

Transmitted via US Mail and e-mail to generalpermit.dewatering@epa.gov

February 9, 2016

US Environmental Protection Agency Dewatering GP Processing Industrial Permit Unit (OEP 06-4) 5 Post Office Square, Suite 100 Boston, MA 02109-3912

Re: Notice of Intent for Dewatering General Permit Wayland Town Offices, 41 Cochituate Way, Wayland, MA

To Whom It May Concern:

AMEC Massachusetts, Inc. (AMEC) is submitting this Notice of Intent (NOI) and applicable supporting documentation on behalf of Ameresco, Inc. (Ameresco) for the property located at the Wayland Town Offices, 41 Cochituate Road in Wayland, Massachusetts (the Site). This NOI is being submitted to request authorization under the National Pollutant Discharge Elimination System (NPDES) Dewatering General Permit (DGP) in Massachusetts (MAG70000) to allow the discharge of pumped groundwater to Pine Brook, which ultimately discharges into the Sudbury River. The proposed dewatering activity is necessary to install the foundations for solar PV carports (the Project). Ameresco has determined that the filing of this NOI is appropriate because the Project requires the dewatering of the Site area to complete temporary excavation work. The Project and related permit information are discussed below.

Proposed Project & Dewatering Activities

The proposed Project consists of solar PV carports to be installed at the Wayland Town Offices to provide renewable energy to the on-site buildings. The general location of the project is depicted on **Figure 1** in **Attachment A**. Project plans are also provided in Attachment A to illustrate the location of construction activities and foundations that require dewatering. Dewatering is anticipated due to groundwater detected at approximately 5 feet below ground surface. The Project will maintain existing ground surface elevations and is also subject to permitting under the Massachusetts Wetlands Protection Act due to on-site resource areas.

Groundwater & Surface Water Monitoring Results

A representative groundwater sample was collected from a temporary well in the area of the proposed dewatering for the car port foundations. A site plan showing the location of soil borings for geotechnical investigation are provided in Attachment A. An unfiltered groundwater sample was collected from location WTO-C2 and analyzed for the parameters in Appendix VIII of the DGP. The 2-inch temporary well at WTO-C2 was screened from 3-18' below ground surface and developed prior to sampling. A surface water grab sample (WTO-SW) was collected from the Sudbury River at the Pelham Island Road bridge and analyzed for hardness. The laboratory results for groundwater are summarized in **Table 1** below and compared to the

Wayland Town Offices DGP February 9, 2015

permit limits at a zero dilution factor for metals. Laboratory data sheets are provided in **Attachment B**.

The laboratory results indicate that several metals are present in the groundwater sample and the results for Cadmium, Copper, Iron and Lead exceed the permit limit. It is important to note that the result for Cadmium was non-detect, but the reporting limit exceeds the permit limit. Per the requirements of the DGP, a dilution factor can be calculated for metals to determine the appropriate limit for the site to discharge to the closest receiving water. This is discussed further below.

Table 1. Total Metals for Raw Influent

Result (ug/I)	Permit Limit*
ND	5.6
5.6	10
(0.5) ¹	0.2
6.9	6.5 - 8.3
5.8	48.8
ND	11.4
7.3	5.2
316	monitor only
4,400	1,000
ND	0.9
10.7	29
ND	1.2
17.3	66.6
3.6	1.3
	ND 5.6 (0.5) ¹ 6.9 5.8 ND 7.3 316 4,400 ND 10.7 ND 10.7 ND 17.3

Notes:

*Permit limit with no dilution for metals.

ND = not detected

Bold values are detected values.

1. Cadmium was not detected, but the reporting limit exceeds the permit limit.

Highlighted cells exceed the permit limit.

Metals Dilution Factor Calculations

As discussed above, the laboratory results for metals indicate that Cadmium, Copper, Iron and Lead exceed the zero dilution limit under the DGP. A dilution factor was calculated in accordance with the requirements in Appendix VII of the DGP to determine the allowable effluent limit based on the proposed flow rate for the dewatering system and characteristics of the receiving water (Pine Brook). This information is presented in **Table 2** in **Attachment C**. Additional supporting documentation related to the 7Q10 calculation for Pine Brook is provided in Attachment C.

Notice of Intent

The Notice of Intent (NOI) for permit coverage under the NPDES Dewatering General Permit is provided in **Attachment D** and additional supporting documentation for the NOI is provided in Attachments A-C and E-F. Permit eligibility related to endangered species and historic properties is discussed below.

AMEC Massachusetts, Inc. 271 Mill Road Chelmsford, MA 01824 978-692-9090 amecfw.com Wayland Town Offices DGP February 9, 2015

Endangered Species Permit Eligibility

Endangered species permit eligibility requirements were evaluated in accordance with the guidelines in Appendix IV of the DGP. The U.S. Fish and Wildlife Service has identified the Northern long-eared Bat (Myotis Septentrionalis) to be present in or near the vicinity of the action area for the Wayland Town Offices Solar PV Carport Project. This information is provided in the Official Species List for Consultation Code: 05E1NE00-2015-SLI-2053 in **Attachment E**. The proposed Project is within an existing developed parking area and the Solar PV Carport Project does not involve clearing of trees that would potentially impact the habitat of the Northern long-eared Bat. Based on this information and prior correspondence with EPA regarding the Northern long-eared Bat habitat and NPDES permits, the Project meets the requirements for Criterion A.

AMEC also requested a review of the proposed Project by the Natural Heritage and Endangered Species Program (NHESP) and this evaluation identified two state-listed rare species in the vicinity of the project area. This information is provided in Attachment E, NHESP Tracking No. 15-34597. The NPDES DGP establishes permit eligibility requirements for federal-listed species and the NHESP requires further review under state permits that apply to the Project, specifically the Massachusetts Wetlands Protection Act (WPA) that will require the submittal of a Notice of Intent in conjunction with the DGP. It is anticipated that these requirements will be addressed as part of the NOI under the WPA.

Historic Properties Permit Eligibility

AMEC reviewed the National Register of Historic Places database and only three properties in Wayland are listed on the National Register: Wayland Center Historic District, Hopestill Bent Tavern, and Noyes-Parris House. None of these places are located at or in the vicinity of the Project. Additionally, Appendix III of the NPDES DGP discusses that the majority of activities authorized under the DGP are expected to have no potential to affect historic properties. Specifically, ". . . to the extent EPA's issuance of this General Permit authorizes discharges of pollutants confined to existing channels, outfalls or natural drainage areas, the permitting action does not have the potential to affect historic properties." The dewatering discharge associated with the proposed Project does not include subsurface disturbance to implement control measures and meet the requirements of the DGP. The proposed dewatering discharge is to an area that receives stormwater runoff from the existing parking lot and discharges to a bordering vegetated wetland area that abuts Pine Brook. Based on this information and the guidance in Appendix III of the NPDES DGP, the Project meets Criterion A: "the discharges do not have the potential to cause effects to historic properties." This information is documented in the NOI in Attachment D.

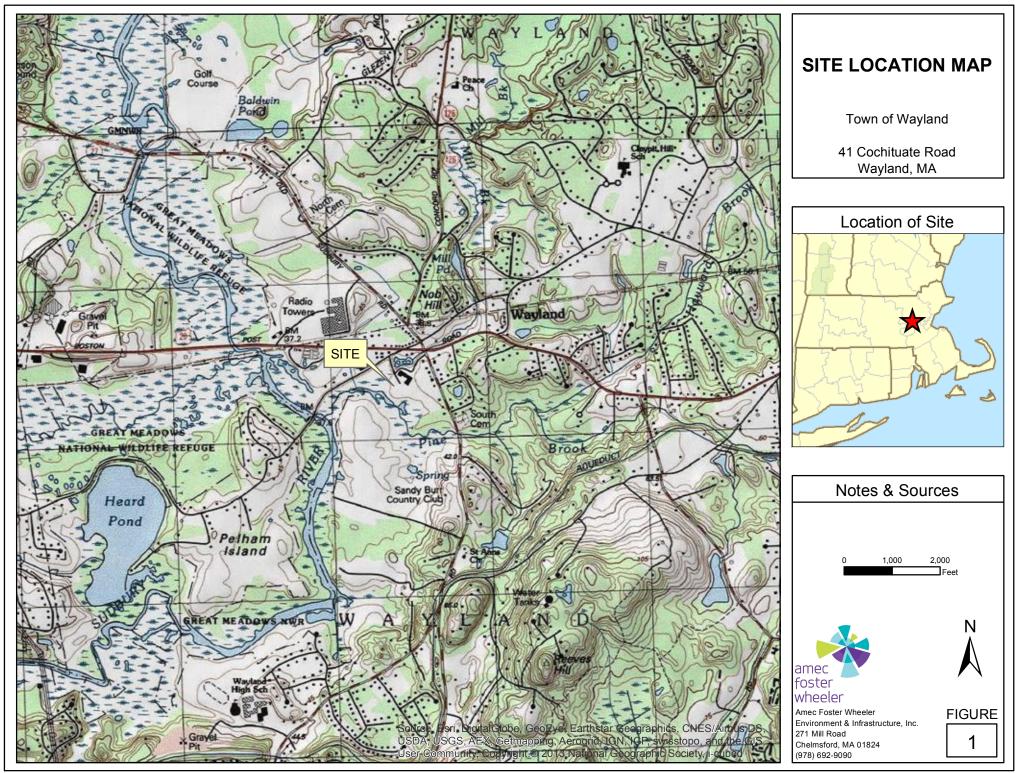
Dewatering Treatment System

The treatment system layout and proposed discharge location are identified on the site plan in Attachment A schematic of the proposed treatment system is provided in **Attachment F**, which is based on the anticipated system and layout that will be used by the contractor. The location

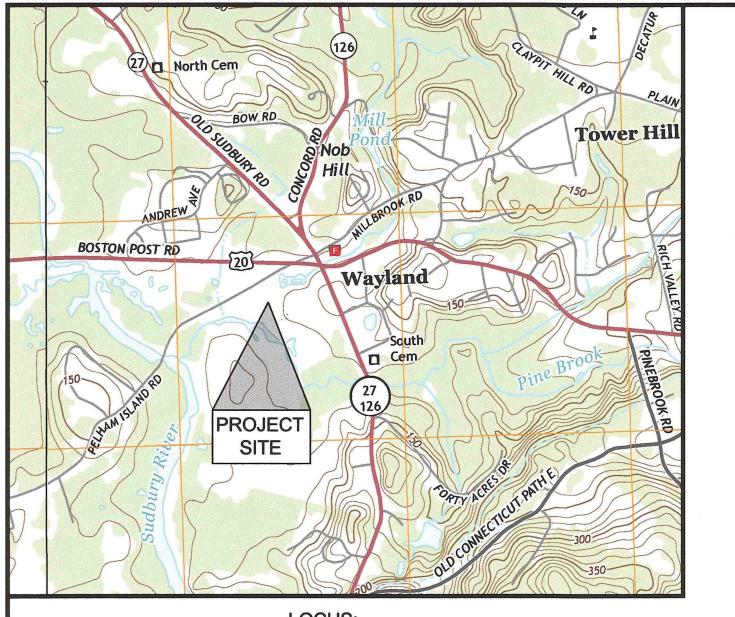
Wayland Town Offices DGP February 9, 2015

and layout of equipment on-site may vary, but the operating parameters (i.e., max flow rate) and discharge location will not change.

If you have any questions or need additional information, please do not hesitate to contact me by phone at (978) 392-5355 or via email: <u>rich.niles@amecfw.com</u>.


AMEC Massachusetts, Inc.

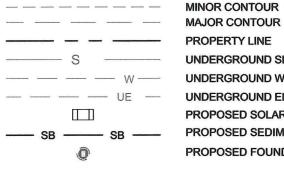
the the


Rich Niles Water Resources Project Manager

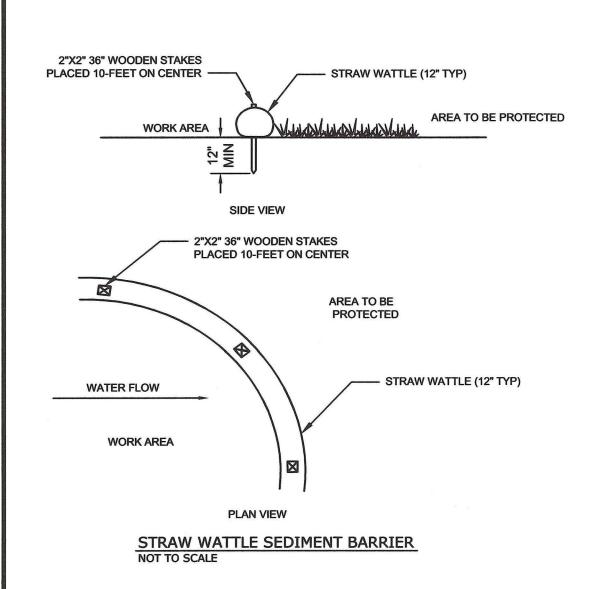
- cc: Robert Bukowski, P.E., AMEC Massachusetts, Inc. Nicholas Nikolaou, Ameresco
- Attachments: A Figure 1 & Site Plan
 - B Laboratory Data Report
 - C Table 2. Metals Dilution Calculations & 7Q10 Supporting Information
 - D Notice of Intent
 - E Endangered Species Information
 - F Treatment System Layout & Schematic

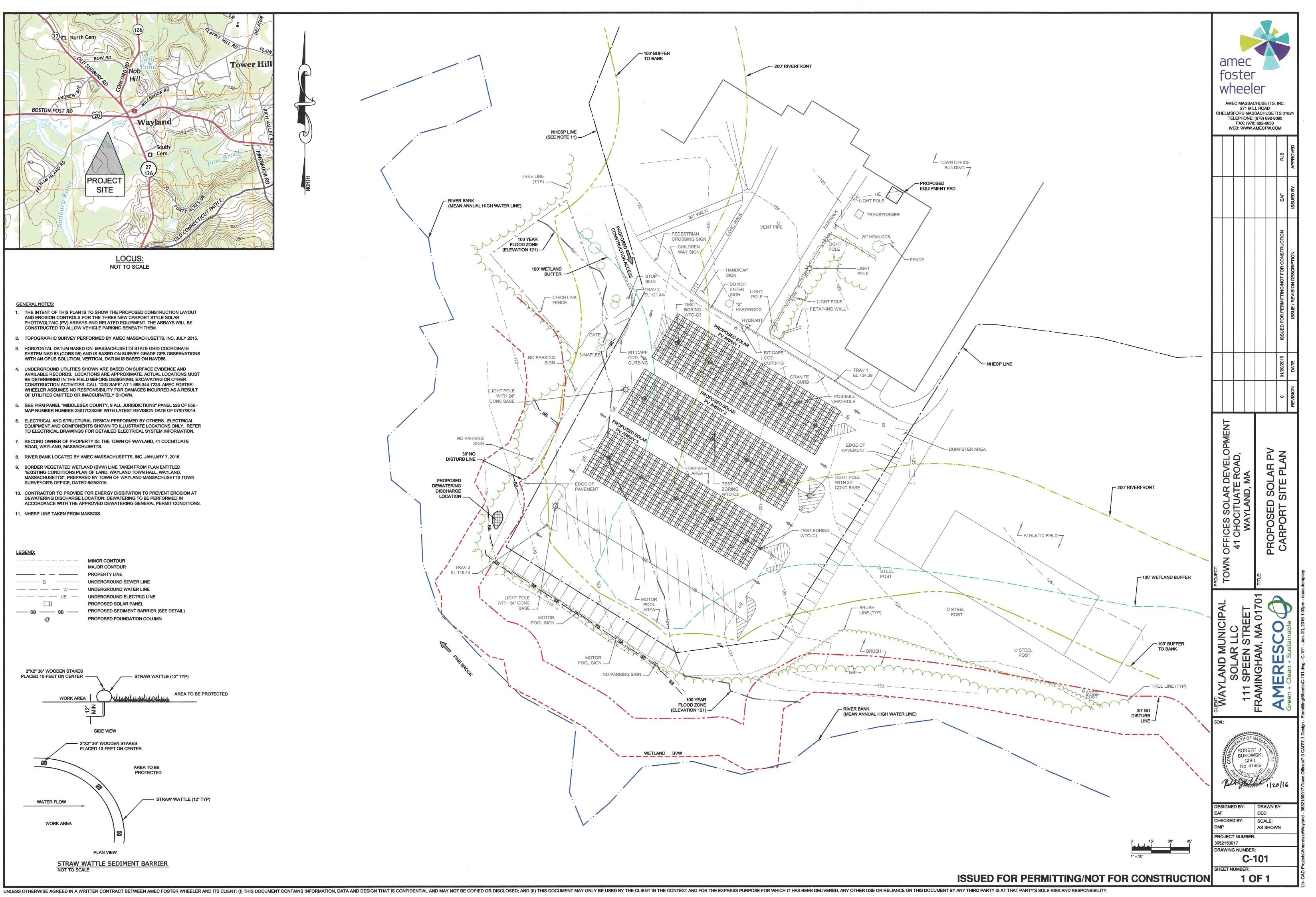
Attachment A – Figure 1 & Site Plan

H:\Ameresco\Wayland_MA\MXD\Task2\MXD\Fig1_TownOffices_Locus.mxd September 25, 2015 DWN: emily.gardiner CHKD: RN



LOCUS: NOT TO SCALE


GENERAL NOTES:


- 1. THE INTENT OF THIS PLAN IS TO SHOW THE PROPOSED CONSTRUCTION LAYOUT AND EROSION CONTROLS FOR THE THREE NEW CARPORT STYLE SOLAR PHOTOVOLTAIC (PV) ARRAYS AND RELATED EQUIPMENT. THE ARRAYS WILL BE CONSTRUCTED TO ALLOW VEHICLE PARKING BENEATH THEM.
- 2. TOPOGRAPHIC SURVEY PERFORMED BY AMEC MASSACHUSETTS, INC. JULY 2015.
- 3. HORIZONTAL DATUM BASED ON MASSACHUSETTS STATE GRID COORDINATE SYSTEM NAD 83 (CORS 96) AND IS BASED ON SURVEY GRADE GPS OBSERVATIONS WITH AN OPUS SOLUTION. VERTICAL DATUM IS BASED ON NAVD88.
- 4. UNDERGROUND UTILITIES SHOWN ARE BASED ON SURFACE EVIDENCE AND AVAILABLE RECORDS. LOCATIONS ARE APPROXIMATE. ACTUAL LOCATIONS MUST BE DETERMINED IN THE FIELD BEFORE DESIGNING, EXCAVATING OR OTHER CONSTRUCTION ACTIVITIES. CALL "DIG SAFE" AT 1-888-344-7233. AMEC FOSTER WHEELER ASSUMES NO RESPONSIBILITY FOR DAMAGES INCURRED AS A RESULT OF UTILITIES OMITTED OR INACCURATELY SHOWN.
- 5. SEE FIRM PANEL "MIDDLESEX COUNTY, 9 ALL JURISDICTIONS" PANEL 526 OF 656 -MAP NUMBER NUMBER 25017C0526F WITH LATEST REVISION DATE OF 07/07/2014.
- 6. ELECTRICAL AND STRUCTURAL DESIGN PERFORMED BY OTHERS. ELECTRICAL EQUIPMENT AND COMPONENTS SHOWN TO ILLUSTRATE LOCATIONS ONLY. REFER TO ELECTRICAL DRAWINGS FOR DETAILED ELECTRICAL SYSTEM INFORMATION.
- 7. RECORD OWNER OF PROPERTY IS: THE TOWN OF WAYLAND, 41 COCHITUATE ROAD, WAYLAND, MASSACHUSETTS.
- 8. RIVER BANK LOCATED BY AMEC MASSACHUSETTS, INC. JANUARY 7, 2016.
- 9. BORDER VEGETATED WETLAND (BVW) LINE TAKEN FROM PLAN ENTITLED "EXISTING CONDITIONS PLAN OF LAND, WAYLAND TOWN HALL, WAYLAND, MASSACHUSETTS", PREPARED BY TOWN OF WAYLAND MASSACHUSETTS TOWN SURVEYOR'S OFFICE, DATED 6/25/2015.
- 10. CONTRACTOR TO PROVIDE FOR ENERGY DISSIPATION TO PREVENT EROSION AT DEWATERING DISCHARGE LOCATION. DEWATERING TO BE PERFORMED IN ACCORDANCE WITH THE APPROVED DEWATERING GENERAL PERMIT CONDITIONS.
- 11. NHESP LINE TAKEN FROM MASSGIS.

LEGEND:

PROPERTY LINE UNDERGROUND SEWER LINE UNDERGROUND WATER LINE UNDERGROUND ELECTRIC LINE PROPOSED SOLAR PANEL PROPOSED SEDIMENT BARRIER (SEE DETAIL) PROPOSED FOUNDATION COLUMN

Attachment B – Laboratory Data Report

ANALYTICAL REPORT

Lab Number:	L1514913
Client:	AMEC Earth & Environmental
	271 Mill Road
	3rd Floor
	Chelmsford, MA 01824
ATTN:	Rob Bukowski
Phone:	(978) 392-5372
Project Name:	AMERESCO WAYLAND TO
Project Number:	3652150017
Report Date:	07/09/15

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:07091517:32

Project Name:AMERESCO WAYLAND TOProject Number:3652150017

 Lab Number:
 L1514913

 Report Date:
 07/09/15

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1514913-01	WTO-SS	SOIL	WAYLAND, MA	06/30/15 13:00	06/30/15
L1514913-02	WTO-SW	WATER	WAYLAND, MA	06/30/15 09:30	06/30/15
L1514913-03	WTO-GW	WATER	WAYLAND, MA	06/30/15 13:30	06/30/15

Project Name:AMERESCO WAYLAND TOProject Number:3652150017

Lab Number: L1514913

Report Date: 07/09/15

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES
A res	ponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO

I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:AMERESCO WAYLAND TOProject Number:3652150017

 Lab Number:
 L1514913

 Report Date:
 07/09/15

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:AMERESCO WAYLAND TOProject Number:3652150017

 Lab Number:
 L1514913

 Report Date:
 07/09/15

Case Narrative (continued)

MCP Related Narratives

Sample Receipt

In reference to question H:

L1514913-01: A Matrix Spike was not submitted for the analysis of Total Metals.

Volatile Organics

In reference to question H:

The initial calibration, associated with L1514913-01, did not meet the method required minimum response factor on the lowest calibration standard for acetone (0.08968), 2-butanone (0.09387), and 4-methyl-2-pentanone (0.07228), as well as the average response factor for acetone and 4-methyl-2-pentanone. The continuing calibration standard, associated with L1514913-01, is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard to this report.

Metals

In reference to question I:

All samples were analyzed for a subset of MCP elements per the Chain of Custody.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Michelle M. Unonig Michelle M. Morris

Title: Technical Director/Representative

Date: 07/09/15

ORGANICS

VOLATILES

			Serial_N	o:07091517:32
Project Name:	AMERESCO WAYLAND TO)	Lab Number:	L1514913
Project Number:	3652150017		Report Date:	07/09/15
		SAMPLE RESULTS		
Lab ID:	L1514913-01		Date Collected:	06/30/15 13:00
Client ID:	WTO-SS		Date Received:	06/30/15
Sample Location:	WAYLAND, MA		Field Prep:	Not Specified
Matrix:	Soil			
Analytical Method:	97,8260C			
Analytical Date:	07/08/15 09:51			
Analyst:	BN			
Percent Solids:	84%			

ND ug/kg 3.4 1 1,2-Dichloroethane ND ug/kg 0.85 1 1,1,1-Trichloroethane ND ug/kg 0.85 1 Bromodichloromethane ND ug/kg 0.85 1 Bromodichloromethane ND ug/kg 0.85 1 trans-1,3-Dichloropropene ND ug/kg 0.85 1 trans-1,3-Dichloropropene, Total ND ug/kg 0.85 1 t,1-Dichloropropene, Total ND ug/kg 0.85 1 t,1-Dichloropropene ND ug/kg 0.85 1 t,1,2,2-Tetrachloroethane ND ug/kg 0.85 1 Toluene ND ug/kg 0.85 1 Toluene ND ug/kg 0.85 1 Chloromethane ND ug/kg 0.85 1 <th>Parameter</th> <th>Result</th> <th>Qualifier</th> <th>Units</th> <th>RL</th> <th>MDL</th> <th>Dilution Factor</th>	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
ND Ug/kg 1.3 1 Chloroform ND ug/kg 1.3 1 Carbon tetrachloride ND ug/kg 0.85 1 Carbon tetrachloride ND ug/kg 0.85 1 Dibromochloromethane ND ug/kg 0.85 1 Dibromochloromethane ND ug/kg 0.85 1 Chlorobenzene ND ug/kg 0.85 1 Chlorobenzene ND ug/kg 0.85 1 1,2-Dichloroethane ND ug/kg 0.85 1 1,1,1-Trichloroethane ND ug/kg 0.85 1 1,2-Dichloropotpene ND ug/kg 0.85 1 1,2-Dichloropotpene ND ug/kg 0.85 1 1,2-Dichloropotpene ND ug/kg 3.4 1 <td< td=""><td>MCP Volatile Organics by 8260/5035 - \</td><td>Vestborough La</td><td>b</td><td></td><td></td><td></td><td></td></td<>	MCP Volatile Organics by 8260/5035 - \	Vestborough La	b				
ND Ug/kg 1.3 1 Chloroform ND ug/kg 1.3 1 Carbon tetrachloride ND ug/kg 0.85 1 Carbon tetrachloride ND ug/kg 0.85 1 Dibromochloromethane ND ug/kg 0.85 1 Dibromochloromethane ND ug/kg 0.85 1 Chlorobenzene ND ug/kg 0.85 1 Chlorobenzene ND ug/kg 0.85 1 1,2-Dichloroethane ND ug/kg 0.85 1 1,1,1-Trichloroethane ND ug/kg 0.85 1 1,2-Dichloropotpene ND ug/kg 0.85 1 1,2-Dichloropotpene ND ug/kg 0.85 1 1,2-Dichloropotpene ND ug/kg 3.4 1 <td< td=""><td>Methylene chloride</td><td>ND</td><td></td><td>ua/ka</td><td>85</td><td></td><td>1</td></td<>	Methylene chloride	ND		ua/ka	85		1
ND Ug/kg 1.3 1 Carbon tetrachloride ND ug/kg 0.85 1 1.2-Dichloropropane ND ug/kg 0.85 1 Dicromothloromethane ND ug/kg 0.85 1 1.1.2-Trichloroethane ND ug/kg 0.85 1 Chrobothzene ND ug/kg 0.85 1 Chrobothzene ND ug/kg 0.85 1 Trichloroethane ND ug/kg 0.85 1 1.1.1.1-Trichloroethane ND ug/kg 0.85 1 1.2-Dichloroethane ND ug/kg 0.85 1 1.2-Dichloropropene ND ug/kg 0.85 1 1.3-Dichloropropene ND ug/kg 0.85 1 1.3-Dichloropropene ND ug/kg 0.85 1							
Carbon tetrachloride ND ug/kg 0.85 1 1,2-Dichloropropane ND ug/kg 0.85 1 Dibromochloromethane ND ug/kg 0.85 1 1,1,2-Trichloroethane ND ug/kg 0.85 1 Chlorobenzene ND ug/kg 0.85 1 Chloroberthane ND ug/kg 0.85 1 1,1,2-Dichloroethane ND ug/kg 0.85 1 1,2-Dichloroethane ND ug/kg 0.85 1 1,1-Trichloroethane ND ug/kg 0.85 1 1,1-Trichloroethane ND ug/kg 0.85 1 1,1,1-Trichloroethane ND ug/kg 0.85 1 1,1,2-Dichloropropene ND ug/kg 0.85 1 1,1-Dichloropropene ND ug/kg 0.85 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
1,2-Dichloropropane ND ug/kg 3.0 1 Dibromochloromethane ND ug/kg 0.85 1 1,1,2-Trichloroethane ND ug/kg 0.85 1 Tertrachloroethane ND ug/kg 0.85 1 Trichloroethane ND ug/kg 0.85 1 Trichloroethane ND ug/kg 0.85 1 1,2-Dichloroethane ND ug/kg 0.85 1 1,1,1-Trichloroethane ND ug/kg 0.85 1 1,2-Dichloroethane ND ug/kg 0.85 1 1,2-Dichloropropene ND ug/kg 0.85 1 trans-1,3-Dichloropropene ND ug/kg 0.85 1 1,1-Dichloropropene ND ug/kg 0.85 1 1,1-Dichloropropene ND ug/kg 0.85							
ND ug/kg 0.85 1 1,1,2-Trichloroethane ND ug/kg 0.85 1 Tetrachloroethane ND ug/kg 0.85 1 Chlorobenzene ND ug/kg 0.85 1 Trichloroethane ND ug/kg 0.85 1 1,2-Dichloroethane ND ug/kg 0.85 1 1,2-Dichloroethane ND ug/kg 0.85 1 1,2-Dichloropropene ND ug/kg 0.85 1 1,3-Dichloropropene, Total ND ug/kg 0.85 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.85 1							
ND ug/kg 1.3 1 Tetrachloroethane ND ug/kg 0.85 1 Chlorobenzene ND ug/kg 0.85 1 Trichloroethane ND ug/kg 0.85 1 1,2-Dichloroethane ND ug/kg 0.85 1 1,1.1-Trichloroethane ND ug/kg 0.85 1 Bromodichloromethane ND ug/kg 0.85 1 Strichloropropene ND ug/kg 0.85 1 Strichloropropene ND ug/kg 0.85 1 1,3-Dichloropropene ND ug/kg 0.85 1 1,3-Dichloropropene ND ug/kg 0.85 1 1,1-Dichloropropene ND ug/kg 0.85 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.85 1							
Transmission ND ug/kg 0.85 1 Chloroberzene ND ug/kg 0.85 1 Trichlorofluoromethane ND ug/kg 0.85 1 1,12-Dichloroethane ND ug/kg 0.85 1 1,1-Trichloroethane ND ug/kg 0.85 1 Bromodichloromethane ND ug/kg 0.85 1 Bromodichloropropene ND ug/kg 0.85 1 1,3-Dichloropropene ND ug/kg 0.85 1 1,1-Dichloropropene ND ug/kg 0.85 1 1,1-Dichloropropene ND ug/kg 0.85 1 1,1,2-Dichloropropene ND ug/kg 0.85 1 1,1,2-Dichloropropene ND ug/kg 0.85 1 1,1,2-Dichloropthane ND ug/kg 0.85 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
ND ug/kg 0.85 1 Trichlorodituoromethane ND ug/kg 3.4 1 Trichlorodituoromethane ND ug/kg 0.85 1 1,1-1-Trichloroethane ND ug/kg 0.85 1 Bromodichloromethane ND ug/kg 0.85 1 Bromodichloropropene ND ug/kg 0.85 1 1,3-Dichloropropene ND ug/kg 0.85 1 1,3-Dichloropropene, Total ND ug/kg 0.85 1 1,1-Dichloropropene ND ug/kg 0.85 1 1,1-Dichloropropene ND ug/kg 0.85 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.85 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.85 1 Toluene ND ug/kg 0.85							
ND ug/kg 3.4 1 1,2-Dichloroethane ND ug/kg 0.85 1 1,1,1-Trichloroethane ND ug/kg 0.85 1 Bromodichloromethane ND ug/kg 0.85 1 Bromodichloromethane ND ug/kg 0.85 1 trans-1,3-Dichloropropene ND ug/kg 0.85 1 trans-1,3-Dichloropropene, Total ND ug/kg 0.85 1 t,1-Dichloropropene, Total ND ug/kg 0.85 1 t,1-Dichloropropene ND ug/kg 0.85 1 t,1,2,2-Tetrachloroethane ND ug/kg 0.85 1 tolene ND ug/kg 0.85 1 tolene ND ug/kg 0.85 1 tolene ND ug/kg 1.4 1 <tr< td=""><td>Chlorobenzene</td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>	Chlorobenzene						
1,2-Dichloroethane ND ug/kg 0.85 1 1,1,1-Trichloroethane ND ug/kg 0.85 1 Bromodichloromethane ND ug/kg 0.85 1 Bromodichloropropene ND ug/kg 0.85 1 cis1,3-Dichloropropene ND ug/kg 0.85 1 1,3-Dichloropropene, Total ND ug/kg 0.85 1 1,1-Dichloropropene, Total ND ug/kg 0.85 1 1,1-Dichloropropene, Total ND ug/kg 0.85 1 Bromodichme ND ug/kg 0.85 1 1,1-Dichloropropene ND ug/kg 0.85 1 Bromodichme ND ug/kg 0.85 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.85 1 Ethylbenzene ND ug/kg 0.85 1 Chloroethane ND ug/kg 1.7	Trichlorofluoromethane						
ND ug/kg 0.85 1 Bromodichloromethane ND ug/kg 0.85 1 Bromodichloromethane ND ug/kg 0.85 1 Irrans-1,3-Dichloropropene ND ug/kg 0.85 1 1,3-Dichloropropene ND ug/kg 0.85 1 1,3-Dichloropropene, Total ND ug/kg 3.4 1 1,1-Dichloropropene ND ug/kg 3.4 1 Bromodichloromethane ND ug/kg 0.85 1 1,1-Dichloropropene ND ug/kg 0.85 1 Bromoform ND ug/kg 0.85 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.85 1 Ethylbenzene ND ug/kg 0.85 1 Chloromethane ND ug/kg 1.7 - 1 <	1,2-Dichloroethane						
Bromodichloromethane ND ug/kg 0.85 1 trans-1,3-Dichloropropene ND ug/kg 0.85 1 tiss-1,3-Dichloropropene, Total ND ug/kg 0.85 1 1,3-Dichloropropene, Total ND ug/kg 0.85 1 1,1-Dichloropropene, Total ND ug/kg 3.4 1 Bromodir ND ug/kg 0.85 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.85 1 Benzene ND ug/kg 0.85 1 Toluene ND ug/kg 0.85 1 Ethylbenzene ND ug/kg 0.85 1 Chloromethane ND ug/kg 0.85 1 Chloromethane ND ug/kg 1.7 1 Chloroethane ND ug/kg 0.85 1 <td>1,1,1-Trichloroethane</td> <td>ND</td> <td></td> <td></td> <td></td> <td></td> <td>1</td>	1,1,1-Trichloroethane	ND					1
trans-1,3-DichloropropeneNDug/kg0.851cis-1,3-DichloropropeneNDug/kg0.8511,3-Dichloropropene, TotalNDug/kg0.8511,1-DichloropropeneNDug/kg3.41BromoformNDug/kg0.8511,1,2,2-TetrachloroethaneNDug/kg0.851BenzeneNDug/kg0.851TolueneNDug/kg0.851EthylbenzeneNDug/kg0.851ChloromethaneNDug/kg0.851EthylbenzeneNDug/kg1.31ChloromethaneNDug/kg1.71ChloromethaneNDug/kg1.71ChloroethaneNDug/kg1.71ChloroethaneNDug/kg1.71ChloroethaneNDug/kg1.71ChloroethaneNDug/kg1.31ChloroethaneNDug/kg1.31ChloroethaneNDug/kg1.71ChloroethaneNDug/kg0.851ChloroethaneNDug/kg0.851ChloroethaneNDug/kg0.851ChloroethaneNDug	Bromodichloromethane	ND			0.85		1
ND ug/kg 0.85 1 1,3-Dichloropropene, Total ND ug/kg 0.85 1 1,1-Dichloropropene, Total ND ug/kg 3.4 1 Bromoform ND ug/kg 0.85 1 Bromoform ND ug/kg 0.85 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.85 1 Benzene ND ug/kg 0.85 1 Toluene ND ug/kg 0.85 1 Ethylbenzene ND ug/kg 0.85 1 Chloromethane ND ug/kg 1.3 1 Chloroethane ND ug/kg 1.7 1 Vinyl chloride ND ug/kg 1.7 1 Chloroethane ND ug/kg 0.85 1 1,1-Dichloroethene ND </td <td>trans-1,3-Dichloropropene</td> <td>ND</td> <td></td> <td></td> <td>0.85</td> <td></td> <td>1</td>	trans-1,3-Dichloropropene	ND			0.85		1
1,3-Dichloropropene, Total ND ug/kg 0.85 1 1,1-Dichloropropene ND ug/kg 3.4 1 Bromoform ND ug/kg 3.4 1 Bromoform ND ug/kg 3.4 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.85 1 Benzene ND ug/kg 0.85 1 Toluene ND ug/kg 0.85 1 Ethylbenzene ND ug/kg 0.85 1 Chloromethane ND ug/kg 0.85 1 Bromomethane ND ug/kg 1.3 1 Vinyl chloride ND ug/kg 1.7 1 Chloroethane ND ug/kg 0.85 1 1,1-Dichloroethene ND ug/kg 0.85 1 1,1-Dichloroethene ND ug/kg 0.85 1 1,1-Dichloroe	cis-1,3-Dichloropropene	ND			0.85		1
ND ug/kg 3.4 1 Bromoform ND ug/kg 3.4 1 Bromoform ND ug/kg 3.4 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.85 1 Benzene ND ug/kg 0.85 1 Toluene ND ug/kg 0.85 1 Ethylbenzene ND ug/kg 0.85 1 Chloromethane ND ug/kg 0.85 1 Bromofethane ND ug/kg 0.85 1 Chloromethane ND ug/kg 1.7 1 Stromomethane ND ug/kg 1.7 1 Chloroethane ND ug/kg 1.7 1 Chloroethane ND ug/kg 0.85 1 1,1-Dichloroethene ND ug/kg 0.85 1 1,1-Dichloroethene ND ug/kg	1,3-Dichloropropene, Total	ND			0.85		1
BromoformNDug/kg3.411,1,2,2-TetrachloroethaneNDug/kg0.851BenzeneNDug/kg0.851TolueneNDug/kg1.31EthylbenzeneNDug/kg0.851ChloromethaneNDug/kg3.41BromoformNDug/kg1.71ChloromethaneNDug/kg1.71BromofordeNDug/kg1.71ChloroethaneNDug/kg1.71ChloroethaneNDug/kg1.711,1-DichloroetheneNDug/kg1.31trans-1,2-DichloroetheneNDug/kg1.31trans-1,2-DichloroetheneNDug/kg1.31trans-1,2-DichloroetheneNDug/kg0.851	1,1-Dichloropropene	ND			3.4		1
1,1,2,2-Tetrachloroethane ND ug/kg 0.85 1 Benzene ND ug/kg 0.85 1 Toluene ND ug/kg 1.3 1 Ethylbenzene ND ug/kg 0.85 1 Chloromethane ND ug/kg 0.85 1 Bromomethane ND ug/kg 3.4 1 Vinyl chloride ND ug/kg 1.7 1 Chloroethane ND ug/kg 1.7 1 I,1-Dichloroethene ND ug/kg 1.7 1 I,1-Dichloroethene ND ug/kg 1.7 1 I,1-Dichloroethene ND ug/kg 0.85 1 Itans-1,2-Dichloroethene ND ug/kg 1.3 1 Itans-1,2-Dichloroethene ND ug/kg 0.85 1	Bromoform	ND			3.4		1
BenzeneNDug/kg0.851TolueneNDug/kg1.31EthylbenzeneNDug/kg0.851ChloromethaneNDug/kg3.41BromomethaneNDug/kg1.71Vinyl chlorideNDug/kg1.71ChloroethaneNDug/kg1.71ChloroethaneNDug/kg1.71ChloroethaneNDug/kg1.711,1-DichloroetheneNDug/kg0.851trans-1,2-DichloroetheneNDug/kg1.31TotoroetheneNDug/kg0.851TotoroetheneNDug/kg0.851	1,1,2,2-Tetrachloroethane	ND			0.85		1
TolueneNDug/kg1.31EthylbenzeneNDug/kg0.851ChloromethaneNDug/kg3.41BromomethaneNDug/kg1.71Vinyl chlorideNDug/kg1.71ChloroethaneNDug/kg1.71ChloroethaneNDug/kg1.71ChloroethaneNDug/kg1.711.1-DichloroetheneNDug/kg0.851trans-1,2-DichloroetheneNDug/kg1.31TrichloroetheneNDug/kg0.851	Benzene	ND			0.85		1
ND ug/kg 3.4 1 Bromomethane ND ug/kg 1.7 1 Vinyl chloride ND ug/kg 1.7 1 Chloroethane ND ug/kg 1.7 1 Chloroethane ND ug/kg 1.7 1 Chloroethane ND ug/kg 1.7 1 1,1-Dichloroethene ND ug/kg 0.85 1 trans-1,2-Dichloroethene ND ug/kg 1.3 1 Trichloroethene ND ug/kg 0.85 1	Toluene	ND			1.3		1
BromomethaneNDug/kg1.71Vinyl chlorideNDug/kg1.71ChloroethaneNDug/kg1.711,1-DichloroetheneNDug/kg0.851trans-1,2-DichloroetheneNDug/kg1.31TrichloroetheneNDug/kg0.851	Ethylbenzene	ND		ug/kg	0.85		1
Bromomethane ND ug/kg 1.7 1 Vinyl chloride ND ug/kg 1.7 1 Chloroethane ND ug/kg 1.7 1 1,1-Dichloroethene ND ug/kg 0.85 1 trans-1,2-Dichloroethene ND ug/kg 1.3 1 Trichloroethene ND ug/kg 0.85 1	Chloromethane	ND			3.4		1
ChloroethaneNDug/kg1.711,1-DichloroetheneNDug/kg0.851trans-1,2-DichloroetheneNDug/kg1.31TrichloroetheneNDug/kg0.851	Bromomethane	ND		ug/kg	1.7		1
ND ug/kg 0.85 1 trans-1,2-Dichloroethene ND ug/kg 1.3 1 Trichloroethene ND ug/kg 0.85 1	Vinyl chloride	ND		ug/kg	1.7		1
krans-1,2-DichloroetheneNDug/kg1.31TrichloroetheneNDug/kg0.851	Chloroethane	ND		ug/kg	1.7		1
Trichloroethene ND ug/kg 0.85 1	1,1-Dichloroethene	ND		ug/kg	0.85		1
	trans-1,2-Dichloroethene	ND		ug/kg	1.3		1
1,2-Dichlorobenzene ND ug/kg 3.4 1	Trichloroethene	ND		ug/kg	0.85		1
	1,2-Dichlorobenzene	ND		ug/kg	3.4		1

					:	Serial_N	0:07091517:32
Project Name:	AMERESCO WAYLA	AND TO			Lab Nu	mber:	L1514913
Project Number:	3652150017				Report	Date:	07/09/15
•		SAMP		S			0.700/10
Lab ID:	L1514913-01				Date Col	llected:	06/30/15 13:00
Client ID:	WTO-SS				Date Re	ceived:	06/30/15
Sample Location:	WAYLAND, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Orga	anics by 8260/5035 - W	estborough La	ıb				
1,3-Dichlorobenzene		ND		ug/kg	3.4		1
1,4-Dichlorobenzene		ND		ug/kg	3.4		1
Methyl tert butyl ether		ND		ug/kg	1.7		1
p/m-Xylene		ND		ug/kg	1.7		1
o-Xylene		ND		ug/kg	1.7		1
Xylenes, Total		ND		ug/kg	1.7		1
cis-1,2-Dichloroethene		ND		ug/kg	0.85		1
1,2-Dichloroethene, Tota	l	ND		ug/kg	0.85		1
Dibromomethane		ND		ug/kg	3.4		1
1,2,3-Trichloropropane		ND		ug/kg	3.4		1
Styrene		ND		ug/kg	1.7		1
Dichlorodifluoromethane		ND		ug/kg	8.5		1
Acetone		ND		ug/kg	30		1
Carbon disulfide		ND		ug/kg	3.4		1
Methyl ethyl ketone		ND		ug/kg	8.5		1
Methyl isobutyl ketone		ND		ug/kg	8.5		1
2-Hexanone		ND		ug/kg	8.5		1
Bromochloromethane		ND		ug/kg	3.4		1
Tetrahydrofuran		ND		ug/kg	3.4		1
2,2-Dichloropropane		ND		ug/kg	4.2		1
1,2-Dibromoethane		ND		ug/kg	3.4		1
1,3-Dichloropropane		ND		ug/kg	3.4		1
1,1,1,2-Tetrachloroethan	e	ND		ug/kg	0.85		1
Bromobenzene		ND		ug/kg	4.2		1
n-Butylbenzene		ND		ug/kg	0.85		1
sec-Butylbenzene		ND		ug/kg	0.85		1
tert-Butylbenzene		ND		ug/kg	3.4		1
o-Chlorotoluene		ND		ug/kg	3.4		1
p-Chlorotoluene		ND		ug/kg	3.4		1
1,2-Dibromo-3-chloropro	pane	ND		ug/kg	3.4		1
Hexachlorobutadiene	·	ND		ug/kg	3.4		1
Isopropylbenzene		ND		ug/kg	0.85		1
p-lsopropyltoluene		ND		ug/kg	0.85		1
Naphthalene		ND		ug/kg	3.4		1
n-Propylbenzene		ND		ug/kg	0.85		1
1,2,3-Trichlorobenzene		ND		ug/kg	3.4		1
1,2,4-Trichlorobenzene		ND		ug/kg	3.4		1
1,3,5-Trimethylbenzene		ND		ug/kg	3.4		1
1,2,4-Trimethylbenzene		ND		ug/kg	3.4		1
		NU		uy/ky	5.4		I

					ç	Serial_N	0:07091517:32
Project Name:	AMERESCO WAYLA	ND TO			Lab Nu	mber:	L1514913
Project Number:	3652150017				Report	Date:	07/09/15
		SAMPLE	RESULT	S			
Lab ID:	L1514913-01				Date Col	lected:	06/30/15 13:00
Client ID:	WTO-SS				Date Rec		06/30/15
Sample Location:	WAYLAND, MA				Field Pre	p:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Orga	nics by 8260/5035 - We	stborough Lab					
Diethyl ether		ND		ug/kg	4.2		1
Diisopropyl Ether		ND		ug/kg	3.4		1
Ethyl-Tert-Butyl-Ether		ND		ug/kg	3.4		1
Tertiary-Amyl Methyl Ethe	er	ND		ug/kg	3.4		1
1,4-Dioxane		ND		ug/kg	34		1
Surroga	ate	% Recovery	/ Qua	lifier	Acceptance Criteria		

Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	95		70-130	
Dibromofluoromethane	105		70-130	

Project Name: AMERESCO WAYLAND TO

Project Number:

3652150017

Lab Number: L1514913 Report Date: 07/09/15

Method Blank Analysis Batch Quality Control

Analytical Method:	97,8260C
Analytical Date:	07/08/15 09:22
Analyst:	BN

arameter	Result	Qualifier	Units	RL	MDL
CP Volatile Organics by 826	0/5035 - Westbo	rough Lab	for sample(s):	01	Batch: WG800821-3
Methylene chloride	ND		ug/kg	10	
1,1-Dichloroethane	ND		ug/kg	1.5	
Chloroform	ND		ug/kg	1.5	
Carbon tetrachloride	ND		ug/kg	1.0	
1,2-Dichloropropane	ND		ug/kg	3.5	
Dibromochloromethane	ND		ug/kg	1.0	
1,1,2-Trichloroethane	ND		ug/kg	1.5	
Tetrachloroethene	ND		ug/kg	1.0	
Chlorobenzene	ND		ug/kg	1.0	
Trichlorofluoromethane	ND		ug/kg	4.0	
1,2-Dichloroethane	ND		ug/kg	1.0	
1,1,1-Trichloroethane	ND		ug/kg	1.0	
Bromodichloromethane	ND		ug/kg	1.0	
trans-1,3-Dichloropropene	ND		ug/kg	1.0	
cis-1,3-Dichloropropene	ND		ug/kg	1.0	
1,3-Dichloropropene, Total	ND		ug/kg	1.0	
1,1-Dichloropropene	ND		ug/kg	4.0	
Bromoform	ND		ug/kg	4.0	
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.0	
Benzene	ND		ug/kg	1.0	
Toluene	ND		ug/kg	1.5	
Ethylbenzene	ND		ug/kg	1.0	
Chloromethane	ND		ug/kg	4.0	
Bromomethane	ND		ug/kg	2.0	
Vinyl chloride	ND		ug/kg	2.0	
Chloroethane	ND		ug/kg	2.0	
1,1-Dichloroethene	ND		ug/kg	1.0	
trans-1,2-Dichloroethene	ND		ug/kg	1.5	
Trichloroethene	ND		ug/kg	1.0	

Project Name: AMERESCO WAYLAND TO

Project Number:

3652150017

Lab Number: L1514913 Report Date: 07/09/15

Method Blank Analysis Batch Quality Control

Analytical Method:	97,8260C
Analytical Date:	07/08/15 09:22
Analyst:	BN

arameter	Result	Qualifier	Units	RL	MDL
ICP Volatile Organics by 826	0/5035 - Westbo	rough Lab f	or sample(s):	01	Batch: WG800821-3
1,2-Dichlorobenzene	ND		ug/kg	4.0	
1,3-Dichlorobenzene	ND		ug/kg	4.0	
1,4-Dichlorobenzene	ND		ug/kg	4.0	
Methyl tert butyl ether	ND		ug/kg	2.0	
p/m-Xylene	ND		ug/kg	2.0	
o-Xylene	ND		ug/kg	2.0	
Xylene (Total)	ND		ug/kg	2.0	
cis-1,2-Dichloroethene	ND		ug/kg	1.0	
1,2-Dichloroethene (total)	ND		ug/kg	1.0	
Dibromomethane	ND		ug/kg	4.0	
1,2,3-Trichloropropane	ND		ug/kg	4.0	
Styrene	ND		ug/kg	2.0	
Dichlorodifluoromethane	ND		ug/kg	10	
Acetone	ND		ug/kg	36	
Carbon disulfide	ND		ug/kg	4.0	
2-Butanone	ND		ug/kg	10	
4-Methyl-2-pentanone	ND		ug/kg	10	
2-Hexanone	ND		ug/kg	10	
Bromochloromethane	ND		ug/kg	4.0	
Tetrahydrofuran	ND		ug/kg	4.0	
2,2-Dichloropropane	ND		ug/kg	5.0	
1,2-Dibromoethane	ND		ug/kg	4.0	
1,3-Dichloropropane	ND		ug/kg	4.0	
1,1,1,2-Tetrachloroethane	ND		ug/kg	1.0	
Bromobenzene	ND		ug/kg	5.0	
n-Butylbenzene	ND		ug/kg	1.0	
sec-Butylbenzene	ND		ug/kg	1.0	
tert-Butylbenzene	ND		ug/kg	4.0	
o-Chlorotoluene	ND		ug/kg	4.0	

Project Name: AMERESCO WAYLAND TO

Project Number:

3652150017

 Lab Number:
 L1514913

 Report Date:
 07/09/15

Method Blank Analysis Batch Quality Control

Analytical Method:	97,8260C
Analytical Date:	07/08/15 09:22
Analyst:	BN

arameter	Result	Qualifier	Units	RL	MDL
ICP Volatile Organics by 8260	/5035 - Westbo	rough Lab	for sample(s):	01	Batch: WG800821-3
p-Chlorotoluene	ND		ug/kg	4.0	
1,2-Dibromo-3-chloropropane	ND		ug/kg	4.0	
Hexachlorobutadiene	ND		ug/kg	4.0	
Isopropylbenzene	ND		ug/kg	1.0	
p-Isopropyltoluene	ND		ug/kg	1.0	
Naphthalene	ND		ug/kg	4.0	
n-Propylbenzene	ND		ug/kg	1.0	
1,2,3-Trichlorobenzene	ND		ug/kg	4.0	
1,2,4-Trichlorobenzene	ND		ug/kg	4.0	
1,3,5-Trimethylbenzene	ND		ug/kg	4.0	
1,2,4-Trimethylbenzene	ND		ug/kg	4.0	
Ethyl ether	ND		ug/kg	5.0	
Isopropyl Ether	ND		ug/kg	4.0	
Ethyl-Tert-Butyl-Ether	ND		ug/kg	4.0	
Tertiary-Amyl Methyl Ether	ND		ug/kg	4.0	
1,4-Dioxane	ND		ug/kg	40	

Surrogate	%Recovery	/ Qualifier	Acceptance Criteria	
ourrogate	///////////////////////////////////////	Quanner	ontonia	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	93		70-130	
Dibromofluoromethane	98		70-130	

Lab Control Sample Analysis

Batch Quality Control

Project Number: 3652150017

 Lab Number:
 L1514913

 Report Date:
 07/09/15

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Qual Limits Limits Parameter Qual Qual MCP Volatile Organics by 8260/5035 - Westborough Lab Associated sample(s): 01 Batch: WG800821-1 WG800821-2 Methylene chloride 90 70-130 20 91 1 1,1-Dichloroethane 91 90 70-130 20 1 Chloroform 91 70-130 20 92 1 Carbon tetrachloride 20 88 86 70-130 2 1,2-Dichloropropane 92 91 70-130 20 1 Dibromochloromethane 70-130 20 99 100 1 1,1,2-Trichloroethane 93 93 70-130 0 20 Tetrachloroethene 93 92 70-130 20 1 Chlorobenzene 70-130 20 93 94 1 Trichlorofluoromethane 70-130 20 101 99 2 70-130 20 1.2-Dichloroethane 96 94 2 1,1,1-Trichloroethane 86 84 70-130 2 20 Bromodichloromethane 70-130 20 90 91 1 trans-1,3-Dichloropropene 70-130 20 91 93 2 cis-1,3-Dichloropropene 70-130 20 94 94 0 1,1-Dichloropropene 70-130 20 81 80 1 Bromoform 93 93 70-130 0 20 1,1,2,2-Tetrachloroethane 89 88 70-130 1 20 70-130 20 Benzene 88 86 2 Toluene 70-130 20 84 85 1 Ethylbenzene 87 70-130 20 86 1

Project Number: 3652150017 Lab Number: L1514913 Report Date: 07/09/15

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics by 8260/5035 - Wes	tborough Lab Ass	ociated sample(s): 01 Bate	ch: WG800821-1 WG800821	-2	
Chloromethane	99	93	70-130	6	20
Bromomethane	96	90	70-130	6	20
Vinyl chloride	78	74	70-130	5	20
Chloroethane	86	83	70-130	4	20
1,1-Dichloroethene	86	85	70-130	1	20
trans-1,2-Dichloroethene	87	86	70-130	1	20
Trichloroethene	88	88	70-130	0	20
1,2-Dichlorobenzene	98	97	70-130	1	20
1,3-Dichlorobenzene	96	95	70-130	1	20
1,4-Dichlorobenzene	98	96	70-130	2	20
Methyl tert butyl ether	93	92	70-130	1	20
p/m-Xylene	91	91	70-130	0	20
o-Xylene	93	93	70-130	0	20
cis-1,2-Dichloroethene	91	90	70-130	1	20
Dibromomethane	98	97	70-130	1	20
1,2,3-Trichloropropane	91	86	70-130	6	20
Styrene	96	96	70-130	0	20
Dichlorodifluoromethane	104	100	70-130	4	20
Acetone	105	102	70-130	3	20
Carbon disulfide	78	78	70-130	0	20
Methyl ethyl ketone	101	98	70-130	3	20

Project Number: 3652150017 Lab Number: L1514913 Report Date: 07/09/15

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics by 8260/5035 - V	Vestborough Lab Assoc	ciated sample(s): 01 Batc	h: WG800821-1 WG800821	-2	
Methyl isobutyl ketone	96	94	70-130	2	20
2-Hexanone	92	87	70-130	6	20
Bromochloromethane	101	101	70-130	0	20
Tetrahydrofuran	102	103	70-130	1	20
2,2-Dichloropropane	90	88	70-130	2	20
1,2-Dibromoethane	95	95	70-130	0	20
1,3-Dichloropropane	94	92	70-130	2	20
1,1,1,2-Tetrachloroethane	93	94	70-130	1	20
Bromobenzene	97	96	70-130	1	20
n-Butylbenzene	87	84	70-130	4	20
sec-Butylbenzene	85	84	70-130	1	20
tert-Butylbenzene	87	85	70-130	2	20
o-Chlorotoluene	88	86	70-130	2	20
p-Chlorotoluene	88	87	70-130	1	20
1,2-Dibromo-3-chloropropane	96	93	70-130	3	20
Hexachlorobutadiene	96	92	70-130	4	20
Isopropylbenzene	85	84	70-130	1	20
p-Isopropyltoluene	91	89	70-130	2	20
Naphthalene	98	97	70-130	1	20
n-Propylbenzene	84	83	70-130	1	20
1,2,3-Trichlorobenzene	107	107	70-130	0	20

Project Number: 3652150017 Lab Number: L1514913 Report Date: 07/09/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics by 8260/5035 - West	borough Lab Ass	sociated sample	e(s): 01 Batch	n: WG800821-1 WG800821	-2	
1,2,4-Trichlorobenzene	109		106	70-130	3	20
1,3,5-Trimethylbenzene	88		88	70-130	0	20
1,2,4-Trimethylbenzene	90		89	70-130	1	20
Diethyl ether	94		92	70-130	2	20
Diisopropyl Ether	97		96	70-130	1	20
Ethyl-Tert-Butyl-Ether	94		94	70-130	0	20
Tertiary-Amyl Methyl Ether	91		90	70-130	1	20
1,4-Dioxane	94		94	70-130	0	20

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	101		101		70-130	
Toluene-d8	100		101		70-130	
4-Bromofluorobenzene	94		93		70-130	
Dibromofluoromethane	104		104		70-130	

SEMIVOLATILES

		Serial_No:07091517:32
Project Name:	AMERESCO WAYLAND TO	Lab Number: L1514913
Project Number:	3652150017	Report Date: 07/09/15
	SAMPLE RESULTS	S
Lab ID:	L1514913-01	Date Collected: 06/30/15 13:00
Client ID:	WTO-SS	Date Received: 06/30/15
Sample Location:	WAYLAND, MA	Field Prep: Not Specified
Matrix:	Soil	Extraction Method: EPA 3546
Analytical Method:	97,8270D	Extraction Date: 07/05/15 14:57
Analytical Date:	07/09/15 04:16	
Analyst:	MY	
Percent Solids:	84%	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile Organics - Westl	borough Lab					
Acenaphthene	ND		ug/kg	160		1
1,2,4-Trichlorobenzene	ND		ug/kg	200		1
Hexachlorobenzene	ND		ug/kg	120		1
Bis(2-chloroethyl)ether	ND		ug/kg	180		1
2-Chloronaphthalene	ND		ug/kg	200		1
1,2-Dichlorobenzene	ND		ug/kg	200		1
1,3-Dichlorobenzene	ND		ug/kg	200		1
1,4-Dichlorobenzene	ND		ug/kg	200		1
3,3'-Dichlorobenzidine	ND		ug/kg	200		1
2,4-Dinitrotoluene	ND		ug/kg	200		1
2,6-Dinitrotoluene	ND		ug/kg	200		1
Azobenzene	ND		ug/kg	200		1
Fluoranthene	140		ug/kg	120		1
4-Bromophenyl phenyl ether	ND		ug/kg	200		1
Bis(2-chloroisopropyl)ether	ND		ug/kg	230		1
Bis(2-chloroethoxy)methane	ND		ug/kg	210		1
Hexachlorobutadiene	ND		ug/kg	200		1
Hexachloroethane	ND		ug/kg	160		1
Isophorone	ND		ug/kg	180		1
Naphthalene	ND		ug/kg	200		1
Nitrobenzene	ND		ug/kg	180		1
Bis(2-Ethylhexyl)phthalate	ND		ug/kg	200		1
Butyl benzyl phthalate	ND		ug/kg	200		1
Di-n-butylphthalate	ND		ug/kg	200		1
Di-n-octylphthalate	ND		ug/kg	200		1
Diethyl phthalate	ND		ug/kg	200		1
Dimethyl phthalate	ND		ug/kg	200		1
Benzo(a)anthracene	ND		ug/kg	120		1
Benzo(a)pyrene	ND		ug/kg	160		1
Benzo(b)fluoranthene	130		ug/kg	120		1

					:	Serial_N	0:07091517:32
Project Name:	AMERESCO WAYLAN	ND TO			Lab Nu	mber:	L1514913
Project Number:	3652150017				Report	Date:	07/09/15
-		SAMP		S	•		
Lab ID: Client ID: Sample Location:	L1514913-01 WTO-SS WAYLAND, MA				Date Col Date Ree Field Pre	ceived:	06/30/15 13:00 06/30/15 Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile	Organics - Westborough	Lab					
Benzo(k)fluoranthene		ND		ug/kg	120		1
Chrysene		ND		ug/kg	120		1
Acenaphthylene		ND		ug/kg	160		1
Anthracene		ND		ug/kg	120		1
Benzo(ghi)perylene		ND		ug/kg	160		1
Fluorene		ND		ug/kg	200		1
Phenanthrene		ND		ug/kg	120		1
Dibenzo(a,h)anthracene		ND		ug/kg	120		1
Indeno(1,2,3-cd)Pyrene		ND		ug/kg	160		1
Pyrene		140		ug/kg	120		1
Aniline		ND		ug/kg	230		1
4-Chloroaniline		ND		ug/kg	200		1
Dibenzofuran		ND		ug/kg	200		1
2-Methylnaphthalene		ND		ug/kg	230		1
Acetophenone		ND		ug/kg	200		1
2,4,6-Trichlorophenol		ND		ug/kg	120		1
2-Chlorophenol		ND		ug/kg	200		1
2,4-Dichlorophenol		ND		ug/kg	180		1
2,4-Dimethylphenol		ND		ug/kg	200		1
2-Nitrophenol		ND		ug/kg	420		1
4-Nitrophenol		ND		ug/kg	270		1
2,4-Dinitrophenol		ND		ug/kg	940		1
Pentachlorophenol		ND		ug/kg	390		1
Phenol		ND		ug/kg	200		1
2-Methylphenol		ND		ug/kg	200		1
3-Methylphenol/4-Methylphenol	phenol	ND		ug/kg	280		1
2,4,5-Trichlorophenol		ND		ug/kg	200		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	79	30-130	
Phenol-d6	82	30-130	
Nitrobenzene-d5	81	30-130	
2-Fluorobiphenyl	80	30-130	
2,4,6-Tribromophenol	85	30-130	
4-Terphenyl-d14	60	30-130	

Project Name:	AMERESCO WAYLAND TO	Lab Number:	L1514913
Project Number:	3652150017	Report Date:	07/09/15
	Method Blank Analysis		

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst:

97,8270D 07/08/15 12:46 MY Extraction Method: EPA 3546 Extraction Date: 07/05/15 14:57

arameter	Result	Qualifier	Units	RL	MDL
ICP Semivolatile Organics - W	/estborough La	b for sample	e(s): 01	Batch:	WG799962-1
Acenaphthene	ND		ug/kg	130	
1,2,4-Trichlorobenzene	ND		ug/kg	160	
Hexachlorobenzene	ND		ug/kg	99	
Bis(2-chloroethyl)ether	ND		ug/kg	150	
2-Chloronaphthalene	ND		ug/kg	160	
1,2-Dichlorobenzene	ND		ug/kg	160	
1,3-Dichlorobenzene	ND		ug/kg	160	
1,4-Dichlorobenzene	ND		ug/kg	160	
3,3'-Dichlorobenzidine	ND		ug/kg	160	
2,4-Dinitrotoluene	ND		ug/kg	160	
2,6-Dinitrotoluene	ND		ug/kg	160	
Azobenzene	ND		ug/kg	160	
Fluoranthene	ND		ug/kg	99	
4-Bromophenyl phenyl ether	ND		ug/kg	160	
Bis(2-chloroisopropyl)ether	ND		ug/kg	200	
Bis(2-chloroethoxy)methane	ND		ug/kg	180	
Hexachlorobutadiene	ND		ug/kg	160	
Hexachloroethane	ND		ug/kg	130	
Isophorone	ND		ug/kg	150	
Naphthalene	ND		ug/kg	160	
Nitrobenzene	ND		ug/kg	150	
Bis(2-Ethylhexyl)phthalate	ND		ug/kg	160	
Butyl benzyl phthalate	ND		ug/kg	160	
Di-n-butylphthalate	ND		ug/kg	160	
Di-n-octylphthalate	ND		ug/kg	160	
Diethyl phthalate	ND		ug/kg	160	
Dimethyl phthalate	ND		ug/kg	160	
Benzo(a)anthracene	ND		ug/kg	99	
Benzo(a)pyrene	ND		ug/kg	130	

Project Name:	AMERESCO WAYLAND TO	Lab Number:	L1514913
Project Number:	3652150017	Report Date:	07/09/15
	Method Blank Analysis		

Method Blank Analysis Batch Quality Control

Analytical Method:97,Analytical Date:07/Analyst:MY

97,8270D 07/08/15 12:46 MY Extraction Method: EPA 3546 Extraction Date: 07/05/15 14:57

arameter	Result	Qualifier	Units	RL	MDL
CP Semivolatile Organics - We	estborough Lat	o for sample	e(s): 01	Batch:	WG799962-1
Benzo(b)fluoranthene	ND		ug/kg	99	
Benzo(k)fluoranthene	ND		ug/kg	99	
Chrysene	ND		ug/kg	99	
Acenaphthylene	ND		ug/kg	130	
Anthracene	ND		ug/kg	99	
Benzo(ghi)perylene	ND		ug/kg	130	
Fluorene	ND		ug/kg	160	
Phenanthrene	ND		ug/kg	99	
Dibenzo(a,h)anthracene	ND		ug/kg	99	
Indeno(1,2,3-cd)Pyrene	ND		ug/kg	130	
Pyrene	ND		ug/kg	99	
Aniline	ND		ug/kg	200	
4-Chloroaniline	ND		ug/kg	160	
Dibenzofuran	ND		ug/kg	160	
2-Methylnaphthalene	ND		ug/kg	200	
Acetophenone	ND		ug/kg	160	
2,4,6-Trichlorophenol	ND		ug/kg	99	
2-Chlorophenol	ND		ug/kg	160	
2,4-Dichlorophenol	ND		ug/kg	150	
2,4-Dimethylphenol	ND		ug/kg	160	
2-Nitrophenol	ND		ug/kg	360	
4-Nitrophenol	ND		ug/kg	230	
2,4-Dinitrophenol	ND		ug/kg	790	
Pentachlorophenol	ND		ug/kg	330	
Phenol	ND		ug/kg	160	
2-Methylphenol	ND		ug/kg	160	
3-Methylphenol/4-Methylphenol	ND		ug/kg	240	
2,4,5-Trichlorophenol	ND		ug/kg	160	

Project Name:	AMERESCO WAYLAND TO	Lab Number:	L1514913
Project Number:	3652150017	Report Date:	07/09/15
	Method Blank Analysis Batch Quality Control		

Analytical Method:	97,8270D	Extraction Method:	EPA 3546
Analytical Date:	07/08/15 12:46	Extraction Date:	07/05/15 14:57
Analyst:	MY		

Parameter	Result	Qualifier	Units	RL	MDL	
MCP Semivolatile Organics - Wes	tborough La	b for sample	e(s): 01	Batch: WG	799962-1	

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	87	30-130
Phenol-d6	88	30-130
Nitrobenzene-d5	84	30-130
2-Fluorobiphenyl	88	30-130
2,4,6-Tribromophenol	87	30-130
4-Terphenyl-d14	88	30-130

Project Number: 3652150017 Lab Number: L1514913

Report Date: 07/09/15

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
ICP Semivolatile Organics - Westborough	Lab Associated s	sample(s): 01	Batch: WG7	99962-2 V	VG799962-3			
Acenaphthene	90		88		40-140	2	30	
1,2,4-Trichlorobenzene	87		85		40-140	2	30	
Hexachlorobenzene	96		92		40-140	4	30	
Bis(2-chloroethyl)ether	81		80		40-140	1	30	
2-Chloronaphthalene	89		86		40-140	3	30	
1,2-Dichlorobenzene	80		79		40-140	1	30	
1,3-Dichlorobenzene	77		77		40-140	0	30	
1,4-Dichlorobenzene	78		77		40-140	1	30	
3,3'-Dichlorobenzidine	84		82		40-140	2	30	
2,4-Dinitrotoluene	98		96		40-140	2	30	
2,6-Dinitrotoluene	99		95		40-140	4	30	
Azobenzene	90		87		40-140	3	30	
Fluoranthene	90		88		40-140	2	30	
4-Bromophenyl phenyl ether	92		88		40-140	4	30	
Bis(2-chloroisopropyl)ether	77		76		40-140	1	30	
Bis(2-chloroethoxy)methane	84		81		40-140	4	30	
Hexachlorobutadiene	82		80		40-140	2	30	
Hexachloroethane	77		76		40-140	1	30	
Isophorone	82		80		40-140	2	30	
Naphthalene	85		84		40-140	1	30	
Nitrobenzene	85		82		40-140	4	30	

Lab Number: L1514913

Project Number: 3652150017

AMERESCO WAYLAND TO

Project Name:

Report Date: 07/09/15

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Semivolatile Organics - Westboroug	gh Lab Associated sam	nple(s): 01 Batch: WC	G799962-2 WG799962-3		
Bis(2-Ethylhexyl)phthalate	91	85	40-140	7	30
Butyl benzyl phthalate	91	90	40-140	1	30
Di-n-butylphthalate	92	88	40-140	4	30
Di-n-octylphthalate	91	89	40-140	2	30
Diethyl phthalate	93	90	40-140	3	30
Dimethyl phthalate	95	92	40-140	3	30
Benzo(a)anthracene	92	88	40-140	4	30
Benzo(a)pyrene	92	87	40-140	6	30
Benzo(b)fluoranthene	94	89	40-140	5	30
Benzo(k)fluoranthene	94	90	40-140	4	30
Chrysene	93	88	40-140	6	30
Acenaphthylene	93	89	40-140	4	30
Anthracene	91	87	40-140	4	30
Benzo(ghi)perylene	93	89	40-140	4	30
Fluorene	93	89	40-140	4	30
Phenanthrene	91	87	40-140	4	30
Dibenzo(a,h)anthracene	94	90	40-140	4	30
Indeno(1,2,3-cd)Pyrene	95	89	40-140	7	30
Pyrene	91	88	40-140	3	30
Aniline	65	65	40-140	0	30
4-Chloroaniline	79	81	40-140	3	30

Project Number: 3652150017 Lab Number: L1514913 07/09/15

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
ICP Semivolatile Organics - Westborough	Lab Associated	sample(s): 01	Batch: WG7	99962-2	WG799962-3			
Dibenzofuran	93		90		40-140	3	30	
2-Methylnaphthalene	89		86		40-140	3	30	
Acetophenone	83		82		40-140	1	30	
2,4,6-Trichlorophenol	95		91		30-130	4	30	
2-Chlorophenol	86		84		30-130	2	30	
2,4-Dichlorophenol	94		92		30-130	2	30	
2,4-Dimethylphenol	88		84		30-130	5	30	
2-Nitrophenol	88		86		30-130	2	30	
4-Nitrophenol	100		96		30-130	4	30	
2,4-Dinitrophenol	97		95		30-130	2	30	
Pentachlorophenol	91		84		30-130	8	30	
Phenol	88		86		30-130	2	30	
2-Methylphenol	87		86		30-130	1	30	
3-Methylphenol/4-Methylphenol	90		88		30-130	2	30	
2,4,5-Trichlorophenol	98		94		30-130	4	30	

Project Name: AMERESCO WAYLAND TO

Project Number: 3652150017 Lab Number: L1514913

Report Date: 07/09/15

_	LCS	A 1	LCSD	•	%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
MCP Semivolatile Organics - Westborough	Lab Associated s	sample(s): 0'	1 Batch: WG79	99962-2 V	VG799962-3				

%Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
90		89		30-130
92		89		30-130
86		84		30-130
94		91		30-130
100		93		30-130
94		89		30-130
	92 86 94 100	92 86 94 100	92 89 86 84 94 91 100 93	92 89 86 84 94 91 100 93

PETROLEUM HYDROCARBONS

		Serial_No:07091517:32			
Project Name:	AMERESCO WAYLAND TO	Lab Number: L1514913			
Project Number:	3652150017	Report Date: 07/09/15			
	SAMPLE RESULTS				
Lab ID:	L1514913-01	Date Collected: 06/30/15 13:00			
Client ID:	WTO-SS	Date Received: 06/30/15			
Sample Location:	WAYLAND, MA	Field Prep: Not Specified			
Matrix:	Soil	Extraction Method:EPA 3546			
Analytical Method:	1,8015C(M)	Extraction Date: 07/06/15 14:27			
Analytical Date:	07/07/15 20:42				
Analyst:	AR				
Percent Solids:	84%				

Parameter	Result G	Qualifier Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbon Quantita	tion - Westborough Lab				
ТРН	48500	ug/kg	39100		1
Surrogate	% Recovery	Qualifier	Acceptance Criteria		
o-Terphenyl	64		40-140		

Project Name:	AMERESCO WAYLAND TO	Lab Number:	L1514913			
Project Number:	3652150017	Report Date:	07/09/15			
Method Blank Analysis Batch Quality Control						
Analytical Method: Analytical Date: Analyst:	1,8015C(M) 07/07/15 19:05 AR	Extraction Method: Extraction Date:	EPA 3546 07/06/15 14:27			

Parameter	Result	Qualifier	Units	RL		MDL
Petroleum Hydrocarbon Quantitatior	n - Westbord	ough Lab fo	or sample(s):	01	Batch:	WG800141-1
ТРН	ND		ug/kg	31600		

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
o-Terphenyl	78		40-140		

Lab Control Sample Analysis

Project Name:	AMERESCO WAYLAND TO	Batch Quality Control	Lab Number:	L1514913
Project Number:	3652150017		Report Date:	07/09/15

Parameter	LCS %Recovery	LCSE Qual %Recov		%Recovery Limits	RPD	Qual	RPD Limits
Petroleum Hydrocarbon Quantitation - Westborough Lab Associated sample(s): 01 Batch: WG800141-2							
ТРН	81	-		40-140	-		40

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
o-Terphenyl	88				40-140

PCBS

		Serial_No:07091517:32			
Project Name:	AMERESCO WAYLAND TO	Lab Number: L1514913			
Project Number:	3652150017	Report Date: 07/09/15			
	SAMPLE RESULTS				
Lab ID:	L1514913-01	Date Collected: 06/30/15 13:00			
Client ID:	WTO-SS	Date Received: 06/30/15			
Sample Location:	WAYLAND, MA	Field Prep: Not Specified			
Matrix:	Soil	Extraction Method: EPA 3546			
Analytical Method:	97,8082	Extraction Date: 07/06/15 12:37			
Analytical Date:	07/07/15 18:58	Cleanup Method: EPA 3665A			
Analyst:	KB	Cleanup Date: 07/06/15			
Percent Solids:	84%	Cleanup Method: EPA 3660B			
		Cleanup Date: 07/06/15			
Analyst:	КВ	Cleanup Date: 07/06/15 Cleanup Method: EPA 3660B			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlorinated Biphenyls - Westborough Lab							
Aroclor 1016	ND		ug/kg	39.3		1	А
Aroclor 1221	ND		ug/kg	39.3		1	A
Aroclor 1232	ND		ug/kg	39.3		1	A
Aroclor 1242	ND		ug/kg	39.3		1	А
Aroclor 1248	ND		ug/kg	39.3		1	А
Aroclor 1254	ND		ug/kg	39.3		1	А
Aroclor 1260	ND		ug/kg	39.3		1	А
Aroclor 1262	ND		ug/kg	39.3		1	А
Aroclor 1268	ND		ug/kg	39.3		1	А
PCBs, Total	ND		ug/kg	39.3		1	А

	Acceptance						
Surrogate	% Recovery	Qualifier	Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	80		30-150	А			
Decachlorobiphenyl	55		30-150	А			
2,4,5,6-Tetrachloro-m-xylene	84		30-150	В			
Decachlorobiphenyl	81		30-150	В			

07/06/15

Project Name:AMERESCO WAYLAND TOLab Number:L1514913Project Number:3652150017Report Date:07/09/15Method Blank Analysis

Method Blank Analysis Batch Quality Control

Analytical Method:	97,8082A	
Analytical Date:	07/07/15 19:29	
Analyst:	KB	

Extraction Method:	EPA 3546
Extraction Date:	07/06/15 12:37
Cleanup Method:	EPA 3665A
Cleanup Date:	07/06/15
Cleanup Method:	EPA 3660B
Cleanup Date:	07/06/15

Parameter	Result	Qualifier	Units		RL	MDL	Column
MCP Polychlorinated Biphenyls -	- Westborough	Lab for sar	nple(s):	01	Batch:	WG800101-1	
Aroclor 1016	ND		ug/kg		32.6		А
Aroclor 1221	ND		ug/kg		32.6		А
Aroclor 1232	ND		ug/kg		32.6		А
Aroclor 1242	ND		ug/kg		32.6		А
Aroclor 1248	ND		ug/kg		32.6		А
Aroclor 1254	ND		ug/kg		32.6		А
Aroclor 1260	ND		ug/kg		32.6		А
Aroclor 1262	ND		ug/kg		32.6		А
Aroclor 1268	ND		ug/kg		32.6		А
PCBs, Total	ND		ug/kg		32.6		А

			Acceptance	;
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	84		30-150	A
Decachlorobiphenyl	67		30-150	А
2,4,5,6-Tetrachloro-m-xylene	87		30-150	В
Decachlorobiphenyl	87		30-150	В

Lab Control Sample Analysis Batch Quality Control

Project Name: AMERESCO WAYLAND TO

Project Number: 3652150017

 Lab Number:
 L1514913

 Report Date:
 07/09/15

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual 2	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
MCP Polychlorinated Biphenyls - Wes	stborough Lab Associate	ed sample(s): (01 Batch:	WG800101-2	WG800101-3				
Aroclor 1016	95		101		40-140	6		30	А
Aroclor 1260	87		93		40-140	7		30	А

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	84		89		30-150	А
Decachlorobiphenyl	70		73		30-150	А
2,4,5,6-Tetrachloro-m-xylene	87		92		30-150	В
Decachlorobiphenyl	88		90		30-150	В

METALS

Project Name:	AMER	RESCO WA	YLAND	то			Lab Nu	mber:	L15149	13	
Project Number:	36521	50017					Report	Date:	07/09/1	5	
				SAMPL	E RES	ULTS					
Lab ID:	L1514	913-01					Date Co	ollected:	06/30/1	5 13:00	
Client ID:	WTO-	SS					Date Re	eceived:	06/30/1	5	
Sample Location:	WAYL	AND, MA					Field Pr	ep:	Not Spe	ecified	
Matrix:	Soil										
Percent Solids:	84%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
MCP Total Metals -	Westborg	ough Lab									
Arsenic, Total	4.5		mg/kg	0.46		1	07/07/15 16:20) 07/08/15 23:48	EPA 3050B	97,6010C	MC
Cadmium, Total	ND		mg/kg	0.46		1	07/07/15 16:20	07/08/15 23:48	EPA 3050B	97,6010C	MC
Chromium, Total	20		mg/kg	0.46		1	07/07/15 16:20	07/08/15 23:48	EPA 3050B	97,6010C	MC
Lead, Total	ND		mg/kg	2.3		1	07/07/15 16:20	07/08/15 23:48	EPA 3050B	97,6010C	MC
Mercury, Total	ND		mg/kg	0.076		1	07/07/15 09.23	3 07/07/15 12:24	FPA 7471B	97,7471B	DB

Project Number:	36521	50017					Report I	Date:	07/09/15	5	
				SAMPL	E RES	ULTS					
Lab ID:	L1514	913-02					Date Co	llected:	06/30/15	5 09:30	
Client ID:	WTO-	SW					Date Re	ceived:	06/30/15	5	
Sample Location:	WAYL	AND, MA					Field Pre	ep:	Not Spe	cified	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys
Total Hardness by S	SM 2340E	3 - Westbor	ough Lab								
										1.6010C	МС

Project Name:	AMEF	RESCO WA	YLAND	ТО			Lab Nu	mber:	L1514	913	
Project Number:	36521	150017					Report	Date:	07/09/	'15	
				SAMPI	LE RES	ULTS					
Lab ID:	L1514	1913-03					Date Co	ollected:	06/30/	/15 13:30	
Client ID:	WTO-	GW					Date Re	eceived:	06/30/	′15	
Sample Location:	WAYL	AND, MA					Field Pr	ep:	Not S	pecified	
Matrix:	Water	-									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst

T di difficici	Result	quaimer	onits					Analys
MCP Total Metals	s - Westboro	ugh Lab						
Antimony, Total	ND		mg/l	0.0020	 1	07/03/15 13:38 07/08/15 21:32 EPA	3005A 97,6020A	A BM
Arsenic, Total	0.0056		mg/l	0.0005	 1	07/03/15 13:38 07/08/15 21:32 EPA	3005A 97,6020A	A BM
Cadmium, Total	ND		mg/l	0.0005	 1	07/03/15 13:38 07/08/15 21:32 EPA	3005A 97,6020A	A BM
Chromium, Total	0.0058		mg/l	0.0010	 1	07/03/15 13:38 07/08/15 21:32 EPA	3005A 97,6020A	A BM
Copper, Total	0.0073		mg/l	0.0010	 1	07/03/15 13:38 07/08/15 21:32 EPA	3005A 97,6020A	A BM
Iron, Total	4.4		mg/l	0.05	 1	07/03/15 13:35 07/08/15 19:53 EPA	3005A 97,6010C	С МС
Lead, Total	0.0036		mg/l	0.0010	 1	07/03/15 13:38 07/08/15 21:32 EPA	3005A 97,6020A	A BM
Mercury, Total	ND		mg/l	0.0002	 1	07/03/15 12:33 07/03/15 15:38 EPA	7470A 97,7470A	A EA
Nickel, Total	0.0107		mg/l	0.0005	 1	07/03/15 13:38 07/08/15 21:32 EPA	3005A 97,6020A	A BM
Silver, Total	ND		mg/l	0.0005	 1	07/03/15 13:38 07/08/15 21:32 EPA	3005A 97,6020A	A BM
Zinc, Total	0.0173		mg/l	0.0100	 1	07/03/15 13:38 07/08/15 21:32 EPA	3005A 97,6020A	A BM

Project Name:AMERESCO WAYLAND TOProject Number:3652150017

 Lab Number:
 L1514913

 Report Date:
 07/09/15

Method Blank Analysis Batch Quality Control

	Qualifier Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
MCP Total Metals - Westborough	Lab for sample(s):	: 03 Batcl	h: WG	799719-1				
Mercury, Total ND	mg/l	0.0002		1	07/03/15 12:33	07/03/15 15:33	97,7470A	EA

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Qual	ifier Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
MCP Total Metals - We	stborough Lab	for sample(s): 03 Ba	tch: WG	799737-1				
Iron, Total	ND	mg/l	0.05		1	07/03/15 13:35	07/08/15 18:48	97,6010C	MC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifi	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Total Metals - Wes	stborough Lab fo	r sample(s):	03 Bato	h: WG	799740-1				
Antimony, Total	ND	mg/l	0.0020		1	07/03/15 13:38	07/08/15 21:10	97,6020A	BM
Arsenic, Total	ND	mg/l	0.0005		1	07/03/15 13:38	07/08/15 21:10	97,6020A	BM
Cadmium, Total	ND	mg/l	0.0005		1	07/03/15 13:38	07/08/15 21:10	97,6020A	BM
Chromium, Total	ND	mg/l	0.0010		1	07/03/15 13:38	07/08/15 21:10	97,6020A	BM
Copper, Total	ND	mg/l	0.0010		1	07/03/15 13:38	07/08/15 21:10	97,6020A	BM
Lead, Total	ND	mg/l	0.0010		1	07/03/15 13:38	07/08/15 21:10	97,6020A	BM
Nickel, Total	ND	mg/l	0.0005		1	07/03/15 13:38	07/08/15 21:10	97,6020A	BM
Silver, Total	ND	mg/l	0.0005		1	07/03/15 13:38	07/08/15 21:10	97,6020A	BM
Zinc, Total	ND	mg/l	0.0100		1	07/03/15 13:38	07/08/15 21:10	97,6020A	BM

Prep Information

Digestion Method: EPA 3005A

Project Name:AMERESCO WAYLAND TOProject Number:3652150017

 Lab Number:
 L1514913

 Report Date:
 07/09/15

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst	
Total Hardness by	SM 2340B - Westborough	h Lab for	sample(s): 02	Batch: WG	799800-1				
Hardness	ND	mg/l	0.66	NA	1	07/04/15 06:46	07/08/15 19:37	7 1,6010C	MC	
Prep Information Digestion Method: EPA 3005A										
Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst	
MCP Total Metals	- Westborough Lab for sa	mple(s):	01 Batc	h: WG	800303-1					

MCP Total Metals	- westborougn Lab	for sample(s): (JI Batci	n: VVG80	0303-1				
Mercury, Total	ND	mg/kg	0.083		1	07/07/15 09:23	07/07/15 11:59	97,7471B	DB

Prep Information

Digestion Method: EPA 7471B

Parameter	Result Qualifi	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Total Metals - V	Vestborough Lab fo	r sample(s): (01 Batcl	n: WG	800509-1				
Arsenic, Total	ND	mg/kg	0.40		1	07/07/15 16:20	07/08/15 23:02	97,6010C	MC
Cadmium, Total	ND	mg/kg	0.40		1	07/07/15 16:20	07/08/15 23:02	97,6010C	MC
Chromium, Total	ND	mg/kg	0.40		1	07/07/15 16:20	07/08/15 23:02	97,6010C	MC
Lead, Total	ND	mg/kg	2.0		1	07/07/15 16:20	07/08/15 23:02	97,6010C	MC

Prep Information

Digestion Method: EPA 3050B

Lab Control Sample Analysis Batch Quality Control

Project Name: AMERESCO WAYLAND TO

Project Number: 3652150017 Lab Number: L1514913 Report Date: 07/09/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Total Metals - Westborough Lab Associate	ed sample(s): 03	Batch: WC	G799719-2 WG	6799719-3					
Mercury, Total	109		108		80-120	1		20	
MCP Total Metals - Westborough Lab Associate	ed sample(s): 03	Batch: WC	G799737-2 WC	6799737-3					
Iron, Total	97		96		80-120	1		20	
MCP Total Metals - Westborough Lab Associate	ed sample(s): 03	Batch: WC	6799740-2 WG	6799740-3					
Antimony, Total	95		96		80-120	1		20	
Arsenic, Total	98		96		80-120	2		20	
Cadmium, Total	107		101		80-120	6		20	
Chromium, Total	93		91		80-120	2		20	
Copper, Total	94		92		80-120	2		20	
Lead, Total	97		96		80-120	1		20	
Nickel, Total	96		92		80-120	4		20	
Silver, Total	95		94		80-120	1		20	
Zinc, Total	95		95		80-120	0		20	
Total Hardness by SM 2340B - Westborough Lal	o Associated sa	mple(s): 02	Batch: WG799	9800-2					
Hardness	103		-		80-120	-			
MCP Total Metals - Westborough Lab Associate	ed sample(s): 01	Batch: WC	6800303-2 WC	\$800303-3 \$	SRM Lot Number: D	088-540			
Mercury, Total	92		90		72-128	1		30	

Lab Control Sample Analysis Batch Quality Control

Project Name: AMERESCO WAYLAND TO

Project Number: 3652150017 Lab Number: L1514913 Report Date: 07/09/15

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
MCP Total Metals - Westborough Lab As	ssociated sample(s): 01	Batch: WG800509-2 WG80050	9-3 SRM Lot Number: D	088-540	
Arsenic, Total	96	88	79-121	9	30
Cadmium, Total	92	85	83-117	8	30
Chromium, Total	92	86	80-120	7	30
Lead, Total	88	82	81-117	7	30

INORGANICS & MISCELLANEOUS

Project Name:AMERESCO WAYLAND TOProject Number:3652150017

Lab Number: L1514913 Report Date: 07/09/15

SAMPLE RESULTS

Lab ID:L1514913-01Client ID:WTO-SSSample Location:WAYLAND, MAMatrix:Soil

Date Collected:06/30/15 13:00Date Received:06/30/15Field Prep:Not Specified

Test Material Information

Source of Material:	Unknown
Description of Material:	Non-Metallic - Damp Clay
Particle Size:	Medium
Preliminary Burning Time (sec):	120

Parameter	Result	Date Analyzed	Analytical Method	Analyst
Ignitability of Solic	ls - Westborough Lab			
Ignitability	NI	07/07/15 12:58	1,1030	AB

Project Name:	AMERESCO WAYLAND TO
Project Number:	3652150017

 Lab Number:
 L1514913

 Report Date:
 07/09/15

SAMPLE RESULTS

Lab ID:	L1514913-01	Date Collected:	06/30/15 13:00
Client ID:	WTO-SS	Date Received:	06/30/15
Sample Location:	WAYLAND, MA	Field Prep:	Not Specified
Matrix:	Soil		

Parameter	Result Qu	alifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab								
Specific Conductance	190	umhos/cm	10		1	-	06/30/15 18:05	1,9050A	AS
Solids, Total	84.3	%	0.100	NA	1	-	07/02/15 01:49	30,2540G	RT
рН (Н)	6.2	SU	-	NA	1	-	07/01/15 05:15	1,9045D	LH
Cyanide, Reactive	ND	mg/kg	10		1	07/08/15 18:45	07/08/15 21:04	1,7.3	TL
Sulfide, Reactive	ND	mg/kg	10		1	07/08/15 18:45	07/08/15 20:56	1,7.3	TL

Project Name: Project Number:	AMERESCO 3652150017		ND TO	SAMPLE	RESUL	ſS			L1514913)7/09/15	
Lab ID: Client ID: Sample Location: Matrix:	L1514913-0 WTO-GW WAYLAND, M/ Water							eceived:	06/30/15 13:3 06/30/15 Not Specified	0
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP General Chemistry	- Westboroug	gh Lab								
Chromium, Hexavalent	ND		mg/l	0.010		1	06/30/15 21:30	06/30/15 22:18	97,7196A	ML
General Chemistry - We	stborough Lat	b								
рН (Н)	6.9		SU	-	NA	1	-	07/01/15 05:15	30,4500H+-B	LH
Anions by Ion Chromato	graphy - Wes	tborough	Lab							
Chloride	3160		mg/l	125		250	-	07/01/15 21:06	44,300.0	AU

Project Name:AMERESCO WAYLAND TOProject Number:3652150017

 Lab Number:
 L1514913

 Report Date:
 07/09/15

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifie	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP General Chemis	try - Westborough Lab	for sample(s): 03	Batch:	WG798815	-1			
Chromium, Hexavalent	ND	mg/l	0.010		1	06/30/15 21:30	06/30/15 22:14	97,7196A	ML
Anions by Ion Chroma	tography - Westboroug	gh Lab for sa	mple(s)): 03 B	atch: WG7	99221-1			
Chloride	ND	mg/l	0.500		1	-	07/01/15 17:42	44,300.0	AU
General Chemistry - V	Vestborough Lab for sa	ample(s): 01	Batch	: WG80	0944-1				
Cyanide, Reactive	ND	mg/kg	10		1	07/08/15 18:45	07/08/15 21:04	1,7.3	TL
General Chemistry - V	Vestborough Lab for sa	ample(s): 01	Batch	: WG80	0945-1				
Sulfide, Reactive	ND	mg/kg	10		1	07/08/15 18:45	07/08/15 20:55	1,7.3	TL

Lab Control Sample Analysis Batch Quality Control

Batch

Project Name: AMERESCO WAYLAND TO

Project Number: 3652150017

 Lab Number:
 L1514913

 Report Date:
 07/09/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab Assoc	iated sample(s)	: 01 Bato	ch: WG798754-1						
Specific Conductance	95		-		80-120	-			
MCP General Chemistry - Westborough Lab	Associated sam	ple(s): 03	Batch: WG798	8815-2 W	G798815-3				
Chromium, Hexavalent	91		90		80-120	1		20	
General Chemistry - Westborough Lab Assoc	iated sample(s)	: 03 Bato	ch: WG798858-1	l					
рН	101		-		99-101	-		5	
General Chemistry - Westborough Lab Assoc	iated sample(s)	: 01 Bato	ch: WG798860-1	l					
рН	101		-		99-101	-			
Anions by Ion Chromatography - Westborough	h Lab Associate	ed sample((s): 03 Batch: \	NG79922	1-2				
Chloride	99		-		90-110	-			
General Chemistry - Westborough Lab Assoc	iated sample(s)	: 01 Bate	ch: WG800944-2	2					
Cyanide, Reactive	91		-		30-125	-		40	
General Chemistry - Westborough Lab Assoc	iated sample(s)	: 01 Bate	ch: WG800945-2	2					
Sulfide, Reactive	96		-		60-125	-		40	

20

Project Name: Project Number:	AMERESCO WAYLAND TO 3652150017	Lal	b Duplicate Analy Batch Quality Control	sis	Lab Numbo Report Dat	E1314913
Parameter		Native Sample	Duplicate Sample	Units F	RPD Qual	RPD Limits
General Chemistry - Wes	stborough Lab Associated samp	ole(s): 01 QC Batch ID	: WG799251-1 QC Sa	mple: L1514913-0	01 Client ID: W	TO-SS

84.9

%

1

84.3

Solids, Total

Project Name:AMERESCO WAYLAND TOProject Number:3652150017

Lab Number: L1514913 Report Date: 07/09/15

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Reagent H2O Preserved Vials Frozen on: 06/30/2015 17:22

Cooler Information Custody Seal Cooler

А

Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1514913-01A	Vial MeOH preserved	А	N/A	2.9	Y	Absent	MCP-8260HLW-10(14)
L1514913-01B	Vial water preserved	А	N/A	2.9	Y	Absent	MCP-8260HLW-10(14)
L1514913-01C	Vial water preserved	А	N/A	2.9	Y	Absent	MCP-8260HLW-10(14)
L1514913-01D	Glass 500ml/16oz unpreserved	A	N/A	2.9	Y	Absent	IGNIT-1030(14),MCP-8082- 10(365),MCP-CR-6010T- 10(180),REACTS(14),MCP- 8270-10(14),MCP-AS-6010T- 10(180),MCP-7471T- 10(28),MCP-CD-6010T- 10(180),PH- 9045(1),REACTCN(14),TPH- DRO-D(14),COND- 9050(28),MCP-PB-6010T- 10(180)
L1514913-01E	Plastic 2oz unpreserved for TS	А	N/A	2.9	Y	Absent	TS(7)
L1514913-02A	Plastic 500ml HNO3 preserved	А	<2	2.9	Y	Absent	HARDT(180)
L1514913-03A	Plastic 500ml HNO3 preserved	A	<2	2.9	Y	Absent	MCP-FE-6010T-10(180),MCP- CR-6020T-10(180),MCP- 7470T-10(28),MCP-CU-6020T- 10(180),MCP-ZN-6020T- 10(180),MCP-AS-6020T- 10(180),MCP-AG-6020T- 10(180),MCP-CD-6020T- 10(180),MCP-PB-6020T- 10(180),MCP-SB-6020T- 10(180)
L1514913-03B	Plastic 500ml unpreserved	A	7	2.9	Y	Absent	CL-300(28),PH-4500(.01),MCP- HEXCR7196-10(1)

Project Name: AMERESCO WAYLAND TO

Project Number: 3652150017

Lab Number: L1514913

Report Date: 07/09/15

GLOSSARY

Acronyms

- EDL Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- NP Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
- TIC Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NDD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte applies to associated field samples that have detectable concentrations of the analyte applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.

Report Format: Data Usability Report

Project Name: AMERESCO WAYLAND TO

Project Number: 3652150017

Lab Number: L1514913

Report Date: 07/09/15

Data Qualifiers

- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name:AMERESCO WAYLAND TOProject Number:3652150017

 Lab Number:
 L1514913

 Report Date:
 07/09/15

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.
- 44 Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised December 16, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.
EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, Iodomethane (methyl iodide), Methyl methacrylate, Azobenzene.
EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 625: 4-Chloroaniline, 4-Methylphenol.
SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.
EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility EPA 8270D: Biphenyl. EPA 2540D: TSS EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;
EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;
EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.
EPA 624: Volatile Halocarbons & Aromatics,
EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan Sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Дерна	CHA	IN OF C	USTO	DY P	AGE_	OF	Da	nte Rec	c'd in L	ab:	4	0/3	soli	5	A	LPH	Seria IA Jo	al_No ob #:	o:0709	L1517:32	1491	13	
A MALE ATTICAL	200 Eastar Blue		oject Informat	ion			R	eport	Inform	nation	- Dat	a Del	ivera	bles	В	lilling	g Info	orma	tion				
8 Walkup Drive Westboro, MA 0 Tel: 508-898-92		02048 Proj	iect Name: AM	enesco	Waylon	d TO	X		c	ÌX.	EMAIL	ŝ				Same	e as C	Client i	info F	PO #:			
Client Information	n		ect Location: W				the second se	egula	tory R	equire	ement	s &	Pre	oject					iremer	the second se			
Client: AMPC	Fosfer What	Projon Pro	ect #: 365	aism	17	-	X	Yes 🗆	No MA	MCP	Analyti	cal Me	ethods	SDG	2 (Re		es 🖄	No (CT RCF Inorgai	Analytical	Methods	S	
Address: 271 /			ect Manager:			•		Yes 🖬	No GV	V1 Star	ndards									1103)			
ChelmsFord			PHA Quote #:	00 00			1.		No NF State /F								Criter	ria					
Phone: 978-7	27-4006		rn-Around Tir	ne					2	1	22	1.	\checkmark	/ /	8	1	A	8	EM I				
Email: jeff. 10		- C . (The		RUSH (only o	confirmed if pre-ap	oproved!)		SIS DE LI	D PAH MCP LO	14 DRC	Lag Fright	C Mon	Pres Only	Time Sc	2 Sub	3/2	A A	1 8 T	tong			T	
Additional Pr	oject Informat	ion:	ate Due:						A H	MCP	25	772		"gerp	E	DT.	ES	ST.	A.	SAMPLE	INFO	T A	
e Metais gourdw <u>ICP MS e</u> Nickel	ater analytes: 5020: Antima , Silver, Zinc	+ methods: ny, Arsenic, (200,7: I	Cadmin, Cli 100. 245	Mercun	Capper,	Lead, 3500:	AN	101	ABN	A PERM	Children edit	K PCB S Targets	TPH: MQuanton EP	OLAL DEINGer	FORT	C Cent	With Color	ant -	SS	Filtration	do	L # BO	
· For soil, run T	CLP if aux c	Niteria exce	eded.		t.	avenium	1		100	is		B	it au	FR	7.	5	j.	ST.	S.	Lab to	00120200	T	
ALPHA Lab ID (Lab Use Only)	San	nple ID	Colle	ection Time	Sample Matrix	Sampler Initials		SVOC:	METAL	METALS:	Hay	K PCB	Hai	10	Su		N S S	12	Sa Sa	ample Com	ments	L E S	
14913-01	WTO-S	5	6/20/15	1300	5	JUR	X	X	X		1	X	X)	$\langle \chi$	'X	X	X	1				5	
5	T. DI	K 6-30-1	5 6/30/15		G	DANA	X	\cap	1				<u></u>			1					-	3	2
0	The Dur	nul som		0020	Cul	-	N		-				-		-		-	V	-			1	R
d	WIO	7 ^{vv}	61390	0930		JMR	-				+				+			1				1	
3	WTO-G	ŚW	6/39/15	1330	GW	JMR			X	Х						-						d	
							-				-									· ·			
														_									
										+	R												
Container Type P= Plastic	Preservative A≈ None				Conta	iner Type	V	A	AA	A	X	A	A.	A	A	A	A	A					
A= Amber glass V= Vial G= Glass	$B = HCI$ $C = HNO_3$ $D = H_2SO_4$				Pre	eservative	AF	A	CA	A		A.	A/	AA	A	A	A	C					
B= Bacteria cup C= Cube	E= NaOH F= MeOH	Re	linquished By:		Date	e/Time	0		Rec	eived B	y:	1 .	11	Date	e/Time	e	ΔΙΙ	samo	les eub	mitted are s	ubject !	to	
O= Other E= Encore D= BOD Bottle	G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Àcid J = NH ₄ Cl K= Zn Acetate O= Other	Myper G	Telt Ray	icci)	6/30/15	5 1345 1500	Ù	All	n v	NE	nel	001	6B Lei	130/5	- 75	TUO TUO	Alp Se	oha's e reve	Terms a erse sid	nd Conditio	ons.		

4A

VOLATILE ORGANICS METHOD BLANK SUMMARY

SAMPLE NO.

WG800821-3BLANK

Lab Name: Alpha Analytical Labs

SDG No.: L1514913

Lab File ID: 0708A05

Lab Sample ID: WG800821-3

Date Analyzed: 07/08/15 Time Analyzed: 09:22

Instrument ID: CHARLIE.I

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

	CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED
01 02 03	======================================	======================================	======================================	======================================

COMMENTS: _____

page 1 of 1

FORM IV MCP-8260HLW-10 LOW

- .

7A Volatile Organics CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1514913

Instrument ID: Charlie.i	Calibration Date: 08-JUL-2015 Time: 07:26
Lab File ID: 0708A01	Init. Calib. Date(s): 12-JUN-2 12-JUN-2
Sample No: 8260 CCAL	Init. Calib. Times : 13:25 17:15

dichlorodifluoromethane .19143 .2002 .1 5 20 chloromethane .34466 .34226 .1 -1 20 vinyl chloride .28468 .2215 .1 -22 20 bromomethane .100 95.960 .1 -4 20 chloroethane .13711 .11851 .1 -14 20 trichlorofluoromethane .14746 .13832 .05 -6 20 1,dichloroethene .19966 .17087 .1 -14 20 carbon disulfide .71112 .5574 .1 -22 20 methylene chloride .26756 .2439 .1 -9 20 acetone .07027 .07363 .1 5 20 trans-1, 2-dichloroethene .23581 .2059 .1 .13 20 pethyl Tert butyl ether .6997 .65047 .1 -7 20 Disopropyl Ether .10521 1.0172 .05 .3 20 cis-1, 2-dichloroethene .26276 .24024 </th <th>Compound</th> <th>RRF</th> <th>RRF</th> <th>MIN RRF</th> <th>%D</th> <th>MAX %D</th> <th></th>	Compound	RRF	RRF	MIN RRF	%D	MAX %D	
chloromethane .34466 .34226 .1 -1 20 vinyl chloride .28468 .2215 .1 -22 20 bromomethane 100 95.960 .1 -4 20 chloroethane .13711 .11851 .1 -14 20 trichlorofluoromethane .14746 .13832 .05 -6 20 1,1,-dichloroethene .19966 .17087 .1 -14 20 carbon disulfide .26756 .2439 .1 -9 20 acetone .07027 .07363 .1 5 20 trans-1,2-dichloroethene .23581 .2059 .1 -13 20 methyl tert butyl ether .6997 .65047 .1 -7 20 Disopropyl Ether .10521 1.0172 .05 -3 20 cis-1,2-dichloroethene .26276 .24024 .1 -9 20 cis-1,2-dichloropethene .1031 .1182 .05 1 20 cis-1,2-dichloropethene .34245 .30985		1				1	
Viny1 Childe	dichlorodifluoromethane	.19143					
Ninyi Chinyi	chloromethane	.34466					
Dromomethane		1.20400					F
trichlorofluoromethane .24127 .24481 .1 1 20 ethyl ether .14746 .13832 .05 -6 20 1,1,-dichloroethene .19966 .17087 .1 -14 20 carbon disulfide .71112 .5574 .1 -22 20 methylene chloride .26756 .2439 .1 -22 20 acetone .07027 .07363 .1 5 20 trans-1,2-dichloroethene .23581 .20559 .1 -7 20 isopropyl Ether .0521 1.0172 .05 -3 20 cthyl-Tert-Butyl-Ether .93543 .8765 .05 -6 20 cis-1,2-dichloroethene .26276 .24024 .1 -9 20 chloroform .34425 .30985 .05 -10 20 chloroform .4394 .40541 .2 -8 20 carbontetrachloride .27773 .24553 .1 -12 20 tetrahydrofuran .08689 .09003	bromomethane	1 TOO	95.960				
trichlorofluoromethane	chloroethane						
carbon disulfide	trichlorofluoromethane	.24127					
carbon disulfide	ethyl ether	14746					
carbon disulfide	1,1,-dichloroethene	19966	17087				
methylene chloride	carbon disulfide	.71112	.5574				F
trans-1,2-dichloroethene	methylene chloride	26756					
methyl tert butyl ether .6997 .65047 .1 -7 20 Diisopropyl Ether 1.0521 1.0172 .05 -3 20 1,1-dichloroethane .4981 .45388 .2 -9 20 Ethyl-Tert-Butyl-Ether .93543 .8765 .05 -6 20 2,2-dichloropropane .26276 .24024 .1 -9 20 bromochloromethane .1031 .11182 .05 1 20 chloroform .4394 .40541 .2 -8 20 carbontetrachloride .27973 .24553 .1 -12 20 1,1,1-trichloroethane .08869 .09003 .05 2 20 1,1,1-trichloroptopene .36198 .31035 .1 -14 20 2-butanone .11495 .11571 .1 1 20 1,2-dichloropthane .36736 .35447 .1 -4 20 1,2-dichloropthane .13923 .13667 .05 -2 20 1,2-dichloropthane .28463 .262 .1 -8 20 1,2-dichloropthane .3328 .29878 .2 -10 20 1,2-dichloropthane	acetone	.07027					F
methyl tert butyl ether .6997 .65047 .1 -7 20 Diisopropyl Ether 1.0521 1.0172 .05 -3 20 1,1-dichloroethane .4981 .45388 .2 -9 20 Ethyl-Tert-Butyl-Ether .93543 .8765 .05 -6 20 2,2-dichloropropane .26276 .24024 .1 -9 20 bromochloromethane .26276 .24024 .1 -9 20 carbontetrachloride .34425 .30985 .05 -10 20 carbontetrachloride .4394 .40541 .2 -8 20 carbontetrachloride .08869 .09003 .05 2 20 1,1,1-trichloroethane .08869 .09003 .05 2 20 1,1-dichloropropene .32395 .26221 .05 -19 20 l,2-dichloroethane .32395 .26221 .05 -9 20 1,2-dichloropropane .36198 .31035 <td>trans-1,2-dichloroethene</td> <td>.23581</td> <td></td> <td></td> <td></td> <td></td> <td></td>	trans-1,2-dichloroethene	.23581					
1,1-dichloroethane .4981 .45388 .2 -9 20 Ethyl-Tert-Butyl-Ether .93543 .8765 .05 -6 20 cis-1,2-dichloroethene .26276 .24024 .1 -9 20 2,2-dichloropropane .34425 .30985 .05 -10 20 bromochloromethane .11031 .11182 .05 1 20 carbontetrachloride .27973 .24553 .1 -12 20 tetrahydrofuran .0869 .09003 .05 2 20 1,1,1-trichloroethane .36198 .31035 .1 -14 20 2-butanone .11495 .11571 .1 1 20 1,2-dichloropropene .36736 .35447 .1 -4 20 1,2-dichloropropane .28463 .262 .1 -8 20 1,2-dichloropropane .3328 .29878 .2 -10 20 1,2-dichloropropane .33238 .29878 .2	methyl tert butyl ether	.6997					
1,1-dichloroethane	Diisopropyl Ether	1.0521	1.0172		-3	20	
Ethyl-Tert-Butyl-Ether	1,1-dichloroethane	.4981	.45388	.2	-9		
2,2-dichloropropane .34425 .30985 .05 -10 20 bromochloromethane .11031 .11182 .05 1 20 chloroform .4394 .40541 .2 -8 20 carbontetrachloride .27973 .24553 .1 -12 20 tetrahydrofuran .08869 .09003 .05 2 20 1,1-trichloroethane .36198 .31035 .1 -14 20 2-butanone .32395 .26221 .05 -19 20 1,1-dichloropropene .97216 .85684 .5 -12 20 trichloroethane .36736 .35447 .1 -4 20 1,2-dichloroptopane .26097 .22905 .2 -12 20 dibromodichloromethane .3328 .29878 .2 -10 20 1,4-dioxane .38314 .35813 .2 -7 20 cisl-1,3-dichloropropene .38314 .35813 .2 -7	Ethyl-Tert-Butyl-Ether	.93543	.8765	.05			
2,2-dichloropropane .34425 .30985 .05 -10 20 bromochloromethane .11031 .11182 .05 1 20 chloroform .4394 .40541 .2 -8 20 carbontetrachloride .27973 .24553 .1 -12 20 tetrahydrofuran .08869 .09003 .05 2 20 1,1-trichloroethane .36198 .31035 .1 -14 20 2-butanone .32395 .26221 .05 -19 20 1,1-dichloropropene .97216 .85684 .5 -12 20 trichloroethane .36736 .35447 .1 -4 20 1,2-dichloroptopane .26097 .22905 .2 -12 20 dibromodichloromethane .3328 .29878 .2 -10 20 1,4-dioxane .38314 .35813 .2 -7 20 cisl-1,3-dichloropropene .38314 .35813 .2 -7	cis-1,2-dichloroethene	.26276	.24024	.1		20	
bromochloromethane	2,2-dichloropropane	.34425	.30985	.05	-10	20	
chloroform	bromochloromethane	1.11031	111182			20	
tetrahydrofuran .08869 .09003 .05 2 20 1,1,1-trichloroethane .36198 .31035 .1 -14 20 2-butanone .11495 .11571 .1 1 20 1,1-dichloropropene .32395 .26221 .05 -19 20 benzene .97216 .85684 .5 -12 20 Tertiary-Amyl Methyl Ether .68871 .62814 .05 -9 20 1,2-dichloroethane .36736 .35447 .1 -4 20 trichloroethene .26097 .22905 .2 -12 20 dibromomethane .13923 .13667 .05 -2 20 1,2-dichloropropane .28463 .262 .1 -8 20 bromodichloromethane .3328 .29878 .2 -10 20 1,4-dioxane .38314 .35813 .2 -7 20 cis-1,3-dichloropropene .89371 .74742 .4 -16	chloroform	.4394	.40541	.2	-8	20	
tetrahydrofuran .08869 .09003 .05 2 20 1,1,1-trichloroethane .36198 .31035 .1 -14 20 2-butanone .11495 .11571 .1 1 20 1,1-dichloropropene .32395 .26221 .05 -19 20 benzene .97216 .85684 .5 -12 20 Tertiary-Amyl Methyl Ether .68871 .62814 .05 -9 20 1,2-dichloroethane .36736 .35447 .1 -4 20 trichloroethene .26097 .22905 .2 -12 20 dibromomethane .13923 .13667 .05 -2 20 1,2-dichloropropane .28463 .262 .1 -8 20 bromodichloromethane .3328 .29878 .2 -10 20 1,4-dioxane .38314 .35813 .2 -7 20 cis-1,3-dichloropropene .89371 .74742 .4 -16	carbontetrachloride	.27973	.24553	.1	-12	20	
2-butanone .11495 .11571 .1 1 20 1,1-dichloropropene .32395 .26221 .05 -19 20 benzene .97216 .85684 .5 -12 20 Tertiary-Amyl Methyl Ether .68871 .62814 .05 -9 20 1,2-dichloroethane .36736 .35447 .1 -4 20 trichloroethene .26097 .22905 .2 -12 20 dibromomethane .13923 .13667 .05 -2 20 1,2-dichloropropane .28463 .262 .1 -8 20 bromodichloromethane .3328 .29878 .2 -10 20 1,4-dioxane .38314 .35813 .2 -7 20 cis-1,3-dichloropropene .89371 .74742 .4 -16 20 4-methyl-2-pentanone .09467 .09043 .1 -4 20 tetrachloroethene .32643 .30447 .2 -7 20	tetrahydrofuran	.08869	.09003	.05	2	20	
2-butanone .11495 .11571 .1 1 20 1,1-dichloropropene .32395 .26221 .05 -19 20 benzene .97216 .85684 .5 -12 20 Tertiary-Amyl Methyl Ether .68871 .62814 .05 -9 20 1,2-dichloroethane .36736 .35447 .1 -4 20 trichloroethene .26097 .22905 .2 -12 20 dibromomethane .13923 .13667 .05 -2 20 1,2-dichloropropane .28463 .262 .1 -8 20 bromodichloromethane .3328 .29878 .2 -10 20 1,4-dioxane .38314 .35813 .2 -7 20 cis-1,3-dichloropropene .89371 .74742 .4 -16 20 4-methyl-2-pentanone .09467 .09043 .1 -4 20 tetrachloroethene .32643 .30447 .2 -7 20	1,1,1-trichloroethane	.36198	.31035		-14	20	
benzene .97216 .85684 .5 -12 20 Tertiary-Amyl Methyl Ether .68871 .62814 .05 -9 20 1,2-dichloroethane .36736 .35447 .1 -4 20 trichloroethene .26097 .22905 .2 -12 20 dibromomethane .13923 .13667 .05 -2 20 1,2-dichloropropane .28463 .262 .1 -8 20 bromodichloromethane .3328 .29878 .2 -10 20 1,4-dioxane .38314 .35813 .2 -7 20 cis-1,3-dichloropropene .89371 .74742 .4 -16 20 doluene .09467 .09043 .1 -4 20 1 4-methyl-2-pentanone .32643 .30447 .2 -7 20	2-butanone	.11495	111571	.1	1	20	
benzene .97216 .85684 .5 -12 20 Tertiary-Amyl Methyl Ether .68871 .62814 .05 -9 20 1,2-dichloroethane .36736 .35447 .1 -4 20 trichloroethene .26097 .22905 .2 -12 20 dibromomethane .13923 .13667 .05 -2 20 1,2-dichloropropane .28463 .262 .1 -8 20 bromodichloromethane .3328 .29878 .2 -10 20 1,4-dioxane .38314 .35813 .2 -7 20 cis-1,3-dichloropropene .89371 .74742 .4 -16 20 doluene .09467 .09043 .1 -4 20 1 4-methyl-2-pentanone .32643 .30447 .2 -7 20	1,1-dichloropropene	.32395	.26221	.05	-19	20	
Tertiary-Amyl Methyl Ether68871.62814.05-9201,2-dichloroethane36736.35447.1-420trichloroethene26097.22905.2-1220dibromomethane13923.13667.05-2201,2-dichloropropane28463.262.1-820bromodichloromethane3328.29878.2-10201,4-dioxane50004700.05-620cis-1,3-dichloropropene38314.35813.2-720toluene89371.74742.4-16204-methyl-2-pentanone09467.09043.1-420tetrachloroethene.32643.30447.2-720	benzene	.97216	.85684	.5	-12	20	
1,2-dichloroethane .36736 .35447 .1 -4 20 trichloroethene .26097 .22905 .2 -12 20 dibromomethane .13923 .13667 .05 -2 20 1,2-dichloropropane .28463 .262 .1 -8 20 bromodichloromethane .3328 .29878 .2 -10 20 1,4-dioxane .5000 4700 .05 -6 20 cis-1,3-dichloropropene .38314 .35813 .2 -7 20 toluene .89371 .74742 .4 -16 20 4-methyl-2-pentanone .09467 .09043 .1 -4 20 1 tetrachloroethene .32643 .30447 .2 -7 20	Tertiary-Amyl Methyl Ether	.68871	.62814		-9	20	
trichloroethene .26097 .22905 .2 -12 20 dibromomethane .13923 .13667 .05 -2 20 1,2-dichloropropane .28463 .262 .1 -8 20 bromodichloromethane .3328 .29878 .2 -10 20 1,4-dioxane 5000 4700 .05 -6 20 cis-1,3-dichloropropene .38314 .35813 .2 -7 20 toluene .89371 .74742 .4 -16 20 4-methyl-2-pentanone .09467 .09043 .1 -4 20 1 tetrachloroethene .32643 .30447 .2 -7 20	1,2-dicĥloroethane	.36736	.35447		-4	20	
dibromomethane .13923 .13667 .05 -2 20 1,2-dichloropropane .28463 .262 .1 -8 20 bromodichloromethane .3328 .29878 .2 -10 20 1,4-dioxane .5000 4700 .05 -6 20 cis-1,3-dichloropropene .38314 .35813 .2 -7 20 toluene .89371 .74742 .4 -16 20 4-methyl-2-pentanone .09467 .09043 .1 -4 20 tetrachloroethene .32643 .30447 .2 -7 20	trichloroethene	.26097	.22905	.2	-12	20	
1,2-dichloropropane .28463 .262 .1 -8 20 bromodichloromethane .3328 .29878 .2 -10 20 1,4-dioxane 5000 4700 .05 -6 20 cis-1,3-dichloropropene .38314 .35813 .2 -7 20 toluene .89371 .74742 .4 -16 20 4-methyl-2-pentanone .09467 .09043 .1 -4 20 tetrachloroethene .32643 .30447 .2 -7 20	dibromomethane	.13923	.13667			20	
bromodichloromethane .3328 .29878 .2 -10 20 1,4-dioxane 5000 4700 .05 -6 20 cis-1,3-dichloropropene .38314 .35813 .2 -7 20 toluene .89371 .74742 .4 -16 20 4-methyl-2-pentanone .09467 .09043 .1 -4 20 tetrachloroethene .32643 .30447 .2 -7 20	1,2-dichloropropane	.28463	.262	.1	-8	20	
1,4-dioxane50004700.05-620cis-1,3-dichloropropene.38314.35813.2-720toluene.89371.74742.4-16204-methyl-2-pentanone.09467.09043.1-420tetrachloroethene.32643.30447.2-720	bromodichloromethane	.3328		.2	-10	20	
cis-1,3-dichloropropene .38314 .35813 .2 -7 20 toluene .89371 .74742 .4 -16 20 4-methyl-2-pentanone .09467 .09043 .1 -4 20 tetrachloroethene .32643 .30447 .2 -7 20	1.4-dioxane	5000		.05			
toluene .89371 .74742 .4 -16 20 4-methyl-2-pentanone .09467 .09043 .1 -4 20 tetrachloroethene .32643 .30447 .2 -7 20							
4-methyl-2-pentanone09467.09043 .1 -4 20 tetrachloroethene .32643.30447 .2 -7 20							
tetrachloroethene .32643 .30447 .2 -7 20	4-methyl-2-pentanone	.09467					F
trans-1,3-dichloropropene50606 .45923 .1 -9 20	tetrachloroethene	.32643					
	trans-1,3-dichloropropene	.50606					

FORM VII MCP-8260HLW-10

7A CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1514913

Instrument ID: Charlie.i	Calibration Date: 08-JUL-2015 Time: 07:2	26
Lab File ID: 0708A01	Init. Calib. Date(s): 12-JUN-2 12-JUN-2	2
Sample No: 8260 CCAL	Init. Calib. Times : 13:25 17:15	

Compound	RRF	RRF	MIN RRF	%D	MAX
=======================================		======		•=	====
1,1,2-trichloroethane					20
chlorodibromomethane	.31685				20
1,3-dichloropropane	.53227				20
1,2-dibromoethane	.2752				20
2-hexanone	.27021	.24752	·	-8	20
chlorobenzene					20
ethyl benzene	1.6482			-14	20
1,1,1,2-tetrachloroethane	.32203				20
n/m wylono	.59323		.05		20
p/m xylene			.3		20
o xylene					20
styrene	1.94009	.9073			
bromoform	.38262				20
isopropylbenzene	2.8589				20
bromobenzene	.68654		.05		20
n-propylbenzene 1,1,2,2,-tetrachloroethane	3.5756	3.0201	.05	-16	20
	.66902		.3	-11	20
2-chlorotoluene	2.4131		.05	-12	20
1,3,5-trimethybenzene	2.4499			-12	20
1,2,3-trichloropropane	.59561			-9	20
4-chorotoluene	2.212			-12	20
tert-butylbenzene	1.9215			-13	20
1,2,4-trimethylbenzene	2.4329			-10	20
sec-butylbenzene	3.0325		.05	-15	20
p-isopropyltoluene	2.4042		.05	-9	20
1,3-dichlorobenzene	1.3090		.6		20
1,4-dichlorobenzene	1.3232	1.2936			20
n-butylbenzene	2.461		.05	-13	20
1,2-dichlorobenzene	1.2083		.4	-2	20
1,2-dibromo-3-chloropropane	.08968	.08629	.05		20
hexachlorobutadiene	.40207	.38382	.05	-5	20
1,2,4-trichlorobenzene	.78228	.85049	.2	9	20
naphthalene	1.8945	1.8609	.05	-2	20
1,2,3-trichlorobenzene	.71849	.76764	.05	7	20
 	======		=====	====	====
dibromofluoromethane	.249	.26005	.05	4	30
1,2-dichloroethane-d4	.30334		.05	1	30
toluene-d8	1.4350		.05	Ō	30
4-bromofluorobenzene	1.0883	1.0282	.05	-6	30
	1			Ĭ	

FORM VII MCP-8260HLW-10

Attachment C – Table 2. Metals Dilution Calculations & 7Q10 Supporting Information

Table 2. Metals Dilution Calculations

 $DF = [(Qr + (Qp \times 1.55)/Qp \times 1.55)]$

DF = Dilution Factor

Qp = Discharge rate in million gallons per day (MGD)

Qr = Receiving water 7Q10 flow in cfs 1.55 - Eactor to convert MCD to cfs

1.55 = Factor to convert MGD to cfs

Discharge

Max System Flow (gpm) = 45 Qp (MGD) = 0.0648 Qr (cfs) = 0.36 DF = **4.6**

Note: the 7Q10 for Pine Brook adjacent to the project location was obtained using StreamStats Version 3 Beta.

	Highest Detected		Zero Dilution	Dillution Factor
Analyte	Concentration (ug/I)	DF	Concentration Limit (ug/l)	Concentration Limit (ug/I)
Cadmium ¹	0.5	4.6	0.2	0.9
Copper	7.3	4.6	5.2	23.8
Iron	4,400	4.6	1,000	4,584.2
Lead	3.6	4.6	1.3	6.0
Note:	-		-	

1. Cadmium was not detected, but the reporting limit exceeds the permit limit.

	Chlorid	e & Total Recov	verable Metal Li	mitations (ug/l) b	y Dilution Facto	r Range
Parameter	$1-5^{6}$	>5 - 10	>10 - 50	>50 - 100	>100	Ceiling Value ²
38. Chloride	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor
39. Antimony	5.6	30	60	141	141	141 ³
40. Arsenic	10	50	100	500	540	540 ⁴
41. Cadmium	0.2	1	2	10	20	260
42. ChromiumIII (Trivalent)	48.8	244	489	1,710	1,710	1,710
43. ChromiumVI (Hexavalent)	11.4	57	114	570	1,140	1,710 ⁵
44. Copper	5.2	26	52	260	520	2,070
45. Lead	1.3	6.5	13	66	132	430
46. Mercury	0.9	2.3	2.3	2.3	2.3	2.3 ³
47. Nickel	29	145	290	1,451	2,380	2,380
48. Selenium	5	25	50	250	408	408 ³
49. Silver	1.2	6	12	57	115	240
50. Zinc	66.6	333	666	1,480	1,480	1,480
51. Iron	1,000	5,000	5,000	5,000	5,000	5,000

Flow Statistics Ungaged Site Report Date: Mon July 13, 2015 3:06:38 PM GMT-4 Site Location: Massachusetts NAD 1983 Latitude: 42.3606 (42 21 38) NAD 1983 Longitude: -71.3641 (-71 21 51) Drainage Area: 5.6 mi2

Low Flows Basin Characteristics								
100% Statewide Low Flow WRIR00 4135 (5.6 mi2)								
Parameter	Value	Regression Equation Valid Range						
Parameter		Min	Max					
Drainage Area (square miles)	5.6	1.61	149					
Mean Basin Slope from 250K DEM (percent)	1.723	0.32	24.6					
Stratified Drift per Stream Length (square mile per mile)	0.41	0	1.29					
Massachusetts Region (dimensionless)	0	0	1					

Probability of Perennial Flow Basin Characteristics							
100% Perennial Flow Probability (5.6 mi2)							
Parameter	Value	Regression Equation Valid Range					
		Min	Max				
Drainage Area (square miles)	5.6 (above max value 1.99)	0.01	1.99				
Percent Underlain By Sand And Gravel (percent)	70.29	0	100				
Percent Forest (percent)	40.88	0	100				
Massachusetts Region (dimensionless)	0	0	1				

Warning: Some parameters are outside the suggested range. Estimates will be extrapolations with unknown errors.

Bankfull Flows Basin Characteristics						
100% Bankfull Statewide SIR2013 5155 (5.6 mi2)						
Parameter	Value	Regression Equation Valid Range				
		Min	Max			
Drainage Area (square miles)	5.6	0.6	329			
Mean Basin Slope from 10m DEM (percent)	5.477	2.2	23.9			

Low Flows Statistics							
Statistic Val	Value	'alue Unit	Prediction Error (percent)	Equivalent years of record	90-Percent Prediction Interval		
					Min	Max	
D50	5.54	ft3/s	18		2.81	10.8	
D60	4.29	ft3/s	20		1.47	12.4	
D70	3.02	ft3/s	24		1.19	7.57	
D75	2.45	ft3/s	26		1	5.94	

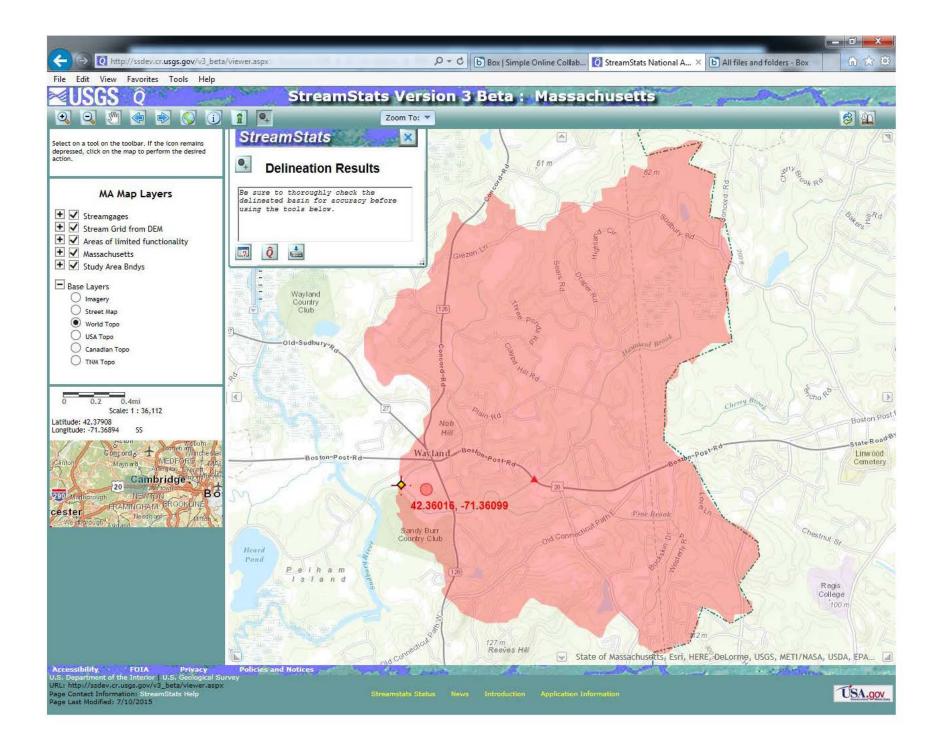
D80	2.19	ft3/s	28	0.94	5.02
D85	1.63	ft3/s	32	0.64	4.1
D90	1.35	ft3/s	37	0.53	3.35
D95	0.77	ft3/s	46	0.25	2.27
D98	0.51	ft3/s	60	0.15	1.65
D99	0.38	ft3/s	65	0.1	1.3
M7D2Y	0.79	ft3/s	50	0.25	2.35
AUGD50	1.79	ft3/s	33	0.68	4.63
M7D10Y	<mark>0.36</mark>	<mark>ft3/s</mark>	<mark>71</mark>	0.0918	<mark>1.31</mark>

http://pubs.usgs.gov/wri/wri004135/ (http://pubs.usgs.gov/wri/wri004135/)

Ries_K.G._III_2000_Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135_81 p.

Probability of Perennial Flow Statistics						
Statistic	Value	Unit Prediction Error (percent)		Equivalent years of	90-Percent Prediction Interval	
			record	Min	Max	
PROBPEREN	0.99	dim				

http://pubs.usgs.gov/sir/2006/5031/pdfs/SIR_2006-5031rev.pdf (http://pubs.usgs.gov/sir/2006/5031/pdfs/SIR_2006-5031rev.pdf) Bent_G.C._ and Steeves_P.A._2006_ A revised logistic regression equation and an automated procedure for mapping the probability of a stream flowing perennially in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2006-5031_107 p.


Bankfull Flows Statistics							
Statistic Valu	Value	ue Unit	Prediction Error (percent)	Equivalent years of record	90-Percent Prediction Interval		
					Min	Max	
BFWDTH	28.3	ft	21				
BFDPTH	1.51	ft	20				
BFAREA	42.3	ft2	29				
BFFLOW	111	ft3/s	55				

http://pubs.usgs.gov/sir/2013/5155/ (http://pubs.usgs.gov/sir/2013/5155/) Bent_G.C._ and Waite_A.M._ 2013_ Equations for estimating bankfull channel geometry and discharge for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2013-5155_ 62 p._

AccessibilityFOIAPrivacyPolicies and NoticesXIV1Ghsduxp#qwri#kh#qwhulru;XIV1JhrcrjfdoVxuyhXU0= kws=22vvghylfulxvjv1jry2y6behwd2IWuhsruwIkwpSdjh#FrqwdfwIqirup#dwlrq= Vwuhdp#VwdwrKhcs#Vwuhdp#vIqwrgxfwlrq#Dssdfdwlrq#qirup#dwlrqSdjh#DdvwPrglilhg=:24325348#

Vwuhdp#vwdwv#Vwdwxv# Qhzv

Attachment D – Notice of Intent

II. Suggested Notice of Intent (NOI) Format

1. General facility information. Please provide the following information about the facility.

a) Name of facility:	Mailing Address for the Facility:				
b) Location Address of the Facility (if different from mailing address):	Facility Location	Type of Business:			
	longitude: latitude:	Facility SIC codes:			
c) Name of facility owner:	Owner's email:				
Owner's Tel #:	Owner's Tel #: Owner's Fax #:				
Address of owner (if different from facility address)					
Owner is (check one): 1. Federal2. State3. Private4. Other(Describe) Legal name of Operator, if not owner: Operator Contact Name:					
Operator Tel Number: Fax N					
Operator's email: Operator Address (if different from owner)					
d) Attach a topographic map indicating the location of the facility an	d the outfall(s) to the receiving w	water. Map attached?			
 e) Check Yes or No for the following: 1. Has a prior NPDES permit been granted for the discharge? Yes 2. Is the discharge a "new discharger" as defined by 40 CFR Section 3. Is the facility covered by an individual NPDES permit? Yes 4. Is there a pending application on file with EPA for this discharge 	on 122.2? Yes No No If Yes, Permit No				

	Discharge mior mation. Frease provide mior mation about the dischar			
a)	a) Name of receiving water into which discharge will occur: State Water Quality Classification: Fre			
Sta	State Water Quality Classification: Fre	eshwater:	Marine Water:	_
b)	 b) Describe the discharge activities for which the owner/applicant 1. Construction dewatering of groundwater intrusion and/or 2. Short-term or long-term dewatering of foundation sumps. 3. Other. 			
c)	c) Number of outfalls			
For	For each outfall:			
d)	d) Estimate the maximum daily and average monthly flow of the dis Average Monthly Flow GPD	scharge (in gallo	ons per day – GPD). Max Daily Flow	GPD
e.)	e.) What is the maximum and minimum monthly pH of the dischar	ge (in s.u.)? Max	x pH Min pH	
f.)	f.) Identify the source of the discharge (i.e. potable water, surface required in Section 4.4.5 of the General Permit.	water, or ground	water) If groundwater, the facility shall submit	effluent test results, as
g.)	g.) What treatment does the wastewater receive prior to discharge	?		
h.)	h.) Is the discharge continuous? Yes No not continuous all year) or intermittent (I) (occurs sometimes If (P), number of days or months per year of the discharge	but not regularly	y) or both (B)	
	If (I), number of days/year there is a discharge			
	If (I), number of days/year there is a discharge Is the discharge temporary? Yes No			
	If yes, approximate start date of dewatering	appr	oximate end date of dewatering	
i.)	i.) Latitude and longitude of each discharge within 100 feet (See h 2: long lat; Outfall 3: long lat		w/tri/report/siting_tool): Outfall 1: long	_lat; Outfall
j.)	j.) If the source of the discharge is potable water, please provide the attach any calculation sheets used to support stream flow and de (See Appendix VII for equations and additional information)			e receiving water and

MASSACHUSETTS FACILITIES: See Section 3.4 and Appendix 1 of the General Permit for more information on Areas of Critical Environmental Concern (ACEC):

k.) Does the discharge occur in an ACEC? Yes _____ No _____ If yes, provide the name of the ACEC: _____

3. Contaminant Information

- a) Are any pH neutralization and/or dechlorination chemicals used in the discharge? If so, include the chemical name and manufacturer; maximum and average daily quantity used as well as the maximum and average daily expected concentrations (mg/l) in the discharge, and the vendor's reported aquatic toxicity (NOAEL and/or LC₅₀ in percent for aquatic organism(s)). No
- b) Please report any known remediation activities or water-quality issues in the vicinity of the discharge. None

4. Determination of Endangered Species Act Eligibility: Provide documentation of ESA eligibility as required at Part 3.4 and Appendix IV. In addition, respond to the following questions.

a) Which of the three eligibility criteria listed in Appendix IV, Criterion (A, B, or C) have you met? _____

b) Please attach documentation with your NOI supporting your response. Please see Appendix IV for acceptable documentation

5. Documentation of National Historic Preservation Act requirements: Please respond to the following questions:

- a) See Screening Process in Appendix III and respond to questions regarding your site and any historic properties listed or eligible for listing on the National Register of Historic Places. Question 1: Yes _____ No ____; Question 2: No _____ Yes _____
- b) Have any State or Tribal historic preservation officers been consulted in this determination? Yes _____ or No _____ If yes, attach the results of the consultation(s).
- c) Which of the three National Historic Preservation Act eligibility criterion listed in Appendix III, Criterion (A, B, or C) have you met?
- d) Is the project located on property of religious or cultural significance to an Indian Tribe? Yes _____ or No _____ If yes, provide that name of the Indian Tribe associated with the property. ______

6. Supplemental Information: Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit

7. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22 (s ee below) including the following certification:

I certify under penalty of law that (1) no biocides or other chemical additives except for those used for pH adjustment and/or dechlorination are used in the dewatering system; (2) the discharge consists solely of dewatering and authorized pH adjustment and/or dechlorination chemicals; (3) the discharge does not come in contact with any raw materials, intermediate product, water product or finished product; (4) if the discharge of dewatering subsequently mixes with other permitted wastewater (i.e. stormwater) prior to discharging to the receiving water, any monitoring provided under this permit will be only for dewatering discharge; (5) where applicable, the facility has complied with the requirements of this permit specific to the Endangered Species Act and National Historic P reservation Act; and (6) this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted.

Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facility Name: Wayland Town Offices Solar PV Project
Operator signature:
Print Full Name and Title: Peter Christakis, Vice President - Construction & Operations
Date: 2/9/2016

Federal regulations require this application to be signed as follows:

- 1. For a corporation, by a principal executive officer of at least the level of vice president;
- 2. For partnership or sole proprietorship, by a general partner or the proprietor, respectively, or,
- 3. For a municipality, State, Federal or other public facility, by either a principal executive officer or ranking elected official.

Attachment E – Endangered Species Information

United States Department of the Interior

FISH AND WILDLIFE SERVICE New England Ecological Services Field Office 70 COMMERCIAL STREET, SUITE 300 CONCORD, NH 03301 PHONE: (603)223-2541 FAX: (603)223-0104 URL: www.fws.gov/newengland

Consultation Code: 05E1NE00-2015-SLI-2053 Event Code: 05E1NE00-2015-E-02589 Project Name: Wayland Town Offices Solar PV Carport Project September 28, 2015

Subject: List of threatened and endangered species that may occur in your proposed project location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan

(http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and

http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment

Project name: Wayland Town Offices Solar PV Carport Project

Official Species List

Provided by:

New England Ecological Services Field Office 70 COMMERCIAL STREET, SUITE 300 CONCORD, NH 03301 (603) 223-2541_ http://www.fws.gov/newengland

Consultation Code: 05E1NE00-2015-SLI-2053 **Event Code:** 05E1NE00-2015-E-02589

Project Type: POWER GENERATION

Project Name: Wayland Town Offices Solar PV Carport Project

Project Description: Proposed solar PV carports at the Town Offices within an existing developed parking lot. Foundations will be installed within the existing developed footprint and no work is proposed outside of the developed area. Dewatering will occur during construction to be permitted under the NPDES Dewatering General Permit in Massachusetts (MAG70000).

Please Note: The FWS office may have modified the Project Name and/or Project Description, so it may be different from what was submitted in your previous request. If the Consultation Code matches, the FWS considers this to be the same project. Contact the office in the 'Provided by' section of your previous Official Species list if you have any questions or concerns.

Project name: Wayland Town Offices Solar PV Carport Project

Project Location Map:

Project Coordinates: MULTIPOLYGON (((-71.36220288270124 42.36115693152038, -71.36271357536316 42.36057345238456, -71.36343026148097 42.36035781743939, -71.36267066001892 42.36054491257722, -71.36196684830793 42.360227801928076, -71.36145186384964 42.36083348182874, -71.36220288270124 42.36115693152038)))

Project Counties: Middlesex, MA

Project name: Wayland Town Offices Solar PV Carport Project

Endangered Species Act Species List

There are a total of 1 threatened or endangered species on your species list. Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. Critical habitats listed under the **Has Critical Habitat** column may or may not lie within your project area. See the **Critical habitats within your project area** section further below for critical habitat that lies within your project. Please contact the designated FWS office if you have questions.

Mammals	Status	Has Critical Habitat	Condition(s)
Northern long-eared Bat (Myotis septentrionalis)	Threatened		

Project name: Wayland Town Offices Solar PV Carport Project

Critical habitats that lie within your project area

There are no critical habitats within your project area.

http://ecos.fws.gov/ipac, 09/28/2015 11:35 AM

Commonwealth of Massachusetts

Division of Fisheries & Wildlife

Jack Buckley, Director

July 31, 2015

Paige Samblanet Amec Foster Wheeler Environment and Infrastructure, Inc. 271 Mill Road Chelmsford MA 01824

RE: Project Location: 41 Cochituate Road Town: WAYLAND NHESP Tracking No.: 15-34597

To Whom It May Concern:

Thank you for contacting the Natural Heritage and Endangered Species Program of the MA Division of Fisheries & Wildlife (the "Division") for information regarding state-listed rare species in the vicinity of the above referenced site. Based on the information provided, this project site, or a portion thereof, is located within *Priority Habitat 1516* (PH 1516) and *Estimated Habitat 38* (EH 38) as indicated in the *Massachusetts Natural Heritage Atlas* (13th Edition). Our database indicates that the following state-listed rare species have been found in the vicinity of the site:

Scientific name	<u>Common Name</u>	<u>Taxonomic Group</u>	State Status
Botaurus lentiginosus	American Bittern	Bird	Endangered
Bolboschoenus fluviatilis	River Bulrush	Plant	Not Listed

The species listed above is protected under the Massachusetts Endangered Species Act (MESA) (M.G.L. c. 131A) and its implementing regulations (321 CMR 10.00). State-listed wildlife are also protected under the state's Wetlands Protection Act (WPA) (M.G.L. c. 131, s. 40) and its implementing regulations (310 CMR 10.00). Fact sheets for most state-listed rare species can be found on our website (www.mass.gov/nhesp).

Please note that <u>projects and activities located within Priority and/or Estimated Habitat **must** be <u>reviewed by the Division</u> for compliance with the state-listed rare species protection provisions of MESA (321 CMR 10.00) and/or the WPA (310 CMR 10.00).</u>

Wetlands Protection Act (WPA)

If the project site is within Estimated Habitat and a Notice of Intent (NOI) is required, then a copy of the NOI must be submitted to the Division so that it is received at the same time as the local conservation commission. If the Division determines that the proposed project will adversely affect the actual Resource Area habitat of state-protected wildlife, then the proposed project may not be permitted (310 CMR 10.37, 10.58(4)(b) & 10.59). In such a case, the project proponent may request a consultation with the Division to discuss potential project design modifications that would avoid adverse effects to rare wildlife habitat.

www.mass.gov/nhesp

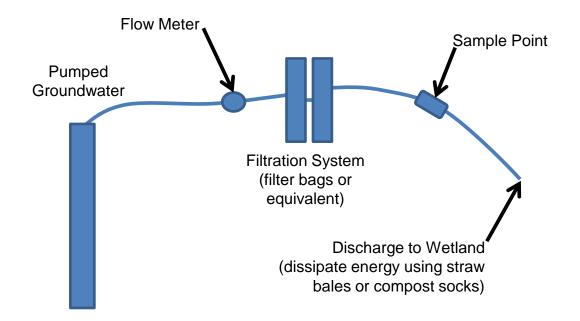
A streamlined joint MESA/WPA review process is available. When filing a Notice of Intent (NOI), the applicant may file concurrently under the MESA on the same NOI form and qualify for a 30-day streamlined joint review. For a copy of the NOI form, please visit the MA Department of Environmental Protection's website: http://www.mass.gov/dep/water/approvals/wpaform3.doc.

MA Endangered Species Act (MESA)

If the proposed project is located within Priority Habitat and is not exempt from review (see 321 CMR 10.14), then project plans, a fee, and other required materials must be sent to Natural Heritage Regulatory Review to determine whether a probable "take" under the MA Endangered Species Act would occur (321 CMR 10.18). Please note that all proposed and anticipated development must be disclosed, as MESA does not allow project segmentation (321 CMR 10.16). For a MESA filing checklist and additional information please see our website: www.mass.gov/nhesp ("Regulatory Review" tab).

We recommend that rare species habitat concerns be addressed during the project design phase prior to submission of a formal MESA filing, <u>as avoidance and minimization of impacts to rare species and their habitats is likely to expedite endangered species regulatory review.</u>

This evaluation is based on the most recent information available in the Natural Heritage database, which is constantly being expanded and updated through ongoing research and inventory. If you have any questions regarding this letter please contact Lauren Glorioso, Endangered Species Review Assistant, at (508) 389-6361.


Sincerely,

Thomas W. French

Thomas W. French, Ph.D. Assistant Director

Attachment F – Treatment System Schematic

Dewatering Treatment System Schematic

