Several studies of the relationship between low dissolved oxygen concentrations and resting oxygen consumption rate constitute the bulk of the physiological data relating to the effect of hypoxia on nonsalmonid fish. A reduction in the resting metabolic rate of fish is generally believed to represent a marked decrease in the scope for growth and activity, a net decrease in the supply of oxygen to the tissues, and perhaps a partial shift to anaerobic energy sources. The dissolved oxygen concentration at which reduction in resting metabolic rate first appears is termed the critical oxygen concentration.

Studies with brown bullhead (Grigg, 1969), largemouth bass (Cech et al., 1979), and goldfish and carp (Beamish, 1964), produced estimates of critical dissolved oxygen concentrations for these species. For largemouth bass, the critical dissolved oxygen concentrations were 2.8 mg/l at 30°C, < 2.6 mg/l at 25°C, and < 2.3 mg/l at 20°C. For brown bullheads the critical concentration was about 4 mg/l. Carp displayed critical oxygen concentrations near 3.4 and 2.9 mg/l at 10 and 20°C, respectively, and goldfish critical concentrations of dissolved oxygen were about 1.8 and 3.5 mg/l at 10 and 20°C, respectively. A general summary of these data suggest critical dissolved oxygen concentrations between 2 and 4 mg/l, with higher temperatures usually causing higher critical concentrations.

Critical evaluation of the data of Beamish (1964) suggest that the first sign of hypoxic stress is not the decrease in oxygen consumption, but rather an increase, perhaps as a result of metabolic cost of passing an increased ventilation volume over the gills. These increases were seen in carp at 5.8 mg/l at 20°C and at 4.2 mg/l at 10°C.

B. Acute Lethal Concentrations

Based on the sparse data base describing acute effects of low dissolved oxygen concentrations on nonsalmonids, many non-salmonids appear to be considerably less sensitive than salmonids. Except for larval forms, no
non-salmonids appear to be more sensitive than salmonids. Spoor (1977) observed lethality of largemouth bass larvae at a dissolved oxygen concentration of 2.5 mg/l after only a 3-hr exposure. Generally, adults and juveniles of all species studied survive for at least a few hours at concentrations of dissolved oxygen as low as 3 mg/l. In most cases, no mortality results from acute exposures to 3 mg/l for the 24- to 96-h duration of the acute tests. Some non-salmonid fish appear to be able to survive a several-day exposure to concentrations below 1 mg/l (Moss and Scott, 1961; Downing and Merkens, 1957), but so little is known about the latent effects of such exposure that short-term survival cannot now be used as an indication of acceptable dissolved oxygen concentrations. In addition to the unknown latent effects of exposure to very low dissolved oxygen concentrations, there are no data on the effects of repeated short-term exposures. Most importantly, data on the tolerance to low dissolved oxygen concentrations are available for only a few of the numerous species of non-salmonid fish.

C. Growth

Stewart et al. (1967) conducted several growth studies with juvenile largemouth bass and observed reduced growth at 5.9 mg/l and lower concentrations. Five of six experiments included dissolved oxygen concentrations between 5 and 6 mg/l; dissolved oxygen concentrations of 5.1 and 5.4 mg/l produced reductions in growth rate of 20 and 14 percent, respectively, but concentrations of 5.8 and 5.9 mg/l had essentially no effect on growth. The efficiency of food conversion was not reduced until dissolved oxygen concentrations were much lower, indicating that decreased food consumption was the primary cause of reduced growth.

When channel catfish fingerlings held at 8, 5, and 3 mg/l were fed as much as they could eat in three daily feedings, there were significant reductions in feeding and weight gain (22 percent) after a 6 week exposure to 5 mg/l (Andrews et al., 1973). At a lower feeding rate, growth after 14 weeks was reduced only at 3 mg/l. Fish exposed to 3 mg/l swam lethargically, fed poorly and had reduced response to loud noises. Raible (1975) exposed channel catfish to several dissolved oxygen concentrations for up to 177 days and observed a graded reduction in growth at each concentration below 6 mg/l. However, the growth pattern for 6.8 mg/l was comparable to that at 5.4 mg/l. He concluded that each mg/l increase in dissolved oxygen concentrations between 3 and 6 mg/l increased growth by 10 to 13 percent.

Carlson et al. (1980) studied the effect of dissolved oxygen concentration on the growth of juvenile channel catfish and yellow perch. Over periods of about 10 weeks, weight gain of channel catfish was lower than that of control fish by 14, 39, and 54 percent at dissolved oxygen concentrations of 5.0, 3.4, and 2.1 mg/l, respectively. These differences were produced by decreases in growth rate of 5, 18, and 23 percent (JRB Associates, 1984), pointing out the importance of differentiating between effects on weight gain and effects on growth rate. When of sufficient duration, small reductions in growth rate can have large effects on relative weight gain. Conversely, large effects on growth rate may have little effect on annual weight gain if they occur only over a small proportion of the annual growth period. Yellow perch appeared to be more tolerant to low dissolved oxygen concentrations, with reductions in weight gain of 2, 4, and 30 percent at dissolved oxygen concentrations of 4.9, 3.5, and 2.1 mg/l, respectively.
Figure 1. Effect of continuous exposure to various mean dissolved oxygen concentrations on survival of embryonic and larval stages of eight species of nonsalmonid fish. Minima recorded in these tests averaged about 0.3 mg/l below the mean concentrations.
The data of Stewart et al. (1967), Carlson et al. (1980), and Adelman and Smith (1972) were analyzed to determine the relationship between growth rate and dissolved oxygen concentration (JRB Associates, 1984). Yellow perch appeared to be very resistant to influences of low dissolved oxygen concentrations, northern pike may be about as sensitive as salmonids, while largemouth bass and channel catfish are intermediate in their response (Table 4). The growth rate relations modeled from Adelman and Smith are based on only four data points, with none in the critical dissolved oxygen region from 3 to 5 mg/l. Nevertheless, these growth data for northern pike are the best available for nonsalmonid coldwater fish. Adelman and Smith observed about a 65 percent reduction in growth of juvenile northern pike after 6-7 weeks at dissolved oxygen concentrations of 1.7 and 2.6 mg/l. At the next higher concentration (5.4 mg/l), growth was reduced 5 percent.

Table 4. Percent reduction in growth rate of some nonsalmonid fish held at various dissolved oxygen concentrations expressed as the median value from n tests with each species (calculated from JRB Associates, 1984).

<table>
<thead>
<tr>
<th>Dissolved Oxygen (mg/l)</th>
<th>Species (number of tests)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Northern Pike (1)</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>--</td>
</tr>
</tbody>
</table>

| Median Temp (°C) | 19 | 26 | 25 | 20 |

Brake (1972) conducted a series of studies on juvenile largemouth bass in two artificial ponds to determine the effect of reduced dissolved oxygen concentration on consumption of mosquitofish and growth during 10 2-week exposures. The dissolved oxygen in the control pond was maintained near air-saturation (8.3 to 10.4 mg/l) and the other pond contained mean dissolved oxygen concentrations from 4.0 to 6.0 mg/l depending upon the individual test. The temperature, held near the same level in both ponds for each test, ranged from 13 to 27°C. Food consumption and growth rates of the juvenile bass, maintained on moderate densities of forage fish, increased with temperature and decreased at the reduced dissolved oxygen concentrations except at 13°C. Exposure to that temperature probably slowed metabolic processes of the bass so much that their total metabolic rates were not limited by dissolved oxygen except at very low concentrations. These largemouth bass studies clearly support the idea that higher temperatures exacerbate the adverse effects of
low dissolved oxygen on the growth rate of fish (Table 5). Comparisons of Brake's pond studies with the laboratory growth studies of Stewart et al. (1967) suggest that laboratory growth studies may significantly underestimate the adverse effect of low dissolved oxygen on fish growth. Stewart's six studies with largemouth bass are summarized in Table 4 and Brake's data are presented in Table 5. All of Stewart's tests were conducted at 26°C, about the highest temperature in Brake's studies, but comparison of the data show convincingly that at dissolved oxygen concentrations between 4 and 6 mg/l the growth rate of bass in ponds was reduced 17 to 34 percent rather than the 1 to 9 percent seen in the laboratory studies. These results suggest that the ease of food capture in laboratory studies may result in underestimating effects of low dissolved oxygen on growth rates in nature.

Table 5. Effect of temperature on the percent reduction in growth rate of largemouth bass exposed to various dissolved oxygen concentrations in ponds (after Brake, 1972; JRB Associates, 1984).

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Percent Reduction in Growth Rate at 4.2 ± 0.2 mg/l</th>
<th>4.9 ± 0.2 mg/l</th>
<th>5.8 ± 0.2 mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3</td>
<td>0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>13.6</td>
<td>--</td>
<td>--</td>
<td>7</td>
</tr>
<tr>
<td>16.3</td>
<td>--</td>
<td>18</td>
<td>--</td>
</tr>
<tr>
<td>16.7</td>
<td>--</td>
<td>--</td>
<td>15</td>
</tr>
<tr>
<td>18.1</td>
<td>--</td>
<td>19</td>
<td>--</td>
</tr>
<tr>
<td>18.6</td>
<td>--</td>
<td>34</td>
<td>--</td>
</tr>
<tr>
<td>18.7</td>
<td>18</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>23.3</td>
<td>26</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>26.7</td>
<td>--</td>
<td>--</td>
<td>17</td>
</tr>
<tr>
<td>27.4</td>
<td>31</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Brett and Blackburn (1981) reanalyzed the growth data previously published by other authors for largemouth bass, carp, and coho salmon in addition to their own results for young coho and sockeye salmon. They concluded for all species that above a critical level ranging from 4.0 to 4.5 mg/l, decreases in growth rate and food conversion efficiency were not statistically significant in these tests of relatively short duration (6 to 8 weeks) under the pristine conditions of laboratory testing. EPA believes that a more accurate estimate of the dissolved oxygen concentrations that have no effect on growth and a better estimate of concentration:effect relationships can be obtained by curve-fitting procedures (JCB Associates, 1984) and by examining these results from a large number of studies. Brett and Blackburn added an additional qualifying statement that it was not the purpose of their study to seek evidence on the acceptable level of dissolved oxygen in nature because of the problems of environmental complexity involving all life stages and functions, the necessary levels of activity to survive in a competitive world, and the interaction of water quality (or lack of it) with varying dissolved
oxygen concentrations. Their cautious concern regarding the extrapolation to the real world of results obtained under laboratory conditions is consistent with that of numerous investigators.

D. Reproduction

A life-cycle exposure of the fathead minnow beginning with 1- to 2-month old juveniles was conducted and effects of continuous low dissolved oxygen concentrations on various life stages indicated that the most sensitive stage was the larval stage (Brungs, 1971). No spawning occurred at 1 mg/l, and the number of eggs produced per female was reduced at 2 mg/l but not at higher concentrations. Where spawning occurred, the percentage hatch of embryos (81-89 percent) was not affected when the embryos were exposed to the same concentrations as their parents. Hatching time varied with temperature, which was not controlled, but with decreasing dissolved oxygen concentration the average incubation time increased gradually from the normal 5 to nearly 8 days. Mean larval survival was 6 percent at 3 mg/l and 25 percent at 4 mg/l. Mean survival of larvae at 5 mg/l was 66 percent as compared to 50 percent at control dissolved oxygen concentrations. However, mean growth of surviving larvae at 5 mg/l was about 20 percent lower than control larval growth. Siefert and Herman (1977) exposed mature black crappies to constant dissolved oxygen concentrations from 2.5 mg/l to saturation and temperatures of 13-20°C. Number of spawnings; embryo viability, hatching success, and survival through swim-up were similar at all exposures.

E. Early Life Stages

Larval and juvenile non-salmonids are frequently more sensitive to exposures to low dissolved oxygen than are other life stages. Peterka and Kent (1976) conducted semi-controlled experiments at natural spawning sites of northern pike, bluegill, pumpkinseed, and smallmouth bass in Minnesota. Dissolved oxygen concentrations were measured 1 and 10 cm from the bottom, with observations being made on hatching success and survival of embryos, sac larvae, and, in some instances, larvae. Controlled exposure for up to 8 hours was performed in situ in small chambers with the dissolved oxygen controlled by nitrogen stripping. For all species tested, tolerance to short-term exposure to low concentrations decreased from embryonic to larval stages. Eight-hour exposure of embryos and larvae of northern pike to dissolved oxygen concentrations caused no mortality of embryos at 0.6 mg/l but was 100 percent lethal to sac-larvae and larvae. The most sensitive stage, the larval stage, suffered complete mortality following 8 hours at 1.6 mg/l; the next higher concentration, 4 mg/l, produced no mortality. Smallmouth bass were at least as sensitive, with nearly complete mortality of sac-larvae resulting from 6-hour exposure to 2.2 mg/l, but no mortality occurred after exposure to 4.2 mg/l. Early life stages of bluegill were more hardy, with embryos tolerating 4-hour exposure to 0.5 mg/l, a concentration lethal to sac-larvae; sac-larvae survived similar exposure to 1.8 mg/l, however. Because the most sensitive stage of northern pike was the later larval stage, and because the younger sac-larval stages of smallmouth bass and bluegill were the oldest stages tested, the tests with these latter species may not have included the most sensitive stage. Based on these tests, 4 mg/l is tolerated, at least briefly, by northern pike and may be tolerated by smallmouth bass, but concentrations as high as 2.2 mg/l are lethal.
Several studies have provided evidence of mortality or other significant damage to young non-salmonids as a result of a few weeks exposure to dissolved oxygen concentrations in the 3 to 6 mg/l range. Siefert et al. (1973) exposed larval northern pike to various dissolved oxygen concentrations at 15 and 19°C and observed reduced survival at concentrations as high as 2.9 and 3.4 mg/l. Most of the mortality at these concentrations occurred at the time the larvae initiated feeding. Apparently the added stress of activity at that time or a greater oxygen requirement for that life stage was the determining factor. There was a marked decrease in growth at concentrations below 3 mg/l. In a similar study lasting 20 days, survival of walleye embryos and larvae was reduced at 3.4 mg/l (Siefert and Spoor, 1974), and none survived at lower concentrations. A 20 percent reduction in the survival of smallmouth bass embryos and larvae occurred at a concentration of 4.4 mg/l (Siefert et al., 1974) and at 2.5 mg/l all larvae died in the first 5 days after hatching. At 4.4 mg/l hatching occurred earlier than in the controls and growth among survivors was reduced. Carlson and Siefert (1974) concluded that concentrations from 1.7 to 6.3 mg/l reduced the growth of early stages of the largemouth bass by 10 to 20 percent. At concentrations as high as 4.5 mg/l, hatching was premature and feeding was delayed; both factors could indirectly influence survival, especially if other stresses were to occur simultaneously. Carlson et al. (1974) also observed that embryos and larvae of channel catfish are sensitive to low dissolved oxygen during 2- or 3-week exposures. Survival at 25°C was slightly reduced at 5 mg/l and significantly reduced at 4.2 mg/l. At 28°C survival was slightly reduced at 3.8, 4.6, and 5.4 mg/l; total mortality occurred at 2.3 mg/l. At all reduced dissolved oxygen concentrations at both temperatures, embryo pigmentation was lighter, incubation period was extended, feeding was delayed, and growth was reduced. No effect of dissolved oxygen concentrations as low as 2.5 mg/l was seen on survival of embryonic and larval black crappie (Siefert and Herman, 1977). Other tolerant species are the white bass and the white sucker, both of which evidenced adverse effect to embryo larval exposure only at dissolved oxygen concentrations of 1.8 and 1.2 mg/l, respectively (Siefert et al., 1974; Siefert and Spoor, 1974).

Data (Figure 1) on the effects of dissolved oxygen on the survival of embryonic and larval nonsalmonid fish show some species to be tolerant (largemouth bass, white sucker, black crappie, and white bass) and others nontolerant (channel catfish, walleye, northern pike, smallmouth bass). The latter three species are often included with salmonids in a grouping of sensitive coldwater fish; these data tend to support that placement.

F. Behavior

Largemouth bass in laboratory studies (Whitmore et al., 1960) showed a slight tendency to avoid concentrations of dissolved oxygen of 3.0 and 4.6 mg/l and a definite avoidance of 1.5 mg/l. Bluegills avoided a concentration of 1.5 mg/l but not higher concentrations. The environmental significance of such a response is unknown, but if large areas are deficient in dissolved oxygen this avoidance would probably not greatly enhance survival. Spoor (1977) exposed largemouth bass embryos and larvae to low dissolved oxygen for brief exposures of a few hours. At 23 to 24°C and 4 to 5 mg/l, the normally quiescent, bottom-dwelling yolk-sac larvae became very active and swam
vertically to a few inches above the substrate. Such behavior in natural systems would probably cause significant losses due to predation and simple displacement from the nesting area.

G. Swimming

Effects of low dissolved oxygen on the swimming performance of largemouth bass were studied by Katz et al. (1959) and Dahlberg et al. (1968). The results in the former study were highly dependent upon season and temperature, with summer tests at 25°C finding no effect on continuous swimming for 24 hrs at 0.8 ft/sec unless dissolved oxygen concentrations fell below 2 mg/l. In the fall, at 20°C, no fish were able to swim for a day at 2.8 mg/l, and in the winter and 16°C no fish swam for 24 hours at 5 mg/l. These results are consistent with those seen in salmonids in that swimming performance appears to be more sensitive to low dissolved oxygen at lower temperatures.

Dahlberg et al. (1968) looked at the effect of dissolved oxygen on maximum swimming speed at temperatures near 25°C. They reported slight effects (less than 10% reduction in maximum swimming speed) at concentrations between 3 and 4.5 mg/l, moderate reduction (16-20%) between 2 and 3 mg/l and severe reduction (30-50%) at 1 to 1.5 mg/l.

H. Field Studies

Ellis (1937) reported results of field studies conducted at 982 stations on freshwater streams and rivers during the months of June through September, 1930-1935. During this time, numerous determinations of dissolved oxygen concentrations were made. He concluded that 5 mg/l appeared to be the lowest concentration which may reasonably be expected to maintain varied warmwater fish species in good condition in inland streams. Ellis (1944) restated his earlier conclusion and also added that his study had included the measurement of dissolved oxygen concentrations at night and various seasons. He did not specify the frequency or proportion of diurnal or seasonal sampling, but the mean number of samples over the 5-year study was about seven samples per station.

Brinley (1944) discussed a 2-year biological survey of the Ohio River Basin. He concluded that in the zone where dissolved oxygen is between 3 and 5 mg/l the fish are more abundant than at lower concentrations, but show a tendency to sickness, deformity, and parasitization. The field results show that the concentration of 5 mg/l seems to represent a general dividing line between good and bad conditions for fish.

A three-year study of fish populations in the Wisconsin River indicated that sport fish (percids and centrarchids) constituted a significantly greater proportion of the fish population at sites having mean summer dissolved oxygen concentrations greater than 5 mg/l than at sites averaging below 5 mg/l (Coble, 1982). The differences could not be related to any observed habitat variables other than dissolved oxygen concentration.

These three field studies all indicate that increases in dissolved oxygen concentrations above 5 mg/l do not produce noteworthy improvements in the composition, abundance, or condition of non-salmonid fish populations, but
that sites with dissolved oxygen concentrations below 5 mg/l have fish assemblages with increasingly poorer population characteristics as the dissolved oxygen concentrations become lower. It cannot be stressed too strongly that these field studies lack definition with respect to the actual exposure conditions experienced by the resident populations and the lack of good estimates for mean and minimum exposure concentrations over various periods precludes the establishment of numerical criteria based on these studies. The results of these semi-quantitative field studies are consistent with the criteria derived later in this document.

IV. Invertebrates

As stated earlier, there is a general paucity of information on the tolerance of the many forms of freshwater invertebrates to low dissolved oxygen. Most available data describe the relationship between oxygen concentration and oxygen consumption or short-term survival of aquatic larvae of insects. These data are further restricted by their emphasis on species representative of relatively fast-flowing mountain streams.

One rather startling feature of these data is the apparently high dissolved oxygen requirement for the survival of some species. Before extrapolating from these data one should be cautious in evaluating the respiratory mode(s) of the species, its natural environment, and the test environment. Thus, many non-gilled species respire over their entire body surface while many other species are gilled. Either form is dependent upon the gradient of oxygen across the respiratory surface, a gradient at least partially dependent upon the rate of replacement of the water immediately surrounding the organism. Some insects, such as some members of the mayfly genus, *Baetis*, are found on rocks in extremely swift currents; testing their tolerance to low dissolved oxygen in laboratory apparatus at slower flow rates may contribute to their inability to survive at high dissolved oxygen concentrations. In addition, species of insects that utilize gaseous oxygen, either from bubbles or surface atmosphere, may not be reasonably tested for tolerance of hypoxia if their source of gaseous oxygen is deprived in the laboratory tests.

In spite of these potential problems, the dissolved oxygen requirements for the survival of many species of aquatic insects are almost certainly greater than those of most fish species. Early indication of the high dissolved oxygen requirements of some aquatic insects appeared in the research of Fox et al. (1937) who reported critical dissolved oxygen concentrations for mayfly nymphs in a static test system. Critical concentrations for six species ranged from 2.2 mg/l to 17 mg/l; three of the species had critical concentrations in excess of air saturation. These data suggest possible extreme sensitivity of some species and also the probability of unrealistic conditions of water flow. More recent studies in water flowing at 10 cm/sec indicate critical dissolved oxygen concentrations for four species of stonefly are between 7.3 and 4.8 mg/l (Benedetto, 1970).

In a recent study of 22 species of aquatic insects, Jacob et al. (1984) reported 2-5 hour LC50 values at unspecified "low to moderate" flows in a stirred exposure chamber, but apparently with no flow of replacement water. Tests were run at one or more of five temperatures from 12 to 30°C; some
species were tested at only one temperature, others at as many as four. The median of the 22 species mean LC50s was about 3 mg/l, with eight species having an average LC50 below 1 mg/l and four in excess of 7 mg/l. The four most sensitive species were two mayfly species and two caddisfly species. The studies of Fox et al. (1937), Benedetto (1970), and Jacob et al. (1984) were all conducted with European species, but probably have general relevance to North American habitats. A similar oxygen consumption study of a North American stonefly (Kapoor and Griffiths, 1975) indicated a possible critical dissolved oxygen concentration of about 7 mg/l at a flow rate of 0.32 cm/sec and a temperature of 20°C.

One type of behavioral observation provides evidence of hypoxic stress in aquatic insects. As dissolved oxygen concentrations decrease, many species of aquatic insects can be seen to increase their respiratory movements, movements that provide for increased water flow over the respiratory surfaces. Fox and Sidney (1953) reported caddisfly respiratory movements over a range of dissolved oxygen from 9 to 1 mg/l. A dissolved oxygen decrease to 5 mg/l doubled the number of movements and at 1 to 2 mg/l the increase was 3- to 4-fold.

Similar data were published by Knight and Gaufin (1963) who studied a stonefly common in the western United States. Significant increases occurred below 5 mg/l at 16°C and below 2 mg/l at 10°C. Increases in movements occurred at higher dissolved oxygen concentrations when water flow was 1.5 cm/sec than 7.6 cm/sec, again indicating the importance of water flow rate on the respiration of aquatic insects. A subsequent paper by Knight and Gaufin (1965) indicated that species of stonefly lacking gills are more sensitive to low dissolved oxygen than are gilled forms.

Two studies that provide the preponderance of the current data on the acute effects of low dissolved oxygen concentrations on aquatic insects are those of Gaufin (1973) and Nebeker (1972) which together provide reasonable 96-hr LC50 dissolved oxygen concentrations for 26 species of aquatic insects (Table 6). The two studies contain variables that make them difficult to compare or evaluate fully. Test temperatures were 6.4°C in Gaufin's study and 18.5°C in Nebeker's. Gaufin used a vacuum degasser while Nebeker used a 30-foot stripping column that probably produced an unknown degree of supersaturation with nitrogen. The water velocity is not given in either paper, although flow rates are given but test chamber dimensions are not clearly specified. The overall similarity of the test results suggests that potential supersaturation and lower flow volume in Nebeker's tests did not have a significant effect on the results.

Because half of the insect species tested had 96-h LC50 dissolved oxygen concentrations between 3 and 4 mg/l it appears that these species (collected in Montana and Minnesota) would require at least 4 mg/l dissolved oxygen to ensure their survival. The two most sensitive species represent surprisingly diverse habitats, *Ephemeroidea doddsi* is found in swift rocky streams and has an LC50 of 5.2 mg/l while the pond mayfly, *Callibaetis montanus*, has an LC50 of 4.4 mg/l. It is possible that the test conditions represented too slow a flow for *E. doddsi* and too stressful flow conditions for *C. montanus*.
Table 6. Acutely lethal concentrations of dissolved oxygen to aquatic insects.

<table>
<thead>
<tr>
<th>Species</th>
<th>96-h LC50 (mg/l)</th>
<th>Source*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stonofly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acroneuria pacifica</td>
<td>1.6 (H)**</td>
<td>G</td>
</tr>
<tr>
<td>Acroneuria lycorias</td>
<td>3.6</td>
<td>N</td>
</tr>
<tr>
<td>Acynopteryx aurea</td>
<td>3.3 (H)</td>
<td>G</td>
</tr>
<tr>
<td>Arcynopteryx paralela</td>
<td>< 2 (H)</td>
<td>G</td>
</tr>
<tr>
<td>Diura knowltoni</td>
<td>3.6 (L)</td>
<td>G</td>
</tr>
<tr>
<td>Nemoura cinctipes</td>
<td>3.3 (H)</td>
<td>G</td>
</tr>
<tr>
<td>Pteronarcyis californica</td>
<td>3.9 (L)</td>
<td>G</td>
</tr>
<tr>
<td>Pteronarcyis californica</td>
<td>3.2 (H)</td>
<td>G</td>
</tr>
<tr>
<td>Pteronarcyis dorsata</td>
<td>2.2</td>
<td>N</td>
</tr>
<tr>
<td>Pteronarcella badia</td>
<td>2.4 (H)</td>
<td>G</td>
</tr>
<tr>
<td>Mayfly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baetisca laurentina</td>
<td>3.5</td>
<td>N</td>
</tr>
<tr>
<td>Callibaetis montanus</td>
<td>4.4 (L)</td>
<td>G</td>
</tr>
<tr>
<td>Ephemerella doddsi</td>
<td>5.2 (L)</td>
<td>G</td>
</tr>
<tr>
<td>Ephemerella grandis</td>
<td>3.0 (H)</td>
<td>G</td>
</tr>
<tr>
<td>Ephemerella subvaria</td>
<td>3.9</td>
<td>N</td>
</tr>
<tr>
<td>Hexagenia limbata</td>
<td>1.8 (H)</td>
<td>G</td>
</tr>
<tr>
<td>Hexagenia limbata</td>
<td>1.4</td>
<td>N</td>
</tr>
<tr>
<td>Leptophlebia nebulosa</td>
<td>2.2</td>
<td>N</td>
</tr>
<tr>
<td>Caddisfly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brachycertrus occidentalis</td>
<td>< 2 (L)</td>
<td>G</td>
</tr>
<tr>
<td>Drusinus sp.</td>
<td>1.8 (H)</td>
<td>G</td>
</tr>
<tr>
<td>Hydropsyche sp.</td>
<td>3.6 (L)</td>
<td>G</td>
</tr>
<tr>
<td>Hydropsyche betteri</td>
<td>2.9 (21°C)</td>
<td>N</td>
</tr>
<tr>
<td>Hydropsyche betteri</td>
<td>2.6 (18.5°C)</td>
<td>N</td>
</tr>
<tr>
<td>Hydropsyche betteri</td>
<td>2.3 (17°C)</td>
<td>N</td>
</tr>
<tr>
<td>Hydropsyche betteri</td>
<td>1.0 (10°C)</td>
<td>N</td>
</tr>
<tr>
<td>Lepidostoma sp.</td>
<td>< 3 (H)</td>
<td>G</td>
</tr>
<tr>
<td>*Limnophilus ornatus</td>
<td>3.4 (L)</td>
<td>G</td>
</tr>
<tr>
<td>Neophylax sp.</td>
<td>3.8 (L)</td>
<td>G</td>
</tr>
<tr>
<td>Neothremma alicia</td>
<td>1.7 (L)</td>
<td>G</td>
</tr>
<tr>
<td>Diptera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulium vittatum</td>
<td>3.2 (L)</td>
<td>G</td>
</tr>
<tr>
<td>Tanytarsus dissimilis</td>
<td>< 0.6</td>
<td>N</td>
</tr>
</tbody>
</table>

* G = Gaufin (1973) -- all tests at 6.4°C.
N = Nebeker (1972) -- all tests at 18.5°C except as noted/flow 125 ml/min.

** H = high flow (1000 ml/min); L = low flow (500 ml/min).
Other freshwater invertebrates have been subjected to acute hypoxic stress and their LC50 values determined. Gaufin (1973) reported a 96-h LC50 for the amphipod Gammarus limnaeus of < 3 mg/l. Four other crustaceans were studied by Sprague (1963) who reported the following 24-h LC50s: 0.03 mg/l, Asellus intermedius; 0.7 mg/l, Hyalella azteca; 2.2 mg/l, Gammarus pseudolimnaeus; and 4.3 mg/l, Gammarus fasciatus. The range of acute sensitivities of these species appears similar to that reported for aquatic insects.

There are few long-term studies of freshwater invertebrate tolerance to low dissolved oxygen concentrations. Both Gaufin (1973) and Nebeker (1972) conducted long-term survival studies with insects, but both are questioned because of starvation and potential nitrogen supersaturation, respectively. Gaufin's data for eight Montana species and 17 Utah species suggest that 4.9 mg/l and 3.3 mg/l, respectively, would provide for 50 percent survival for from 10 to 92 days. Nebeker lists 30-d LC50 values for five species, four between 4.4 and 5.0 mg/l and one < 0.5 mg/l. Overall, these data indicate that prolonged exposure to dissolved oxygen concentrations below 5 mg/l would have detrimental effects on a large proportion of the aquatic insects common in areas like Minnesota, Montana, and Utah. Information from other habitat types and geographic locations would provide a broader picture of invertebrate dissolved oxygen requirements.

A more classic toxicological protocol was used by Homer and Waller (1983) in a study of the effects of low dissolved oxygen on Daphnia magna. In a 26-d chronic exposure test, they reported that 1.8 mg/l significantly reduced fecundity and 2.7 mg/l caused a 17 percent reduction in final weight of adults. No effect was seen at 3.7 mg/l.

In summarizing the state of knowledge regarding the relative sensitivity of fish and invertebrates to low dissolved oxygen, it seems that some species of insects and other crustaceans are killed at concentrations survived by all species of fish tested. Thus, while most fish will survive exposure to 3 mg/l, many species of invertebrates are killed by concentrations as high as 4 mg/l. The extreme sensitivity of a few species of aquatic insects may be an artifact of the testing environment. Those sensitive species common to swift flowing, coldwater streams may require very high concentrations of dissolved oxygen. On the other hand, those stream habitats are probably among the least likely to suffer significant dissolved oxygen depletion.

Long-term impacts of hypoxia are less well known for invertebrates than for fish. Concentrations adequate to avoid impairment of fish production probably will provide reasonable protection for invertebrates as long as lethal concentrations are avoided.

V. Other Considerations

A. Effects of Fluctuations

Natural dissolved oxygen concentrations fluctuate on a seasonal and daily basis, while in most laboratory studies the oxygen levels are held essentially constant. In two studies on the effects of daily oxygen cycles the authors concluded that growth of fish fed unrestricted rations was markedly less than would be estimated from the daily mean dissolved oxygen concentrations.
The growth of these fish was only slightly above that attainable during constant exposure to the minimum concentrations of the daily cycles. A diurnal dissolved oxygen pulse to 3 mg/l for 8 hours per day for 9 days, with a concentration of 8.3 mg/l for the remainder of the time, produced a significant stress pattern in the serum protein fractions of bluegill and largemouth bass but not yellow bullhead (Bouck and Ball, 1965). During periods of low dissolved oxygen the fish lost their natural color, increased their ventilation rate, and remained very quiet. At these times food was ignored. Several times, during the low dissolved oxygen concentration part of the cycle, the fish vomited food which they had eaten as much as 12 hours earlier. After comparable exposure of the rock bass, Bouck (1972) observed similar results on electrophoretic patterns and feeding behavior.

Stewart et al. (1967) exposed juvenile largemouth bass to patterns of diurnally-variable dissolved oxygen concentrations with daily minima near 2 mg/l and daily maxima from 4 to 17 mg/l. Growth under any fluctuation pattern was almost always less than the growth that presumably would have occurred had the fish been held at a constant concentration equal to the mean concentration.

Carlson et al. (1980) conducted constant and diurnally fluctuating exposures with juvenile channel catfish and yellow perch. At mean constant concentrations of 3.5 mg/l or less, channel catfish consumed less food and growth was significantly reduced. Growth of this species was not reduced at fluctuations from about 6.2 to 3.6 and 4.9 to 2 mg/l, but was significantly impaired at a fluctuation from about 3.1 to 1 mg/l. Similarly, at mean constant concentrations near 3.5 mg/l, yellow perch consumed less food but growth was not impaired until concentrations were near 2 mg/l. Growth was not affected by fluctuations from about 3.8 to 1.4 mg/l. No dissolved oxygen-related mortalities were observed. In both the channel catfish and the yellow perch experiments, growth rates during the tests with fluctuating dissolved oxygen were considerably below the rates attained in the constant exposure tests. As a result, the fluctuating and constant exposures could not be compared. Growth would presumably have been more sensitive in the fluctuating tests if there had been higher rates of control growth.

Mature black crappies were exposed to constant and fluctuating dissolved oxygen concentrations (Carlson and Herman, 1978). Constant concentrations were near 2.5, 4, 5.5, and 7 mg/l and fluctuating concentrations ranged from 0.8 to 1.9 mg/l above and below these original concentrations. Successful spawning occurred at all exposures except the fluctuation between 1.8 and 4.1 mg/l.

In considering daily or longer-term cyclic exposures to low dissolved oxygen concentrations, the minimum values may be more important than the mean levels. The importance of the daily minimum as a determinant of growth rate is common to the results of Fisher (1963), Stewart (1967), and Whitworth (1968). Since annual low dissolved oxygen concentrations normally occur during warmer months, the significance of reduced growth rates during the period in question must be considered. If growth rates are normally low, then the effects of low dissolved oxygen concentration on growth could be minimal; if normal growth rates are high, the effects could be significant, especially if the majority of the annual growth occurs during the period in question.
B. Temperature and Chemical Stress

When fish were exposed to lethal temperatures, their survival times were reduced when the dissolved oxygen concentration was lowered from 7.4 to 3.8 mg/l (Alabaster and Welcomme, 1962). Since high temperature and low dissolved oxygen commonly occur together in natural environments, this likelihood of additive or synergistic effects of these two potential stresses is a most important consideration.

High temperatures almost certainly increase the adverse effects of low dissolved oxygen concentrations. However, the spotty, irregular acute lethality data base provides little basis for quantitative, predictive analysis. Probably the most complete study is that on rainbow trout, perch, and roach conducted by Downing and Merkens (1957). Because their study was spread over an 18-month period, seasonal effects could have influenced the effects at the various test temperatures. Over a range from approximately 10 to 20°C, the lethal dissolved oxygen concentrations increased by an average factor of about 2.6, ranging from 1.4 to 4.1 depending on fish species tested and test duration. The influence of temperature on chronic effects of low dissolved oxygen concentrations are not well known, but requirements for dissolved oxygen probably increase to some degree with increasing temperature. This generalization is supported by analysis of salmon studies reported by Warren et al. (1973) and the largemouth bass studies of Brake (1972).

Because most laboratory tests are conducted at temperatures near the mid-range of a species temperature tolerance, criteria based on these test data will tend to be under-protective at higher temperatures and over-protective at lower temperatures. Concern for this temperature effect was a consideration in establishing these criteria, especially in the establishing of those criteria intended to prevent short-term lethal effects.

A detailed discussion and model for evaluating interactions among temperature, dissolved oxygen, ammonia, fish size, and ration on the resulting growth of individual fish (Cuenco et al., 1985a,b,c) provides an excellent, in-depth evaluation of potential effects of dissolved oxygen on fish growth.

Several laboratory studies evaluated the effect of reduced dissolved oxygen concentrations on the toxicity of various chemicals, some of which occur commonly in oxygen-demanding wastes. Lloyd (1961) observed that the toxicity of zinc, lead, copper, and mono hydric phenols was increased at dissolved oxygen concentrations as high as approximately 6.2 mg/l as compared to 9.1 mg/l. At 3.8 mg/l, the toxic effect of these chemicals was even greater. The toxicity of ammonia was enhanced by low dissolved oxygen more than that of other toxicants. Lloyd theorized that the increases in toxicity of the chemicals were due to increased ventilation at low dissolved oxygen concentrations; as a consequence of increased ventilation, more water, and therefore more toxicant, passes the fish's gills. Downing and Merkens (1955) reported that survival times of rainbow trout at lethal ammonia concentrations increased markedly over a range of dissolved oxygen concentrations from 1.5 to 8.5 mg/l. Ninety-six-hr LC50 values for rainbow trout indicate that ammonia became more toxic with decreasing dissolved oxygen concentrations from 8.6 to 2.6 mg/l (Thurston et al., 1981). The maximum increase in toxicity was by about a factor of 2. They also compared ammonia LC50 values at reduced
dissolved oxygen concentrations after 12, 24, 48, and 72 hrs. The shorter the
time period, the more pronounced the positive relationship between the LC50
and dissolved oxygen concentration. The authors recommended that dissolved
oxygen standards for the protection of salmonids should reflect background
concentrations of ammonia which may be present and the likelihood of temporary
increases in those concentrations. Adelman and Smith (1972) observed that
decreasing dissolved oxygen concentrations increased the toxicity of hydrogen
sulfide to goldfish. When the goldfish were acclimated to the reduced
dissolved oxygen concentration before the exposure to hydrogen sulfide began,
mean 96-hr LC50 values were 0.062 and 0.048 mg/l at dissolved oxygen concen-
trations of 6 and 1.5 mg/l, respectively. When there was no prior acclima-
tion, the LC50 values were 0.071 and 0.053 mg/l at the same dissolved oxygen
concentrations. These results demonstrated a less than doubling in toxicity
of hydrogen sulfide and little difference with regard to prior acclimation to
reduced dissolved oxygen concentrations. Cairns and Scheier (1957) observed
that bluegills were less tolerant to zinc, naphthenic acid, and potassium
cyanide at periodic low dissolved oxygen concentrations. Pickering (1968)
reported that an increased mortality of bluegills exposed to zinc resulted
from the added stress of low dissolved oxygen concentrations. The difference
in mean LC50 values between low (1.8 mg/l) and high (5.6 mg/l) dissolved
oxygen concentrations was a factor of 1.5.

Interactions between other stresses and low dissolved oxygen concentra-
tions can greatly increase mortality of trout larvae. For example, sublethal
concentrations of pentachlorophenol and oxygen combined to produce 100 percent
mortality of trout larvae held at an oxygen concentration of 3 mg/l (Chapman
and Shumway, 1978). The survival of chinook salmon embryos and larvae reared
at marginally high temperatures was reduced by any reduction in dissolved
oxygen, especially at concentrations below 7 mg/l (Eddy, 1972).

In general, the occurrence of toxicants in the water mass, in combination
with low dissolved oxygen concentration, may lead to a potentiation of stress
responses on the part of aquatic organisms (Davis, 1975a,b). Doudoroff and
Shumway (1970) recommended that the disposal of toxic pollutants must be
controlled so that their concentrations would not be unduly harmful at
prescribed, acceptable concentrations of dissolved oxygen, and these accept-
able dissolved oxygen concentrations should be independent of existing or
highest permitted concentrations of toxic wastes.

C. Disease Stress

In a study of 5 years of case records at fish farms, Meyer (1970) observed that incidence of infection with Aeromonas liquefaciens (a common
bacterial pathogen of fish) was most prevalent during June, July, and August.
He considered low oxygen stress to be a major factor in outbreaks of Aeromonas
disease during summer months. Haley et al. (1967) concluded that a kill of
American and threadfin shad in the San Joaquin River occurred as a result of
Aeromonas infection the day after the dissolved oxygen was between 1.2 and 2.6
mg/l. In this kill the lethal agent was Aeromonas but the additional stress
of the low dissolved oxygen may have been a significant factor.
Wedemeyer (1974) reviewed the role of stress as a predisposing factor in fish diseases and concluded that facultative fish pathogens are continuously present in most waters. Disease problems seldom occur, however, unless environmental quality and the host defense systems of the fish also deteriorate. He listed furunculosis, Aeromonad and Pseudomonad hemorrhagic septicemia, and vibriosis as diseases for which low dissolved oxygen is one environmental factor predisposing fish to epizootics. He stated that to optimize fish health, dissolved oxygen concentrations should be 6.9 mg/l or higher. Sniezek (1974) also stated that outbreaks of diseases are probably more likely if the occurrence of stress coincides with the presence of pathogenic microorganisms.

VI. Conclusions

The primary determinant for the criteria is laboratory data describing effect on growth, with developmental rate and survival included in embryo and larval production levels. For the purpose of deriving criteria, growth in the laboratory and production in nature are considered equally sensitive to low dissolved oxygen. Fish production in natural communities actually may be significantly more, or less, sensitive than growth in the laboratory, which represents only one simplified facet of production.

The dissolved oxygen criteria are based primarily on data developed in the laboratory under conditions which are usually artificial in several important respects. First, they routinely preclude or minimize most environmental stresses and biological interactions that under natural conditions are likely to increase, to a variable and unknown extent, the effect of low dissolved oxygen concentrations. Second, organisms are usually given no opportunity to acclimate to low dissolved oxygen concentrations prior to tests nor can they avoid the test exposure. Third, food availability is unnatural because the fish have easy, often unlimited, access to food without significant energy expenditure for search and capture. Fourth, dissolved oxygen concentrations are kept nearly constant so that each exposure represents both a minimum and an average concentration. This circumstance complicates application of the data to natural systems with fluctuating dissolved oxygen concentrations.

Considering the latter problem only, if the laboratory data are applied directly as minimum allowable criteria, the criteria will presumably be higher than necessary because the mean dissolved oxygen concentration will often be significantly higher than the criteria. If applied as a mean, the criteria could allow complete anoxia and total mortality during brief periods of very low dissolved oxygen or could allow too many consecutive daily minima near the lethal threshold. If only a minimum or a mean can be given as a general criterion, the minimum must be chosen because averages are too independent of the extremes.

Obviously, biological effects of low dissolved oxygen concentrations depend upon means, minima, the duration and frequency of the minima, and the period of averaging. In many respects, the effects appear to be independent of the maxima; for example, including supersaturated dissolved oxygen values in the average may produce mean dissolved oxygen concentrations that are misleadingly high and unrepresentative of the true biological stress of the dissolved oxygen minima.
Because most experimental exposures have been constant, data on the effect of exposure to fluctuating dissolved oxygen concentrations is sketchy. The few fluctuating exposure studies have used regular, repeating daily cycles of an on-off nature with 8 to 16 hours at low dissolved oxygen and the remainder of the 24 hr period at intermediate or high dissolved oxygen. This is an uncharacteristic exposure pattern, since most daily dissolved oxygen cycles are of a sinusoidal curve shape and not a square-wave variety.

The existing data allow a tentative theoretical dosing model for fluctuating dissolved oxygen only as applied to fish growth. The EPA believes that the data of Stewart et al. (1967) suggest that effects on growth are reasonably represented by calculating the mean of the daily cycle using as a maximum value the dissolved oxygen concentration which represents the threshold effect concentration during continuous exposure tests. For example, with an effect threshold of 6 mg/l, all values in excess of 6 mg/l should be averaged as though they were .6 mg/l. Using this procedure, the growth effects appear to be a reasonable function of the mean, as long as the minimum is not lethal. Lethal thresholds are highly dependent upon exposure duration, species, age, life stage, temperature, and a wide variety of other factors. Generally the threshold is between 1 and 3 mg/l.

A most critical and poorly documented aspect of a dissolved oxygen criterion is the question of acceptable and unacceptable minima during dissolved oxygen cycles of varying periodicity. Current ability to predict effects of exposure to a constant dissolved oxygen level is only fair; the effects of regular, daily dissolved oxygen cycles can only be poorly estimated; and predicting the effects of more stochastic patterns of dissolved oxygen fluctuations requires an ability to integrate constant and cycling effects.

Several general conclusions result from the synthesis of available field and laboratory data. Some of these conclusions differ from earlier ones in the literature, but the recent data discussed in this document have provided additional detail and perspective.

- Naturally-occurring dissolved oxygen concentrations may occasionally fall below target criteria levels due to a combination of low flow, high temperature, and natural oxygen demand. These naturally-occurring conditions represent a normal situation in which the productivity of fish or other aquatic organisms may not be the maximum possible under ideal circumstances, but which represent the maximum productivity under the particular set of natural conditions. Under these circumstances the numerical criteria should be considered unattainable, but naturally-occurring conditions which fail to meet criteria should not be interpreted as violations of criteria. Although further reductions in dissolved oxygen may be inadvisable, effects of any reductions should be compared to natural ambient conditions and not to ideal conditions.

- Situations during which attainment of appropriate criteria is most critical include periods when attainment of high fish growth rates is a priority, when temperatures approach upper-lethal levels, when pollutants are present in near-toxic quantities, or when other significant stresses are suspected.
Reductions in growth rate produced by a given low dissolved oxygen concentration are probably more severe as temperature increases. Even during periods when growth rates are normally low, high temperature stress increases the sensitivity of aquatic organisms to disease and toxic pollutants, making the attainment of proper dissolved oxygen criteria particularly important. For these reasons, periods of highest temperature represent a critical portion of the year with respect to dissolved oxygen requirements.

In salmonid spawning habitats, intergravel dissolved oxygen concentrations are significantly reduced by respiration of fish embryos and other organisms. Higher water column concentrations of dissolved oxygen are required to provide protection of fish embryos and larvae which develop in the intergravel environment. A 3 mg/l difference is used in the criteria to account for this factor.

The early life stages, especially the larval stage, of non-salmonid fish are usually most sensitive to reduced dissolved oxygen stress. Delayed development, reduced larval survival, and reduced larval and post-larval growth are the observed effects. A separate early life stage criterion for non-salmonids is established to protect these more sensitive stages and is to apply from spawning through 30 days after hatching.

Other life stages of salmonids appear to be somewhat more sensitive than other life stages of the non-salmonids, but this difference, resulting in a 1.0 mg/l difference in the criteria for other life stages, may be due to a more complete and precise data base for salmonids. Also, this difference is at least partially due to the colder water temperatures at which salmonid tests are conducted and the resultant higher dissolved oxygen concentration in oxygen-saturated control water.

Few appropriate data are available on the effects of reduced dissolved oxygen on freshwater invertebrates. However, historical consensus states that, if all life stages of fish are protected, the invertebrate communities, although not necessarily unchanged, should be adequately protected. This is a generalization to which there may be exceptions of environmental significance. Acutely lethal concentrations of dissolved oxygen appear to be higher for many aquatic insects than for fish.

Any dissolved oxygen criteria should include absolute minima to prevent mortality due to the direct effects of hypoxia, but such minima alone may not be sufficient protection for the long-term persistence of sensitive populations under natural conditions. Therefore, the criteria minimum must also provide reasonable assurance that regularly repeated or prolonged exposure for days or weeks at the allowable minimum will avoid significant physiological stress of sensitive organisms.

Several earlier dissolved oxygen criteria were presented in the form of a family of curves (Doudoroff and Shumway, 1970) or equations (NAS/NAE, 1973) which yielded various dissolved oxygen requirements depending on the qualitative degree of fishery protection or risk deemed suitable at a given site. Although dissolved oxygen concentrations that risk significant loss of fishery production are not consistent with the intent of water quality criteria, a
qualitative protection/risk assessment for a range of dissolved oxygen concentrations has considerable value to resource managers. Using qualitative descriptions similar to those presented in earlier criteria of Doudoroff and Shumway (1970) and Water Quality Criteria 1972 (NAS/NAE, 1973), four levels of risk are listed below:

No Production Impairment. Representing nearly maximal protection of fishery resources.

Slight Production Impairment. Representing a high level of protection of important fishery resources, risking only slight impairment of production in most cases.

Moderate Production Impairment. Protecting the persistence of existing fish populations but causing considerable loss of production.

Severe Production Impairment. For low level protection of fisheries of some value but whose protection in comparison with other water uses cannot be a major objective of pollution control.

Selection of dissolved oxygen concentrations equivalent to each of these levels of effect requires some degree of judgment based largely upon examination of growth and survival data, generalization of response curve shape, and assumed applicability of laboratory responses to natural populations. Because nearly all data on the effects of low dissolved oxygen on aquatic organisms relate to continuous exposure for relatively short duration (hours to weeks), the resultant dissolved oxygen concentration-biological effect estimates are most applicable to essentially constant exposure levels, although they may adequately represent mean concentrations as well.

The production impairment values are necessarily subjective, and the definitions taken from Doudoroff and Shumway (1970) are more descriptive than the accompanying terms "slight," "moderate," and "severe." The impairment values for other life stages are derived predominantly from the growth data summarized in the text and tables in Sections II and III. In general, slight, moderate, and severe impairment are equivalent to 10, 20, and 40 percent growth impairment, respectively. Growth impairment of 50 percent or greater is often accompanied by mortality, and conditions allowing a combination of severe growth impairment and mortality are considered as no protection.

Production impairment levels for early life stages are quite subjective and should be viewed as convenient divisions of the range of dissolved oxygen concentrations between the acute mortality limit and the no production impairment concentrations.

Production impairment values for invertebrates are based on survival in both long-term and short-term studies. There are no studies of warmwater species and few of lacustrine species.

The following is a summary of the dissolved oxygen concentrations (mg/l) judged to be equivalent to the various qualitative levels of effect described earlier; the value cited as the acute mortality limit is the minimum dissolved oxygen concentration deemed not to risk direct mortality of sensitive organisms:
1. **Salmonid Waters**

 a. **Embryo and Larval Stages**

 - No Production Impairment = 11 (8)
 - Slight Production Impairment = 9 (6)
 - Moderate Production Impairment = 8 (5)
 - Severe Production Impairment = 7 (4)
 - Limit to Avoid Acute Mortality = 6 (3)

 (*Note: These are water column concentrations recommended to achieve the required intergravel dissolved oxygen concentrations shown in parentheses. The 3 mg/l difference is discussed in the criteria document.)*

 b. **Other Life Stages**

 - No Production Impairment = 8
 - Slight Production Impairment = 6
 - Moderate Production Impairment = 5
 - Severe Production Impairment = 4
 - Limit to Avoid Acute Mortality = 3

2. **Nonsalmonid Waters**

 a. **Early Life Stages**

 - No Production Impairment = 6.5
 - Slight Production Impairment = 5.5
 - Moderate Production Impairment = 5
 - Severe Production Impairment = 4.5
 - Limit to Avoid Acute Mortality = 4

 b. **Other Life Stages**

 - No Production Impairment = 6
 - Slight Production Impairment = 5
 - Moderate Production Impairment = 4
 - Severe Production Impairment = 3.5
 - Limit to Avoid Acute Mortality = 3

3. **Invertebrates**

 - No Production Impairment = 8
 - Some Production Impairment = 5
 - Acute Mortality Limit = 4

Added Note

Just prior to final publication of this criteria document, a paper appeared (Sowden and Power, 1985) that provided an interesting field validation of the salmonid early life stage criterion and production impairment estimates. A total of 19 rainbow trout reds were observed for a number of
parameters including percent survival of embryos, dissolved oxygen concentration, and calculated intergravel water velocity. The results cannot be considered a rigorous evaluation of the criteria because of the paucity of dissolved oxygen determinations per redd (2-5) and possible inaccuracies in determining percent survival and velocity. Nevertheless, the qualitative validation is striking.

The generalization drawn from Coble's (1961) study that good survival occurred when mean intergravel dissolved oxygen concentrations exceeded 6.0 mg/l and velocity exceeded 20 cm/hr was confirmed; 3 of the 19 reds met this criterion and averaged 29 percent embryo survival. The survival in the other 16 reds averaged only 3.6 percent. The data from the study are summarized in Table 7. The critical intergravel water velocity from this study appears to be about 15 cm/hr. Below this velocity even apparently good dissolved oxygen.

Table 7. Survival of rainbow trout embryos as a function of intergravel dissolved oxygen concentration and water velocity (Sowden and Power, 1985) as compared to dissolved oxygen concentrations established as criteria or estimated as producing various levels of production impairment.

<table>
<thead>
<tr>
<th>Criteria Estimates</th>
<th>Dissolved Oxygen Concentration mg/l</th>
<th>Percent Survival</th>
<th>Water Velocity, cm/hr</th>
<th>Mean Survival (Flow > 15 cm/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exceeded Criteria</td>
<td>Mean 8.9 Minimum 8.0</td>
<td>22.1</td>
<td>53.7</td>
<td>29.0</td>
</tr>
<tr>
<td></td>
<td>7.7 7.0</td>
<td>43.5</td>
<td>83.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.0 6.4</td>
<td>1.1</td>
<td>9.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.9 5.4</td>
<td>21.3</td>
<td>20.6</td>
<td></td>
</tr>
<tr>
<td>Slight Production Impairment</td>
<td>7.4 4.1</td>
<td>0.5</td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.1 4.3</td>
<td>21.5</td>
<td>16.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.7 4.5</td>
<td>4.3</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.4 4.2</td>
<td>0.3</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.0 4.2</td>
<td>9.6</td>
<td>17.4</td>
<td></td>
</tr>
<tr>
<td>Moderate Production Impairment</td>
<td>5.8 3.1</td>
<td>13.4</td>
<td>21.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.3 3.6</td>
<td>5.6</td>
<td>16.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.2 3.9</td>
<td>0.4</td>
<td>71.0</td>
<td></td>
</tr>
<tr>
<td>Severe Production Impairment</td>
<td>4.6 4.1</td>
<td>0.9</td>
<td>18.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.2 3.3</td>
<td>0.0</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Acute Mortality</td>
<td>3.9 2.9</td>
<td>0.0</td>
<td>111.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.6 2.1</td>
<td>0.0</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.7 1.2</td>
<td>0.0</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4 0.8</td>
<td>0.0</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0 0.8</td>
<td>0.0</td>
<td>192.0</td>
<td></td>
</tr>
</tbody>
</table>

32
characteristics do not produce reasonable survival. At water velocities in
excess of 15 cm/hr the average percent survival in the redds that had
dissolved oxygen concentrations that met the criteria was 29.0 percent. There
was no survival in redds that had dissolved oxygen minima below the acute
mortality limit. Percent survival in redds with greater than 15 cm/hr flow
averaged 15.6, 6.5, and 0.9 percent for redds meeting slight, moderate, and
severe production impairment levels, respectively.

Based on an average redd of 1000 eggs, these mean percent survivals would
be equivalent to 290, 156, 65, 9, and 0 viable larvae entering the environment
to produce food for other fish, catch for fishermen, and eventually a new
generation of spawners to replace the parents of the embryos in the redd.
Whether or not these survival numbers ultimately represent the impairment
definitions is moot in the light of further survival and growth uncertainties,
but the quantitative field results and the qualitative and quantitative
impairment and criteria values are surprisingly similar.

VII. National Criterion

The national criteria for ambient dissolved oxygen concentrations for the
protection of freshwater aquatic life are presented in Table 8. The criteria
are derived from the production impairment estimates on the preceding page
which are in turn based primarily upon growth data and information on tempera-
ture, disease, and pollutant stresses. The average dissolved oxygen concen-
trations selected are values 0.5 mg/l above the slight production impairment
values and represent values between no production impairment and slight
production impairment. Each criterion may thus be viewed as an estimate of
the threshold concentration below which detrimental effects are expected.

Criteria for coldwater fish are intended to apply to waters containing a
population of one or more species in the family Salmonidae (Bailey et al.,
1970) or to waters containing other coldwater or coolwater fish deemed by the
user to be closer to salmonids in sensitivity than to most warmwater species.
Although the acute lethal limit for salmonids is at or below 3 mg/l, the
coldwater minimum has been established at 4 mg/l because a significant
proportion of the insect species common to salmonid habitats are less tolerant
of acute exposures to low dissolved oxygen than are salmonids. Some coolwater
species may require more protection than that afforded by the other life stage
criteria for warmwater fish and it may be desirable to protect sensitive
coolwater species with the coldwater criteria. Many states have more
stringent dissolved oxygen standards for cooler waters, waters that contain
either salmonids, nonsalmonid coolwater fish, or the sensitive centrarchid,
the smallmouth bass. The warmwater criteria are necessary to protect early
life stages of warmwater fish as sensitive as channel catfish and to protect
other life stages of fish as sensitive as largemouth bass. Criteria for early
life stages are intended to apply only where and when these stages occur.
These criteria represent dissolved oxygen concentrations which EPA believes
provide a reasonable and adequate degree of protection for freshwater aquatic
life.

The criteria do not represent assured no-effect levels. However, because
the criteria represent worst case conditions (i.e., for wasteload allocation
and waste treatment plan design), conditions will be better than the criteria
Table 8. Water quality criteria for ambient dissolved oxygen concentration.

<table>
<thead>
<tr>
<th></th>
<th>Coldwater Criteria</th>
<th>Warmwater Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Early Life Stages(^1,(^2))</td>
<td>Other Life Stages</td>
</tr>
<tr>
<td>30 Day Mean</td>
<td>NA(^3)</td>
<td>6.5</td>
</tr>
<tr>
<td>7 Day Mean</td>
<td>9.5 (6.5)</td>
<td>NA</td>
</tr>
<tr>
<td>7 Day Mean Minimum</td>
<td>NA</td>
<td>5.0</td>
</tr>
<tr>
<td>1 Day Minimum(^4,(^5))</td>
<td>8.0 (5.0)</td>
<td>4.0</td>
</tr>
</tbody>
</table>

1 These are water column concentrations recommended to achieve the required intergravel dissolved oxygen concentrations shown in parentheses. The 3 mg/l differential is discussed in the criteria document. For species that have early life stages exposed directly to the water column, the figures in parentheses apply.

2 Includes all embryonic and larval stages and all juvenile forms to 30-days following hatching.

3 NA (not applicable).

4 For highly manipulatable discharges, further restrictions apply (see page 37).

5 All minima should be considered as instantaneous concentrations to be achieved at all times.

nearly all the time at most sites. In situations where criteria conditions are just maintained for considerable periods, the criteria represent some risk of production impairment. This impairment would probably be slight, but would depend on innumerable other factors. If slight production impairment or a small but undefinable risk of moderate production impairment is unacceptable, then continuous exposure conditions should use the no production impairment values as means and the slight production impairment values as minima.

The criteria represent annual worst case dissolved oxygen concentrations believed to protect the more sensitive populations of organisms against potentially damaging production impairment. The dissolved oxygen concentrations in the criteria are intended to be protective at typically high seasonal environmental temperatures for the appropriate taxonomic and life stage classifications, temperatures which are often higher than those used in the research from which the criteria were generated, especially for other than early life stages.
Where natural conditions alone create dissolved oxygen concentrations less than 110 percent of the applicable criteria means or minima or both, the minimum acceptable concentration is 90 percent of the natural concentration. These values are similar to those presented graphically by Doudoroff and Shumway (1970) and those calculated from Water Quality Criteria 1972 (NAS/NAE, 1973). Absolutely no anthropogenic dissolved oxygen depression in the potentially lethal area below the 1-day minima should be allowed unless special care is taken to ascertain the tolerance of resident species to low dissolved oxygen.

If daily cycles of dissolved oxygen are essentially sinusoidal, a reasonable daily average is calculated from the day's high and low dissolved oxygen values. A time-weighted average may be required if the dissolved oxygen cycles are decidedly non-sinusoidal. Determining the magnitude of daily dissolved oxygen cycles requires at least two appropriately timed measurements daily, and characterizing the shape of the cycle requires several more appropriately spaced measurements.

Once a series of daily mean dissolved oxygen concentrations are calculated, an average of these daily means can be calculated (Table 9). For embryonic, larval, and early life stages, the averaging period should not exceed 7 days. This short time is needed to adequately protect these often

Table 9. Sample calculations for determining daily means and 7-day mean dissolved oxygen concentrations (30-day averages are calculated in a similar fashion using 30 days data).

<table>
<thead>
<tr>
<th>Day</th>
<th>Daily Max.</th>
<th>Daily Min.</th>
<th>Daily Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.0</td>
<td>7.0</td>
<td>8.0</td>
</tr>
<tr>
<td>2</td>
<td>10.0</td>
<td>7.0</td>
<td>8.5</td>
</tr>
<tr>
<td>3</td>
<td>11.0</td>
<td>8.0</td>
<td>9.5</td>
</tr>
<tr>
<td>4</td>
<td>12.0(^a)</td>
<td>8.0</td>
<td>9.5(^b)</td>
</tr>
<tr>
<td>5</td>
<td>10.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td>6</td>
<td>11.0</td>
<td>9.0</td>
<td>10.0</td>
</tr>
<tr>
<td>7</td>
<td>12.0(^a)</td>
<td>10.0</td>
<td>10.5(^c)</td>
</tr>
<tr>
<td>Σ</td>
<td>57.0</td>
<td>65.0</td>
<td></td>
</tr>
<tr>
<td>1-day Minimum</td>
<td>7.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-day Mean Minimum</td>
<td>8.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-day Mean</td>
<td>9.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Above air saturation concentration (assumed to be 11.0 mg/l for this example).
\(^b\) \((11.0 + 8.0) \div 2.\)
\(^c\) \((11.0 + 10.0) \div 2.\)
short duration, most sensitive life stages. Other life stages can probably be adequately protected by 30-day averages. Regardless of the averaging period, the average should be considered a moving average rather than a calendar-week or calendar-month average.

The criteria have been established on the basis that the maximum dissolved oxygen value actually used in calculating any daily mean should not exceed the air saturation value. This consideration is based primarily on analysis of studies of cycling dissolved oxygen and the growth of largemouth bass (Stewart et al., 1967), which indicated that high dissolved oxygen levels (> 6 mg/l) had no beneficial effect on growth.

During periodic cycles of dissolved oxygen concentrations, minima lower than acceptable constant exposure levels are tolerable so long as:

1. the average concentration attained meets or exceeds the criterion;
2. the average dissolved oxygen concentration is calculated as recommended in Table 9; and
3. the minima are not unduly stressful and clearly are not lethal.

A daily minimum has been included to make certain that no acute mortality of sensitive species occurs as a result of lack of oxygen. Because repeated exposure to dissolved oxygen concentrations at or near the acute lethal threshold will be stressful and because stress can indirectly produce mortality or other adverse effects (e.g., through disease), the criteria are designed to prevent significant episodes of continuous or regularly recurring exposures to dissolved oxygen concentrations at or near the lethal threshold. This protection has been achieved by setting the daily minimum for early life stages at the subacute lethality threshold, by the use of a 7-day averaging period for early life stages, by stipulating a 7-day mean minimum value for other life stages, and by recommending additional limits for manipulatable discharges.

The previous EPA criterion for dissolved oxygen published in Quality Criteria for Water (USEPA, 1976) was a minimum of 5 mg/l-(usually applied as a 7O10) which is similar to the current criterion minimum except for other life stages of warmwater fish which now allows a 7-day mean minimum of 4 mg/l. The new criteria are similar to those contained in the 1968 "Green Book" of the Federal Water Pollution Control Federation (FWPCA, 1968).

A. The Criteria and Monitoring and Design Conditions

The acceptable mean concentrations should be attained most of the time, but some deviation below these values would probably not cause significant harm. Deviations below the mean will probably be serially correlated and hence apt to occur on consecutive days. The significance of deviations below the mean will depend on whether they occur continuously or in daily cycles, the former being more adverse than the latter. Current knowledge regarding such deviations is limited primarily to laboratory growth experiments and by extrapolation to other activity-related phenomena.
Under conditions where large daily cycles of dissolved oxygen occur, it is possible to meet the criteria mean values and consistently violate the mean minimum criteria. Under these conditions the mean minimum criteria will clearly be the limiting regulation unless alternatives such as nutrient control can dampen the daily cycles.

The significance of conditions which fail to meet the recommended dissolved oxygen criteria depend largely upon five factors: (1) the duration of the event; (2) the magnitude of the dissolved oxygen depression; (3) the frequency of recurrence; (4) the proportional area of the site failing to meet the criteria; and (5) the biological significance of the site where the event occurs. Evaluation of an event's significance must be largely case- and site-specific. Common sense would dictate that the magnitude of the depression would be the single most important factor in general, especially if the acute value is violated. A logical extension of these considerations is that the event must be considered in the context of the level of resolution of the monitoring or modeling effort. Evaluating the extent, duration, and magnitude of an event must be a function of the spatial and temporal frequency of the data. Thus, a single deviation below the criterion takes on considerably less significance where continuous monitoring occurs than where sampling is comprised of once-a-week grab samples. This is so because based on continuous monitoring the event is provably small, but with the much less frequent sampling the event is not provably small and can be considerably worse than indicated by the sample.

The frequency of recurrence is of considerable interest to those modeling dissolved oxygen concentrations because the return period, or period between recurrences, is a primary modeling consideration contingent upon probabilities of receiving water volumes, waste loads, temperatures, etc. It should be apparent that return period cannot be isolated from the other four factors discussed above. Ultimately, the question of return period may be decided on a site-specific basis taking into account the other factors (duration, magnitude, areal extent, and biological significance) mentioned above. Future studies of temporal patterns of dissolved oxygen concentrations, both within and between years, must be conducted to provide a better basis for selection of the appropriate return period.

In conducting waste load allocation and treatment plant design computations, the choice of temperature in the models will be important. Probably the best option would be to use temperatures consistent with those expected in the receiving water over the critical dissolved oxygen period for the biota.

B. The Criteria and Manipulatable Discharges

If daily minimum dissolved oxygen concentrations are perfectly serially correlated, i.e., if the annual lowest daily minimum dissolved oxygen concentration is adjacent in time to the next lower daily minimum dissolved oxygen concentration and one of these two minima is adjacent to the third lowest daily minimum dissolved oxygen concentration, etc., then in order to meet the 7-day mean minimum criterion it is unlikely that there will be more than three or four consecutive daily minimum values below the acceptable 7-day mean minimum. Unless the dissolved oxygen pattern is extremely erratic, it is also unlikely that the lowest dissolved oxygen concentration will be appreciably
below the acceptable 7-day mean minimum or that daily minimum values below the 7-day mean minimum will occur in more than one or two weeks each year. For some discharges, the distribution of dissolved oxygen concentrations can be manipulated to varying degrees. Applying the daily minimum to manipulatable discharges would allow repeated weekly cycles of minimum acutely acceptable dissolved oxygen values, a condition of probable stress and possible adverse biological effect. If risk of protection impairment is to be minimized, the application of the one day minimum criterion to manipulatable discharges should either limit the frequency of occurrence of values below the acceptable 7-day mean minimum or impose further limits on the extent of excursions below the 7-day mean minimum. For such controlled discharges, it is recommended that the occurrence of daily minima below the acceptable 7-day mean minimum be limited to 3 weeks per year or that the acceptable one-day minimum be increased to 4.5 mg/l for coldwater fish and 3.5 mg/l for warmwater fish. Such decisions could be site-specific based upon the extent of control, serial correlation, and the resource at risk.
VIII. REFERENCES

Koski, K. V. 1965. The survival of coho salmon (Oncorhynchus kisutch) from egg deposition to emergency in three Oregon coastal streams. M.S. Thesis, Oregon State University, Corvallis. 81 p.

