

April 1, 2019

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

Dewatering GP Processing
Industrial Permit Unit (OEP 06- 4)
5 Post Office Square – Suite 100
Boston, MA 02109-3912

US Environmental Protection Agency

**Reference:** Notice of Intent (NOI) - Dewatering General Permit (DGP)

233 Hancock Street

Dorchester, Massachusetts

Dear Sir/Madam:

On behalf of Haycon, Inc (Haycon), Lockwood Remediation Technologies, LLC (LRT) has prepared this Notice of Intent (NOI) requesting a determination of coverage under the United States Environmental Protection Agency's (EPA's) Dewatering General Permit (DGP), pursuant EPA's National Pollutant Discharge Elimination System (NPDES) program. This NOI was prepared in accordance with the general requirements of the NPDES and related guidance documentation provided by EPA. The completed NOI Form is provided in **Appendix A**.

#### **Site Information**

This NOI has been prepared for the management of water that will be generated during dewatering activities associated with the construction of a new five-story mixed use building located at 233 Hancock Street Dorchester, Massachusetts (the Site). The Site is not listed as a disposal site with the Massachusetts Department of Environmental Protection (MassDEP). A Site Locus is provided as **Figure 1** and a Site Plan is provided as **Figure 2**.

#### **Work Summary**

The project includes the construction of a new five story building. To complete portions of the footing and foundation excavations in the dry, dewatering is required to lower the groundwater table as the work is being performed. To do this, a series of sumps within the work area will be utilized, and the water generated during dewatering (source water) will be pumped to a water treatment system prior to discharge to a Storm drain which drains to Dorchester Bay. To characterize groundwater from the proposed excavation area, LRT collected representative groundwater samples from one onsite test pit (Sample 1) on March 26, 2019.

#### **Discharge and Receiving Surface Water Information**

A summary of the laboratory analytical results is provided in **Table 1**. The laboratory analytical summary tables and the laboratory analytical reports area included in **Appendix B**. The laboratory results for the source water sample summarize that all analyzed constituent concentrations are below the respective NPDES Effluent Limitations. Details of the water treatment system are provided below.

#### **Water Treatment System**

Source water will be pumped to a treatment system with a design flow of up to 100 gallons per minute (gpm); the average effluent flow of the system is estimated to be 50 gpm, and the maximum flow will not exceed 100 gpm. Source water will enter one 10,000-gallon weir tank at head of the system. From the weir tank, the water will be pumped to a dual bag filter skid (with two single bag filters). Discharge from the bag filters will pass through a flow/totalizer meter prior to direct discharge into a strom drain as depicted on **Figure 2**. A water treatment system schematic is provided as **Figure 3**.

#### **Consultation with Federal Services**

LRT reviewed online electronic data viewers and databases from the Massachusetts Geographical Information System (MassGIS), the Massachusetts Division of Fisheries and Wildlife (MassWildlife; Natural Heritage and Endangered Species Program), and the U.S. National Parks Service Natural Historic Places (NPS). Based on this review, the Site and the point where the proposed discharge reaches the receiving surface water body are not located within an Area of Critical Environmental Concern (ACEC) and is not listed as a National Historic Place. Documentation is included in **Appendix D**.

#### **Coverage under NPDES DGP**

It is our opinion that the proposed discharge is eligible for coverage under the NPDES DGP. On behalf of Haycon, LRT is requesting coverage under the NPDES DGP for the discharge of treated water to a Strom drain which drains to Dorchester Bay in support of construction dewatering activities that are to take place at 233 Hancock Street, MA.

The enclosed NOI form provides required information on the general site conditions, discharge, treatment system, receiving water, and consultation with federal services. For this project, LRT is considered the Operator and has operational control over the construction plans and specifications, including the ability to make modifications to those plans and specifications.

Please feel free to contact us at 774-450-7177 if you have any questions or if you require additional information.

Sincerely,

Lockwood Remediation Technologies, LLC

# Jacob Jennings

Paul Lockwood

Jacob Jennings Estimator Paul Lockwood President

Encl: Figure 1 - Locus Plan

Figure 2 - Site Plan

Figure 3 - Water Treatment System Schematic

Appendix A - NOI Form Appendix B - Laboratory Data

Appendix C - Water Treatment System Appendix D - Supplemental Information

cc: Mark Pappas, Haycon – via email

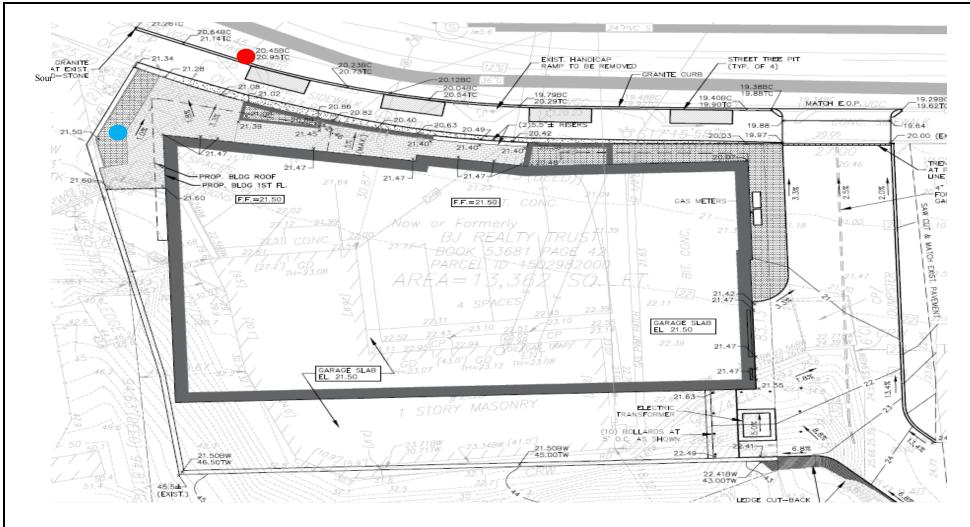
Francis M. McLaughlin, Boston Water and Sewer Commission – via email





 $Source: MassGIS, Oliver\ Mapping\ Tool$ 

#### **Notes**


1. Figure is not to scale.





89 Crawford Street Leominster, Massachusetts 01453 Tel: 774.450.7177

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net Figure 1 – Locus Plan 233 Hancock Street Dorchester, Massachusetts

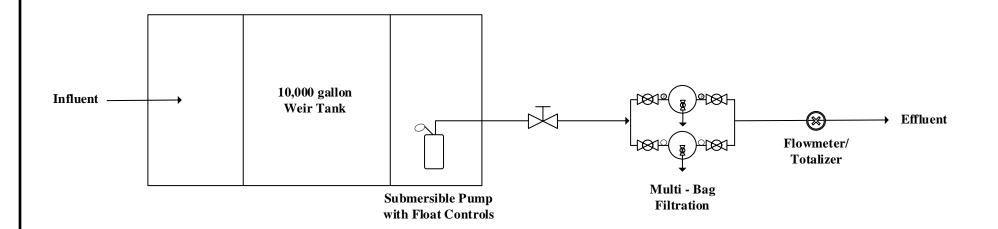


Source: 233 Hancock st. Drawing set

#### **Notes**

1. Figure is not to scale

#### **Key**


Discharge location

Water Treatment System location



89 Crawford Street Leominster, Massachusetts 01453 Tel: 774.450.7177

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net Figure 2 – Site plan 233 Hancock Street Dorchester, Massachusetts



Notes:

1.) Figure is not to scale

2.) System rated for 100 GPM

3.) Sampling ports located on all treatment system components

Key:

Piping/Hose ———



Lockwood Remediation Technologies, LLC Leominster, Massachusetts 01453 Office: 774-450-7177

DESIGNED BY: LRT DRAWN BY: B. Watkins

CHECKED BY: KG DATE:

**Water Treatment System Schematic** 

Figure 3

233 Hancock Street Dorchester, Massachusetts PROJECT No. 2-1826

2-1826 FICTIBE No. Appendix A

**NOI** Form

#### II. Suggested Notice of Intent (NOI) Format

| 1. General facility information. Please provide the following information.                                                                                                                                                                                                                                         | tion about the facility.                    |                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------|
| a) Name of facility:                                                                                                                                                                                                                                                                                               | Mailing Address for the Facility            | y:                  |
| 233 Hancock Street                                                                                                                                                                                                                                                                                                 | 233 Hancock Street, Doi                     | rchester MA         |
| b) Location Address of the Facility (if different from mailing address):                                                                                                                                                                                                                                           | Facility Location                           | Type of Business:   |
|                                                                                                                                                                                                                                                                                                                    | longitude:71.060267<br>latitude: _42.309421 | Facility SIC codes: |
| c) Name of facility owner: 233 Hancock LLC                                                                                                                                                                                                                                                                         | Owner's email: dmoll@a                      | ırxurban.com        |
| Owner's Tel #: (617) 957-3444                                                                                                                                                                                                                                                                                      | Owner's Fax #:                              |                     |
| Address of owner (if different from facility address) 25 Fayette Stree                                                                                                                                                                                                                                             | et, Unit 1 Boston, MA                       |                     |
| Owner is (check one): 1. Federal 2. State 3. Private   Legal name of Operator, if not owner: Mark Angelo Pappas  Operator Contact Name: Mark Pappas                                                                                                                                                                |                                             |                     |
|                                                                                                                                                                                                                                                                                                                    | ımber:                                      |                     |
| Operator's email: mpappas@haycon-inc.com                                                                                                                                                                                                                                                                           |                                             |                     |
| Operator Address (if different from owner)                                                                                                                                                                                                                                                                         |                                             |                     |
| 35 Batchelder Street Boston, MA 0                                                                                                                                                                                                                                                                                  | 2119                                        |                     |
| d) Attach a topographic map indicating the location of the facility and                                                                                                                                                                                                                                            | the outfall(s) to the receiving war         | ter. Map attached?  |
| e) Check Yes or No for the following:  1. Has a prior NPDES permit been granted for the discharge? Yes  2. Is the discharge a "new discharger" as defined by 40 CFR Section  3. Is the facility covered by an individual NPDES permit? Yes  4. Is there a pending application on file with EPA for this discharge? | 1 122.2? Yes ✓ No No If Yes, Permit Num     | nber                |

| 2. Discl | narge information. Please provide information about the discharge, (attaching additional sheets as needed)                                                                                                                                                                                                                                                                                                        |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a)       | Name of receiving water into which discharge will occur: Dorchester Bay                                                                                                                                                                                                                                                                                                                                           |
|          | te Water Quality Classification: SB Freshwater: Marine Water: Yes                                                                                                                                                                                                                                                                                                                                                 |
|          | Describe the discharge activities for which the owner/applicant is seeking coverage:  1. Construction dewatering of groundwater intrusion and/or storm water accumulation.  2. Short-term or long-term dewatering of foundation sumps.  3. Other.                                                                                                                                                                 |
| c)       | Number of outfalls _1                                                                                                                                                                                                                                                                                                                                                                                             |
| For      | each outfall:                                                                                                                                                                                                                                                                                                                                                                                                     |
| d)       | Estimate the maximum daily and average monthly flow of the discharge (in gallons per day – GPD). Max Daily Flow 144000 GPD Average Monthly Flow 72000 GPD                                                                                                                                                                                                                                                         |
| e.)      | What is the maximum and minimum monthly pH of the discharge (in s.u.)? Max pH <u>8.5</u> Min pH <u>6.5</u>                                                                                                                                                                                                                                                                                                        |
| f.)      | Identify the source of the discharge (i.e. potable water, surface water, or groundwater). If groundwater, the facility shall submit effluent test results, as required in Section 4.4.5 of the General Permit.                                                                                                                                                                                                    |
| g.)      | What treatment does the wastewater receive prior to discharge?                                                                                                                                                                                                                                                                                                                                                    |
| h.)      | Is the discharge continuous? Yes No If no, is the discharge periodic (P) (occurs regularly, i.e., monthly or seasonally, but is not continuous all year) or intermittent (I) (occurs sometimes but not regularly) or both (B) If (P), number of days or months per year of the discharge and the specific months of discharge April 2019 through July 2019 ;  If (I), number of days/year there is a discharge Mo |
|          | If yes, approximate start date of dewatering 4/15/2019 approximate end date of dewatering 7/15/2019                                                                                                                                                                                                                                                                                                               |
| i.)      | Latitude and longitude of each discharge within 100 feet (See <a href="http://www.epa.gov/tri/report/siting_tool">http://www.epa.gov/tri/report/siting_tool</a> ): Outfall 1: long. 42.306026 lat71.053376; Outfall 2: long lat                                                                                                                                                                                   |
| j.)      | If the source of the discharge is potable water, please provide the reported or calculated seven day-ten year low flow (7Q10) of the receiving water and attach any calculation sheets used to support stream flow and dilution calculations cfs (See Appendix VII for equations and additional information)                                                                                                      |

| MASSACHUSEITS FACILITIES: See Section 3.4 and Appendix 1 of the General Permit for more information on Areas of Critical Environmental Concern (ACEC):                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                         |
| k.) Does the discharge occur in an ACEC? Yes No                                                                                                                                                                                                                                                                                                                                         |
| If yes, provide the name of the ACEC:                                                                                                                                                                                                                                                                                                                                                   |
| 3. Contaminant Information                                                                                                                                                                                                                                                                                                                                                              |
| a) Are any pH neutralization and/or dechlorination chemicals used in the discharge? If so, include the chemical name and manufacturer; maximum and average daily quantity used as well as the maximum and average daily expected concentrations (mg/l) in the discharge, and the vendor's reported aquatic toxicity (NOAEL and/or LC <sub>50</sub> in percent for aquatic organism(s)). |
| b) Please report any known remediation activities or water-quality issues in the vicinity of the discharge.                                                                                                                                                                                                                                                                             |
| 4. Determination of Endangered Species Act Eligibility: Provide documentation of ESA eligibility as required at Part 3.4 and Appendix IV. In addition, respond to the following questions.                                                                                                                                                                                              |
| a) Which of the three eligibility criteria listed in Appendix IV, Criterion (A, B, or C) have you met? A                                                                                                                                                                                                                                                                                |
| b) Please attach documentation with your NOI supporting your response. Please see Appendix IV for acceptable documentation                                                                                                                                                                                                                                                              |
| 5. Documentation of National Historic Preservation Act requirements: Please respond to the following questions:                                                                                                                                                                                                                                                                         |
| a) See Screening Process in Appendix III and respond to questions regarding your site and any historic properties listed or eligible for listing on the National Register of Historic Places. Question 1: Yes No / ; Question 2: No / Yes                                                                                                                                               |
| b) Have any State or Tribal historic preservation officers been consulted in this determination? Yes or No 🗸 If yes, attach the results of the consultation(s).                                                                                                                                                                                                                         |
| c) Which of the three National Historic Preservation Act eligibility criterion listed in Appendix III, Criterion (A, B, or C) have you met?                                                                                                                                                                                                                                             |
| d) Is the project located on property of religious or cultural significance to an Indian Tribe? Yes or No 🗸 If yes, provide that name of the Indian Tribe associated with the property                                                                                                                                                                                                  |
| 6. Supplemental Information: Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit                                                                                                                                                                                        |
| 7. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22 (s ee below) including the following certification:                                                                                                                                                                               |
| Page 8 of 9                                                                                                                                                                                                                                                                                                                                                                             |

I certify under penalty of law that (1) no biocides or other chemical additives except for those used for pH adjustment and/or dechlorination are used in the dewatering system; (2) the discharge consists solely of dewatering and authorized pH adjustment and/or dechlorination chemicals; (3) the discharge does not come in contact with any raw materials, intermediate product, water product or finished product; (4) if the discharge of dewatering subsequently mixes with other permitted wastewater (i.e. stormwater) prior to discharging to the receiving water, any monitoring provided under this permit will be only for dewatering discharge; (5) where applicable, the facility has complied with the requirements of this permit specific to the Endangered Species Act and National Historic Preservation Act; and (6) this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted.

Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facility Name: 233 Hancock Street

Operator signature: Mah M

Print Full Name and Title: Mark Pappas, Project Manager

Date: 03/27/2019

Federal regulations require this application to be signed as follows:

- 1. For a corporation, by a principal executive officer of at least the level of vice president;
- 2. For partnership or sole proprietorship, by a general partner or the proprietor, respectively, or,
- 3. For a municipality, State, Federal or other public facility, by either a principal executive officer or ranking elected official.

Appendix B

Laboratory Data

#### TABLE 1

#### Precharacterization Data Summary Table 233 Hancock Street Dorchester, Massachusetts

|                                     | Sample Date        | 3/26/2019 |
|-------------------------------------|--------------------|-----------|
|                                     | Discharge Standard |           |
| Analysis                            | Sample ID          | Sample 1  |
| рН                                  | 6.5-8.3            | 6.8       |
|                                     |                    |           |
| Total Suspended Solids (TSS) (mg/l) | 30                 | <2        |
|                                     |                    |           |
| Hardness (mg/l)                     | Monitor Only       | 182       |
|                                     |                    |           |
| Chloride (mg/l)                     | Monitor Only       | 785       |
|                                     |                    |           |
| Total Metals                        |                    |           |
| Arsenic                             | 104                | <10       |
| Cadmium                             | 10.2               | <5        |
| Chromium                            | 74                 | <10       |
| Copper                              | 9.0                | 9.0       |
| Iron                                | 1,000              | 60        |
| Mercury                             | 0.739              | < 0.2     |
| Nickel                              | 52                 | <5        |
| Lead                                | 160                | <5        |
| Antimony                            | 206                | <5        |
| Silver                              | 3.2                | <1        |
| Zine                                | 120                | 22        |
| Hexavalent Chromium                 | 11                 | <10       |

#### Note:

Discharge Standards are NPDES 2017 RGP Standards All data reported as ug/L unless otherwise specified.

-- = Not Analyzed



#### REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 9C26047 Client Project: 2-1826 - 233 Hancock St, Dorchester, MA

Report Date: 01-April-2019

Prepared for:

Kim Gravelle Lockwood Remediation Technologies LLC 89 Crawford St Leominster, MA 01432

> Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

#### Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 03/26/19. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 9C26047. Custody records are included in this report.

| Lab ID     | Sample   | Matrix | Date Sampled | Date Received |
|------------|----------|--------|--------------|---------------|
| 9C26047-01 | Sample 1 | Water  | 03/26/2019   | 03/26/2019    |

#### Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

#### Sample 1 (Lab Number: 9C26047-01)

| <u>Analysis</u>        | <u>Method</u> |
|------------------------|---------------|
| Antimony               | EPA 6010C     |
| Arsenic                | EPA 6010C     |
| Cadmium                | EPA 6010C     |
| Calcium                | SM3120-B      |
| Chloride               | SM4500CI-B    |
| Copper                 | EPA 6010C     |
| Hexavalent Chromium    | SM3500-Cr-B   |
| Iron                   | EPA 6010C     |
| Lead                   | EPA 6010C     |
| Magnesium              | SM3120-B      |
| Mercury                | EPA 7470A     |
| Nickel                 | EPA 6010C     |
| Silver                 | EPA 6010C     |
| Total Suspended Solids | SM2540-D      |
| Zinc                   | EPA 6010C     |

#### **Method References**

Methods for the Determination of Metals in Environmental Samples EPA-600/R-94/111, USEPA, 1994 Standard Methods for the Examination of Water and Wastewater, 20th Edition, APHA/ AWWA-WPCF, 1998

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

#### **Case Narrative**

#### Sample Receipt

The samples were all appropriately cooled and preserved upon receipt. The samples were received in the appropriate containers. The chain of custody was adequately completed and corresponded to the samples submitted.

#### Metals

All analyses were performed according to NETLAB's documented Standard Operating Procedures, within all required holding times, and with appropriate quality control measures. All QC was within laboratory established acceptance criteria. The samples were received, processed, and reported with no anomalies.

#### **Wet Chemistry**

All samples were analyzed within method specified holding times and according to NETLAB's documented standard operating procedures.

#### **Results: General Chemistry**

Sample: Sample 1

Lab Number: 9C26047-01 (Water)

|                        |        |      | Reporting |       |                |                |
|------------------------|--------|------|-----------|-------|----------------|----------------|
| Analyte                | Result | Qual | Limit     | Units | Date Prepared  | Date Analyzed  |
| Chloride               | 785    |      | 50        | mg/L  | 03/27/19       | 03/27/19       |
| Hexavalent chromium    | ND     |      | 0.01      | mg/L  | 03/26/19 16:00 | 03/26/19 16:00 |
| Total Suspended Solids | ND     |      | 2         | ma/L  | 03/27/19       | 03/27/19       |

#### **Results: Total Metals**

Sample: Sample 1

Lab Number: 9C26047-01 (Water)

|                |        |      | Reporting |       |               |               |
|----------------|--------|------|-----------|-------|---------------|---------------|
| Analyte        | Result | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Total Hardness | 182    |      | 0.125     | mg/L  | 03/27/19      | 03/28/19      |
| Antimony       | ND     |      | 0.005     | mg/L  | 03/27/19      | 03/28/19      |
| Arsenic        | ND     |      | 0.01      | mg/L  | 03/27/19      | 03/28/19      |
| Cadmium        | ND     |      | 0.005     | mg/L  | 03/27/19      | 03/28/19      |
| Calcium        | 60.1   |      | 0.05      | mg/L  | 03/27/19      | 03/28/19      |
| Copper         | 0.009  |      | 0.005     | mg/L  | 03/29/19      | 03/29/19      |
| Iron           | 0.06   |      | 0.05      | mg/L  | 03/27/19      | 03/28/19      |
| Lead           | ND     |      | 0.005     | mg/L  | 03/27/19      | 03/28/19      |
| Magnesium      | 7.77   |      | 0.05      | mg/L  | 03/27/19      | 03/28/19      |
| Mercury        | ND     |      | 0.0002    | mg/L  | 03/28/19      | 03/28/19      |
| Nickel         | ND     |      | 0.005     | mg/L  | 03/27/19      | 03/28/19      |
| Silver         | ND     |      | 0.001     | mg/L  | 03/29/19      | 03/29/19      |
| Zinc           | 0.022  |      | 0.020     | mg/L  | 03/27/19      | 03/28/19      |

#### **Quality Control**

#### **General Chemistry**

|                               |        |           | Reporting |       | Spike      | Source        |         | %REC   |       | RPD  |
|-------------------------------|--------|-----------|-----------|-------|------------|---------------|---------|--------|-------|------|
| Analyte                       | Result | Qual      | Limit     | Units | Level      | Result        | %REC    | Limits | RPD   | Limi |
| Batch: B9C0966 - Chloride     |        |           |           |       |            |               |         |        |       |      |
| Blank (B9C0966-BLK1)          |        |           |           |       | Prepared 8 | & Analyzed: 0 | 3/27/19 |        |       |      |
| Chloride                      | ND     |           | 1         | mg/L  |            |               |         |        |       |      |
| LCS (B9C0966-BS1)             |        |           |           |       | Prepared 8 | & Analyzed: 0 | 3/27/19 |        |       |      |
| Chloride                      | 62     |           | 1         | mg/L  | 60.6       |               | 103     | 90-110 |       |      |
| Duplicate (B9C0966-DUP1)      | S      | Source: 9 | C25025-03 |       | Prepared 8 | & Analyzed: 0 | 3/27/19 |        |       |      |
| Chloride                      | 31     |           | 1         | mg/L  |            | 31            |         |        | 0.00  | 20   |
| Matrix Spike (B9C0966-MS1)    | S      | Source: 9 | C25025-03 |       | Prepared 8 | & Analyzed: 0 | 3/27/19 |        |       |      |
| Chloride                      | 96     |           | 2         | mg/L  | 60.6       | 31            | 108     | 80-120 |       |      |
| Batch: B9C0971 - TSS          |        |           |           |       |            |               |         |        |       |      |
| Blank (B9C0971-133            |        |           |           |       | Prepared 8 | & Analyzed: 0 | 3/27/19 |        |       |      |
| Total Suspended Solids        | ND     |           | 2         | mg/L  | ·          |               |         |        |       |      |
| LCS (B9C0971-BS1)             |        |           |           |       | Prepared 8 | & Analyzed: 0 | 3/27/19 |        |       |      |
| Total Suspended Solids        | 1010   |           | 10        | mg/L  | 1000       |               | 101     | 90-110 |       |      |
| Duplicate (B9C0971-DUP1)      | S      | Source: 9 | C21033-03 |       | Prepared 8 | & Analyzed: 0 | 3/27/19 |        |       |      |
| Total Suspended Solids        | 50     |           | 2         | mg/L  |            | 51            |         |        | 0.985 | 20   |
|                               |        |           |           |       |            |               |         |        |       |      |
| Batch: B9C0989 - Hexavalent C | hrome  |           |           |       |            |               |         |        |       |      |
| Blank (B9C0989-BLK1)          |        |           |           |       | Prepared 8 | & Analyzed: 0 | 3/26/19 |        |       |      |
| Hexavalent chromium           | ND     |           | 0.01      | mg/L  |            |               |         |        |       |      |

|                                |            |           | -                  | Control |                |                  |         |                |     |              |
|--------------------------------|------------|-----------|--------------------|---------|----------------|------------------|---------|----------------|-----|--------------|
| General Chemistry (Continued)  |            |           |                    |         |                |                  |         |                |     |              |
| Analyte                        | Result     | Qual      | Reporting<br>Limit | Units   | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit |
| Batch: B9C0989 - Hexavalent Cl | hrome (Con | tinued    | )                  |         |                |                  |         |                |     |              |
| Blank (B9C0989-BLK2)           |            |           |                    |         | Prepared 8     | & Analyzed: 0    | 3/26/19 |                |     |              |
| Hexavalent chromium            | ND         |           | 0.01               | mg/L    |                |                  |         |                |     |              |
| LCS (B9C0989-BS1)              |            |           |                    |         | Prepared 8     | & Analyzed: 0    | 3/26/19 |                |     |              |
| Hexavalent chromium            | 0.55       |           | 0.01               | mg/L    | 0.500          |                  | 109     | 90-110         |     |              |
| LCS (B9C0989-BS2)              |            |           |                    |         | Prepared 8     | & Analyzed: 0    | 3/26/19 |                |     |              |
| Hexavalent chromium            | 0.09       |           | 0.01               | mg/L    | 0.100          | ·                | 91.0    | 90-110         |     |              |
| LCS (B9C0989-BS3)              |            |           |                    |         | Prepared 8     | & Analyzed: 0    | 3/26/19 |                |     |              |
| Hexavalent chromium            | 0.53       |           | 0.01               | mg/L    | 0.500          | ,                | 106     | 90-110         |     |              |
| Duplicate (B9C0989-DUP1)       | 9          | Source: 9 | C26047-01          |         | Prepared 8     | & Analyzed: 0    | 3/26/19 | ·              |     |              |
| Hexavalent chromium            | ND         |           | 0.01               | mg/L    |                | ND               |         |                |     | 20           |
| Matrix Spike (B9C0989-MS1)     |            | Source: 9 | C26047-01          |         | Prepared 8     | & Analyzed: 0    | 3/26/19 |                |     |              |
| Hexavalent chromium            | 0.45       |           | 0.01               | mg/L    | 0.500          | ND               | 90.4    | 80-120         |     |              |

| Result   Result   Reporting   Result   Reporting   Limit   Units   Result   Result |           |        |             |              |               |       | Quality<br>(Conti |        |                |                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|-------------|--------------|---------------|-------|-------------------|--------|----------------|-------------------------------|
| Result   Qual   Limit   Units   Level   Result   %REC   Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |        |             |              |               |       |                   |        |                | Total Metals                  |
| Prepared: 03/27/19   Analyzed: 03/28/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RPD       | %REC   |             | Source       | Spike         |       | Reporting         |        |                |                               |
| Prepared: 03/27/19   Analyzed: 03/28/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RPD Limit | Limits | %REC        | Result       | Level         | Units | Limit             | Qual   | Result         | Analyte                       |
| Prepared: 03/27/19   Analyzed: 03/28/19   Magnesium   ND   0.05   mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |        |             |              |               |       |                   | vaters | id digestion v | Batch: B9C0947 - Hot plate ac |
| Calcium         ND         0.05         mg/L           Zinc         ND         0.020         mg/L           Nickel         ND         0.005         mg/L           Antimony         ND         0.005         mg/L           Lead         ND         0.005         mg/L           Iron         ND         0.05         mg/L           Cadmium         ND         0.005         mg/L           Arsenic         ND         0.01         mg/L           LCS (B9C0947-BS1)         Prepared: 03/27/19 Analyzed: 03/28/19           Calcium         10.1         0.05         mg/L         1.00         101         85-115           Zinc         0.977         0.020         mg/L         1.00         97.7         85-115           Antimony         1.01         0.005         mg/L         1.00         97.7         85-115           Antimony         1.01         0.005         mg/L         1.00         96.0         85-115           Antimony         1.01         0.005         mg/L         1.00         95.7         85-115           Antimony         1.01         0.005         mg/L         1.00         95.7         85-115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |        | d: 03/28/19 | 7/19 Analyze | epared: 03/27 | Pro   |                   |        | -              | -                             |
| Calcium         ND         0.05         mg/L           Zinc         ND         0.020         mg/L           Nickel         ND         0.005         mg/L           Antimony         ND         0.005         mg/L           Lead         ND         0.005         mg/L           Iron         ND         0.05         mg/L           Cadmium         ND         0.005         mg/L           Arsenic         ND         0.01         mg/L           LCS (B9C0947-BS1)         Prepared: 03/27/19 Analyzed: 03/28/19           Calcium         10.1         0.05         mg/L         1.00         101         85-115           Zinc         0.977         0.020         mg/L         1.00         97.7         85-115           Antimony         1.01         0.005         mg/L         1.00         97.7         85-115           Antimony         1.01         0.005         mg/L         1.00         96.0         85-115           Antimony         1.01         0.005         mg/L         1.00         97.7         85-115           Antimony         1.01         0.005         mg/L         1.00         95.7         85-115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |        |             |              |               | mg/L  | 0.05              |        | ND             | Magnesium                     |
| Zinc   ND   0.020   mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |        |             |              |               |       | 0.05              |        | ND             | Calcium                       |
| Nickel   ND   0.005   mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |        |             |              |               | -     | 0.020             |        | ND             | Zinc                          |
| Antimony Lead ND 0.005 mg/L Iron ND 0.005 mg/L Cadmium ND 0.005 mg/L Arsenic ND 0.005 mg/L Arsenic ND 0.005 mg/L  Prepared: 03/27/19 Analyzed: 03/28/19  Calcium 10.1 0.05 mg/L I.00 101 85-115 Zinc 0.977 0.020 mg/L 1.00 97.7 85-115 Antimony 1.01 0.005 mg/L 1.00 97.7 85-115 Nickel 0.960 0.005 mg/L 1.00 96.0 85-112 Lead 0.957 0.005 mg/L 1.00 95.7 85-115 Nickel 0.960 0.005 mg/L 1.00 95.7 85-115 Iron 9.72 0.05 mg/L 1.00 95.7 85-115 Iron 9.78 0.05 mg/L 1.00 97.2 85-115 Iron 9.78 0.05 mg/L 1.00 97.2 85-115 Iron 9.78 0.05 mg/L 1.00 97.2 85-115 Iron 9.78 0.05 mg/L 1.00 97.8 85-115 Iron 9.78 0.05 mg/L 1.00 96.4 85-115 Arsenic 0.20 0.01 mg/L 0.200 98.1 85-115 Cadmium 0.964 0.005 mg/L 1.00 96.4 85-114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |        |             |              |               | -     | 0.005             |        | ND             | Nickel                        |
| Lead         ND         0.005         mg/L           Iron         ND         0.05         mg/L           Cadmium         ND         0.005         mg/L           Arsenic         ND         0.01         mg/L           Prepared: 03/27/19 Analyzed: 03/28/19           Calcium         10.1         0.05         mg/L         10.0         101         85-115           Zinc         0.977         0.020         mg/L         1.00         97.7         85-115           Antimony         1.01         0.005         mg/L         1.00         97.7         85-115           Nickel         0.960         0.005         mg/L         1.00         96.0         85-112           Lead         0.957         0.005         mg/L         1.00         95.7         85-115           Magnesium         9.72         0.05         mg/L         10.0         97.2         85-115           Iron         9.78         0.05         mg/L         10.0         97.8         85-115           Arsenic         0.20         0.01         mg/L         0.200         98.1         85-115           Cadmium         0.964         0.005         mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |        |             |              |               | -     | 0.005             |        | ND             | Antimony                      |
| Iron         ND         0.05         mg/L           Cadmium         ND         0.005         mg/L           Arsenic         ND         0.01         mg/L           Prepared: 03/27/19 Analyzed: 03/28/19           LCS (B9C0947-BS1)           Prepared: 03/27/19 Analyzed: 03/28/19           Calcium         10.1         0.05         mg/L         10.0         101         85-115           Zinc         0.977         0.020         mg/L         1.00         97.7         85-115           Antimony         1.01         0.005         mg/L         1.00         101         85-115           Nickel         0.960         0.005         mg/L         1.00         96.0         85-112           Lead         0.957         0.005         mg/L         1.00         95.7         85-115           Magnesium         9.72         0.05         mg/L         10.0         97.2         85-115           Iron         9.78         0.05         mg/L         10.0         97.8         85-115           Arsenic         0.20         0.01         mg/L         1.00         96.4         85-115           Cadmium         0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |        |             |              |               | -     | 0.005             |        | ND             | Lead                          |
| Cadmium Arsenic         ND N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |        |             |              |               | -     | 0.05              |        | ND             | Iron                          |
| Arsenic         ND         0.01         mg/L           Prepared: 03/27/19 Analyzed: 03/28/19           Calcium         10.1         0.05         mg/L         10.0         101         85-115           Zinc         0.977         0.020         mg/L         1.00         97.7         85-115           Antimony         1.01         0.005         mg/L         1.00         101         85-115           Nickel         0.960         0.005         mg/L         1.00         96.0         85-112           Lead         0.957         0.005         mg/L         1.00         95.7         85-115           Magnesium         9.72         0.05         mg/L         10.0         97.2         85-115           Iron         9.78         0.05         mg/L         10.0         97.8         85-115           Arsenic         0.20         0.01         mg/L         0.200         98.1         85-115           Cadmium         0.964         0.005         mg/L         1.00         96.4         85-114    Prepared & Analyzed: 03/28/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |        |             |              |               | -     | 0.005             |        | ND             | Cadmium                       |
| Calcium         10.1         0.05         mg/L         10.0         101         85-115           Zinc         0.977         0.020         mg/L         1.00         97.7         85-115           Antimony         1.01         0.005         mg/L         1.00         101         85-115           Nickel         0.960         0.005         mg/L         1.00         96.0         85-112           Lead         0.957         0.005         mg/L         1.00         95.7         85-115           Magnesium         9.72         0.05         mg/L         10.0         97.2         85-115           Iron         9.78         0.05         mg/L         10.0         97.8         85-115           Arsenic         0.20         0.01         mg/L         0.200         98.1         85-115           Cadmium         0.964         0.005         mg/L         1.00         96.4         85-114    Blank (B9C1044 - Hot plate acid digestion waters  Blank (B9C1044-BLK1)  Prepared & Analyzed: 03/28/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |        |             |              |               |       | 0.01              |        | ND             | Arsenic                       |
| Zinc         0.977         0.020         mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |        | d: 03/28/19 | 7/19 Analyze | epared: 03/27 | Pro   |                   |        |                | LCS (B9C0947-BS1)             |
| Antimony 1.01 0.005 mg/L 1.00 101 85-115 Nickel 0.960 0.005 mg/L 1.00 96.0 85-112 Lead 0.957 0.005 mg/L 1.00 95.7 85-115 Magnesium 9.72 0.05 mg/L 10.0 97.2 85-115 Iron 9.78 0.05 mg/L 10.0 97.8 85-115 Arsenic 0.20 0.01 mg/L 0.200 98.1 85-115 Cadmium 0.964 0.005 mg/L 1.00 96.4 85-114   Batch: B9C1044 - Hot plate acid digestion waters Blank (B9C1044-BLK1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | 85-115 | 101         |              | 10.0          | mg/L  | 0.05              |        | 10.1           | Calcium                       |
| Nickel         0.960         0.005         mg/L         1.00         96.0         85-112           Lead         0.957         0.005         mg/L         1.00         95.7         85-115           Magnesium         9.72         0.05         mg/L         10.0         97.2         85-115           Iron         9.78         0.05         mg/L         10.0         97.8         85-115           Arsenic         0.20         0.01         mg/L         0.200         98.1         85-115           Cadmium         0.964         0.005         mg/L         1.00         96.4         85-114    Blank (B9C1044 - Hot plate acid digestion waters  Blank (B9C1044-BLK1)  Prepared & Analyzed: 03/28/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | 85-115 | 97.7        |              | 1.00          | mg/L  | 0.020             |        | 0.977          | Zinc                          |
| Lead         0.957         0.005         mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | 85-115 | 101         |              | 1.00          | mg/L  | 0.005             |        | 1.01           | Antimony                      |
| Magnesium         9.72         0.05 mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | 85-112 | 96.0        |              | 1.00          | mg/L  | 0.005             |        | 0.960          | Nickel                        |
| Iron         9.78         0.05         mg/L         10.0         97.8         85-115           Arsenic         0.20         0.01         mg/L         0.200         98.1         85-115           Cadmium         0.964         0.005         mg/L         1.00         96.4         85-114           Batch: B9C1044 - Hot plate acid digestion waters           Blank (B9C1044-BLK1)         Prepared & Analyzed: 03/28/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | 85-115 | 95.7        |              | 1.00          | mg/L  | 0.005             |        | 0.957          | Lead                          |
| Arsenic 0.20 0.01 mg/L 0.200 98.1 85-115 Cadmium 0.964 0.005 mg/L 1.00 96.4 85-114  Batch: B9C1044 - Hot plate acid digestion waters Blank (B9C1044-BLK1) Prepared & Analyzed: 03/28/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | 85-115 | 97.2        |              | 10.0          | mg/L  | 0.05              |        | 9.72           | Magnesium                     |
| Cadmium         0.964         0.005         mg/L         1.00         96.4         85-114           Batch: B9C1044 - Hot plate acid digestion waters           Blank (B9C1044-BLK1)         Prepared & Analyzed: 03/28/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | 85-115 | 97.8        |              | 10.0          | mg/L  | 0.05              |        | 9.78           | Iron                          |
| Blank (B9C1044 - Hot plate acid digestion waters  Blank (B9C1044-BLK1)  Prepared & Analyzed: 03/28/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | 85-115 | 98.1        |              | 0.200         | mg/L  | 0.01              |        | 0.20           | Arsenic                       |
| <b>Blank (B9C1044-BLK1)</b> Prepared & Analyzed: 03/28/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | 85-114 | 96.4        |              | 1.00          | mg/L  | 0.005             |        | 0.964          | Cadmium                       |
| <b>Blank (B9C1044-BLK1)</b> Prepared & Analyzed: 03/28/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |        |             |              |               |       |                   |        |                |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |        |             |              |               |       |                   | vaters | id digestion v | Batch: B9C1044 - Hot plate ac |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |        | 3/28/19     | Analyzed: 03 | Prepared &    |       |                   |        |                | Blank (B9C1044-BLK1)          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |        |             |              |               | mg/L  | 0.0002            |        | ND             |                               |
| LCS (B9C1044-BS1) Prepared & Analyzed: 03/28/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |        | 3/28/19     | Analyzed: 03 | Prepared &    |       |                   |        |                | LCS (B9C1044-BS1)             |
| Mercury 0.0011 0.0002 mg/L 0.00100 106 85-115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 85-115 | 106         | •            | 0.00100       | mg/L  | 0.0002            |        | 0.0011         | •                             |

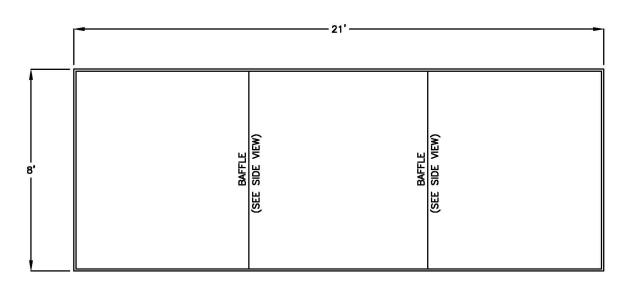
|                                                                       |                     |      |                    | Control inued) |                |                  |         |                |     |             |
|-----------------------------------------------------------------------|---------------------|------|--------------------|----------------|----------------|------------------|---------|----------------|-----|-------------|
| Total Metals (Continued)                                              |                     |      |                    |                |                |                  |         |                |     |             |
| Arrabar                                                               | Result              | Qual | Reporting<br>Limit | Units          | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPC<br>Limi |
| Analyte                                                               | Result              | Quui | 2                  | 06             |                |                  |         |                |     |             |
| Batch: B9C1073 - Hot plat                                             |                     |      |                    |                |                |                  |         |                |     |             |
|                                                                       |                     |      |                    |                |                | & Analyzed: 0    |         |                |     |             |
| Batch: B9C1073 - Hot plat                                             |                     |      | 0.005              | mg/L           |                |                  |         |                |     |             |
| Batch: B9C1073 - Hot plat<br>Blank (B9C1073-BLK1)                     | e acid digestion v  |      |                    |                |                |                  |         |                |     |             |
| Batch: B9C1073 - Hot plat<br>Blank (B9C1073-BLK1)<br>Silver           | re acid digestion w |      | 0.005              | mg/L           | Prepared 8     |                  | 3/29/19 |                |     |             |
| Batch: B9C1073 - Hot plat<br>Blank (B9C1073-BLK1)<br>Silver<br>Copper | re acid digestion w |      | 0.005              | mg/L           | Prepared 8     | & Analyzed: 0    | 3/29/19 | 85-115         |     |             |

#### **Notes and Definitions**

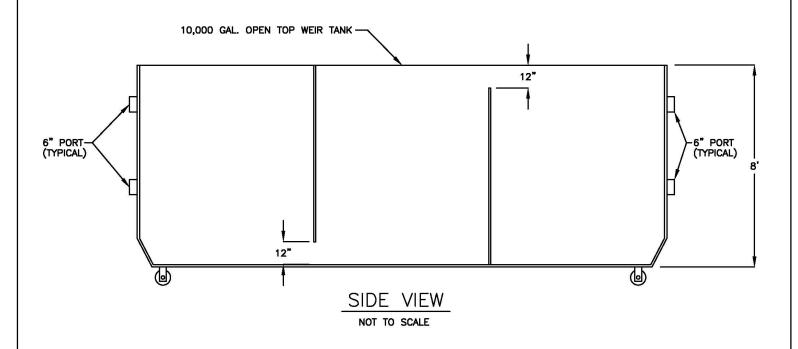
| <u>Item</u> | Definition                                            |
|-------------|-------------------------------------------------------|
| Wet         | Sample results reported on a wet weight basis.        |
| ND          | Analyte NOT DETECTED at or above the reporting limit. |



# New England Testing Laboratory 59 Greenhill Street West Warwick, RI 02893


1-888-863-8522

Chain of Custody Record


| Project No. Project Name/Location:                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       |          | F               | Tests** | *        |                                         |
|-------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|----------|-----------------|---------|----------|-----------------------------------------|
| Client Cockwood Reneduation tech.                     |                 | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | θ        | ,6∧, <b>1)</b>        |          |                 |         |          |                                         |
| Report To: Kalavelle Olet- 11c. net                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vijsv    | <b>∄</b> ,9∃,uĆ       |          |                 |         | · · · ·  |                                         |
| Invoice To: Na (avelle @) 11+-116. het                | s               | No. of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ıəsəıd   | ),bጋ,aA,              |          |                 |         | VI       |                                         |
| ว Sample I.D.                                         | euoeupA<br>Soil | Other Containing of the Contai | l        | metals (Sb,<br>dq,nZ  | Hardness | Chloride<br>TSS | Mercury | Chromium |                                         |
| 6/18 (1).00                                           | ×               | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | ×                     | ×        | X               | ×       | ×        |                                         |
|                                                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       |          | -               |         | ,        |                                         |
|                                                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       |          |                 |         | ,        |                                         |
|                                                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       |          | -               |         |          |                                         |
|                                                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       | H        | H               |         |          |                                         |
|                                                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       | +        | -               |         |          | į                                       |
|                                                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       |          |                 |         |          |                                         |
|                                                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       |          |                 |         |          |                                         |
|                                                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       | +        | +               |         |          |                                         |
|                                                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       |          | -               |         |          |                                         |
| Sampled By: Date/Time Received By:                    | Date/Time       | Laboratory Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | Special Instructions: | struct   | ons:            |         |          |                                         |
| Senning                                               | 3.36            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | NPC                   | 可        | 2               | 5       | 7        | NPDES RIP TACKE                         |
| 3.7.                                                  | 2h7.)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Star Star             | 7        | 77              | 5       | 2        | `                                       |
| Relinquished By: Date/Time Received By: $(2, 3) - 10$ | 3/26/K          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                       | Ş        | (5)             |         |          |                                         |
| Med Les / My                                          | 1500            | Temp. Received:- $l \delta^{\mathcal{O}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100      |                       |          |                 |         |          |                                         |
| 1 = 0                                                 | TOC, Asbe       | stos, UCMRs, Percl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nlorate, | L& Hoo                | DO 6-1   | Σ́υ             | Siness  | S Days   | الرمد.<br>Business Days]: <b>ق Days</b> |

Appendix C

Water Treatment System



TOP VIEW NOT TO SCALE





#### LOCKWOOD REMEDIATION TECHNOLOGIES LLC

89 Crawford Street Leominster, MA 01453

TEL.: 774.450.7177 FAX: 888.835.0617 www.lrt-llc.net

# OPEN TOP 10,000 GALLON WEIR TANK

| SCALE:  | NOT TO SCALE |             | DR. BY: K. HAZEL |
|---------|--------------|-------------|------------------|
| DATE:   | 6/20/11      | APP. BY: PL | JOB NO.:         |
| CLIENT: |              |             |                  |
| SITE    |              |             | FIGURE 1         |



# **LB Series**

Top discharge provides maximum motor cooling while allowing continuous duty operation.

Available in single-phase or three-phase. Pumps fit into 8-inch pipes.



#### **LB Series Features**

#### LB(T)-1500:

High chrome semi-open impeller resists wear for adhesive particles.

Diode motor protectors prevent stator damage in high amperage or run-dry situations.

Up to 70' shut off head

Slimline design allows pumps to fit into 8" pipes.

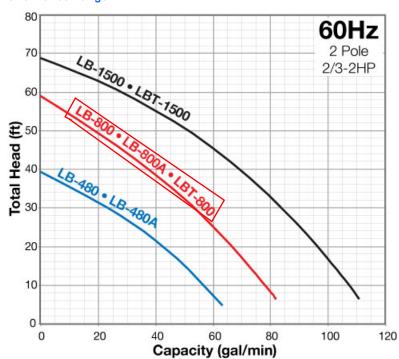


LB Series Features

#### LB-800:

Designed to fit an 8" pipe.

Up to 60' shut off head.


Available in 110V and 220V single-phase with 50 foot cables.

Double Inside Mechanical Seal With SiC faces provides the longest operational life.

Oil Lifter provides lubrication of the seal faces.

**OPTIONAL ACCESSORIES**Float Switch for automatic operation TS-302 for 110V, TS-303 for 220V.

#### **Performance Range**



|          | Disabanna               | Motor          |                    | Cable           | Diameter       | Haladat      | VA/ a l au la é |
|----------|-------------------------|----------------|--------------------|-----------------|----------------|--------------|-----------------|
| Model    | Discharge<br>Size (in.) | Output<br>(HP) | Voltage (V)        | Length<br>(ft.) | Diameter (in.) | Height (in.) | Weight (lbs.)   |
| LB-1500  | 3                       | 2              | 110V or 220V       | 50              | 7 3/8          | 23 5/16      | 72              |
| LB-480   | 2                       | 2/3            | 110V               | 32              | 7 3/8          | 11 1/4       | 28              |
| LB-480A  | 2                       | 2/3            | 110V               | 32              | 8 3/4          | 11 1/4       | 30              |
| LB-800   | 2                       | 1              | 115V or 230V       | 50              | 7 3/8          | 13 7/16      | 35              |
| LB-800A  | 2                       | 1              | 115 or 230         | 50              | 8 3/4          | 23 5/16      | 38              |
| LBT-1500 | 2 or 3                  | 2              | 230 or 460 or 575V | 50              | 7 3/8          | 23 5/16      | 85              |
| LBT-800  | 2                       | 1              | 230 or 460 or 575V | 50              | 7 3/8          | 13 7/16      | 35              |



# Polyester Liquid Filter Bag



#### **Features**

- \* Polyester liquid bag filter are available with a carbon steel ring, stainless steel ring or plastic flanges.
- \* Heavy-duty handle eases installation and removal
- \* Metal ring sewn into bag top for increased durability and positive sealing
- \* Wide array of media fibers to meet needed temperature and micron specifications

#### Applications

Polyester liquid filter bags can be used in the filtering of a wide array of industrial and commercial process fluids

#### Sizes

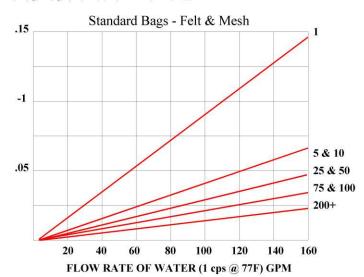
Our liquid filter bags are available for all common liquid bag housings. Dimensions range from 4.12" diameter X 8" length thru 9" diameter X 32" length.

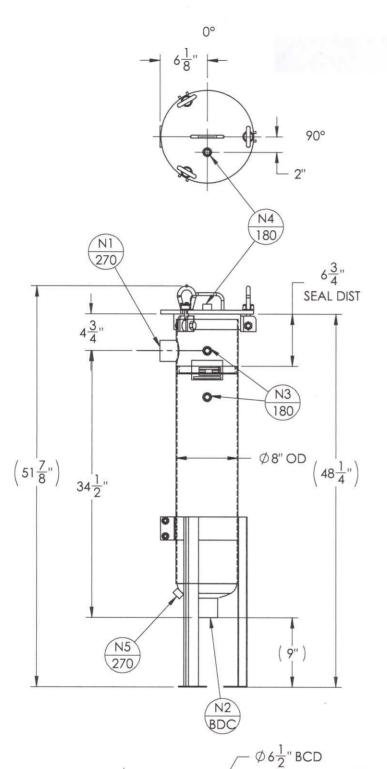
#### Micron Ratings

Available fibers range from 1 to 1500 microns

#### **Options**

- \* Bag finish or covers for strict migration requirements.
- \* Plastic top O.E.M. replacements
- \* Multi-layered filtering capabilities for higher dirt holding capacities


#### **Optional Filter Media**


Felt: Nomex, Polyester, Polypropylene

Monofilament: Nylon, Polyester, Polypropylene

Multifilament: Nylon, Polyester

Polypropylene: Oil Removal





|           |           | NOZZLE    | SCHEDULE    |        |          |
|-----------|-----------|-----------|-------------|--------|----------|
| MARK      | QTY       | SIZE      | / RATING    | DESCI  | RIPTION  |
| N1        | 1         | 2" 150    | # NPT       | IN     | LET      |
| N2        | 1         | 2" 150    | )# NPT      | OU.    | TLET     |
| N3        | 2         | 1/2" 30   | 00# NPT     | PRES   | SS GA    |
| N4        | 1         | 1/2" 30   | 00# NPT     | VE     | NT       |
| N5        | 1         | 1/2" 30   | 00# NPT     | CLEAN  | DRAIN    |
| N6        | -         |           | -           | DIRT   | / DRAIN  |
|           | VESS      | SEL DESIG | N CONDITION | S      |          |
| CODE:     | BES       | т сомме   | RCIAL PRACT | ICE    |          |
| M.A.W.P.: | 150 PSI @ | 250°F     | M.D.M.T.:   | -20° F | @ 150 PS |
| M.A.E.P.: | 15 PSI @  | 250°F     |             |        |          |
| CORROSION | ALLOWANCE | : NONE    | HYDROTEST   | PRESS: | 195 PSI  |
| STAMP:    | 'NC'      |           | SERVICE:    | NON I  | ETHAL    |
| PWHT:     | N/A       |           | RADIOGRAP   | HY:    | N/A      |
| MATERIAL: | SS 304/   | L         | GASKET:     | BUN    | IA-N     |

DRY WEIGHT: 77.62 #'s FLOODED WEIGHT: 140 #'s SHIPPING WEIGHT: 100 #'s VESSEL VOLUME: 1.0 C.F.





1:1

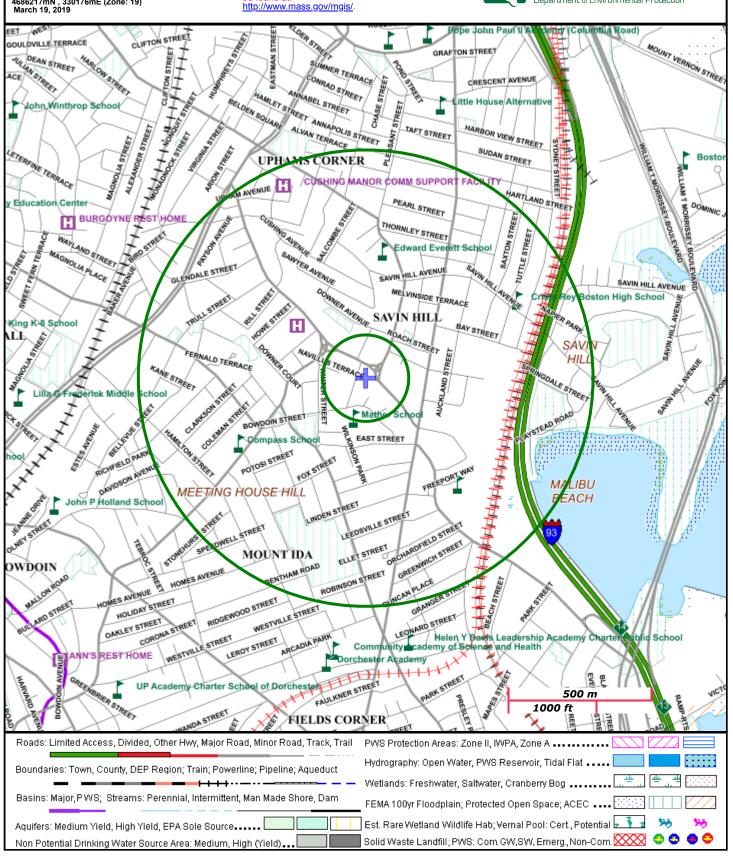
 $otin \frac{1}{2}$ " TYP.

Appendix D

Supplemental Information

# MassDEP - Bureau of Waste Site Cleanup

Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii


Site Information:

233 HANCOCK STREET 233 HANCOCK STREET BOSTON, MA

NAD83 UTM Meters: 4686217mN , 330176mE (Zone: 19) March 19, 2019

The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at:







#### <u>Documentation of the National Historic Preservation Act Eligibility Determination:</u>

As part of this permit, a determination was made as to whether there were any historic properties or places listed on the national register in the path of the discharge or in the vicinity of the construction of treatment systems or BMPs related to the discharge. A search on the Massachusetts Cultural Resource Information System Database and the National Register of Historic Places did not list any potential historic properties on or near the project site in the databases. Therefore, the proposed discharge will not have the potential to cause effects on historical properties.

# Massachusetts Cultural Resource Information System MACRIS

#### **MACRIS Search Results**

Search Criteria: Town(s): Boston; Place: Dorchester; Street No: 233; Street Name: Hancock St; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

Friday, March 15, 2019 Page 1 of 1





#### <u>Documentation of the Results of the ESA Eligibility Determination:</u>

Using information in Appendix IV of the NPDES DGP, the project located at 233 Hancock Street, Dorchester, MA is eligible for coverage under this general permit under FWS Criterion C. This project is located in Suffolk County. No designated critical habitats were listed in the project area. An Endangered Species Consultation was conducted on the U.S. Fish & Wildlife Service New England Field Office ECOS IPaC webpage for the Site:

No Endangered species found at this location.



## United States Department of the Interior

#### FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland



In Reply Refer To: March 13, 2019

Consultation Code: 05E1NE00-2019-SLI-1121

Event Code: 05E1NE00-2019-E-02579 Project Name: 233 Hancock Street

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

#### To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle\_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

#### Attachment(s):

Official Species List

# **Official Species List**

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

### **Project Summary**

Consultation Code: 05E1NE00-2019-SLI-1121

Event Code: 05E1NE00-2019-E-02579

Project Name: 233 Hancock Street

Project Type: Water Withdrawal / Depletion

Project Description: Construction Dewatering

#### **Project Location:**

Approximate location of the project can be viewed in Google Maps: <a href="https://www.google.com/maps/place/42.30951490924069N71.05992769286027W">https://www.google.com/maps/place/42.30951490924069N71.05992769286027W</a>

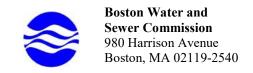


Counties: Suffolk, MA

#### **Endangered Species Act Species**

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.


IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries<sup>1</sup>, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

#### **Critical habitats**

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.



#### **DEWATERING DISCHARGE PERMIT APPLICATION**

#### OWNER / AUTHORIZED APPLICANT PROVIDE INFORMATION HERE:

| Company Name:                                                                                                                                                                                                                            | Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Phone Number:                                                                                                                                                                                                                            | Fax number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                              |
| Contact person name:                                                                                                                                                                                                                     | Title:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                              |
| Cell number:                                                                                                                                                                                                                             | Email address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                              |
| Permit Request (check one): □ N                                                                                                                                                                                                          | Tew Application □ Permit Extension □ Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (Specify):                                                                                                                                                                   |
| Owner's Information (if different                                                                                                                                                                                                        | t from above):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                              |
| Owner of property being dewatered                                                                                                                                                                                                        | d:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                              |
|                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                              |
| Location of Discharge & Propose                                                                                                                                                                                                          | ed Treatment System(s):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                              |
| Street number and name:                                                                                                                                                                                                                  | Neighborhoo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | od                                                                                                                                                                           |
| Discharge is to a:   Sanitary Sew                                                                                                                                                                                                        | er □ Combined Sewer □ Storm Drain □ Otl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | her (snecify)                                                                                                                                                                |
|                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                              |
|                                                                                                                                                                                                                                          | System(s):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                              |
|                                                                                                                                                                                                                                          | Receiving Waters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                              |
|                                                                                                                                                                                                                                          | Anticipated Dates of Discharge): From  □ Tank Removal/Installation □ Test Pipe □ Hydrogeologic Testing □ Crawl Space/Footing Drain □ Non-contact/Uncontaminated Co                                                                                                                                                                                                                                                                                                                                                                                   | To □ Foundation Excavation □ Trench Excavation □ Other                                                                                                                       |
| number, size, make and start reading.  2. If discharging to a sanitary or combin.  3. If discharging to a separate storm drai as other relevant information.  4. Dewatering Drainage Permit will be d.  Submit Completed Application to: | of the discharge and the location of the point of discharge (i.e. Note. All discharges to the Commission's sewer system will be ed sewer, attach a copy of MWRA's Sewer Use Discharge pern n, attach a copy of EPA's NPDES Permit or NOI application, o lenied or revoked if applicant fails to obtain the necessary permit Boston Water and Sewer Commission Engineering Customer Services 980 Harrison Avenue, Boston, MA 02119 Attn: Matthew Tuttle, Engineering Customer Service E-mail: tuttlemp@bwsc.org Phone: 617-989-7204 Fax: 617-989-7716 | the sewer pipe or catch basin). Include meter type, meter be assessed current sewer charges. nit or application.  r NPDES Permit exclusion letter for the discharge, as well |
| Signature of Authorized Representative 1                                                                                                                                                                                                 | ior Property Owner:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date:                                                                                                                                                                        |