

HALEY & ALDRICH, INC. 465 Medford St. Suite 220 Boston, MA 02129 617.886.7400

04 August 2016 File No. 40181-033

US Environmental Protection Agency Dewatering GP Processing Industrial Permit Unit (OEP 06- 4) 5 Post Office Square – Suite 100 Boston, MA 02109-3912

Attention: Ms. Suzanne Warner

Subject: Notice of Intent (NOI)

Temporary Construction Dewatering

Government Center Garage - Enabling Phase

50 Sudbury Street Boston, Massachusetts

Ladies and Gentlemen:

On behalf of our client, Bulfinch Congress Holdings, LLC, and in accordance with the National Pollutant Discharge Elimination System (NPDES) General Permit for Dewatering Activities – Massachusetts General Permit, MAG070000, included herewith are the Notice of Intent (NOI) and applicable documentation as required by the US Environmental Protection Agency (USEPA) and Massachusetts Department of Environmental protection (MassDEP) for construction site dewatering under the General Permit.

Temporary dewatering is planned in support of the proposed renovations to the Government Center Garage in Boston, Massachusetts, as shown on Figure 1, Project Locus. We anticipate dewatering will be conducted, as necessary, during the proposed renovations.

SITE DESCRIPTION

Constructed in 1967, the nine-story precast concrete parking garage is supported on concrete-filled steel pipe piles bearing in glacial soils/bedrock. The structure has ground floor retail on the east and west sides of Congress Street and along a portion of Sudbury Street, and office space for the top two floors. The eastern portion of the structure, between Congress Street and the Surface Road, overhangs the below-grade MBTA Haymarket Subway Station.

PROPOSED CONTRUCTION AND MANAGEMENT OF DEWATERING EFFLUENT

Work will be performed in the western portion of the existing structure bounded by New Chardon, Bowker, Sudbury and Congress Streets to prepare the parking structure for subsequent building construction on the site, as shown on Figure 2. Based on conversations with project team members and review of project progress drawings dated 13 March 2015, installation and construction of certain key new structural elements will involve dewatering include the following:

- Deep foundation elements (drilled-in micropiles) for a new parking garage structural brace frame
- Support for new ramping and egress points from Bowker Street
- A below-grade police parking ramp accessed from Bowker Street, with associated cast-in-place concrete perimeter retaining walls

Where possible, the project will utilize on-site recharge of the dewatering effluent; however, where on-site recharge is not feasible, the project plans to direct the dewatering effluent to the existing storm drain system (CB No. 143), which drains to the Charles River (SDO No. 49), as shown in Figure 2, Proposed Discharge Route. Site work and associated dewatering are anticipated to begin in September 2016 and are estimated to be complete around January 2018.

The Site Contractor will design, operate, and maintain dewatering and sedimentation control systems for off-site discharge. The systems will be designed to meet the permit requirements for suspended solids, pH, and other constituents (as required) in the effluent stream prior to discharge into the nearby storm drain. See Figure 3 for the proposed initial treatment train. Once operations begin, a licensed wastewater treatment plant operator will conduct system monitoring as required.

The Environmental Consultant, Vertex Companies, Inc. (Vertex) will perform the required sampling and testing of the dewatering effluent and will report the results as required by the permit. The Site Contractor's sedimentation and treatment system and/or dewatering procedures will be designed as necessary to comply with the Permit Discharge Criteria.

CONTACT INFORMATION

Applicant:

Bulfinch Congress Holdings, LLC c/o The HYM Investment Group LLC One Congress Street, 10th floor Boston, Massachusetts 02114 Attention: Paul Crisalli, Director of Operations

Tel: 617.248.8905

Representative preparing this application:

Haley & Aldrich, Inc. 465 Medford Street, Suite 2200 Boston, Massachusetts 02129-1400 Attention: Kelvin Wong, P.E. Project Manager

Tel: 617.886.7465

ANALYTICAL TESTING

On 09 June 2016, Vertex collected one water sample from a frac tank located on the site; collected water was representative of water generated during micropile drilling. The sample was submitted to ESS Laboratories in Cranston, Rhode Island. Groundwater quality data are summarized in Table I. Vertex has

US Environmental Protection Agency 04 August 2016 Page 3

also reviewed other site-specific data and project information in their evaluation of the representativeness of this data.

CLOSING

Thank you very much for your consideration of this NOI. Please feel free to contact us should you wish to discuss the information contained herein or if you need additional information.

Sincerely yours,

HALEY & ALDRICH, INC.

Peter Zawadzkas
Technical Expert

Kelvin Wong, P.E. Project Manager

Attachments:

Table I – Summary of Groundwater Quality Data

Figure 1 – Project Locus

Figure 2 – Proposed Discharge Route

Figure 3 – Proposed Initial Treatment Train

Appendix A - "Suggested Notice of Intent" (NOI) form as provided in Appendix V of the NPDES Dewatering General Permit

Appendix B - Boston Water and Sewer Commission – Dewatering Discharge Permit Application

Appendix C - Areas of Critical Environmental Concern

Appendix D - National Register of Historic Places and Massachusetts Historical Commission Documentation

Appendix E - Endangered Species Act Documentation

Appendix F - Laboratory Data Reports

\\BOS\common\40181\030 Enabling Construction\NPDES DGP\Text\2016-0804-HAI NPDES DGP GCG.docx

TABLE 1 SUMMARY OF NPDES ANALYTICAL DATA ONE CONGRESS STREET BOSTON, MASSACHUSETTS

		BOSTON, IVI				
Sample Designation Laboratory Sample ID	MassDEP	MassDEP	CAS Number	NPDES	Units	NPDES-T2-100 1606245-01
Sample Date	RCGW-2	GW-3	O/10 Hambon		O.I.I.O	06/09/2016
1 1,2-Dibromoethane / 1,2-Dib	romo-3-chloropro	opane				00/00/2010
1,2-Dibromoethane	2	50,000	106-93-4		ug/L	ND(0.015)
Polychlorinated Biphenyls (P		00,000	100 00 1		∝g, =	112 (0.010)
Aroclor 1016	5		12674-11-2		ug/L	ND(0.09)
Aroclor 1221	5		11104-28-2		ug/L	ND(0.09)
Aroclor 1232	5		11141-16-5		ug/L	ND(0.09)
Aroclor 1242	5		53469-21-9		ug/L	ND(0.09)
Aroclor 1248	5		12672-29-6		ug/L	ND(0.09)
Aroclor 1254	5		11097-69-1		ug/L	ND(0.09)
Aroclor 1260	5		11096-82-5		ug/L	ND(0.09)
Aroclor 1262	5		37324-23-5		ug/L	ND(0.09)
Aroclor 1268	5		11100-14-4		ug/L	ND(0.09)
TOTAL PCBs	5		Multiple	0.000064 **	ug/L	ND(0.09)
Organochlorine Pesticides						
4,4´-DDD	50	50	72-54-8		ug/L	ND(0.05)
4,4´-DDE	400	400	72-55-9		ug/L	ND(0.05)
4,4´-DDT	1	1	50-29-3		ug/L	ND(0.05)
Aldrin	2	30	309-00-2	-	ug/L	ND(0.05)
alpha-BHC	5,000		319-84-6		ug/L	ND(0.05)
beta-BHC	1,000		319-85-7		ug/L	ND(0.05)
Chlordane (Total)	2		57-74-9		ug/L	ND(0.47)
delta-BHC	1,000		319-86-8		ug/L	ND(0.05)
Dieldrin	0.5	0.5	60-57-1	-	ug/L	ND(0.05)
Endosulfan I [2C]	2		959-98-8	1	ug/L	0.12
Endosulfan II	2		33213-65-9	-	ug/L	ND(0.05)
Endosulfan Sulfate			1031-07-8	-	ug/L	ND(0.05)
Endrin	5	5	72-20-8		ug/L	ND(0.05)
Endrin Aldehyde	1,000		7421-93-4		ug/L	ND(0.05)
gamma-BHC (Lindane)	4	4	58-89-9		ug/L	ND(0.05)
Heptachlor	1	1	76-44-8		ug/L	ND(0.05)
Heptachlor Epoxide	2	2	1024-57-3		ug/L	ND(0.05)
Methoxychlor	10	10	72-43-5		ug/L	ND(0.05)
Toxaphene	1,000		8001-35-2		ug/L	ND(1.21)
Volatile Organic Compounds						
1,1,1-Trichloroethane	4,000	20,000	71-55-6	200 **	ug/L	ND(1)
1,1,2,2-Tetrachloroethane	9	50,000	79-34-5		ug/L	ND(0.5)
1,1,2-Trichloroethane	900	50,000	79-00-5	5 **	ug/L	ND(1)
1,1-Dichloroethane	2,000	20,000	75-34-3	3.2 **	ug/L	ND(1)
1,1-Dichloroethene	80	30,000	75-35-4		ug/L	ND(1)
1,2-Dichlorobenzene 1,2-Dichloroethane	2,000	20,000	95-50-1 107-06-2	600 **	ug/L	ND(1)
1,2-Dichloropropane	5 3	50,000	78-87-5		ug/L	ND(1) ND(1)
1,3-Dichlorobenzene	6,000	50,000	541-73-1	320 **	ug/L ug/L	ND(1)
1,4-Dichlorobenzene	60		106-46-7	5 **	ug/L	ND(1)
2-Chloroethyl vinyl ether	50,000		110-75-8		ug/L	ND(10)
Acrolein - Screen	1,000		107-02-8		ug/L	ND(5)
Acrylonitrile - Screen	10,000		107-13-1		ug/L	ND(5)
Benzene	1,000	10,000	71-43-2	5**	ug/L	ND(1)
Bromodichloromethane	6	50,000	75-27-4		ug/L	1.2
Bromoform	700	50,000	75-25-2		ug/L	ND(1)
Bromomethane	7	800	74-83-9		ug/L	ND(2)
Carbon Tetrachloride	2	5,000	56-23-5	4.4 **	ug/L	ND(1)
Chlorobenzene	200	1,000	108-90-7		ug/L	ND(1)
Chloroethane	10,000		75-00-3		ug/L	ND(2)
Chloroform	50	20,000	67-66-3		ug/L	3.9
Chloromethane	10,000		74-87-3		ug/L	ND(2)
cis-1,2-Dichloroethene	20	50,000	156-59-2	70 **	ug/L	ND(1)
cis-1,3-Dichloropropene	5		10061-01-5		ug/L	ND(0.4)
Dibromochloromethane	20	50,000	124-48-1		ug/L	ND(1)
Ethylbenzene	5,000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100-41-4	100 **†	ug/L	ND(1)
Methylene Chloride	2,000	50,000	75-09-2	4.6 **	ug/L	ND(4)
Tetrachloroethene	50	30,000	127-18-4	5 **	ug/L	ND(1)
Toluene	40,000	40,000	108-88-3	100**†	ug/L	ND(1)
trans-1,2-Dichloroethene	80	50,000	156-60-5		ug/L	ND(1)
trans-1,3-Dichloropropene	5		10061-02-6	-	ug/L	ND(0.5)
Trichloroethene	5	5,000	79-01-6	5 **	ug/L	ND(1)
Trichlorofluoromethane	100,000		75-69-4		ug/L	ND(1)
Vinyl Chloride	2	50,000	75-01-4	2 **	ug/L	ND(1)
Semi-Volatile Organic Compo	unds					
1,2,4-Trichlorobenzene	200	50,000	120-82-1		ug/L	ND(9.7)
1,2-Dichlorobenzene	2,000	2,000	95-50-1	-	ug/L	ND(9.7)
1,3-Dichlorobenzene	6,000	50,000	541-73-1		ug/L	ND(9.7)
1,4-Dichlorobenzene	60	8,000	106-46-7		ug/L	ND(9.7)
2,4,5-Trichlorophenol	3,000	3,000	95-95-4		ug/L	ND(9.7)
2,4,6-Trichlorophenol	500	500	88-06-2		ug/L	ND(9.7)
2,4-Dichlorophenol	2,000	2,000	120-83-2		ug/L	ND(9.7)
2,4-Dimethylphenol	40,000	50,000	105-67-9		ug/L	ND(48.5)
2,4-Dinitrophenol	20,000	20,000	51-28-5		ug/L	ND(48.5)
2,4-Dinitrotoluene	20,000	50,000	121-14-2		ug/L	ND(9.7)
2,6-Dinitrotoluene	10,000		606-20-2		ug/L	ND(9.7)
2-Chloronaphthalene	100,000		91-58-7		ug/L	ND(9.7)
2-Chlorophenol	7,000	7,000	95-57-8		ug/L	ND(9.7)

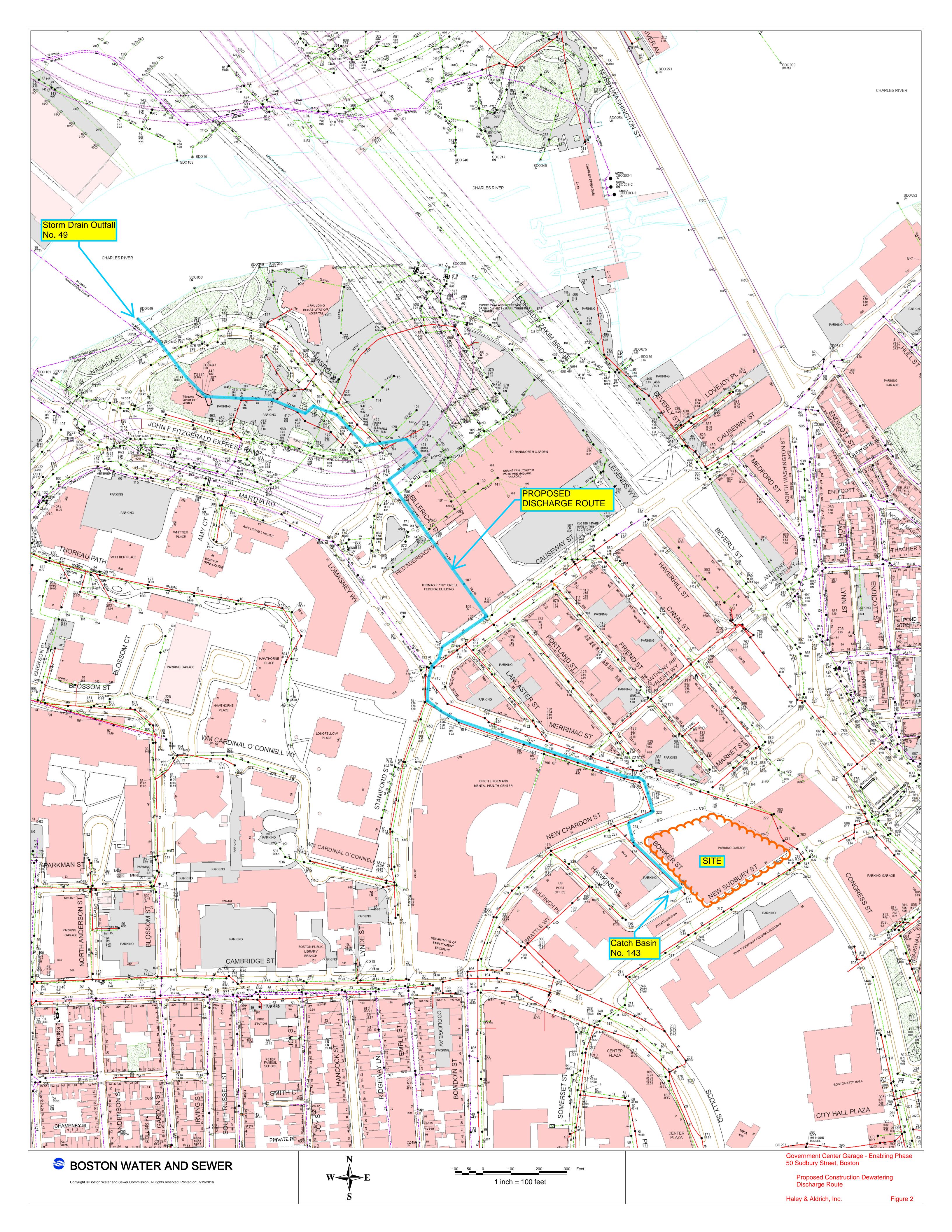
VERTEX Project No. 27026 Page 1 of 3

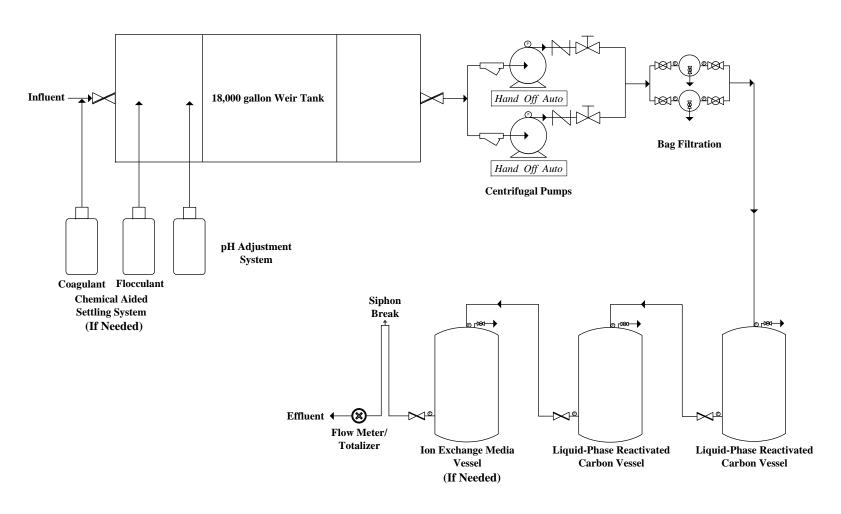
TABLE 1 SUMMARY OF NPDES ANALYTICAL DATA ONE CONGRESS STREET BOSTON, MASSACHUSETTS

BOSTON, MASSACHUSETTS						
Sample Designation	MassDEP	MassDEP		NPDES		NPDES-T2-100
Laboratory Sample ID	RCGW-2	GW-3	CAS Number		Units	1606245-01
Sample Date		011 0				06/09/2016
2-Methylphenol	50,000		95-48-7		ug/L	ND(9.7)
2-Nitrophenol	10,000		88-75-5		ug/L	ND(9.7)
3,3´-Dichlorobenzidine	2,000	2,000	91-94-1		ug/L	ND(19.4)
3+4-Methylphenol	50,000		106-44-5		ug/L	ND(19.4)
4-Bromophenyl-phenylether	10,000		101-55-3		ug/L	ND(9.7)
4-Chloroaniline	300	300	106-47-8		ug/L	ND(19.4)
4-Nitrophenol	10,000		100-02-7		ug/L	ND(48.5)
Acetophenone	100,000		98-86-2		ug/L	ND(9.7)
Aniline	100,000		62-53-3		ug/L	ND(9.7)
Azobenzene			103-33-3		ug/L	ND(19.4)
bis(2-Chloroethoxy)methane	50,000		111-91-1		ug/L	ND(9.7)
bis(2-Chloroethyl)ether	30	50,000	111-44-4		ug/L	ND(9.7)
bis(2-chloroisopropyl)Ether			39638-32-9		ug/L	ND(9.7)
bis(2-Ethylhexyl)phthalate	50,000	50,000	117-81-7	6 **	ug/L	230
Butylbenzylphthalate	10,000		85-68-7		ug/L	11.7
Dibenzofuran	10,000		132-64-9		ug/L	ND(9.7)
Diethylphthalate	9,000	9,000	84-66-2		ug/L	ND(9.7)
Dimethylphthalate	50,000	50,000	131-11-3		ug/L	ND(9.7)
Di-n-butylphthalate	5,000		84-74-2		ug/L	ND(9.7)
Di-n-octylphthalate			117-84-0		ug/L	ND(9.7)
Hexachlorobutadiene	50	3,000	87-68-3		ug/L	ND(9.7)
Hexachloroethane	100	50,000	67-72-1	-	ug/L	ND(4.9)
Isophorone			78-59-1		ug/L	ND(9.7)
Nitrobenzene			98-95-3		ug/L	ND(9.7)
N-Nitrosodimethylamine			62-75-9		ug/L	ND(9.7)
Phenol	2,000	2,000	108-95-2		ug/L	14.5
2-Methylnaphthalene	2,000	20,000	91-57-6		ug/L	ND(3.88)
Acenaphthene	6,000	10,000	83-32-9		ug/L	ND(3.88)
Acenaphthylene	40	40	208-96-8		ug/L	ND(3.88)
Anthracene	30	30	120-12-7		ug/L	ND(3.88)
Benzo(a)anthracene	1,000	1,000	56-55-3	0.0038 **	ug/L	ND(0.97)
Benzo(a)pyrene	500	500	50-32-8	0.0038 **	ug/L	ND(0.97)
Benzo(b)fluoranthene	400	400	205-99-2	0.0038 **	ug/L	ND(0.97)
Benzo(g,h,i)perylene	20	20	191-24-2		ug/L	ND(3.88)
Benzo(k)fluoranthene	100	100	207-08-9	0.0038 **	ug/L	ND(0.97)
Chrysene	70	70	218-01-9	0.0038 **	ug/L	ND(0.97)
Dibenzo(a,h)Anthracene	40	40	53-70-3	0.0038 **	ug/L	ND(0.97)
Fluoranthene	200	200	206-44-0		ug/L	ND(3.88)
Fluorene	40	40	86-73-7		ug/L	ND(3.88)
Hexachlorobenzene	1	6,000	118-74-1		ug/L	ND(3.88)
Indeno(1,2,3-cd)Pyrene	100	100	193-39-5	0.0038 **	ug/L	ND(0.97)
Naphthalene	700	20,000	91-20-3	20	ug/L	ND(3.88)
Pentachlorophenol	200	200	87-86-5	1 **	ug/L	ND(17.5)
Phenanthrene	1,000	10,000	85-01-8		ug/L	ND(3.88)
Pyrene	20	20	129-00-0		ug/L	ND(3.88)
Classical Chemistry					, <u>, , , , , , , , , , , , , , , , , , </u>	, ,
Hexavalent Chromium	300	300	18540-29-9		ug/L	ND(10)
Phenols			PHEN	300 **	ug/L	ND(100)
Total Cyanide (LL)	30	30	57-12-5		ug/L	ND(5)
Total Petroleum Hydrocarbon	5		Multiple	5 **	mg/L	169
Total Residual Chlorine				7.5 to 19*	ug/L	280
Total Suspended Solids			TSS	50	mg/L	178
Total Metals						
Antimony	8,000	8,000	7440-36-0	5.6 ** ‡	ug/L	ND(10)
Arsenic	900	900	7440-38-2	10 ** ‡	ug/L	ND(10)
Cadmium	4	4	7440-43-9	0.2 ** ‡	ug/L	ND(1)
Chromium	300	300	7440-47-3		ug/L	ND(20)
Chromium III	600	600	16065-83-1	48.8 ** ‡	ug/L	ND(20)
Copper	100,000		7440-50-8	5.2 ** ‡	ug/L	55.6
Iron			7439-89-6	1,000 ** ‡	ug/L	6,910
Lead	10	10	7439-92-1	1.3 **‡	ug/L	10
Mercury	20	20	7439-92-1	0.9 **‡	ug/L	ND(0.2)
Nickel	200	200	7440-02-0	29 **‡	ug/L	ND(0.2)
Selenium	100	100	7782-49-2	5 **‡	ug/L	ND(20)
Silver	7	7	7440-22-4	1.2 **‡	ug/L ug/L	ND(10) ND(0.5)
	900	900	7440-22-4	66.6 **‡		
Zinc	900	900	7440-00-0	00.0 +	ug/L	ND(50)

VERTEX Project No. 27026 Page 2 of 3

TABLE 1 SUMMARY OF NPDES ANALYTICAL DATA ONE CONGRESS STREET BOSTON, MASSACHUSETTS


Sample Designation Laboratory Sample ID Sample Date	MassDEP RCGW-2	MassDEP GW-3	CAS Number	NPDES	Units	NPDES-T2-100 1606245-01 06/09/2016
Corrosivity						
рН			Field Measured	6.5 to 8.5	Standard Units	11.76


Notes:

- 1. ug/L = micrograms per liter
- 2. CAS = Chemical Abstract Service.
- 3. MassDEP = Massachusetts Department of Environmental Protection
- 4. RCGW-2 = MassDEP Groundwater 2 Reportable limit.
- 5. GW-3 Massachusetts Contingency Plan GW-1 Method 1 risk based cahracterization standard
- 6. NPDES DGP = National Pollutant Discharge Elimination System Dewatering General Permit.
- 7. * = Effluent Limit is dependant on receiving waters
- 8. ** = Effluent limit taken from Remediation General Permit Appendix III (MAG910000)
 Category II Sub-Category A Non Petroleum Site Remediation Standards General Urban Fill.
 Category II Sub-Category B For volatile organic compounds (VOCs)
 Category II Sub-Category C For Metals
- 9. † = Cumulative Benzene, Toluene, Ethylbenzene, Xylene.
- 10. ‡ = Total Recoverable Metal Limit (freshwater) at 50 milligrams per liter calcium carbonate (CaCo₃)
- 11. Although the maximum values for TRC are 11ug/l and 7.5 ug/l for freshwater, and saltwater respectively, the compliance limits are equal to the minimum level
- 12. Limits for cyanide are based on EPA's water quality criteria expressed as micrograms (ug/L) of free cyanide per liter. There is currently no EPA approved test method for free cyanide. Therefore, total cyanide must be reported.
- 13. Although the maximum values for cyanide are 5.2 ug/l and 1.0 ug/l for freshwater and saltwater, respectively, the compliance limits are equal to the minimumlevel (ML) of the Method 335.4 as listed in Appendix VI (i.e., 10 ug/l).
- 14. Naphthalene can be reported as both a purgeable (VOC) and extractable (SVOC) organic compound. If both VOC and SVOC are analyzed, the highest value must be used unless the QC criteria for one of the analyses is not met. In such cases, the value from the analysis meeting the QC criteria must be used.
- 15. Although the maximum value for the individual PAH compounds is 0.0038 ug/l, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.
- 16. Although the maximum value for total PCBs is 0.000064 ug/l, the compliance limit is equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., 0.5 ug/l for Method 608 or 0.00005 ug/l when Method 1668a is approved).
- 20. Hardness. Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc are Hardness Dependent.
- 21. For a Dilution Factor (DF) from 1 to 5, metals limits are calculated using DF times the base limit for the metal. See Appendix IV. For example, iron limits are calculated using DF x 1,000 μ L; DF 2, then iron limit =1,000 x 2 =2,000 μ L, etc. not to exceed the DF=5.
- 22. Minimum Level (ML) is the lowest level at which the analytical system gives a recognizable signal and acceptable calibration point for the analyte. The ML represents the lowest concentration at which an analyte can be measured with a known level of confidence. The ML is calculated by multiplying the laboratory determined method detection limit by 3.18 (see 40 CFR Part 136, Appendix B).

VERTEX Project No. 27026 Page 3 of 3

Notes:

- 1.) Figure is not to scale
- 2.) System rated for 125 GPM
- 3.) Sampling ports located on all treatment system components

Key:
Piping/Hose

Lockwood Remediation Technologies, LLC 89 Crawford Street Leominster, MA 01453

Office: 774-450-7177

DESIGNED BY: LRT DRAWN BY: B. Watkins

DATE:

CHECKED BY:

Water Treatment System Schematic

Government Center Garage -Enabling Phase 50 Sudbury Street, Boston

Haley & Aldrich, Inc.

Figure 3

APPENDIX A
"Suggested Notice of Intent" (NOI) form as provided in Appendix IV of the NPDES Dewatering General Permit

II. Suggested Notice of Intent (NOI) Form

1. General facility information. Please provide the following information about the facility.

a) Name of facility:	Mailing Address for the Faci	lity:			
b) Location Address of the Facility (if different from mailing address):	Facility Location	Type of Business:			
	longitude:	Facility SIC codes:			
c) Name of facility owner:	Owner's email:				
Owner's Tel #:	Owner's Fax #:				
Address of owner (if different from facility address) BULFINCH CONGRESS HOLDINGS, LLC c/o The HYM Investment Group, LLC One Congress St, 10th floor, Boston, MA 02114					
Owner is (check one): 1. Federal 2. State 3.Tribal	4. Private 4. Other _	(Describe)			
Legal name of Operator, if not owner:					
Operator Contact Name:					
Operator Tel Number: Fax N	Number:				
Operator's email:					
Operator Address (if different from owner)					
d) Attach a topographic map indicating the location of the facilit	y and the outfall(s) to the receiv	ring water. Map attached?			
 e) Check Yes or No for the following: 1. Has a prior NPDES permit been granted for the discharge? 2. Is the discharge a "new discharge" as defined by 40 CFR Sect 3. Is the facility covered by an individual NPDES permit? Yes_ 4. Is there a pending application on file with EPA for this discharge. 	tion 122.22? Yes No No If Yes, Perm				

	charge information. Please provide information about the discharge, (attaching additional sheets as needed)
a)	Name of receiving water into which discharge will occur: ate Water Quality Classification: Freshwater: Marine Water:
Sta	ate Water Quality Classification: Freshwater: Marine Water:
b)	Describe the discharge activities for which the owner/applicant is seeking coverage: 1. Construction dewatering of groundwater intrusion and/or storm water accumulation. 2. Short-term or long-term dewatering of foundation sumps. 3. Other.
c)	Number of outfalls
Fo	or each outfall:
d)	Estimate the maximum daily and average monthly flow of the discharge (in gallons per day – GPD). Max Daily Flow GPD Average Monthly Flow GPD
e)	What is the maximum and minimum monthly pH of the discharge (in s.u.)? Max pH Min pH
f)	Identify the source of the discharge (i.e. potable water, surface water, or groundwater). If groundwater, the facility shall submit effluent test results, as required in Section 4.4.5 of the General Permit.
g)	What treatment does the wastewater receive prior to discharge?
h)	Is the discharge continuous? Yes No If no, is the discharge periodic (P) (occurs regularly, i.e., monthly or seasonally, but is not continuous all year) or intermittent (I) (occurs sometimes but not regularly) or both (B) If (P), number of days or months per year of the discharge and the specific months of discharge ; If (I), number of days/year there is a discharge stee discharge temporary? Yes No approximate end date of dewatering approximate end date of dewateri
i)	Latitude and longitude of each discharge within 100 feet (See http://www.epa.gov/tri/report/siting tool): Outfall 1: long lat; Outfall 2: long lat
j)	If the source of the discharge is potable water, please provide the reported or calculated seven day-ten year low flow (7Q10) of the receiving water and attach any calculation sheets used to support stream flow and dilution calculations cfs (See Appendix VII for equations and additional information)

MASSACHUSETTS FACILITIES: See Section 3.4 and Appendix 1 of the Concern (ACEC):	ne General Permit for more information on Areas of Critical Environmental
k) Does the discharge occur in an ACEC? Yes No If yes, provide the name of the ACEC:	
3. Contaminant Information	
maximum and average daily quantity used as well as the maxim	in the discharge? If so, include the chemical name and manufacturer; um and average daily expected concentrations (mg/l) in the discharge, and the ent for aquatic organism(s)). PH treatment, if necessary, to be determined.
	issues in the vicinity of the discharge. No known remediation activities in vicinity of discharge.
addition, respond to the following questions.	entation of ESA eligibility as required at Part 3.4 and Appendices III and IV. In
c) Is consultation underway? Yes No d) What were the results of the consultation with the U.S. Fish and Wild	Yes No llife Service and/or NOAA Fisheries Service (check one): a "no jeopardy" arges are not likely to adversely affect any endangered species or critical habitat. A,B,C,D,or E) have you met?
5. Documentation of National Historic Preservation Act requirements:	•
a) Are any historic properties listed or eligible for listing on the Nationa discharge? Yes No	l Register of Historic Places located on the facility site or in proximity to the
the consultation(s).	l in this determination? Yes or No If yes, attach the results of
c) Which of the three National Historic Preservation Act requirements I	isted in Appendix 3, Section C (1,2 o3) have you met?
6. Supplemental Information: Please provide any supplemental information certification(s) required by the general permit	tion. Attach any analytical data used to support the application. Attach any
7. Signature Requirements: The Notice of Intent must be signed by the of 122.22 (see below) including the following certification:	perator in accordance with the signatory requirements of 40 CFR Section
I certify under penalty of law that (1) no biocides or other chemic dechlorination are used in the dewatering system; (2) the discharge	al additives except for those used for pH adjustment and/or ge consists solely of dewatering and authorized pH adjustment and/or
Appendix V – NPDES Dewatering General Permit	Page 8/9

dechlorination chemicals; (3) the discharge does not come in contact with any raw materials, intermediate product, water product or finished product; (4) if the discharge of dewatering subsequently mixes with other permitted wastewater (i.e.stormwater) prior to discharging to the receiving water, any monitoring provided under this permit will be only for dewatering discharge; (5) where applicable, the facility has complied with the requirements of this permit specific to the Endangered Species Act and National Historic Preservation Act; and (6) this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted.

Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

		972-97	MALEST TOTAL OF	
Facility	Name:	Government	Eenter	Garage

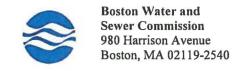
Operator signature:

SENIOR PROJECT MANAGER

Date:

Federal regulations require this application to be signed as follows:

1. For a corporation, by a principal executive officer of at least the level of vice president;

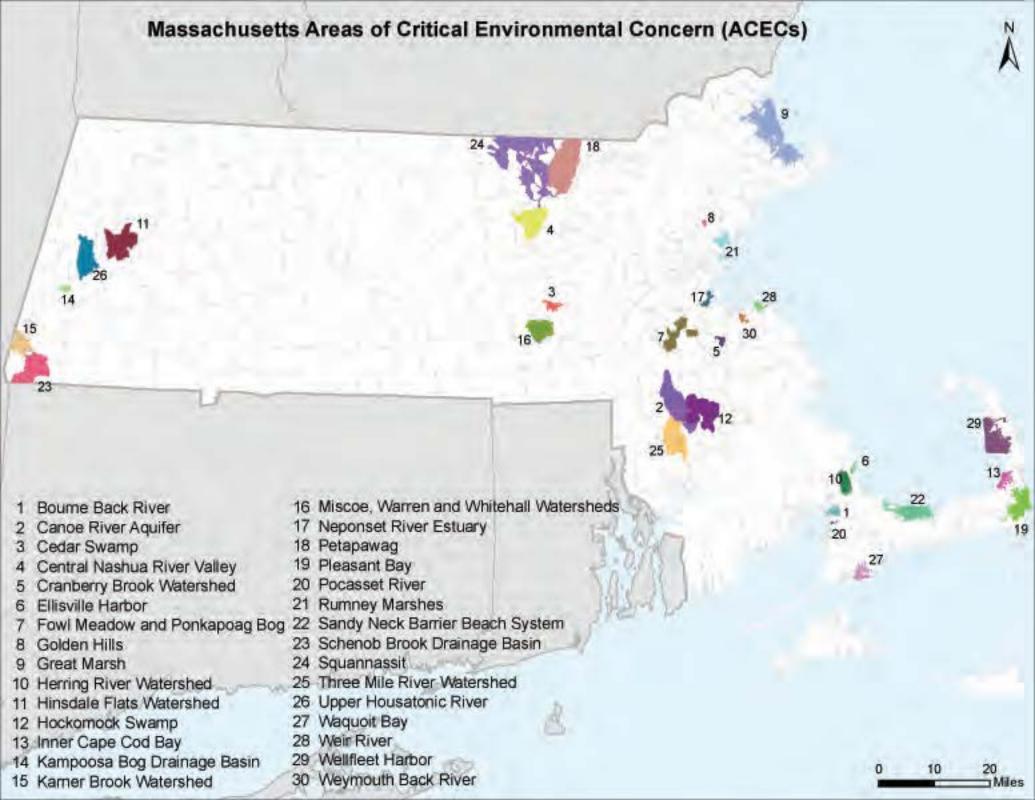

2. For partnership or sole proprietorship, by a general partner or the proprietor, respectively, or,

3. For a municipality, State, Federal or other public facility, by either a principal executive officer or ranking elected official.

Α	_	_	_			_
	v	v	-	м	 ı×	ж

Boston Water and Sewer Commission – Dewatering Discharge Permit Application

Signature of Authorized Representative for Property Owner:


DEWATERING DISCHARGE PERMIT APPLICATION

OWNER / AUTHORIZED APPLICANT PROVIDE INFORMATION HERE: Company Name: BULFINCH CONGRESS HOLDINGS. LLC Address: One Congress Street, 10th floor, Boston, MA 02114 c/o The HYM Investment Group, LLC Phone Number: 617.248.8905 Fax number: NA Contact person name: Paul Crisalli Title: Director of Operations Email address: pcrisalli@hyminvestments.com 914.382.6205 Cell number: Permit Request (check one): ☑ New Application ☐ Permit Extension ☐ Other (Specify): Owner's Information (if different from above): Owner of property being dewatered: Owner's mailing address: Location of Discharge & Proposed Treatment System(s): Neighborhood BOSTON: GOVERNMENT CENTER Street number and name: One Congress Street Discharge is to a: ☐ Sanitary Sewer ☐ Combined Sewer ☒ Storm Drain ☐ Other (specify): SEDIMENTATION TANK, BAG FILTER, AND OTHER COMPONENTS AS NECESSARY Describe Proposed Pre-Treatment System(s): (REFER TO ATTACHED DGP APPLICATION) SD049 Receiving Waters CHARLES RIVER BWSC Outfall No. Temporary Discharges (Provide Anticipated Dates of Discharge): From SEPTEMBER 2016 To JANUARY 2018 □ Groundwater Remediation □ Tank Removal/Installation □ Foundation Excavation □ Utility/Manhole Pumping □ Test Pipe ☐ Trench Excavation □ Accumulated Surface Water Other ____ □ Hydrogeologic Testing Permanent Discharges ☐ Crawl Space/Footing Drain ☐ Foundation Drainage □ Accumulated Surface Water □ Non-contact/Uncontaminated Cooling □ Non-contact/Uncontaminated Process Other; 1. Attach a Site Plan showing the source of the discharge and the location of the point of discharge (i.e. the sewer pipe or catch basin). Include meter type, meter number, size, make and start reading. Note. All discharges to the Commission's sewer system will be assessed current sewer charges. 2. If discharging to a sanitary or combined sewer, attach a copy of MWRA's Sewer Use Discharge permit or application. 3. If discharging to a separate storm drain, attach a copy of EPA's NPDES Permit or NOI application, or NPDES Permit exclusion letter for the discharge, as well as other relevant information. 4. Dewatering Drainage Permit will be denied or revoked if applicant fails to obtain the necessary permits from MWRA or EPA. Submit Completed Application to: Boston Water and Sewer Commission **Engineering Customer Services** 980 Harrison Avenue, Boston, MA 02119 Attn: Matthew Tuttle, Engineering Customer Service E-mail: tuttlemp@bwsc.org Phone: 617-989-7204 Fax: 617-989-7716

APPENDIX C

Areas of Critical Environmental Concern

MASSACHUSETTS AREAS OF CRITICAL ENVIRONMENTAL CONCERN November 2010

Total Approximate Acreage: 268,000 acres

Approximate acreage and designation date follow ACEC names below.

Bourne Back River

(1,850 acres, 1989) Bourne

Canoe River Aquifer and Associated Areas (17,200 acres, 1991) Easton, Foxborough, Mansfield, Norton, Sharon, and Taunton

Cedar Swamp

(1,650 acres, 1975) Hopkinton and Westborough

Central Nashua River Valley

(12,900 acres, 1996) Bolton, Harvard, Lancaster, and Leominster

Cranberry Brook Watershed

(1,050 acres, 1983) Braintree and Holbrook

Ellisville Harbor

(600 acres, 1980) Plymouth

Fowl Meadow and Ponkapoag Bog

(8,350 acres, 1992) Boston, Canton, Dedham, Milton, Norwood, Randolph, Sharon, and Westwood

Golden Hills

(500 acres, 1987) Melrose, Saugus, and Wakefield

Great Marsh (originally designated as Parker River/Essex Bay)

(25,500 acres, 1979) Essex, Gloucester, Ipswich, Newbury, and Rowley

Herring River Watershed

(4,450 acres, 1991) Bourne and Plymouth

Hinsdale Flats Watershed

(14,500 acres, 1992) Dalton, Hinsdale, Peru, and Washington

Hockomock Swamp

(16,950 acres, 1990) Bridgewater, Easton, Norton, Raynham, Taunton, and West Bridgewater

Inner Cape Cod Bay

(2,600 acres, 1985) Brewster, Eastham, and Orleans

Kampoosa Bog Drainage Basin

(1,350 acres, 1995) Lee and Stockbridge

Karner Brook Watershed

(7,000 acres, 1992) Egremont and Mount Washington

Miscoe, Warren, and Whitehall Watersheds

(8,700 acres, 2000) Grafton, Hopkinton, and Upton

Neponset River Estuary

(1,300 acres, 1995) Boston, Milton, and Quincy

Petapawag

(25,680 acres, 2002) Ayer, Dunstable, Groton, Pepperell, and Tyngsborough

Pleasant Bay

(9,240 acres, 1987) Brewster, Chatham, Harwich, and Orleans

Pocasset River

(160 acres, 1980) Bourne

Rumney Marshes

(2,800 acres, 1988) Boston, Lynn, Revere, Saugus, and Winthrop

Sandy Neck Barrier Beach System

(9,130 acres, 1978) Barnstable and Sandwich

Schenob Brook Drainage Basin

(13,750 acres, 1990) Mount Washington and Sheffield

Squannassit

(37,420 acres, 2002) Ashby, Ayer, Groton, Harvard, Lancaster, Lunenburg, Pepperell, Shirley, and Townsend

Three Mile River Watershed

(14,280 acres, 2008) Dighton, Norton, Taunton

Upper Housatonic River

(12,280 acres, 2009) Lee, Lenox, Pittsfield, Washington

Waquoit Bay

(2,580 acres, 1979) Falmouth and Mashpee

Weir River

(950 acres, 1986) Cohasset, Hingham, and Hull

Wellfleet Harbor

(12,480 acres, 1989) Eastham, Truro, and Wellfleet

Weymouth Back River

(800 acres, 1982) Hingham and Weymouth

ACEC acreages above are based on MassGIS calculations and may differ from numbers originally presented in designation documents and other ACEC publications due to improvements in accuracy of GIS data and boundary clarifications. Listed acreages have been rounded to the nearest 50 or 10 depending on whether boundary clarification has occurred. For more information please see, http://www.mass.gov/dcr/stewardship/acec/aboutMaps.htm.

Towns with ACECs within their Boundaries

November 2010

TOWN	ACEC	TOWN	ACEC
Ashby	Squannassit	Mt. Washington	Karner Brook Watershed
Ayer	Petapawag		Schenob Brook
	Squannassit	Newbury	Great Marsh
Barnstable	Sandy Neck Barrier Beach System	Norton	Hockomock Swamp
Bolton	Central Nashua River Valley		Canoe River Aquifer
Boston	Rumney Marshes		Three Mile River Watershed
	Fowl Meadow and Ponkapoag Bog	Norwood	Fowl Meadow and Ponkapoag Bog
	Neponset River Estuary	Orleans	Inner Cape Cod Bay
Bourne	Pocasset River		Pleasant Bay
	Bourne Back River	Pepperell	Petapawag
	Herring River Watershed	_	Squannassit
Braintree	Cranberry Brook Watershed	Peru	Hinsdale Flats Watershed
Brewster	Pleasant Bay	Pittsfield	Upper Housatonic River
	Inner Cape Cod Bay	Plymouth	Herring River Watershed
Bridgewater	Hockomock Swamp	O dia su	Ellisville Harbor
Canton	Fowl Meadow and Ponkapoag Bog	Quincy	Neponset River Estuary
Chatham	Pleasant Bay	Randolph	Fowl Meadow and Ponkapoag Bog
Cohasset	Weir River	Raynham	Hockomock Swamp
Dalton	Hinsdale Flats Watershed	Revere	Rumney Marshes
Dedham	Fowl Meadow and Ponkapoag Bog	Rowley Sandwich	Great Marsh
Dighton Dunstable	Three Mile River Watershed	Sandwich	Sandy Neck Barrier Beach System
	Petapawag	Saugus	Rumney Marshes Golden Hills
Eastham	Inner Cape Cod Bay	Sharon	Canoe River Aquifer
Easton	Wellfleet Harbor Canoe River Aguifer	Silaion	Fowl Meadow and Ponkapoag Bog
⊏asion	Hockomock Swamp	Sheffield	Schenob Brook
Egromont	Karner Brook Watershed	Shirley	Squannassit
Egremont Essex	Great Marsh	Stockbridge	Kampoosa Bog Drainage Basin
Falmouth	Waquoit Bay	Taunton	Hockomock Swamp
Foxborough	Canoe River Aquifer	radition	Canoe River Aquifer
Gloucester	Great Marsh		Three Mile River Watershed
Grafton	Miscoe-Warren-Whitehall	Truro	Wellfleet Harbor
Granon	Watersheds	Townsend	Squannassit
Groton	Petapawag	Tyngsborough	Petapawag
Grotori	Squannassit	Upton	Miscoe-Warren-Whitehall
Harvard	Central Nashua River Valley		Watersheds
	Squannassit	Wakefield	Golden Hills
Harwich	Pleasant Bay	Washington	Hinsdale Flats Watershed
Hingham	Weir River	J	Upper Housatonic River
· ·····g····a···	Weymouth Back River	Wellfleet	Wellfleet Harbor
Hinsdale	Hinsdale Flats Watershed	W Bridgewater	Hockomock Swamp
Holbrook	Cranberry Brook Watershed	Westborough	Cedar Swamp
Hopkinton	Miscoe-Warren-Whitehall	Westwood	Fowl Meadow and Ponkapoag Bog
•	Watersheds	Weymouth	Weymouth Back River
	Cedar Swamp	Winthrop	Rumney Marshes
Hull	Weir River		
Ipswich	Great Marsh		
Lancaster	Central Nashua River Valley		
	Squannassit		
Lee	Kampoosa Bog Drainage Basin		
	Upper Housatonic River		
Lenox	Upper Housatonic River		
Leominster	Central Nashua River Valley		
Lunenburg	Squannassit		
Lynn	Rumney Marshes		
Mansfield	Canoe River Aquifer		
Mashpee	Waquoit Bay		
Melrose	Golden Hills		
Milton	Foul Moodow and Dankanaga Pag		

Fowl Meadow and Ponkapoag Bog Neponset River Estuary

.

Milton

APPENDIX D

National Register of Historic Places and Massachusetts Historical Commission Documentation

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Wednesday, June 22, 2016

Search Criteria: Town(s): Boston; Place: Government Center; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No.	Property Name	Street	Town	Year
BOS.AV	Sears' Crescent and Sears' Block		Boston	
BOS.1508	McCormack, John W. State Office Building	1 Ashburton Pl	Boston	1975
BOS.1509	Massachusetts Teachers Association Building	20 Ashburton PI	Boston	c 1965
BOS.1551	One Beacon Street	1 Beacon St	Boston	c 1969
BOS.1552	Lawyers Building	9 Beacon St	Boston	1922
BOS.1553	Boston Transit Commission Building	15 Beacon St	Boston	1903
BOS.1554	Hotel Bellevue	19-21B Beacon St	Boston	1899
BOS.1579	Way, Samuel A. Carriage House	19 Beacon St	Boston	r 1870
BOS.1576	Beacon Hill Apartment House	126 Bowdoin St	Boston	c 1927
BOS.1577	Church of the New Jerusalem - Church On The Hill	140 Bowdoin St	Boston	1963
BOS.1578	Boston Society of the New Jerusalem Building	144 Bowdoin St	Boston	c 1925
BOS.1904	Temporary Home for Women	40-50 Bowker St	Boston	1924
BOS.1582	Bradlee, James Bowdoin Building	50-52 Broad St	Boston	1853
BOS.917	Bowdoin Street Subway Station	Cambridge St	Boston	1916
BOS.918	Scollay Square Under Subway Station	Cambridge St	Boston	1916
BOS.922	Scollay Square - Government Center Subway Station	1 Cambridge St	Boston	1898
BOS.1575	New England Telephone and Telegraph Company	65 Cambridge St	Boston	1930
BOS.1616	Saltonstall, Leverett State Office Building	100 Cambridge St	Boston	1965
BOS.1618	Massachusetts Health, Welfare and Education Center	115 Cambridge St	Boston	r 1965
BOS.1645	One, Two and Three Center Plaza	1-3 Center Plaza	Boston	r 1965
BOS.1656	Kirstein Memorial Library	20 City Hall Ave	Boston	1930
BOS.1657	Boston City Hall	1 City Hall Sq	Boston	r 1965
BOS.1672	Sears' Crescent	38-68 Cornhill St	Boston	1816
BOS.1673	Sears' Block	70-72 Cornhill St	Boston	1848
14/	1 00 .0040			D

Page 1 of 3

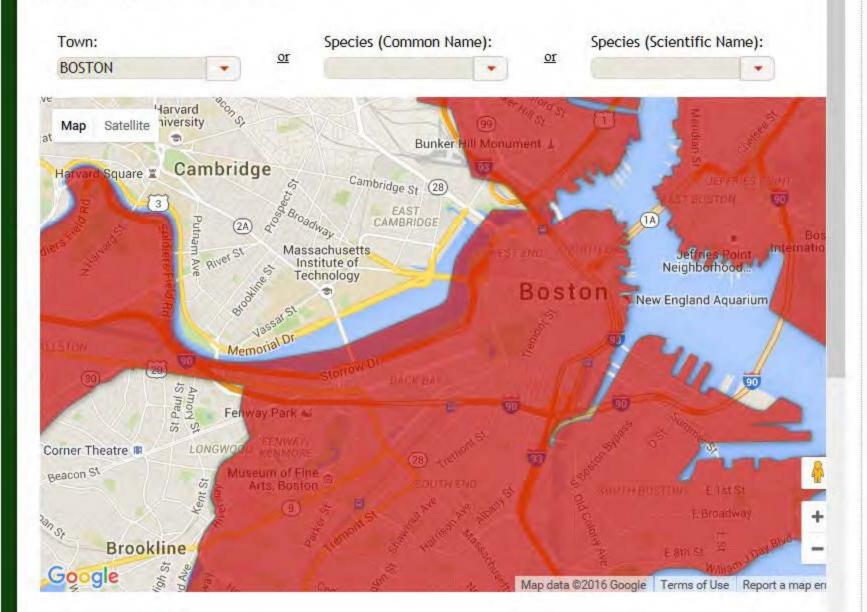
Inv. No.	Property Name	Street	Town	Year
BOS.1674		38 Court Sq	Boston	1914
BOS.1678	Ames Building, The	1 Court St	Boston	c 1889
BOS.1671	Old Colony Trust Company	17 Court St	Boston	1923
BOS.1679	Old Colony Trust Company Building	17 Court St	Boston	1908
BOS.1680	City Bank and Trust Company Building	25 Court St	Boston	1967
BOS.1676	Boston City Hall Annex	26 Court St	Boston	1912
BOS.1677	Scollay Building	30-40 Court St	Boston	1914
BOS.1614	Capital Bank Building	30 Hawkins St	Boston	1972
BOS.948	Edison Electric Illuminating Substation	33 Hawkins St	Boston	1927
BOS.1783	Overseers of Public Welfare Building	35 Hawkins St	Boston	1924
BOS.1782	R. K. O. General Building	40 Hawkins St	Boston	1967
BOS.1901	Bulfinch Building	15 New Chardon St	Boston	1968
BOS.1902	Royal Globe Insurance Company	25 New Chardon St	Boston	1967
BOS.1903	Jewish Family and Children's Service	31 New Chardon St	Boston	1967
BOS.1617	Kennedy, John F. Federal Office Building	15 New Sudbury St	Boston	1966
BOS.2023	Boston District #1 Police Station	40 New Sudbury St	Boston	1968
BOS.2024	Government Center Parking Garage	50 New Sudbury St	Boston	1966
BOS.938	Choate, Rufus Statue	Pemberton Sq	Boston	1898
BOS.1573	Suffolk County Courthouse Addition	1 Pemberton Sq	Boston	c 1936
BOS.1945	Adams, John Courthouse	1 Pemberton Sq	Boston	r 1885
BOS.1675	Thompson's Spa	15 Pie Alley	Boston	1922
BOS.1970	Boston Five Cents Savings Bank	10 School St	Boston	c 1972
BOS.1974	Hunnewell, Horatio Hollis Building	13-15 School St	Boston	1888
BOS.1975	Codman, Martha C. Building	19-21 School St	Boston	1917
BOS.1976	Niles Building	23-29 School St	Boston	1915
BOS.932	Franklin, Benjamin Statue	41-45 School St	Boston	1855
BOS.936	Quincy, Josiah Statue	41-45 School St	Boston	1879
BOS.1977	Old City Hall	41-45 School St	Boston	1862
BOS.1979	Boston City Club	12-14 Somerset St	Boston	1913
BOS.1980	Metropolitan District Commission Building	20 Somerset St	Boston	1932
BOS.919	Devonshire - State Street Subway Station	State St	Boston	1904
BOS.2107	Old State House	State St	Boston	1712
BOS.803	King's Chapel Burying Ground	Tremont St	Boston	1630
BOS.2064	Hemenway Building	2-16 Tremont St	Boston	1883
BOS.2065	Kimball Building	18-28 Tremont St	Boston	1902
BOS.2067	King's Chapel	58 Tremont St	Boston	r 1750
BOS.2068	Tremont Building	67-81 Tremont St	Boston	1895
BOS.2106	One Washington Mall	1 Washington Mall	Boston	1972
Wednesday	June 22, 2016			Page 2 of 3

Wednesday, June 22, 2016 Page 2 of 3

Inv. No.	Property Name	Street	Town	Year
BOS.2124	Boston Company Building, The	197-235 Washington St	Boston	1968
BOS.1569	Boston Company Building	201 Washington St	Boston	1970
BOS.2125	Coffman's Washington Street Garage	227-245 Washington St	Boston	1966
BOS.2126	Cunningham, Andrew House	277-279 Washington St	Boston	r 1725
BOS.2127	Old Corner Bookstore, The	277-285 Washington St	Boston	1718

Wednesday, June 22, 2016 Page 3 of 3

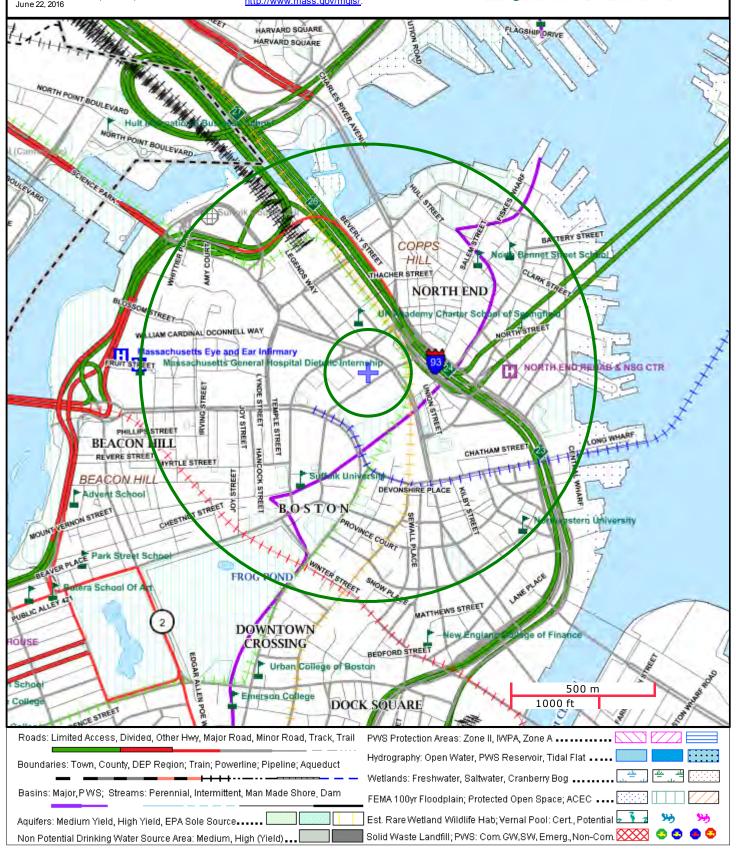
APPENDIX E


Endangered Species Act Documentation

Town Species Viewer

The Natural Heritage & Endangered Species Program maintains a list of all documented MESA-listed species observations in the Commonwealth. Please select a town if you would like to see a table showing which listed species have been observed in that town. The selected town will also be highlighted on the map. Alternatively you can specify either the Common Name or Scientific Name of a species to see it's distribution on the map and table showing the towns it has been observed in. Clicking on a column header in the table will sort the column. Clicking again on the same column heading will reverse the sort order.

The Town List and Species Viewer will be updated at regular intervals as new data is accepted and entered into the NHESP database.


Town	Taxonomic Group	Scientific Name	Common Name	MESA Status	Federal Status	Most Recent Observation
BOSTON	Butterfly/Moth	Abagrotis nefascia	Coastal Heathland Cutworm	SC		2001
BOSTON	Bird	Accipiter striatus	Sharp-shinned Hawk	SC		1898
BOSTON	Vascular Plant	Ageratina aromatica	Lesser Snakeroot	Е		1896
BOSTON	Amphibian	Ambystoma laterale	Blue-spotted Salamander	SC		2013
BOSTON	Bird	Ammodramus savannarum	Grasshopper Sparrow	T		1993
BOSTON	Butterfly/Moth	Apodrepanulatrix liberaria	New Jersey Tea Inchworm	Е		Historic
BOSTON	Vascular Plant	Aristida purpurascens	Purple Needlegrass	T		1800s
BOSTON	Vascular Plant	Aristida tuberculosa	Seabeach Needlegrass	T		1877
BOSTON	Vascular Plant	Asclepias verticillata	Linear-leaved Milkweed	T		1878
BOSTON	Bird	Bartramia longicauda	Upland Sandpiper	Е		1993
BOSTON	Vascular Plant	Boechera missouriensis	Green Rock-cress	T		1930
BOSTON	Vascular Plant	Carex striata	Walter's Sedge	Е		Historic
BOSTON	Bird	Charadrius melodus	Piping Plover	Т	Т	2011
BOSTON	Beetle	Cicindela duodecimguttata	Twelve-spotted Tiger Beetle	SC		1910
BOSTON	Beetle	Cicindela purpurea	Cow Path Tiger Beetle	SC		1928
BOSTON	Beetle	Cicindela rufiventris hentzii	Eastern Red-bellied Tiger Beetle	T		1927
BOSTON	Vascular Plant	Desmodium cuspidatum	Large-bracted Tick-trefoil	Т		1896
BOSTON	Vascular Plant	Eriophorum gracile	Slender Cottongrass	Т		1885
BOSTON	Bird	Falco peregrinus	Peregrine Falcon	Е		2014
BOSTON	Fish	Gasterosteus aculeatus	Threespine Stickleback	Т		2014
BOSTON	Bird	Gavia immer	Common Loon	SC		1824
BOSTON	Vascular Plant	Houstonia longifolia	Long-leaved Bluet	Е		1918
BOSTON	Vascular Plant	Liatris scariosa var. novae-angliae	New England Blazing Star	SC		1933
BOSTON	Mussel	Ligumia nasuta	Eastern Pondmussel	SC		1841
BOSTON	Vascular Plant	Linum medium var. texanum	Rigid Flax	Т		1909
BOSTON	Vascular Plant	Lycopus rubellus	Gypsywort	Е		1896
BOSTON	Butterfly/Moth	Metarranthis apiciaria	Barrens Metarranthis	Е		1934
BOSTON	Vascular Plant	Myriophyllum alterniflorum	Alternate-flowered Water-milfoil	Е		Historic
BOSTON	Vascular Plant	Ophioglossum pusillum	Adder's-tongue Fern	Т		1884
BOSTON	Vascular Plant	Platanthera flava var. herbiola	Pale Green Orchis	Т		1908
BOSTON	Bird	Pooecetes gramineus	Vesper Sparrow	T		1985
BOSTON	Butterfly/Moth	Pyrrhia aurantiago	Orange Sallow Moth	SC		1988
BOSTON	Vascular Plant	Ranunculus micranthus	Tiny-flowered Buttercup	E		1891
BOSTON	Vascular Plant	Rumex pallidus	Seabeach Dock	T		1984
BOSTON	Vascular Plant	Sanicula odorata	Long-styled Sanicle	T		Historic
BOSTON	Amphibian	Scaphiopus holbrookii	Eastern Spadefoot	T		1932
BOSTON	Vascular Plant	Scirpus longii	Long's Bulrush	T		1907
BOSTON	Vascular Plant	Setaria parviflora	Bristly Foxtail	sc		2001
BOSTON	Dragonfly/Damselfly	Somatochlora linearis	Mocha Emerald	SC		2009
BOSTON	Bird	Sterna hirundo	Common Tern	SC		2013
BOSTON	Bird	Sternula antillarum	Least Tern	SC		2013
BOSTON	Vascular Plant	Suaeda calceoliformis	American Sea-blite	SC		1909
BOSTON	Reptile	Terrapene carolina	Eastern Box Turtle	SC		1909
BOSTON	Bird	Tyto alba	Barn Owl	SC		1939
BOSTON	Bird	Vermivora chrysoptera	Golden-winged Warbler	E		Historic
BOSTON		Viola brittoniana	Britton's Violet	T		1909
JUSTUN	Vascular Plant	viola Dilloillalla	סיוווטוופ אוטופו	ı		1909

MassDEP - Bureau of Waste Site Cleanup Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii

Site Information: ONE CONGRESS STREET ONE CONGRESS STREET BOSTON, MA

NAD83 UTM Meters: 4692059mN , 330402mE (Zone: 19) June 22, 2016 The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at: http://www.mass.gov/mgis/.

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS	
	Piping Plover	Threatened	Coastal Beaches	All Towns	
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns	
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham	
Barnstable	Sandplain gerardia	Endangered	Open areas with sandy soils. Sandwich and Falmou		
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Bourne (north of the Cape Cod Canal)	
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield	
Berkshire	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport	
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport	
Bristol	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Taunton	
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns	
	Piping Plover	Threatened	Coastal Beaches	All Towns	
Dukes	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark	
	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury	
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS	
Essex	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester	
	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury	
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick	
Franklin	Dwarf wedgemussel	Endangered	Mill River	Whately	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley	
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley	
Hampshire	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick	
Hampden	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
2611	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton	
Middlesex	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
Nantucket	Piping Plover	Threatened	Coastal Beaches	Nantucket	
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket	
	American burying beetle	Endangered	Upland grassy meadows	Nantucket	
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymouth, Bourne, Wareham, Halifax, and Pembroke
Plymouth	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Revere, Winthrop
Suffolk	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Worcester	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

¹Migratory only, scattered along the coast in small numbers

⁻Eastern cougar and gray wolf are considered extirpated in Massachusetts.

⁻Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.

⁻Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 COMMERCIAL STREET, SUITE 300 CONCORD, NH 03301

PHONE: (603)223-2541 FAX: (603)223-0104 URL: www.fws.gov/newengland

June 22, 2016

Consultation Code: 05E1NE00-2016-SLI-1668

Event Code: 05E1NE00-2016-E-02416

Project Name: One Congress Street Development

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

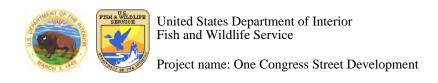
The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan


(http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and

http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment

Official Species List

Provided by:

New England Ecological Services Field Office 70 COMMERCIAL STREET, SUITE 300 CONCORD, NH 03301 (603) 223-2541

http://www.fws.gov/newengland

Consultation Code: 05E1NE00-2016-SLI-1668

Event Code: 05E1NE00-2016-E-02416

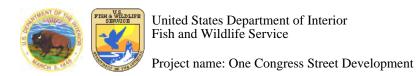
Project Type: DEVELOPMENT

Project Name: One Congress Street Development

Project Description: Renovation of the existing 11 story garage. The garage has 9 floors of parking and 2 floors of office space. The renovations in question will be the relocation of access ramps and drive lanes to provide access around future proposed construction.

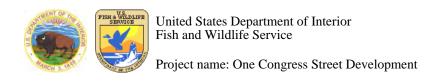
Please Note: The FWS office may have modified the Project Name and/or Project Description, so it may be different from what was submitted in your previous request. If the Consultation Code matches, the FWS considers this to be the same project. Contact the office in the 'Provided by' section of your previous Official Species list if you have any questions or concerns.

United States Department of Interior Fish and Wildlife Service


Project name: One Congress Street Development

Project Location Map:

Project Coordinates: MULTIPOLYGON (((-71.05850011110306 42.36325099040383, -71.06033205986023 42.36236906043124, -71.05977684259415 42.36196277391919, -71.05794221162796 42.36285858264135, -71.05850011110306 42.36325099040383)))


Project Counties: Suffolk, MA

Endangered Species Act Species List

There are a total of 1 threatened or endangered species on your species list. Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. Critical habitats listed under the **Has Critical Habitat** column may or may not lie within your project area. See the **Critical habitats within your project area** section further below for critical habitat that lies within your project. Please contact the designated FWS office if you have questions.

Birds	Status	Has Critical Habitat	Condition(s)
Red Knot (Calidris canutus rufa)	Threatened		

Critical habitats that lie within your project area

There are no critical habitats within your project area.

APPENDIX F

Laboratory Reports

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Jesse Freeman The Vertex Companies 1 Congress St Boston, MA 02114

RE: 1 Congress St - NPDES (20026)

ESS Laboratory Work Order Number: 1606245

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard

Laboratory Director

REVIEWED

By ESS Laboratory at 3:28 pm, Jun 21, 2016

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with NELAC Standards, A2LA and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1606245

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

SAMPLE RECEIPT

The following samples were received on June 09, 2016 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the Guidelines Establishing Test Procedures for the Analysis of Pollutants, 40 CFR Part 136, as amended.

Lab Number 1606245-01

Sample Name NPDES-T2-100 **Matrix** Waste Water **Analysis**

1664A, 245.1, 2540D, 420.1, 4500 CN CE, 4500-Cl E, 504.1, 6010C, 608, 624, 7010, 7196A, 8270D,

8270D SIM

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1606245

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

PROJECT NARRATIVE

608 Polychlorinated Biphenyls (PCB)

1606245-01 Surrogate recovery(ies) outside of criteria. Reextraction/Reanalysis confirms results (SC).

Decachlorobiphenyl (20% @ 30-150%), Decachlorobiphenyl [2C] (12% @ 30-150%)

608/6630C Organochlorine Pesticides

1606245-01 Percent difference between primary and confirmation results exceeds 40% (P).

Endosulfan I [2C]

1606245-01 Surrogate recovery(ies) outside of criteria. Reextraction/Reanalysis confirms results (SC).

Decachlorobiphenyl (11% @ 30-150%)

CF61439-BSD1 Relative percent difference for duplicate is outside of criteria (D+).

Endrin Aldehyde (22% @ 20%)

CZF0252-CCV3 Continuing Calibration %Diff/Drift is above control limit (CD+).

Decachlorobiphenyl [2C] (16% @ 15%), delta-BHC [2C] (18% @ 15%), Endosulfan Sulfate [2C] (17%

@ 15%), Methoxychlor [2C] (36% @ 15%)

624 Volatile Organic Compounds

CF61028-BSD1 Blank Spike recovery is below lower control limit (B-).

Acrolein - Screen (29% @ 70-130%)

CF61028-BSD1 Relative percent difference for duplicate is outside of criteria (D+).

Acrolein - Screen (88% @ 25%), Tetrachloroethene (32% @ 25%)

8270C Semi-Volatile Organic Compounds

CZF0245-CCV1 Calibration required quadratic regression (Q).

2,4-Dinitrophenol (88% @ 80-120%), Di-n-octylphthalate (92% @ 80-120%)

CZF0247-CCV1 Calibration required quadratic regression (Q).

2,4-Dinitrophenol (98% @ 80-120%), Di-n-octylphthalate (89% @ 80-120%)

8270D(SIM) Semi-Volatile Organic Compounds

CZF0248-CCV1 <u>Calibration required quadratic regression (Q).</u>

Pentachlorophenol (120% @ 80-120%)

CZF0248-CCV1 Continuing Calibration %Diff/Drift is above control limit (CD+).

2,4,6-Tribromophenol (32% @ 20%)

Classical Chemistry

1606245-01 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

CF61020-BLK1 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

CF61020-BS1 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

185 Frances Avenue, Cranston, RI 02910-2211 Tel: 401-461-7181 Fax: 401-461-4486 http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

ESS Laboratory Work Order: 1606245

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

<u>Definitions of Quality Control Parameters</u>

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1606245

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015D - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES Client Sample ID: NPDES-T2-100

Date Sampled: 06/09/16 12:00

Percent Solids: N/A

ESS Laboratory Work Order: 1606245 ESS Laboratory Sample ID: 1606245-01

Sample Matrix: Waste Water

Units: ug/L

Extraction Method: 3005A

All methods used are in accordance with 40 CFR 136.

Total Metals

Analyte	Results (MRL)	MDL	Method	Limit	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Antimony	ND (10.0)		7010		1	KJK	06/15/16 12:26	50	50	CF61019
Arsenic	ND (10.0)		7010		1	KJK	06/16/16 16:52	50	50	CF61019
Cadmium	ND (1.0)		7010		1	KJK	06/17/16 14:34	50	50	CF61019
Chromium	ND (20.0)		6010C		1	KJK	06/10/16 19:28	50	50	CF61019
Chromium III	ND (20)		6010C		1	MJV	06/10/16 19:28	1	1	[CALC]
Copper	55.6 (10.0)		6010C		1	KJK	06/10/16 19:28	50	50	CF61019
Iron	6910 (100)		6010C		1	KJK	06/10/16 19:28	50	50	CF61019
Lead	10.0 (5.0)		7010		1	KJK	06/15/16 2:03	50	50	CF61019
Mercury	ND (0.20)		245.1		1	AA	06/10/16 12:26	20	40	CF60908
Nickel	ND (20.0)		6010C		1	KJK	06/10/16 19:28	50	50	CF61019
Selenium	ND (10.0)		7010		1	KJK	06/14/16 21:35	50	50	CF61019
Silver	ND (0.5)		7010		1	DEL	06/20/16 13:37	50	50	CF61019
Zinc	ND (50.0)		6010C		1	KJK	06/10/16 19:28	50	50	CF61019

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

All methods used are in accordance with 40 CFR 136.

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES Client Sample ID: NPDES-T2-100

Date Sampled: 06/09/16 12:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1606245 ESS Laboratory Sample ID: 1606245-01

Sample Matrix: Waste Water

Units: ug/L Analyst: TJ

Prepared: 6/10/16 11:10

608 Polychlorinated Biphenyls (PCB)

Analyte Aroclor 1016	Results (MRL) ND (0.09)	<u>MDL</u>	Method 608	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/10/16 17:33	Sequence	Batch CF61011
Aroclor 1221	ND (0.09)		608		1	06/10/16 17:33		CF61011
Aroclor 1232	ND (0.09)		608		1	06/10/16 17:33		CF61011
Aroclor 1242	ND (0.09)		608		1	06/10/16 17:33		CF61011
Aroclor 1248	ND (0.09)		608		1	06/10/16 17:33		CF61011
Aroclor 1254	ND (0.09)		608		1	06/10/16 17:33		CF61011
Aroclor 1260	ND (0.09)		608		1	06/10/16 17:33		CF61011
Aroclor 1262	ND (0.09)		608		1	06/10/16 17:33		CF61011
Aroclor 1268	ND (0.09)		608		1	06/10/16 17:33		CF61011
	9,	6Recovery	Oualifier	Limits				

	70Kecovery	Qualifici	LIIIILS
Surrogate: Decachlorobiphenyl	20 %	SC	30-150
Surrogate: Decachlorobiphenyl [2C]	12 %	SC	30-150
Surrogate: Tetrachloro-m-xylene	66 %		30-150
Surrogate: Tetrachloro-m-xylene [2C]	97 %		30-150

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

All methods used are in accordance with 40 CFR 136.

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES Client Sample ID: NPDES-T2-100

Date Sampled: 06/09/16 12:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 5

Extraction Method: 3510C

ESS Laboratory Work Order: 1606245 ESS Laboratory Sample ID: 1606245-01

Sample Matrix: Waste Water

Units: ug/L Analyst: TJ

Prepared: 6/14/16 15:32

608/6630C Organochlorine Pesticides

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
4,4′-DDD	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
4,4′-DDE	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
4,4´-DDT	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
Aldrin	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
alpha-BHC	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
beta-BHC	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
Chlordane (Total)	ND (0.47)		608		1	06/14/16 22:42	CZF0252	CF61439
delta-BHC	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
Dieldrin	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
Endosulfan I [2C]	P 0.12 (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
Endosulfan II	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
Endosulfan Sulfate	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
Endrin	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
Endrin Aldehyde	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
gamma-BHC (Lindane)	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
Heptachlor	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
Heptachlor Epoxide	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
Methoxychlor	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
Toxaphene	ND (1.21)		608		1	06/14/16 22:42	CZF0252	CF61439

%RecoveryQualifierLimitsSurrogate: Decachlorobiphenyl11 %SC30-150Surrogate: Tetrachloro-m-xylene59 %30-150

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

All methods used are in accordance with 40 CFR 136.

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES Client Sample ID: NPDES-T2-100

Date Sampled: 06/09/16 12:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1606245 ESS Laboratory Sample ID: 1606245-01

Sample Matrix: Waste Water

Units: ug/L Analyst: GEM

624 Volatile Organic Compounds

Analyte	Results (MRL)	MDL Met	<u>10d Limit</u>	DF	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (1.0)	624		1	06/10/16 14:35	CZF0192	CF61028
1,1,2,2-Tetrachloroethane	ND (0.5)	624		1	06/10/16 14:35	CZF0192	CF61028
1,1,2-Trichloroethane	ND (1.0)	624		1	06/10/16 14:35	CZF0192	CF61028
1,1-Dichloroethane	ND (1.0)	624		1	06/10/16 14:35	CZF0192	CF61028
1,1-Dichloroethene	ND (1.0)	624		1	06/10/16 14:35	CZF0192	CF61028
1,2-Dichlorobenzene	ND (1.0)	624		1	06/10/16 14:35	CZF0192	CF61028
1,2-Dichloroethane	ND (1.0)	624		1	06/10/16 14:35	CZF0192	CF61028
1,2-Dichloropropane	ND (1.0)	624		1	06/10/16 14:35	CZF0192	CF61028
1,3-Dichlorobenzene	ND (1.0)	624		1	06/10/16 14:35	CZF0192	CF61028
1,4-Dichlorobenzene	ND (1.0)	624		1	06/10/16 14:35	CZF0192	CF61028
2-Chloroethyl vinyl ether	ND (10.0)	624		1	06/10/16 14:35	CZF0192	CF61028
Acrolein - Screen	ND (5.0)	624		1	06/10/16 14:35	CZF0192	CF61028
Acrylonitrile - Screen	ND (5.0)	624		1	06/10/16 14:35	CZF0192	CF61028
Benzene	ND (1.0)	624		1	06/10/16 14:35	CZF0192	CF61028
Bromodichloromethane	1.2 (0.6)	624		1	06/10/16 14:35	CZF0192	CF61028
Bromoform	ND (1.0)	624		1	06/10/16 14:35	CZF0192	CF61028
Bromomethane	ND (2.0)	624		1	06/10/16 14:35	CZF0192	CF61028
Carbon Tetrachloride	ND (1.0)	624		1	06/10/16 14:35	CZF0192	CF61028
Chlorobenzene	ND (1.0)	624		1	06/10/16 14:35	CZF0192	CF61028
Chloroethane	ND (2.0)	624		1	06/10/16 14:35	CZF0192	CF61028
Chloroform	3.9 (1.0)	624		1	06/10/16 14:35	CZF0192	CF61028
Chloromethane	ND (2.0)	624		1	06/10/16 14:35	CZF0192	CF61028
cis-1,2-Dichloroethene	ND (1.0)	624		1	06/10/16 14:35	CZF0192	CF61028
cis-1,3-Dichloropropene	ND (0.4)	624		1	06/10/16 14:35	CZF0192	CF61028
Dibromochloromethane	ND (1.0)	624		1	06/10/16 14:35	CZF0192	CF61028
Ethylbenzene	ND (1.0)	624		1	06/10/16 14:35	CZF0192	CF61028
Methylene Chloride	ND (4.0)	624		1	06/10/16 14:35	CZF0192	CF61028
Tetrachloroethene	ND (1.0)	624		1	06/10/16 14:35	CZF0192	CF61028
Toluene	ND (1.0)	624		1	06/10/16 14:35	CZF0192	CF61028
trans-1,2-Dichloroethene	ND (1.0)	624		1	06/10/16 14:35	CZF0192	CF61028
trans-1,3-Dichloropropene	ND (0.5)	624		1	06/10/16 14:35	CZF0192	CF61028
Trichloroethene	ND (1.0)	624		1	06/10/16 14:35	CZF0192	CF61028

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1606245

ESS Laboratory Sample ID: 1606245-01

CERTIFICATE OF ANALYSIS

All methods used are in accordance with 40 CFR 136.

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES Client Sample ID: NPDES-T2-100

Date Sampled: 06/09/16 12:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

5

Sample Matrix: Waste Water Units: ug/L

Analyst: GEM

624 Volatile Organic Compounds

Analyte Trichlorofluoromethane Vinyl Chloride	Results (MRL) ND (1.0) ND (1.0)	MDL	Method 624 624	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 06/10/16 14:35 06/10/16 14:35	Sequence CZF0192 CZF0192	Batch CF61028 CF61028
-		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		98 %		70-130				
Surrogate: 4-Bromofluorobenzene		107 %		70-130				
Surrogate: Dibromofluoromethane		99 %		70-130				
Surrogate: Toluene-d8		93 %		70-130				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

All methods used are in accordance with 40 CFR 136.

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES Client Sample ID: NPDES-T2-100

Date Sampled: 06/09/16 12:00

Percent Solids: N/A Initial Volume: 1030 Final Volume: 1

Extraction Method: 3520C

ESS Laboratory Work Order: 1606245 ESS Laboratory Sample ID: 1606245-01

Sample Matrix: Waste Water

Units: ug/L Analyst: IBM

Prepared: 6/13/16 19:04

8270C Semi-Volatile Organic Compounds

Analyte 1,2,4-Trichlorobenzene	Results (MRL) ND (9.7)	<u>MDL</u>	Method 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/15/16 8:29	Sequence CZF0247	Batch CF61340
1,2-Dichlorobenzene	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
1,3-Dichlorobenzene	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
1,4-Dichlorobenzene	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
2,4,5-Trichlorophenol	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
2,4,6-Trichlorophenol	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
2,4-Dichlorophenol	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
2,4-Dimethylphenol	ND (48.5)		8270D		1	06/15/16 8:29	CZF0247	CF61340
2,4-Dinitrophenol	ND (48.5)		8270D		1	06/15/16 8:29	CZF0247	CF61340
2,4-Dinitrotoluene	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
2,6-Dinitrotoluene	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
2-Chloronaphthalene	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
2-Chlorophenol	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
2-Methylphenol	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
2-Nitrophenol	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
3,3'-Dichlorobenzidine	ND (19.4)		8270D		1	06/15/16 8:29	CZF0247	CF61340
3+4-Methylphenol	ND (19.4)		8270D		1	06/15/16 8:29	CZF0247	CF61340
4-Bromophenyl-phenylether	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
4-Chloroaniline	ND (19.4)		8270D		1	06/15/16 8:29	CZF0247	CF61340
4-Nitrophenol	ND (48.5)		8270D		1	06/15/16 8:29	CZF0247	CF61340
Acetophenone	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
Aniline	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
Azobenzene	ND (19.4)		8270D		1	06/15/16 8:29	CZF0247	CF61340
bis(2-Chloroethoxy)methane	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
bis(2-Chloroethyl)ether	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
bis(2-chloroisopropyl)Ether	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
bis(2-Ethylhexyl)phthalate	230 (5.8)		8270D		1	06/15/16 8:29	CZF0247	CF61340
Butylbenzylphthalate	11.7 (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
Dibenzofuran	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
Diethylphthalate	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
Dimethylphthalate	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
Di-n-butylphthalate	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

All methods used are in accordance with 40 CFR 136.

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES Client Sample ID: NPDES-T2-100

Date Sampled: 06/09/16 12:00

Percent Solids: N/A Initial Volume: 1030 Final Volume: 1

Extraction Method: 3520C

ESS Laboratory Work Order: 1606245 ESS Laboratory Sample ID: 1606245-01

Sample Matrix: Waste Water

Units: ug/L Analyst: IBM

Prepared: 6/13/16 19:04

8270C Semi-Volatile Organic Compounds

Analyte Di-n-octylphthalate	Results (MRL) ND (9.7)	MDL	Method 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/15/16 8:29	Sequence CZF0247	Batch CF61340
Hexachlorobutadiene	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
Hexachloroethane	ND (4.9)		8270D		1	06/15/16 8:29	CZF0247	CF61340
Isophorone	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
Nitrobenzene	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
N-Nitrosodimethylamine	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
Phenol	14.5 (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340

Qualifier

Limits

Surrogate: 1,2-Dichlorobenzene-d4	49 %	30-130
Surrogate: 2,4,6-Tribromophenol	43 %	15-110
Surrogate: 2-Chlorophenol-d4	45 %	15-110
Surrogate: 2-Fluorobiphenyl	47 %	30-130
Surrogate: 2-Fluorophenol	35 %	15-110
Surrogate: Nitrobenzene-d5	51 %	30-130
Surrogate: Phenol-d6	46 %	15-110
Surrogate: p-Terphenyl-d14	<i>55</i> %	30-130

%Recovery

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1606245

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES Client Sample ID: NPDES-T2-100

Date Sampled: 06/09/16 12:00

Percent Solids: N/A Initial Volume: 1030 Final Volume: 0.25

Extraction Method: 3520C

ESS Laboratory Sample ID: 1606245-01 Sample Matrix: Waste Water Units: ug/L

Analyst: IBM

Prepared: 6/13/16 19:04

All methods used are in accordance with 40 CFR 136.

8270D(SIM) Semi-Volatile Organic Compounds

Analyte 2-Methylnaphthalene	Results (MRL) ND (3.88)	MDL Method 8270D SIM	$\frac{\textbf{Limit}}{20}$	<u>Analyzed</u> 06/15/16 14:57	Sequence CZF0248	Batch CF61340
Acenaphthene		8270D SIM	20	06/15/16 14:57	CZF0248	CF61340
•	ND (3.88)		20	06/15/16 14:57	CZF0248 CZF0248	CF61340
Acenaphthylene	ND (3.88)	8270D SIM				
Anthracene	ND (3.88)	8270D SIM	20	06/15/16 14:57	CZF0248	CF61340
Benzo(a)anthracene	ND (0.97)	8270D SIM	20	06/15/16 14:57	CZF0248	CF61340
Benzo(a)pyrene	ND (0.97)	8270D SIM	20	06/15/16 14:57	CZF0248	CF61340
Benzo(b)fluoranthene	ND (0.97)	8270D SIM	20	06/15/16 14:57	CZF0248	CF61340
Benzo(g,h,i)perylene	ND (3.88)	8270D SIM	20	06/15/16 14:57	CZF0248	CF61340
Benzo(k)fluoranthene	ND (0.97)	8270D SIM	20	06/15/16 14:57	CZF0248	CF61340
Chrysene	ND (0.97)	8270D SIM	20	06/15/16 14:57	CZF0248	CF61340
Dibenzo(a,h)Anthracene	ND (0.97)	8270D SIM	20	06/15/16 14:57	CZF0248	CF61340
Fluoranthene	ND (3.88)	8270D SIM	20	06/15/16 14:57	CZF0248	CF61340
Fluorene	ND (3.88)	8270D SIM	20	06/15/16 14:57	CZF0248	CF61340
Hexachlorobenzene	ND (3.88)	8270D SIM	20	06/15/16 14:57	CZF0248	CF61340
Indeno(1,2,3-cd)Pyrene	ND (0.97)	8270D SIM	20	06/15/16 14:57	CZF0248	CF61340
Naphthalene	ND (3.88)	8270D SIM	20	06/15/16 14:57	CZF0248	CF61340
Pentachlorophenol	ND (17.5)	8270D SIM	20	06/15/16 14:57	CZF0248	CF61340
Phenanthrene	ND (3.88)	8270D SIM	20	06/15/16 14:57	CZF0248	CF61340
Pyrene	ND (3.88)	8270D SIM	20	06/15/16 14:57	CZF0248	CF61340

%Recovery

Qualifier

Limits

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES Client Sample ID: NPDES-T2-100

Date Sampled: 06/09/16 12:00

Percent Solids: N/A

ESS Laboratory Work Order: 1606245 ESS Laboratory Sample ID: 1606245-01

Sample Matrix: Waste Water

All methods used are in accordance with 40 CFR 136.

Classical Chemistry

<u>Analyte</u>	Results (MRL)	MDL Method	Limit	<u>DF</u>	Analyst	Analyzed	<u>Units</u>	Batch
Hexavalent Chromium	ND (10)	7196A		1	MJV	06/09/16 18:55	ug/L	CF60951
Phenols	ND (100)	420.1		1	EEM	06/16/16 13:35	ug/L	CF61630
Total Cyanide (LL)	ND (5.00)	4500 CN CE		1	EEM	06/16/16 11:40	ug/L	CF61628
Total Petroleum Hydrocarbon	169 (5)	1664A		1	CRR	06/15/16 14:52	mg/L	CF61440
Total Residual Chlorine	280 (10)	4500-C1 E		1	EEM	06/10/16 11:20	ug/L	CF61020
Total Suspended Solids	178 (10)	2540D		1	JLK	06/14/16 21:07	mg/L	CF61427

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

All methods used are in accordance with 40 CFR 136.

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES Client Sample ID: NPDES-T2-100 Date Sampled: 06/09/16 12:00

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1606245 ESS Laboratory Sample ID: 1606245-01

Sample Matrix: Waste Water

Units: ug/L Analyst: JXS

Prepared: 6/13/16 11:00

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	Results (MRL) ND (0.015)	<u>MDL</u>	<u>Method</u> 504.1	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/13/16 14:03	<u>Sequence</u>	Batch CF61311
	9/	6Recovery	Qualifier	Limits				
Surrogate: Pentachloroethane		107 %		30-150				
Surrogate: Pentachloroethane [2C]		107 %		30-150				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

ESS Laboratory Work Order: 1606245

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		<u> </u>	Total Meta	als			_	-		
Batch CF60908 - 245.1/7470A										
Blank										
Mercury	ND	0.20	ug/L							
Blank										
Mercury	ND	0.20	ug/L							
Blank										
Mercury	ND	0.20	ug/L							
LCS										
Mercury	5.92	0.20	ug/L	6.000		99	85-115			
·		0.20	49/ 2							
LCS Dup	5.85	0.20	ua/I	6.000		97	85-115	1	20	
Mercury	5.05	0.20	ug/L	0.000		3/	03-113	1	20	
Batch CF60951 - [CALC]										
Blank										
Chromium III	ND	10	ug/L							
LCS										
Chromium III	ND		ug/L							
LCS Dup										
Chromium III	ND		ug/L							
Batch CF61019 - 3005A										
Blank										
Antimony	ND	10.0	ug/L							
Arsenic	ND	10.0	ug/L							
Cadmium	ND	1.0	ug/L							
Chromium	ND	20.0	ug/L							
Chromium III	ND	20	ug/L							
Copper	ND	10.0	ug/L							
Iron	ND	100	ug/L							
Lead	ND	5.0	ug/L							
Nickel	ND	20.0	ug/L							
Selenium	ND	10.0	ug/L							
Silver	ND	0.5	ug/L							
Silver	ND	5.0	ug/L							
Zinc	ND	50.0	ug/L							
LCS										
Antimony	464	250	ug/L	500.0		93	80-120			
Arsenic	578	250	ug/L	500.0		116	80-120			
Cadmium	253	500	ug/L	250.0		101	80-120			
Chromium	503	20.0	ug/L	500.0		101	80-120			
Chromium III	503	20	ug/L							
Copper	479	10.0	ug/L	500.0		96	80-120			
Iron	2510	100	ug/L	2500		100	80-120			
Lead	493	125	ug/L	500.0		99	80-120			
Nickel	496	20.0	ug/L	500.0		99	80-120			
Selenium	1030	250	ug/L	1000		103	80-120			

Dependability

Quality

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

ESS Laboratory Work Order: 1606245

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
			Total Met	als						
Batch CF61019 - 3005A										
Silver	249	5.0	ug/L	250.0		100	80-120			
Silver	271	50.0	ug/L	250.0		108	80-120			
Zinc	563	50.0	ug/L	500.0		113	80-120			
LCS Dup										
Antimony	469	250	ug/L	500.0		94	80-120	1	20	
Arsenic	586	250	ug/L	500.0		117	80-120	1	20	
Cadmium	263	500	ug/L	250.0		105	80-120	4	20	
Chromium	492	20.0	ug/L	500.0		98	80-120	2	20	
Chromium III	492	20	ug/L							
Copper	473	10.0	ug/L	500.0		95	80-120	1	20	
Iron	2470	100	ug/L	2500		99	80-120	2	20	
Lead	496	125	ug/L	500.0		99	80-120	0.5	20	
Nickel	489	20.0	ug/L	500.0		98	80-120	2	20	
Selenium	1060	250	ug/L	1000		106	80-120	2	20	
Silver	244	5.0	ug/L	250.0		98	80-120	2	20	
Silver	268	50.0	ug/L	250.0		107	80-120	1	20	
Zinc	493	50.0	ug/L	500.0		99	80-120	13	20	

608 Polychlorinated Biphenyls (PCB)

Batch CF61011 - 3510C									
Blank									-
Aroclor 1016	ND	0.10	ug/L						
Aroclor 1221	ND	0.10	ug/L						
Aroclor 1232	ND	0.10	ug/L						
Aroclor 1242	ND	0.10	ug/L						
Aroclor 1248	ND	0.10	ug/L						
Aroclor 1254	ND	0.10	ug/L						
Aroclor 1260	ND	0.10	ug/L						
Aroclor 1262	ND	0.10	ug/L						
Aroclor 1268	ND	0.10	ug/L						
Surrogate: Decachlorobiphenyl	0.0300		ug/L	0.05000	60	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0401		ug/L	0.05000	80	30-150			
Surrogate: Tetrachloro-m-xylene	0.0181		ug/L	0.05000	36	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0210		ug/L	0.05000	42	30-150			
LCS									
Aroclor 1016	0.62	0.10	ug/L	1.000	62	40-140			
Aroclor 1260	0.71	0.10	ug/L	1.000	71	40-140			
Surrogate: Decachlorobiphenyl	0.0346		ug/L	0.05000	69	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0395		ug/L	0.05000	<i>79</i>	30-150			
Surrogate: Tetrachloro-m-xylene	0.0211		ug/L	0.05000	42	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0229		ug/L	0.05000	46	30-150			
LCS Dup									
Aroclor 1016	0.65	0.10	ug/L	1.000	65	40-140	4	50	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

ESS Laboratory Work Order: 1606245

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

608 Polychlorinated Biphenyls (PCB)

Batch CF61011 - 3510C								
Aroclor 1260	0.72	0.10	ug/L	1.000	72	40-140	2	50
Surrogate: Decachlorobiphenyl	0.0343		ug/L	0.05000	69	30-150		
Surrogate: Decachlorobiphenyl [2C]	0.0410		ug/L	0.05000	82	30-150		
Surrogate: Tetrachloro-m-xylene	0.0211		ug/L	0.05000	42	30-150		
Surrogate: Tetrachloro-m-xylene [2C]	0.0231		ug/L	0.05000	46	30-150		

608/6630C Organochlorine Pesticides

		608/6630C	Organochlorine Pesticides	
Batch CF61439 - 3510C				
Blank				
4,4´-DDD	ND	0.05	ug/L	
4,4'-DDD [2C]	ND	0.05	ug/L	
4,4 '-DDE	ND	0.05	ug/L	
4,4'-DDE [2C]	ND	0.05	ug/L	
4,4´-DDT	ND	0.05	ug/L	
4,4'-DDT [2C]	ND	0.05	ug/L	
Aldrin	ND	0.05	ug/L	
Aldrin [2C]	ND	0.05	ug/L	
alpha-BHC	ND	0.05	ug/L	
alpha-BHC [2C]	ND	0.05	ug/L	
beta-BHC	ND	0.05	ug/L	
beta-BHC [2C]	ND	0.05	ug/L	
Chlordane (Total)	ND	0.50	ug/L	
Chlordane (Total) [2C]	ND	0.50	ug/L	
delta-BHC	ND	0.05	ug/L	
delta-BHC [2C]	ND	0.05	ug/L	
Dieldrin	ND	0.05	ug/L	
Dieldrin [2C]	ND	0.05	ug/L	
Endosulfan I	ND	0.05	ug/L	
Endosulfan I [2C]	ND	0.05	ug/L	
Endosulfan II	ND	0.05	ug/L	
Endosulfan II [2C]	ND	0.05	ug/L	
Endosulfan Sulfate	ND	0.05	ug/L	
Endosulfan Sulfate [2C]	ND	0.05	ug/L	
Endrin	ND	0.05	ug/L	
Endrin [2C]	ND	0.05	ug/L	
Endrin Aldehyde	ND	0.05	ug/L	
Endrin Aldehyde [2C]	ND	0.05	ug/L	
gamma-BHC (Lindane)	ND	0.05	ug/L	
gamma-BHC (Lindane) [2C]	ND	0.05	ug/L	
Heptachlor	ND	0.05	ug/L	
Heptachlor [2C]	ND	0.05	ug/L	
Heptachlor Epoxide	ND	0.05	ug/L	
Heptachlor Epoxide [2C]	ND	0.05	ug/L	
Methoxychlor	ND	0.05	ug/L	
•			- -	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

ESS Laboratory Work Order: 1606245

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		608/6630C	Organochlo	orine Pest	icides					
Batch CF61439 - 3510C										
Methoxychlor [2C]	ND	0.05	ug/L							
Toxaphene	ND	1.30	ug/L							
Toxaphene [2C]	ND	1.30	ug/L							
Surrogate: Decachlorobiphenyl	0.182		ug/L	0.2500		<i>73</i>	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.253		ug/L	0.2500		101	30-150			
Surrogate: Tetrachloro-m-xylene	0.0957		ug/L	0.2500		38	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0935		ug/L	0.2500		37	30-150			
LCS										
1,4´-DDD	0.24	0.05	ug/L	0.2500		98	40-140			
4,4´-DDD [2C]	0.22	0.05	ug/L	0.2500		87	40-140			
1,4´-DDE	0.23	0.05	ug/L	0.2500		92	40-140			
4,4´-DDE [2C]	0.24	0.05	ug/L	0.2500		94	40-140			
1,4´-DDT	0.23	0.05	ug/L	0.2500		93	40-140			
4,4´-DDT [2C]	0.25	0.05	ug/L	0.2500		102	40-140			
Aldrin	0.14	0.05	ug/L	0.2500		56	40-140			
Aldrin [2C]	0.14	0.05	ug/L	0.2500		56	40-140			
lpha-BHC	0.24	0.05	ug/L	0.2500		94	40-140			
lpha-BHC [2C]	0.23	0.05	ug/L	0.2500		92	40-140			
peta-BHC	0.23	0.05	ug/L	0.2500		93	40-140			
oeta-BHC [2C]	0.25	0.05	ug/L	0.2500		101	40-140			
delta-BHC	0.23	0.05	ug/L	0.2500		93	40-140			
lelta-BHC [2C]	0.26	0.05	ug/L	0.2500		105	40-140			
Dieldrin	0.25	0.05	ug/L	0.2500		100	40-140			
Dieldrin [2C]	0.28	0.05	ug/L	0.2500		110	40-140			
Endosulfan I	0.24	0.05	ug/L	0.2500		94	40-140			
Endosulfan I [2C]	0.25	0.05	ug/L	0.2500		99	40-140			
Endosulfan II	0.23	0.05	ug/L	0.2500		93	40-140			
Endosulfan II [2C]	0.25	0.05	ug/L	0.2500		100	40-140			
Endosulfan Sulfate	0.24	0.05	ug/L	0.2500		95	40-140			
Endosulfan Sulfate [2C]	0.31	0.05	ug/L	0.2500		122	40-140			
Endrin	0.26	0.05	ug/L	0.2500		104	40-140			
Endrin [2C]	0.28	0.05	ug/L	0.2500		110	40-140			
Endrin Aldehyde	0.24	0.05	ug/L	0.2500		95	40-140			
Endrin Aldehyde [2C]	0.23	0.05	ug/L	0.2500		92	40-140			
gamma-BHC (Lindane)	0.24	0.05	ug/L	0.2500		97	40-140			
gamma-BHC (Lindane) [2C]	0.26	0.05	ug/L	0.2500		105	40-140			
Heptachlor	0.16	0.05	ug/L	0.2500		64	40-140			
Heptachlor [2C]	0.17	0.05	ug/L	0.2500		67	40-140			
Heptachlor Epoxide	0.25	0.05	ug/L	0.2500		99	40-140			
Heptachlor Epoxide [2C]	0.26	0.05	ug/L	0.2500		104	40-140			
Methoxychlor	0.26	0.05	ug/L	0.2500		103	40-140			
Methoxychlor [2C]	0.31	0.05	ug/L	0.2500		125	40-140			
	0.185		ua/I	0.2500		74	30-150			
Surrogate: Decachlorobiphenyl	0.185 0.225		ug/L ug/L	0.2500 0.2500		74 90	<i>30-150</i> <i>30-150</i>			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

ESS Laboratory Work Order: 1606245

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

608/6630C Organochlorine Pesticides

Batch CF61439 - 3510C									
Surrogate: Tetrachloro-m-xylene	0.139		ug/L	0.2500	55	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.126		ug/L	0.2500	50	30-150			
LCS Dup									
4,4´-DDD	0.22	0.05	ug/L	0.2500	86	40-140	13	20	
4,4´-DDD [2C]	0.20	0.05	ug/L	0.2500	80	40-140	9	20	
1,4´-DDE	0.21	0.05	ug/L	0.2500	82	40-140	12	20	
1,4'-DDE [2C]	0.20	0.05	ug/L	0.2500	81	40-140	15	20	
, I,4´-DDT	0.20	0.05	ug/L	0.2500	80	40-140	15	20	
, ,4´-DDT [2C]	0.22	0.05	ug/L	0.2500	86	40-140	17	20	
Aldrin	0.14	0.05	ug/L	0.2500	57	40-140	2	20	
Aldrin [2C]	0.14	0.05	ug/L	0.2500	56	40-140	0.2	20	
alpha-BHC	0.21	0.05	ug/L	0.2500	83	40-140	13	20	
· Ilpha-BHC [2C]	0.20	0.05	ug/L	0.2500	79	40-140	15	20	
peta-BHC	0.20	0.05	ug/L	0.2500	81	40-140	14	20	
peta-BHC [2C]	0.22	0.05	ug/L	0.2500	87	40-140	15	20	
delta-BHC	0.20	0.05	ug/L	0.2500	81	40-140	15	20	
lelta-BHC [2C]	0.22	0.05	ug/L	0.2500	88	40-140	18	20	
Dieldrin	0.21	0.05	ug/L	0.2500	86	40-140	16	20	
Dieldrin [2C]	0.23	0.05	ug/L	0.2500	92	40-140	18	20	
indosulfan I	0.20	0.05	ug/L	0.2500	79	40-140	18	20	
Endosulfan I [2C]	0.21	0.05	ug/L	0.2500	82	40-140	19	20	
Endosulfan II	0.20	0.05	ug/L	0.2500	81	40-140	13	20	
Endosulfan II [2C]	0.21	0.05	ug/L	0.2500	85	40-140	16	20	
indosulfan Sulfate	0.20	0.05	ug/L	0.2500	78	40-140	19	20	
indosulfan Sulfate [2C]	0.26	0.05	ug/L	0.2500	103	40-140	17	20	
indrin	0.22	0.05	ug/L	0.2500	89	40-140	16	20	
indrin [2C]	0.23	0.05	ug/L	0.2500	92	40-140	18	20	
indrin Aldehyde	0.19	0.05	ug/L	0.2500	77	40-140	22	20	D+
indrin Aldehyde [2C]	0.19	0.05	ug/L	0.2500	77	40-140	18	20	
gamma-BHC (Lindane)	0.21	0.05	ug/L	0.2500	84	40-140	15	20	
gamma-BHC (Lindane) [2C]	0.22	0.05	ug/L	0.2500	89	40-140	17	20	
Heptachlor	0.16	0.05	ug/L	0.2500	62	40-140	3	20	
· leptachlor [2C]	0.16	0.05	ug/L	0.2500	64	40-140	5	20	
Heptachlor Epoxide	0.21	0.05	ug/L	0.2500	86	40-140	14	20	
Heptachlor Epoxide [2C]	0.22	0.05	ug/L	0.2500	87	40-140	17	20	
Methoxychlor	0.22	0.05	ug/L	0.2500	89	40-140	15	20	
1ethoxychlor [2C]	0.27	0.05	ug/L	0.2500	106	40-140	16	20	
Surrogate: Decachlorobiphenyl	0.136		ug/L	0.2500	54	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.171		ug/L	0.2500	68	30-150			
Surrogate: Tetrachloro-m-xylene	0.116		ug/L	0.2500	47	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.110		ug/L	0.2500	44	30-150			

624 Volatile Organic Compounds

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

Batch CF61028 - 5030B

ESS Laboratory Work Order: 1606245

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

624 Vola	atile Orga	anic Com	pounds
----------	------------	----------	--------

Batch CF61028 - 5030B							
Blank							
1,1,1-Trichloroethane	ND	1.0	ug/L				
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L				
1,1,2-Trichloroethane	ND	1.0	ug/L				
1,1-Dichloroethane	ND	1.0	ug/L				
1,1-Dichloroethene	ND	1.0	ug/L				
1,2-Dichlorobenzene	ND	1.0	ug/L				
1,2-Dichloroethane	ND	1.0	ug/L				
1,2-Dichloropropane	ND	1.0	ug/L				
1,3-Dichlorobenzene	ND	1.0	ug/L				
1,4-Dichlorobenzene	ND	1.0	ug/L				
2-Chloroethyl vinyl ether	ND	10.0	ug/L				
Acrolein - Screen	ND	5.0	ug/L				
Acrylonitrile - Screen	ND	5.0	ug/L				
Benzene	ND	1.0	ug/L				
Bromodichloromethane	ND	0.6	ug/L				
Bromoform	ND	1.0	ug/L				
Bromomethane	ND	2.0	ug/L				
Carbon Tetrachloride	ND	1.0	ug/L				
Chlorobenzene	ND	1.0	ug/L				
Chloroethane	ND	2.0	ug/L				
Chloroform	ND	1.0	ug/L				
Chloromethane	ND	2.0	ug/L				
cis-1,2-Dichloroethene	ND	1.0	ug/L				
cis-1,3-Dichloropropene	ND	0.4	ug/L				
Dibromochloromethane	ND	1.0	ug/L				
Ethylbenzene	ND	1.0	ug/L				
Methylene Chloride	ND	4.0	ug/L				
Tetrachloroethene	ND	1.0	ug/L				
Toluene	ND	1.0	ug/L				
trans-1,2-Dichloroethene	ND	1.0	ug/L				
trans-1,3-Dichloropropene	ND	0.5	ug/L				
Trichloroethene	ND	1.0	ug/L				
Trichlorofluoromethane	ND	1.0	ug/L				
Vinyl Chloride	ND	1.0	ug/L				
Surrogate: 1,2-Dichloroethane-d4	23.6		ug/L	25.00	94	70-130	
Surrogate: 4-Bromofluorobenzene	26.6		ug/L	25.00	106	70-130	
Surrogate: Dibromofluoromethane	24.7		ug/L	25.00	99	70-130	
Surrogate: Toluene-d8	23.3		ug/L	25.00	93	70-130	
LCS							
1,1,1-Trichloroethane	10.1	<u> </u>	ug/L	10.00	101	70-130	
1,1,2,2-Tetrachloroethane	8.6		ug/L	10.00	86	70-130	
1,1,2-Trichloroethane	8.5		ug/L	10.00	85	70-130	
1,1-Dichloroethane	9.1		ug/L	10.00	91	70-130	
1,1-Dichloroethene	10.4		ug/L	10.00	104	70-130	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

ESS Laboratory Work Order: 1606245

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		624 Vola	tile Organic	Compou	nds					
Batch CF61028 - 5030B										
1,2-Dichlorobenzene	10.6		ug/L	10.00		106	70-130			
1,2-Dichloroethane	9.8		ug/L	10.00		98	70-130			
1,2-Dichloropropane	8.3		ug/L	10.00		83	70-130			
1,3-Dichlorobenzene	10.4		ug/L	10.00		104	70-130			
1,4-Dichlorobenzene	10.4		ug/L	10.00		104	70-130			
2-Chloroethyl vinyl ether	46.2		ug/L	50.00		92	70-130			
Acrolein - Screen	7.5		ug/L	10.00		75	70-130			
Acrylonitrile - Screen	8.3		ug/L	10.00		83	70-130			
Benzene	9.6		ug/L	10.00		96	70-130			
Bromodichloromethane	9.4		ug/L	10.00		94	70-130			
Bromoform	9.1		ug/L	10.00		91	70-130			
Bromomethane	11.9		ug/L	10.00		119	70-130			
Carbon Tetrachloride	10.2		ug/L	10.00		102	70-130			
Chlorobenzene	11.0		ug/L	10.00		110	70-130			
Chloroethane	8.7		ug/L	10.00		87	70-130			
Chloroform	9.5		ug/L	10.00		95	70-130			
Chloromethane	8.4		ug/L	10.00		84	70-130			
ris-1,2-Dichloroethene	10.2		ug/L	10.00		102	70-130			
cis-1,3-Dichloropropene	9.9		ug/L	10.00		99	70-130			
Dibromochloromethane	10.8		ug/L	10.00		108	70-130			
Ethylbenzene	10.1		ug/L	10.00		101	70-130			
Methylene Chloride	9.2		ug/L	10.00		92	70-130			
Fetrachloroethene	10.0		ug/L	10.00		100	70-130			
Foluene	10.3		ug/L	10.00		103	70-130			
rans-1,2-Dichloroethene	9.9		ug/L	10.00		99	70-130			
rans-1,3-Dichloropropene	9.2		ug/L	10.00		92	70-130			
Frichloroethene	9.2		ug/L	10.00		92	70-130			
Trichlorofluoromethane	9.4		ug/L	10.00		94	70-130			
/inyl Chloride	9.7		ug/L	10.00		97	70-130			
Surrogate: 1,2-Dichloroethane-d4	25.2		ug/L	25.00		101	70-130			
Surrogate: 4-Bromofluorobenzene	25.7		ug/L	25.00		103	70-130			
Surrogate: Dibromofluoromethane	25.4		ug/L	25.00		102	70-130			
Surrogate: Toluene-d8	24.6		ug/L	25.00		98	70-130			
LCS Dup										
1,1,1-Trichloroethane	9.6		ug/L	10.00		96	70-130	5	25	
1,1,2,2-Tetrachloroethane	9.8		ug/L	10.00		98	70-130	13	25	
1,1,2-Trichloroethane	9.4		ug/L	10.00		94	70-130	10	25	
1,1-Dichloroethane	9.7		ug/L	10.00		97	70-130	7	25	
,1-Dichloroethene	9.7		ug/L	10.00		97	70-130	7	25	
,2-Dichlorobenzene	10.4		ug/L	10.00		104	70-130	2	25	
1,2-Dichloroethane	9.8		ug/L	10.00		98	70-130	0.7	25	
1,2-Dichloropropane	8.8		ug/L	10.00		88	70-130	7	25	
1,3-Dichlorobenzene	10.3		ug/L	10.00		103	70-130	0.6	25	
.,4-Dichlorobenzene	10.1		ug/L	10.00		101	70-130	3	25	
2-Chloroethyl vinyl ether	52.2		ug/L	50.00		104	70-130	12	25	

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability • Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

Benzene

Vinyl Chloride

Surrogate: 1,2-Dichloroethane-d4

Surrogate: 4-Bromofluorobenzene

Surrogate: Dibromofluoromethane

Surrogate: Toluene-d8

ESS Laboratory Work Order: 1606245

102

93

99

99

70-130

70-130

70-130

70-130

70-130

70-130

25

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		624 Vola	tile Organic	Compour	nds					
Batch CF61028 - 5030B										
Acrolein - Screen	2.9		ug/L	10.00		29	70-130	88	25	B-, D+
Acrylonitrile - Screen	9.4		ug/L	10.00		94	70-130	12	20	

ug/L

10.00

Bromodichloromethane	9.8	ug/L	10.00	98	70-130	4	25	
Bromoform	9.9	ug/L	10.00	99	70-130	8	25	
Bromomethane	10.1	ug/L	10.00	101	70-130	16	25	
Carbon Tetrachloride	9.9	ug/L	10.00	99	70-130	3	25	
Chlorobenzene	10.4	ug/L	10.00	104	70-130	5	25	
Chloroethane	8.5	ug/L	10.00	85	70-130	2	25	
Chloroform	9.4	ug/L	10.00	94	70-130	2	25	
Chloromethane	8.2	ug/L	10.00	82	70-130	3	25	
cis-1,2-Dichloroethene	10.1	ug/L	10.00	101	70-130	1	25	
cis-1,3-Dichloropropene	9.9	ug/L	10.00	99	70-130	0.6	25	
Dibromochloromethane	10.0	ug/L	10.00	100	70-130	8	25	
Ethylbenzene	10.0	ug/L	10.00	100	70-130	0.3	25	
Methylene Chloride	10.4	ug/L	10.00	104	70-130	13	25	
Tetrachloroethene	7.3	ug/L	10.00	73	70-130	32	25	D+
Toluene	9.6	ug/L	10.00	96	70-130	7	25	
trans-1,2-Dichloroethene	10.1	ug/L	10.00	101	70-130	2	25	
trans-1,3-Dichloropropene	9.4	ug/L	10.00	94	70-130	2	25	
Trichloroethene	9.7	ug/L	10.00	97	70-130	5	25	
Trichlorofluoromethane	9.0	ug/L	10.00	90	70-130	5	25	

ug/L

ug/L

ug/L

ug/L

ug/L

10.00

25.00

25.00

25.00

25.00

6270C Serni-volatile	Organic	Compound

9.3

24.7

24.7

24.7

24.6

10.2

satch CF61340 - 3520C				
ilank				
,2,4-Trichlorobenzene	ND	10.0	ug/L	
2-Dichlorobenzene	ND	10.0	ug/L	
-Dichlorobenzene	ND	10.0	ug/L	
-Dichlorobenzene	ND	10.0	ug/L	
,5-Trichlorophenol	ND	10.0	ug/L	
,6-Trichlorophenol	ND	10.0	ug/L	
-Dichlorophenol	ND	10.0	ug/L	
Dimethylphenol	ND	50.0	ug/L	
Dinitrophenol	ND	50.0	ug/L	
initrotoluene	ND	10.0	ug/L	
Pinitrotoluene	ND	10.0	ug/L	
nloronaphthalene	ND	10.0	ug/L	
lorophenol	ND	10.0	ug/L	
ethylphenol	ND	10.0	ug/L	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability Quality Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

ESS Laboratory Work Order: 1606245

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

|--|

Batch CF61340 - 3520C							
2-Nitrophenol	ND	10.0	ug/L				
3,3 ´-Dichlorobenzidine	ND	20.0	ug/L				
3+4-Methylphenol	ND	20.0	ug/L				
4-Bromophenyl-phenylether	ND	10.0	ug/L				
4-Chloroaniline	ND	20.0	ug/L				
4-Nitrophenol	ND	50.0	ug/L				
Acetophenone	ND	10.0	ug/L				
Aniline	ND	10.0	ug/L				
Azobenzene	ND	20.0	ug/L				
bis(2-Chloroethoxy)methane	ND	10.0	ug/L				
bis(2-Chloroethyl)ether	ND	10.0	ug/L				
bis(2-chloroisopropyl)Ether	ND	10.0	ug/L				
bis(2-Ethylhexyl)phthalate	ND	6.0	ug/L				
Butylbenzylphthalate	ND	10.0	ug/L				
Dibenzofuran	ND	10.0	ug/L				
Diethylphthalate	ND	10.0	ug/L				
Dimethylphthalate	ND	10.0	ug/L				
Di-n-butylphthalate	ND	10.0	ug/L				
Di-n-octylphthalate	ND	10.0	ug/L				
Hexachlorobutadiene	ND	10.0	ug/L				
Hexachloroethane	ND	5.0	ug/L				
Isophorone	ND	10.0	ug/L				
Nitrobenzene	ND	10.0	ug/L				
N-Nitrosodimethylamine	ND	10.0	ug/L				
Phenol	ND	10.0	ug/L				
Surrogate: 1,2-Dichlorobenzene-d4	78.0		ug/L	100.0	<i>78</i>	30-130	
Surrogate: 2,4,6-Tribromophenol	113		ug/L	150.0	<i>75</i>	15-110	
Surrogate: 2-Chlorophenol-d4	116		ug/L	150.0	77	15-110	
Surrogate: 2-Fluorobiphenyl	79.9		ug/L	100.0	80	30-130	
Surrogate: 2-Fluorophenol	99.1		ug/L	150.0	66	15-110	
Surrogate: Nitrobenzene-d5	85.7		ug/L	100.0	86	30-130	
Surrogate: Phenol-d6	121		ug/L	150.0	81	15-110	
Surrogate: p-Terphenyl-d14	91.5		ug/L	100.0	91	30-130	
LCS							
1,2,4-Trichlorobenzene	75.1	10.0	ug/L	100.0	75	40-140	
1,2-Dichlorobenzene	70.1	10.0	ug/L	100.0	70	40-140	
1,3-Dichlorobenzene	66.6	10.0	ug/L	100.0	67	40-140	
1,4-Dichlorobenzene	66.6	10.0	ug/L	100.0	67	40-140	
2,4,5-Trichlorophenol	99.2	10.0	ug/L	100.0	99	30-130	
2,4,6-Trichlorophenol	89.8	10.0	ug/L	100.0	90	30-130	
2,4-Dichlorophenol	82.4	10.0	ug/L	100.0	82	30-130	
2,4-Dimethylphenol	77.3	50.0	ug/L	100.0	77	30-130	
2,4-Dinitrophenol	98.1	50.0	ug/L	100.0	98	30-130	
2,4-Dinitrotoluene	102	10.0	ug/L	100.0	102	40-140	
2,6-Dinitrotoluene	91.6	10.0	ug/L	100.0	92	40-140	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

31

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

RPD

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

ESS Laboratory Work Order: 1606245

%REC

Quality Control Data

Spike

Source

Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	1	8270C Semi-	Volatile Org	anic Com	pounds					
Batch CF61340 - 3520C										
2-Chloronaphthalene	73.2	10.0	ug/L	100.0		73	40-140			
2-Chlorophenol	66.2	10.0	ug/L	100.0		66	30-130			
2-Methylphenol	75.6	10.0	ug/L	100.0		76	30-130			
2-Nitrophenol	77.8	10.0	ug/L	100.0		78	30-130			
3,3´-Dichlorobenzidine	98.6	20.0	ug/L	100.0		99	40-140			
+4-Methylphenol	169	20.0	ug/L	200.0		85	30-130			
1-Bromophenyl-phenylether	90.4	10.0	ug/L	100.0		90	40-140			
1-Chloroaniline	78.9	20.0	ug/L	100.0		79	40-140			
l-Nitrophenol	91.9	50.0	ug/L	100.0		92	30-130			
Acetophenone	78.5	10.0	ug/L	100.0		79	40-140			
Aniline	59.1	10.0	ug/L	100.0		59	40-140			
Azobenzene	83.2	20.0	ug/L	100.0		83	40-140			
pis(2-Chloroethoxy)methane	75.1	10.0	ug/L	100.0		75	40-140			
pis(2-Chloroethyl)ether	70.7	10.0	ug/L	100.0		71	40-140			
ois(2-chloroisopropyl)Ether	74.6	10.0	ug/L	100.0		75	40-140			
ois(2-Ethylhexyl)phthalate	93.4	6.0	ug/L	100.0		93	40-140			
Butylbenzylphthalate	92.5	10.0	ug/L	100.0		92	40-140			
Dibenzofuran	85.9	10.0	ug/L	100.0		86	40-140			
Diethylphthalate	103	10.0	ug/L	100.0		103	40-140			
Dimethylphthalate	95.8	10.0	ug/L	100.0		96	40-140			
Di-n-butylphthalate	94.0	10.0	ug/L	100.0		94	40-140			
Di-n-octylphthalate	91.2	10.0	ug/L	100.0		91	40-140			
Hexachlorobutadiene	70.2	10.0	ug/L	100.0		70	40-140			
lexachloroethane	63.3	5.0	ug/L	100.0		63	40-140			
sophorone	77.6	10.0	ug/L	100.0		78	40-140			
litrobenzene	76.6	10.0	ug/L	100.0		77	40-140			
N-Nitrosodimethylamine	62.0	10.0	ug/L	100.0		62	40-140			
Phenol	66.5	10.0	ug/L	100.0		66	30-130			
Surrogate: 1,2-Dichlorobenzene-d4	70.6		ug/L	100.0		71	30-130			
Surrogate: 1,2-Dictilorobenzene-u4 Surrogate: 2,4,6-Tribromophenol	131		ug/L	150.0		<i>87</i>	15-110			
Surrogate: 2,-4,0-1715/om/ophenoi	102		ug/L	150.0		68	15-110			
Surrogate: 2-Fluorobiphenyl	80.3		ug/L	100.0		80	30-130			
Surrogate: 2-Fluorophenol	78.7		ug/L	150.0		52	15-110			
Surrogate: Nitrobenzene-d5	79.7		ug/L	100.0		80	30-130			
Surrogate: Phenol-d6	107		ug/L	150.0		<i>72</i>	15-110			
Surrogate: p-Terphenyl-d14	96.2		ug/L	100.0		96	30-130			
			<u> </u>							
.CS Dup ,2,4-Trichlorobenzene	79.0	10.0	ug/L	100.0		79	40-140	5	20	
1,2,4-Trichloroberizene				100.0		79 75	40-140	5 7	20	
•	75.1 71.7	10.0	ug/L							
1,3-Dichlorobenzene	71.7	10.0	ug/L	100.0		72 72	40-140	7	20	
L,4-Dichlorobenzene	72.1	10.0	ug/L	100.0		72	40-140	8	20	
2,4,5-Trichlorophenol	95.8	10.0	ug/L	100.0		96	30-130	4	20	
2,4,6-Trichlorophenol	88.5	10.0	ug/L	100.0		88	30-130	1	20	

185 Frances Avenue, Cranston, RI 02910-2211

85.0

85.4

2,4-Dichlorophenol

2,4-Dimethylphenol

Tel: 401-461-7181

ug/L

ug/L

10.0

50.0

Fax: 401-461-4486

Service

85

10 http://www.ESSLaboratory.com

3

30-130

30-130

20

20

100.0

100.0

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

ESS Laboratory Work Order: 1606245

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8270C Semi-Volatile Organic Compounds

Batch CF61340 - 3520C								
2,4-Dinitrophenol	92.3	50.0	ug/L	100.0	92	30-130	6	20
2,4-Dinitrotoluene	100	10.0	ug/L	100.0	100	40-140	2	20
2,6-Dinitrotoluene	87.6	10.0	ug/L	100.0	88	40-140	4	20
2-Chloronaphthalene	72.8	10.0	ug/L	100.0	73	40-140	0.5	20
2-Chlorophenol	74.7	10.0	ug/L	100.0	75	30-130	12	20
-Methylphenol	81.0	10.0	ug/L	100.0	81	30-130	7	20
Nitrophenol	84.7	10.0	ug/L	100.0	85	30-130	8	20
,3´-Dichlorobenzidine	102	20.0	ug/L	100.0	102	40-140	3	20
+4-Methylphenol	177	20.0	ug/L	200.0	88	30-130	4	20
-Bromophenyl-phenylether	87.6	10.0	ug/L	100.0	88	40-140	3	20
-Chloroaniline	78.2	20.0	ug/L	100.0	78	40-140	0.9	20
-Nitrophenol	92.2	50.0	ug/L	100.0	92	30-130	0.3	20
cetophenone	81.6	10.0	ug/L	100.0	82	40-140	4	20
niline	59.4	10.0	ug/L	100.0	59	40-140	0.6	20
zobenzene	80.0	20.0	ug/L	100.0	80	40-140	4	20
s(2-Chloroethoxy)methane	76.9	10.0	ug/L	100.0	77	40-140	2	20
s(2-Chloroethyl)ether	74.4	10.0	ug/L	100.0	74	40-140	5	20
s(2-chloroisopropyl)Ether	78.7	10.0	ug/L	100.0	79	40-140	5	20
s(2-Ethylhexyl)phthalate	92.4	6.0	ug/L	100.0	92	40-140	1	20
ıtylbenzylphthalate	91.4	10.0	ug/L	100.0	91	40-140	1	20
benzofuran	82.6	10.0	ug/L	100.0	83	40-140	4	20
iethylphthalate	99.5	10.0	ug/L	100.0	100	40-140	3	20
imethylphthalate	92.5	10.0	ug/L	100.0	92	40-140	3	20
i-n-butylphthalate	94.1	10.0	ug/L	100.0	94	40-140	0.1	20
i-n-octylphthalate	90.2	10.0	ug/L	100.0	90	40-140	1	20
exachlorobutadiene	74.7	10.0	ug/L	100.0	75	40-140	6	20
exachloroethane	69.1	5.0	ug/L	100.0	69	40-140	9	20
sophorone	78.7	10.0	ug/L	100.0	79	40-140	1	20
itrobenzene	80.1	10.0	ug/L	100.0	80	40-140	4	20
-Nitrosodimethylamine	65.7	10.0	ug/L	100.0	66	40-140	6	20
henol	72.4	10.0	ug/L	100.0	72	30-130	8	20
	74.5	_0.0	ug/L	100.0	75	30-130	-	
urrogate: 1,2-Dichlorobenzene-d4	127		ug/L	150.0	85	15-110		
urrogate: 2,4,6-Tribromophenol	114		ug/L	150.0	76	15-110		
iurrogate: 2-Chlorophenol-d4	79.2		ug/L	100.0	70 79	30-130		
Surrogate: 2-Fluorobiphenyl	94.3		ug/L	150.0	63	15-110		
urrogate: 2-Fluorophenol	81.6		ug/L	100.0	82	30-130		
Surrogate: Nitrobenzene-d5	117		ug/L	150.0	78	15-110		
urrogate: Phenol-d6	92.8		ug/L ug/L	100.0	93	30-130		
Surrogate: p-Terphenyl-d14	52.0		ug/ L	100.0	23	30 130		

8270D(SIM) Semi-Volatile Organic Compounds

Batch	CF61	1340	- 3	352	O

Blank			
2-Methylnaphthalene	ND	0.20	ug/L
Acenaphthene	ND	0.20	ug/L

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

ESS Laboratory Work Order: 1606245

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8270D(SIM) Semi-Volatile Organic Compounds												
Batch CF61340 - 3520C												
Acenaphthylene	ND	0.20	ug/L									
Anthracene	ND	0.20	ug/L									
Benzo(a)anthracene	ND	0.05	ug/L									
Benzo(a)pyrene	ND	0.05	ug/L									
Benzo(b)fluoranthene	ND	0.05	ug/L									
Benzo(g,h,i)perylene	ND	0.20	ug/L									
Benzo(k)fluoranthene	ND	0.05	ug/L									
Chrysene	ND	0.05	ug/L									
Dibenzo(a,h)Anthracene	ND	0.05	ug/L									
Fluoranthene	ND	0.20	ug/L									
Fluorene	ND	0.20	ug/L									
Hexachlorobenzene	ND	0.20	ug/L									
Indeno(1,2,3-cd)Pyrene	ND	0.05	ug/L									
Naphthalene	ND	0.20	ug/L									
Pentachlorophenol	ND	0.90	ug/L									
Phenanthrene	ND	0.20	ug/L									
Pyrene	ND	0.20	ug/L									
LCS												
2-Methylnaphthalene	80.2	4.00	ug/L	100.0	80	40-140						
Acenaphthene	84.0	4.00	ug/L	100.0	84	40-140						
Acenaphthylene	83.4	4.00	ug/L	100.0	83	40-140						
Anthracene	85.2	4.00	ug/L	100.0	85	40-140						
Benzo(a)anthracene	88.8	1.00	ug/L	100.0	89	40-140						
Benzo(a)pyrene	93.6	1.00	ug/L	100.0	94	40-140						
Benzo(b)fluoranthene	92.6	1.00	ug/L	100.0	93	40-140						
Benzo(g,h,i)perylene	96.7	4.00	ug/L	100.0	97	40-140						
Benzo(k)fluoranthene	90.4	1.00	ug/L	100.0	90	40-140						
Chrysene	88.9	1.00	ug/L	100.0	89	40-140						
Dibenzo(a,h)Anthracene	98.2	1.00	ug/L	100.0	98	40-140						
Fluoranthene	91.8	4.00	ug/L	100.0	92	40-140						
Fluorene	91.4	4.00	ug/L	100.0	91	40-140						
Hexachlorobenzene	109	4.00	ug/L	100.0	109	40-140						
Indeno(1,2,3-cd)Pyrene	109	1.00	ug/L	100.0	109	40-140						
Naphthalene	73.2	4.00	ug/L	100.0	73	40-140						
Pentachlorophenol	124	18.0	ug/L	100.0	124	30-130						
Phenanthrene	87.0	4.00	ug/L	100.0	87	40-140						
Pyrene	94.8	4.00	ug/L	100.0	95	40-140						
LCS Dup												
2-Methylnaphthalene	79.4	4.00	ug/L	100.0	79	40-140	1	20				
Acenaphthene	80.8	4.00	ug/L	100.0	81	40-140	4	20				
Acenaphthylene	81.0	4.00	ug/L	100.0	81	40-140	3	20				
Anthracene	82.8	4.00	ug/L	100.0	83	40-140	3	20				
Benzo(a)anthracene	84.0	1.00	ug/L	100.0	84	40-140	6	20				
Benzo(a)pyrene	92.1	1.00	ug/L	100.0	92	40-140	2	20				
Benzo(b)fluoranthene	91.4	1.00	ug/L	100.0	91	40-140	1	20				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

ESS Laboratory Work Order: 1606245

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	827	70D(SIM) Sei	mi-Volatile (Organic C	ompound	s				
Batch CF61340 - 3520C										
Benzo(g,h,i)perylene	96.3	4.00	ug/L	100.0		96	40-140	0.5	20	
Benzo(k)fluoranthene	89.1	1.00	ug/L	100.0		89	40-140	2	20	
Chrysene	84.5	1.00	ug/L	100.0		85	40-140	5	20	
Dibenzo(a,h)Anthracene	95.7	1.00	ug/L	100.0		96	40-140	3	20	
Fluoranthene	88.6	4.00	ug/L	100.0		89	40-140	4	20	
Fluorene	86.7	4.00	ug/L	100.0		87	40-140	5	20	
Hexachlorobenzene	104	4.00	ug/L	100.0		104	40-140	4	20	
Indeno(1,2,3-cd)Pyrene	103	1.00	ug/L	100.0		103	40-140	6	20	
Naphthalene	74.2	4.00	ug/L	100.0		74	40-140	1	20	
Pentachlorophenol	119	18.0	ug/L	100.0		119	30-130	4	20	
Phenanthrene	83.5	4.00	ug/L	100.0		83	40-140	4	20	
Pyrene	89.9	4.00	ug/L	100.0		90	40-140	5	20	
		Cl	assical Che	mistry						
Batch CF60951 - General Preparation										
Blank										
Hexavalent Chromium	ND	10	ug/L							
LCS										
Hexavalent Chromium	0.5		mg/L	0.4998		98	90-110			
			9/ =	0550			70 110			
LCS Dup Hexavalent Chromium	0.5		mg/L	0.4998		99	90-110	0.1	20	
	0.5		mg/L	0.1550			J0 110	0.1		
Batch CF61020 - General Preparation										
Blank Total Residual Chlorine	ND	10	ug/l							Н
	ND ND	10	ug/L							
LCS										Н
Total Residual Chlorine	1		mg/L	1.360		101	85-115			
Batch CF61427 - General Preparation										
Blank										
Total Suspended Solids	ND	5	mg/L							
LCS										
Total Suspended Solids	60		mg/L	60.60		99	80-120			
Batch CF61440 - General Preparation										
Blank										
Total Petroleum Hydrocarbon	ND	5	mg/L							
LCS										
Total Petroleum Hydrocarbon	14	5	mg/L	19.38		71	66-114			
Batch CF61628 - TCN Prep										
Blank										
Total Cyanide (LL)	ND	5.00	ug/L							
LCS										
Total Cyanide (LL)	21.0	5.00	ug/L	20.06		105	90-110			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

ESS Laboratory Work Order: 1606245

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		Cla	assical Che	mistry						
Batch CF61628 - TCN Prep										
LCS										
Total Cyanide (LL)	150	5.00	ug/L	150.4		100	90-110			
LCS Dup										
Total Cyanide (LL)	149	5.00	ug/L	150.4		99	90-110	0.4	20	
Batch CF61630 - General Preparation										
Blank										
Phenols	ND	100	ug/L							
LCS										
Phenols	99	100	ug/L	100.0		99	80-120			
LCS										
Phenols	972	100	ug/L	1000		97	80-120			
Batch CF61311 - 504/8011										
Blank										
	ND	0.015	ua/l							
	ND ND	0.015	ug/L							
	ND ND	0.015 0.015	ug/L ug/L							
1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane				0.2000		96	30-150			
1,2-Dibromoethane [2C] Surrogate: Pentachloroethane	ND		ug/L	0.2000 0.2000		96 95	30-150 30-150			
1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C]	ND 0.193		ug/L ug/L							
1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS	ND 0.193		ug/L ug/L							
1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane	ND 0.193 0.189	0.015	ug/L ug/L ug/L	0.2000		95	30-150			
1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane	0.193 0.189	0.015	ug/L ug/L ug/L ug/L	0.2000		<i>95</i> 97	<i>30-150</i> 70-130			
1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane	0.193 0.189 0.194 0.187	0.015	ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.2000		95 97 94	70-130 70-130			
1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C]	0.193 0.189 0.194 0.187	0.015	ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.2000 0.2000		95 97 94 88	70-130 70-130 70-130			
1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS	0.193 0.189 0.194 0.187	0.015	ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.2000 0.2000		95 97 94 88	70-130 70-130 70-130			
1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane	0.193 0.189 0.194 0.187 0.177 0.173	0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.2000 0.2000 0.2000		95 97 94 88 88 87	70-130 70-130 70-130 30-150 30-150			
1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane	0.193 0.189 0.194 0.187 0.177 0.173	0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.2000 0.2000 0.2000		95 97 94 88 87	70-130 70-130 30-150 30-150			

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1606245

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies
Client Project ID: 1 Congress St - NPDES

	Notes and Definitions
U	Analyte included in the analysis, but not detected
SC	Surrogate recovery(ies) outside of criteria. Reextraction/Reanalysis confirms results (SC).
Q	Calibration required quadratic regression (Q).
P	Percent difference between primary and confirmation results exceeds 40% (P).
HT	The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and Residual
	Chlorine is fifteen minutes.
D+	Relative percent difference for duplicate is outside of criteria (D+).
D	Diluted.
CD+	Continuing Calibration %Diff/Drift is above control limit (CD+).
B-	Blank Spike recovery is below lower control limit (B-).
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD LOQ	Limit of Detection Limit of Quantitation
-	Detection Limit
DL I/V	Initial Volume
F/V	Final Volume
§	Subcontracted analysis; see attached report
i 1	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
2	Range result excludes concentrations of target analytes eluting in that range.
3	Range result excludes the concentration of the C9-C10 aromatic range

Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1606245

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp-services/labcert/documents/AllLabs.xls

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.depweb.state.pa.us/portal/server.pt/community/labs/13780/laboratory_accreditation_program/590095

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

ESS Laboratory Sample and Cooler Receipt Checklist

Client: The Vertex Companies - TB/CMT	ESS Project ID: 1606245 Date Received: 6/9/2016	
Shipped/Delivered Via: ESS Courier	Date Received: 6/9/2016 Project Due Date: 6/16/2016 Days for Project: 5 Day	<u>_</u>
1. Air bill manifest present? No NA NA	6. Does COC match bottles?	Yes
Were custody seals present? No	7. Is COC complete and correct?	Yes
3. Is radiation count <100 CPM? Yes	8. Were samples received intact?	Yes
4. Is a Cooler Present? Yes	9. Were labs informed about short holds & rushes?	(PEST)No / NA
Temp: 2.1 Iced with: Ice 5. Was COC signed and dated by client? Yes	10. Were any analyses received outside of hold time?	Yes /(TO)
11. Any Subcontracting needed? ESS Sample IDs: Analysis: TAT:	12. Were VOAs received? a. Air bubbles in aqueous VOAs? b. Does methanol cover soil completely?	Yes / No Yes / No Yes / No MA
13. Are the samples properly preserved? a. If metals preserved upon receipt: b. Low Level VOAs brought to freezer: Date: Date:	Time: By:	_
Sample Receiving Notes:		
	· ·	
14. Was there a need to contact Project Manager? a. Was there a need to contact the client? Who was contacted? Date:		

Sample Container Number ID				Sufficient Volume	Container Type	Preservative	Record pH (Cyanide and 608 Pesticides)
01	42331	Yes	NA	Yes	1L Amber - Unpres	NP jest pitze	7 W 6/9/16 1730
01	42332	Yes	NA	Yes	1L Amber - Unpres	NP I	1 14 0/ ().5
01	42333	Yes	NA	Yes	1L Amber - Unpres	NP	
01	42334	Yes	NA	Yes	1L Amber - Unpres	NP	
01	42335	Yes	NA	Yes	1L Amber - Unpres	NP	
01	42336	Yes	NA	Yes	1L Amber - Unpres	NP	
01	42337	Yes	NA	Yes	1L Amber - H2SO4	H2SO4	
01	42338	Yes	NA	Yes	1L Amber - H2SO4	H2SO4	
01	42339	Yes	NA	Yes	1L Poly - Unpres	NP	
01	42340	Yes	NA	Yes	250 mL Poly - Unpres	NP	(1) (3)
01	42341	Yes	NA	Yes	250 mL Poly - HNO3	HNO3 ALL TO IM	~ 6/9/16 113B
01	42342	Yes	NA	Yes	250 mL Poly - NaOH	NaOH PH //Z W	6/9/16 1730
01	42343	Yes	No	Yes	VOA Vial - HCI	HCL	
01	42344	Yes	No	Yes	VOA Vial - HCl	HCL	
01	42345	Yes	No	Yes	VOA Vial - HCI	HCL	
01	42346	Yes	No	Yes	VOA Vial - HCI	HCL	,
01	42347	Yes	No	Yes	VOA Vial - HCI	HCL	
01	42348	Yes	No	Yes	VOA Vial - HCI	HCL	

2nd Review
Are barcode labels on correct containers?

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	The Vertex Companies - TB/CMT	_	ESS Project ID:		1606245
			Date Received:		6/9/2016
Completed By:	1 Suppl	Date & Time:	6/9/16	1731	
Reviewed	1/00 >>>		<u> </u>	1740	_
By: Delivered		_ Date & Time: _	<u>6/9//6</u>	///-	
By:	Jul 20		6/9/16	740	_

ESS L	.aborato	ory	С	HAIN OF	CU	STOD	Υ	ESS Lab# 1606245												
Division of	f Thielsch E	ngineering, Inc.		Turn Tin	ne 🗼	Standard	Other							its/	λ.) ·	P	7	3 <		ヿ
185 Franc	es Avenue,	Cranston, RI 0	2910-2211	Regulato	ry State: MA	RICT NH N.	J NY M	IE Other_		1	Repo	orting	Limi	ts - 👍	/\	1 n.	<u> </u>			ĺ
	461-7181 aboratory.co	Fax (401) 461-	4486	is this proj	ect for any of	the following:(plea	ase circle)	- C	Electonic Deliverables Excel Access PDF								ᅱ		
Co. Name				Project#		JSACE CT D	-						1)		<u>ノ</u> ゛	, , , , , , , , , , , , , , , , , , ,		, 	
	Vertex Go			20026 1 Congress St						<u></u>	١.		<u>چ</u>		ر ×					1
Tesc.	e Freem	<u>an</u>	State	Address 1 Gargress Sf				Analysis	4	I	809	1 1	3				- 1	-		
Boston	\		MA			Zip 02114 PO# 20026			Ana	62,	DA	; ;;		Metals		6.4	\ <u></u>	155	-	
Tel. 617~	275-5	407	Fax.			email: JFreen		restexe	ngiam]	1	\ \ \	1 €		گ	_	9/-	च		1
ESS Lab ID	Date	Collection Time	Grab -G Composite-C	Matrix	Sa	mple ID	Pres Code	# of Containers	Type of Container	Vol of Container		SWA WIPAH	PCB+Post	Sug	1014	100	1PH-1669	Phenels	K	Ī
1	6/9/216	12:00	G	WW	NPDE	5-72-100	1,2,	18	V, pG, P	250 ML,	X	Y	$\overline{\prec}$	7	X	Χ	Υ	X	V	٦
						7 .0 ,00	211 -		'							Ť	1	/]	$^{\wedge}$	7
				-								\dashv			_	-	\dashv	\dashv	\dashv	\dashv
													\dashv	\dashv	\dashv			\dashv	+	\dashv
									·	-				_	\dashv	\dashv	_	_	\perp	4
•											4	_	_	[_].	.		\perp	_ _	
														\perp						
										ŀ		-	ļ		1	•	-			i
									ĺ									\exists		٦
	`										\dashv	1	Ť		\dashv	+	+	十	-	7
			-		•							\dashv	+	_	+			+	+	\dashv
Cantaine Form R	2-1	1-1																		4
Cooler Pres		Amber Glass S-Sterite 1		nternal/U		SD-Solid D-Sludge W Preservation Code:	***										ilter			┥
					, , , , , , , , , , , , , , , , , , ,						л, 7-74	SQLDII	L ALIQ	1, 8-211	АСЦ 9					4
Seals Intact		No NA:		4 Pickup	ļ	Sampled by :	<u>/Vic</u>	ule f	er lot	- 										4
Cooler Tem		XI (E)	W [] Technic	cian	Comments:									,					
Relinquished by: (Si	ignature, Date & Tir	те)	Received by: (Signat	ure, Date & Tim	e)	R	Relinquished	by: (Signature,	tt 611	ハマスン	eceive	у. (Sighay	ure, Dai	te & Ti	me)a	1,,	14	23	7
Religious fed by: (\$1	gnatyle, Date & Tir	5/10/714	Received by (Signat	ure, Dale & Jum	" 1727	R	delinquished	by: (Signature,			eceived	by: (5		ure, Dat	te & Ti		144	<u> </u>		
By circling MA-MC	P, client acknowled	dges samples were				he laboratory all c	hanges t	o Chain of C	custody		(Whi			ору : Rece	eipt					-4