MAG 078413

Environmental Health & Engineering, Inc.

> 117 Fourth Avenue Needham, MA 02494-2725 TEL 800-825-5343 FAX 781-247-4305 www.eheinc.com

February 2, 2016

U.S. Environmental Protection Agency Dewatering GP Processing Industrial Permit Unit (OEP 06- 4) 5 Post Office Square, Suite 100 Boston, MA 02109-3912

RE: Notice of Intent – Massachusetts Dewatering General Permit for Good Samaritan Medical Center, Brockton, MA (EH&E 20488)

To Whom It May Concern:

Environmental Health & Engineering, Inc., (EH&E) on behalf of Good Samaritan Medical Center (GSMC) located at 235 North Main Street, Brockton, Massachusetts, submits this Notice of Intent (NOI) to discharge ground water from the GSMC basement to surface water under the Massachusetts Dewatering General Permit (DGP). This proposed long-term discharge will utilize existing infrastructure to discharge to Lovett Brook, a Class B freshwater brook located at the perimeter of the property, and requires no earthmoving activity. The completed U.S. Environmental Protection Agency (EPA) NOI form is attached.

Specifically, GSMC wishes to obtain a permit for discharge of ground water from five basement sumps to the onsite, private storm water system. This system discharges to Lovett Brook at the approximate location illustrated on the topographic map provided in Figure 1. Figure 2 illustrates the sump and storm water system component locations. The storm water system predates the mid-1980s and is believed to be original to the building, which was originally constructed in 1965. The sumps will tie in to new and existing plumbing in the basement of the building.

As illustrated in Figure 3, no Areas of Critical Environmental Concern (ACECs) are located in the immediate vicinity of the discharge on Lovett Brook. No earthmoving activities are required for implementation of this discharge, and review of MassGIS maps indicates that the discharge location will not occur on or near property on the National Register of Historic Places. In addition, the attached IPaC Trust Resource Report from the U.S. Fish and Wildlife Service indicates that there are no critical habitats at this location.

In order to ensure that the proposed discharge will not adversely impact Lovett Brook, EH&E collected water samples in November and December 2015, and January 2016 to evaluate discharge water quality. Table 1 provides a summary of testing results. All samples were collected from the sump discharge in the basement of the hospital. Table 1 only lists results for analytes detected and analytes specifically required in the general permit. The water sample was also analyzed for a full range of volatile organic compounds, semi-volatile organic compounds, polychlorinated biphenyls, and additional metals. Laboratory reports are attached.

	11/18/15	9.7	MPN/100 ml			
	10/00/11		1411 141 100 1111			
	12/30/15	1.1	μg/L			
	12/30/15	320	mg/L			
	12/30/15	1.0	mg/L			
	12/30/15	0.013	mg/L			
	12/30/15	860	mg/L			
	12/30/15 and 1/15/16	6.0 - 6.2	SU			
olids	12/30/15	ND	mg/L			
rine	12/30/15	ND	mg/L			
	12/30/15	ND mg/L				
)	olids probable number pe grams per liter rams per liter	12/30/15 12/30/15 12/30/15 12/30/15 12/30/15 12/30/15 12/30/15 12/30/15 12/30/15 12/30/15 12/30/15 12/30/15 12/30/15 12/30/15	12/30/15 1.0 12/30/15 0.013 12/30/15 860 12/30/15 and 1/15/16 6.0 - 6.2 olids 12/30/15 nrine 12/30/15 12/30/15 ND probable number per 100 milliliters			

As indicated in Table 1, total suspended solids, residual free chlorine, and oil and grease were not detected in the ground water sample. Low concentrations of lead and iron were the only metals detected. Coliform bacterial counts were well below surface water standards. pH was measured in the laboratory and in the field on two separate dates. The range of observed pH levels is within the limits set by EPA, but slightly below the standard of 6.5 set by the Massachusetts Department of Environmental Protection (MassDEP). As allowed under the DGP, GSMC requests that this discharge be permitted, based upon the relatively small volume of the discharge compared to the size of the stream and the small difference between the observed pH and the MassDEP acceptable range. In addition, the storm drain leading to the outfall is approximately 550 feet in length and composed of reinforced concrete, and ground water from the sumps will mix with surface water in a holding tank prior to discharge (refer to Figure 2). Testing at the outfall subsequent to initiation of discharge may result in higher pH readings at the outfall.

Based upon the results of sampling and analysis, the lack of any earthmoving activities to implement this discharge, and the absence of ACECs and historic properties in the area of Lovett Brook at GSMC, EH&E believes that the proposed discharge of ground water from basement sumps is allowable under the Massachusetts DGP. GSMC proposes initiation of discharge to Lovett Brook from the basement sumps between March 11 and March 24, 2016, depending upon the timing of completion of plumbing installation.

Please let me know if you require any additional information.

Sincerely,

Cynthie D. Campine

Cynthia D. Campisano, M.S. Senior Scientist/Project Manager

Attachments

cc: Paul Ponte, Director, Facilities Management, Good Samaritan Medical Center Division of Watershed Management, Massachusetts Department of Environmental Protection

P:\20488\Report\NOI\NOI EPA Letter.docx

II. Suggested Notice of Intent (NOI) Format

1. General facility information. Please provide the following information about the facility.

a) Name of facility:	Mailing Address for the Facility:						
Steward Good Samaritan Medical Center	235 North Main Street, Brockton, MA						
b) Location Address of the Facility (if different from mailing address):	Facility Location	Type of Business: Hospital					
	longitude: _71.061890 latitude: _42.097783	Facility SIC codes: 8062					
c) Name of facility owner: Steward Good Samaritan Medical Cetner	Owner's email: scott.	kenyan@steward.org					
Owner's Tel #: (617) 417-4700	Owner's Fax #:						
Address of owner (if different from facility address) 500 Boylston Street, 5th Floor Boston, MA 02116							
Owner is (check one): 1. Federal 2. State 3. Private							
Legal name of Operator, if not owner:							
Operator Contact Name: Paul Ponte		- 10					
Operator Tel Number: (508) 427-3000 Fax N	umber: <u>508-427-</u> 2	2219					
Operator's email: paul.ponte2@steward.org							
Operator Address (if different from owner)							
d) Attach a topographic map indicating the location of the facility and	d the outfall(s) to the receiving	water. Map attached?					
 e) Check Yes or No for the following: 1. Has a prior NPDES permit been granted for the discharge? Yes 2. Is the discharge a "new discharger" as defined by 40 CFR Section 3. Is the facility covered by an individual NPDES permit? Yes 4. Is there a pending application on file with EPA for this discharge 	m 122.2? Yes No_ √ No_ √ If Yes, Permit N	umber					

Appendix V – NPDES Dewatering General Permit

.

2. Disc	harge information. Please provide information about the discharge, (attaching additional sheets as needed)
a)	Name of receiving water into which discharge will occur: Lovett Brook
Sta	ate Water Quality Classification: B Freshwater: X Marine Water:
b)	Describe the discharge activities for which the owner/applicant is seeking coverage:
	1. Construction dewatering of groundwater intrusion and/or storm water accumulation.
1	2. Short-term or long-term dewatering of foundation sumps. Basement dewatering
	3. Other.
c)	Number of outfalls 1 Pre-existing Stormwater Outfall
E.	
ro	r each outfall:
d)	Estimate the maximum daily and average monthly flow of the discharge (in gallons per day – GPD). Max Daily Flow 50,400 GPD
d)	Estimate the maximum daily and average monthly flow of the discharge (in gallons per day – GPD). Max Daily Flow 50,400 GPD Average Monthly Flow 1,500,000 G GPD
	Average Monthly Flow 1,500,000 G GPD
e.)	What is the maximum and minimum monthly pH of the discharge (in s.u.)? Max pH 6.0 Min pH 6.2
c.)	what is the maximum and minimum monthly prior the discharge (in star). What pri <u>6.2</u>
f .)	Identify the source of the discharge (i.e. potable water, surface water, or groundwater). If groundwater, the facility shall submit effluent test results, as
	required in Section 4.4.5 of the General Permit. Groundwater - see attached
	Groundwater - see attached
g.)	What treatment does the wastewater receive prior to discharge? None
0.	
h.)	Is the discharge continuous? Yes No If no, is the discharge periodic (P) (occurs regularly, i.e., monthly or seasonally, but is
	not continuous all year) or intermittent (I) (occurs sometimes but not regularly) or both (B) P
	If (P), number of days or months per year of the discharge 365 and the specific months of discharge all months ;
	If (I), number of days/year there is a discharge Not applicable
	Is the discharge temporary? Yes No
	If yes, approximate start date of dewatering Not applicable approximate end date of dewatering Not applicable
i.)	Latitude and longitude of each discharge within 100 feet (See http://www.epa.gov/tri/report/siting_tool): Outfall 1: long71.06149 lat. 42.096149; Outfall
	2: long lat; Outfall 3: long lat
122	
j.)	If the source of the discharge is potable water, please provide the reported or calculated seven day-ten year low flow (7Q10) of the receiving water and
	attach any calculation sheets used to support stream flow and dilution calculations Not applicable cfs
	(See Appendix VII for equations and additional information)

Appendix V - NPDES Dewatering General Permit

Page 7 of 9

MASSACHUSETTS FACILITIES: See Section 3.4 and Appendix 1 of the General Permit for more information on Areas of Critical Environmental Concern (ACEC):

k.) Does the discharge occur in an ACEC? Yes _____ No ____ If yes, provide the name of the ACEC: _____

3. Contaminant Information

- a) Are any pH neutralization and/or dechlorination chemicals used in the discharge? If so, include the chemical name and manufacturer; maximum and average daily quantity used as well as the maximum and average daily expected concentrations (mg/l) in the discharge, and the vendor's reported aquatic toxicity (NOAEL and/or LC₅₀ in percent for aquatic organism(s)).
- b) Please report any known remediation activities or water-quality issues in the vicinity of the discharge.

4. Determination of Endangered Species Act Eligibility: Provide documentation of ESA eligibility as required at Part 3.4 and Appendix IV. In addition, respond to the following questions.

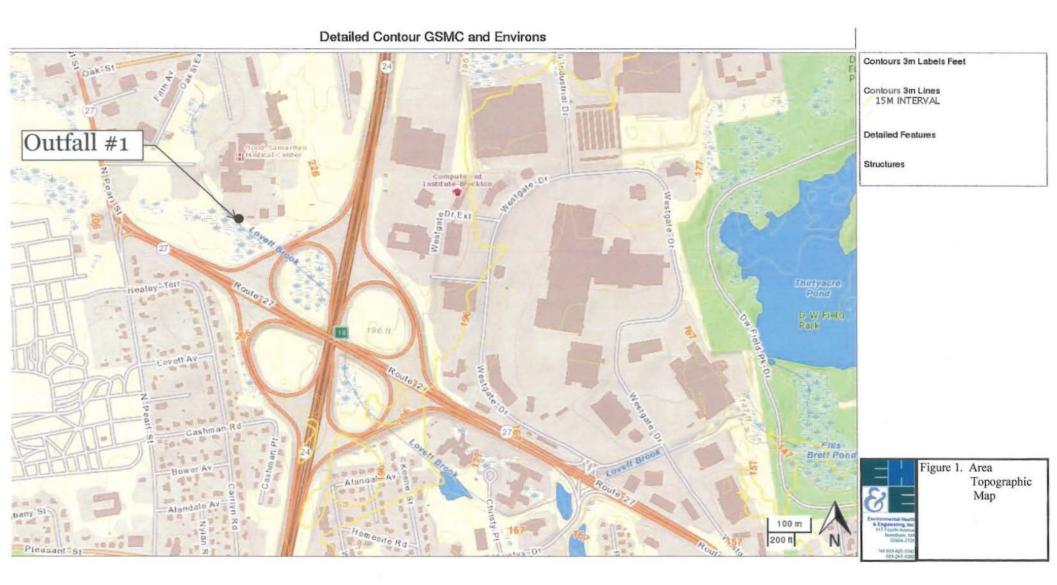
- a) Which of the three eligibility criteria listed in Appendix IV, Criterion (A, B, or C) have you met? A
- b) Please attach documentation with your NOI supporting your response. Please see Appendix IV for acceptable documentation

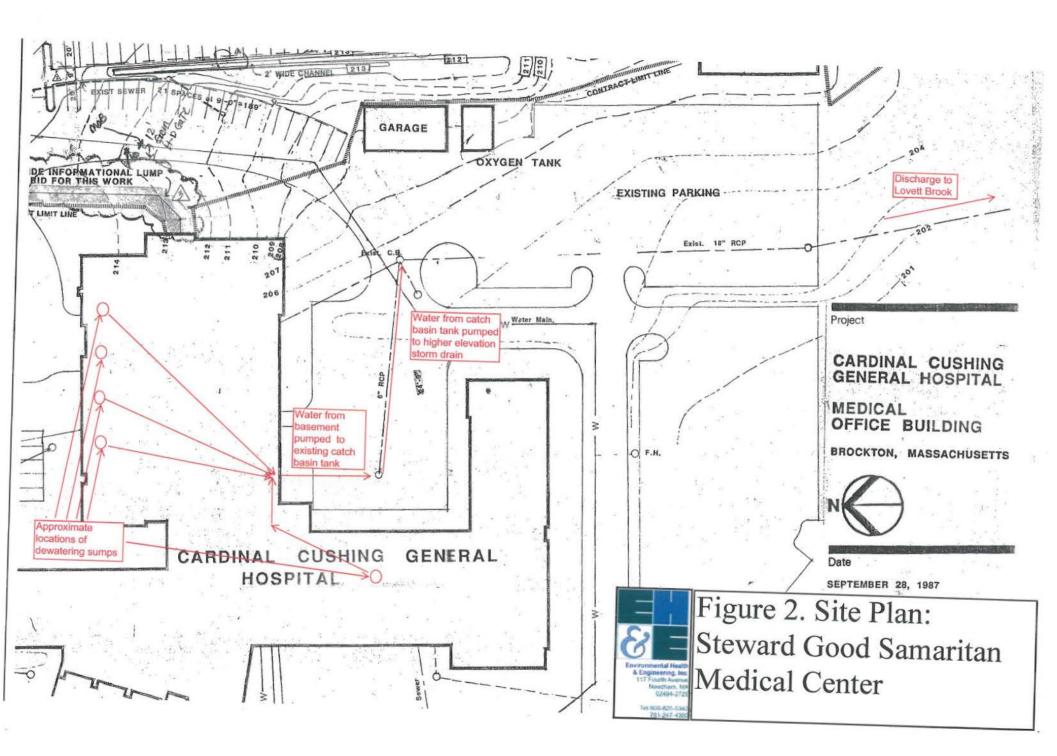
5. Documentation of National Historic Preservation Act requirements: Please respond to the following questions:

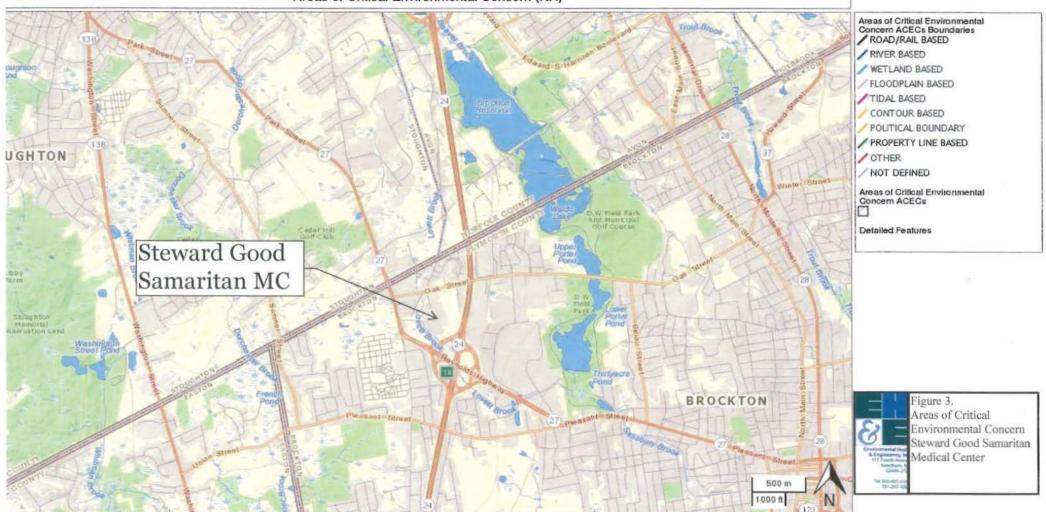
- a) See Screening Process in Appendix III and respond to questions regarding your site and any historic properties listed or eligible for listing on the National Register of Historic Places. Question 1: Yes _____ No ____; Question 2: No ____ Yes ____
- b) Have any State or Tribal historic preservation officers been consulted in this determination? Yes _____ or No ____ If yes, attach the results of the consultation(s).
- c) Which of the three National Historic Preservation Act eligibility criterion listed in Appendix III, Criterion (A, B, or C) have you met?
- d) Is the project located on property of religious or cultural significance to an Indian Tribe? Yes _____ or No 🖌 If yes, provide that name of the Indian Tribe associated with the property.

6. Supplemental Information: Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit

7. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22 (see below) including the following certification:


I certify under penalty of law that (1) no biocides or other chemical additives except for those used for pH adjustment and/or dechlorination are used in the dewatering system; (2) the discharge consists solely of dewatering and authorized pH adjustment and/or dechlorination chemicals; (3) the discharge does not come in contact with any raw materials, intermediate product, water product or finished product; (4) if the discharge of dewatering subsequently mixes with other permitted wastewater (i.e. stormwater) prior to discharging to the receiving water, any monitoring provided under this permit will be only for dewatering discharge; (5) where applicable, the facility has complied with the requirements of this permit specific to the Endangered Species Act and National Historic Preservation Act; and (6) this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted.

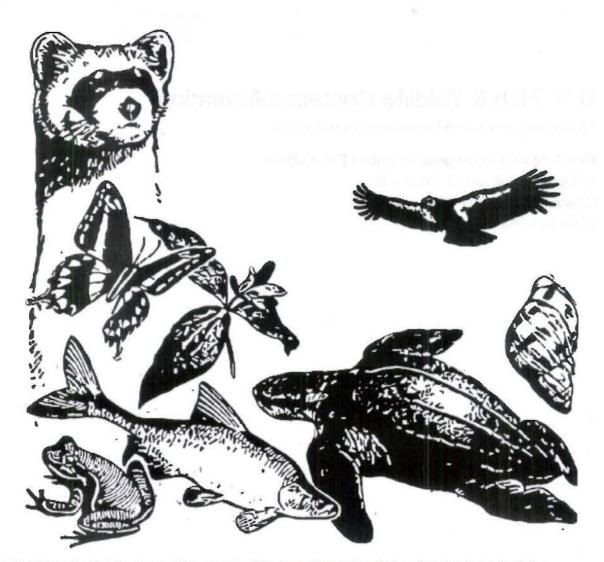

Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.


\frown	
Facility Name: Steward Good Samaritan Medical Center	
Operator signature: Abeche Manual	
Print Full Name and Title: John H. Jurczyk FACHE, President	
Date: 01/26/2016	

Federal regulations require this application to be signed as follows:

- 1. For a corporation, by a principal executive officer of at least the level of vice president;
- 2. For partnership or sole proprietorship, by a general partner or the proprietor, respectively, or,
- 3. For a municipality, State, Federal or other public facility, by either a principal executive officer or ranking elected official.

Areas of Critical Environmental Concern (NA)


U.S. Fish & Wildlife Service

Good Samaritan Medical Center - NOI

IPaC Trust Resource Report

Generated January 14, 2016 11:59 AM MST, IPaC v2.3.2

This report is for informational purposes only and should not be used for planning or analyzing project level impacts. For project reviews that require U.S. Fish & Wildlife Service review or concurrence, please return to the IPaC website and request an official species list from the Regulatory Documents page.

IPaC - Information for Planning and Conservation (<u>http://ecos.fws.gov/ipac/</u>): A project planning tool to help streamline the U.S. Fish & Wildlife Service environmental review process.

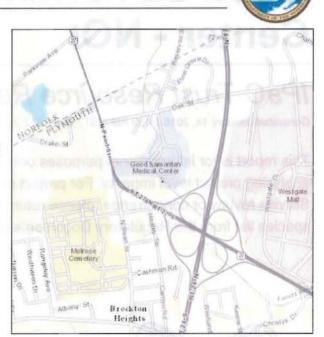
US Fish & Wildlife Service

IPaC Trust Resource Report

NAME

Good Samaritan Medical Center - NOI

LOCATION


Plymouth County, Massachusetts

DESCRIPTION

Discharge groundwater from basement to existing stormwater system. Map location is outfall.

IPAC LINK

http://ecos.fws.gov/ipac/project/ L52BD-6CHGV-C5XOM-PFPVL-ZCCZFE

U.S. Fish & Wildlife Contact Information

Trust resources in this location are managed by:

New England Ecological Services Field Office

70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Endangered Species

Proposed, candidate, threatened, and endangered species are managed by the <u>Endangered Species Program</u> of the U.S. Fish & Wildlife Service.

This USFWS trust resource report is for informational purposes only and should not be used for planning or analyzing project level impacts.

For project evaluations that require FWS concurrence/review, please return to the IPaC website and request an official species list from the Regulatory Documents section.

<u>Section 7</u> of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency.

A letter from the local office and a species list which fulfills this requirement can only be obtained by requesting an official species list from the Regulatory Documents section in IPaC.

There are no endangered species in this location

Critical Habitats

There are no critical habitats in this location

Migratory Birds

Birds are protected by the <u>Migratory Bird Treaty Act</u> and the <u>Bald and Golden Eagle</u> <u>Protection Act</u>.

Any activity which results in the take of migratory birds or eagles is prohibited unless authorized by the U.S. Fish and Wildlife Service (1). There are no provisions for allowing the take of migratory birds that are unintentionally killed or injured.

Any person or organization who plans or conducts activities that may result in the take of migratory birds is responsible for complying with the appropriate regulations and implementing appropriate conservation measures.

Additional information can be found using the following links:

- Birds of Conservation Concern <u>http://www.fws.gov/birds/management/managed-species/</u> <u>birds-of-conservation-concern.php</u>
- Conservation measures for birds
 <u>http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/</u>
 <u>conservation-measures.php</u>
- Year-round bird occurrence data <u>http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/</u> <u>akn-histogram-tools.php</u>

The following species of migratory birds could potentially be affected by activities in this location:

American Oystercatcher Haematopus palliatus	Bird of conservation concern
Season: Breeding https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0G8	
American Bittern Botaurus lentiginosus	Bird of conservation concern
Season: Breeding	
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0F3	
Bald Eagle Haliaeetus leucocephalus	Bird of conservation concern
Year-round	
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B008	
Black-billed Cuckoo Coccyzus erythropthalmus	Bird of conservation concern
Season: Breeding	
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0HI	
Blue-winged Warbler Vermivora pinus	Bird of conservation concern
Season: Breeding	
Canada Warbler Wilsonia canadensis	Bird of conservation concern
Season: Breeding	
Fox Sparrow Passerella iliaca	Bird of conservation concern
Season: Wintering	

Hudsonian Godwit Limosa haemastica Season: Migrating	Bird of conservation concern
Least Bittern Ixobrychus exilis	Bird of conservation concern
Season: Breeding	
Least Tern Sterna antillarum	Bird of conservation concern
Season: Breeding	
Olive-sided Flycatcher Contopus cooperi	Bird of conservation concern
Season: Breeding	
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0AN	
Peregrine Falcon Falco peregrinus	Bird of conservation concern
Season: Wintering	
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0FU	
Pied-billed Grebe Podilymbus podiceps	Bird of conservation concern
Year-round	
Prairie Warbler Dendroica discolor	Bird of conservation concern
Season: Breeding	
Purple Sandpiper Calidris maritima	Bird of conservation concern
Season: Wintering	
Saltmarsh Sparrow Ammodramus caudacutus	Bird of conservation concern
Season: Breeding	
Seaside Sparrow Ammodramus maritimus	Bird of conservation concern
Season: Breeding	
Short-eared Owl Asio flammeus	Bird of conservation concern
Season: Wintering	
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0HD	
Snowy Egret Egretta thula	Bird of conservation concern
Season: Breeding	
Upland Sandpiper Bartramia longicauda	Bird of conservation concern
Season: Breeding	
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0HC	
Willow Flycatcher Empidonax traillii	Bird of conservation concern
Season: Breeding	
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0F6	
Wood Thrush Hylocichla mustelina	Bird of conservation concern
Season: Breeding	Dira of conservation concern
Worm Eating Warbler Helmitheros vermivorum	Bird of conservation concern
Season: Breeding	

Refuges

Any activity proposed on <u>National Wildlife Refuge</u> lands must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

There are no refuges in this location

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal Statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army</u> <u>Corps of Engineers District</u>.

DATA LIMITATIONS

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

DATA EXCLUSIONS

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

DATA PRECAUTIONS

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

This location overlaps all or part of the following wetlands:

Freshwater Forested/shrub Wetland

2.5 acres

A full description for each wetland code can be found at the National Wetlands Inventory website: <u>http://107.20.228.18/decoders/wetlands.aspx</u>

ANALYTICAL REPORT

Lab Number:	L1534403					
Client:	Environmental Health & Engineering Inc.					
	117 Fourth Ave					
	Needham, MA 02494					
ATTN:	Cynthia Campisano					
Phone:	(781) 247-4300					
Project Name:	DEWATERING					
Project Number:	20488					
Report Date:	01/12/16					

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:01121613:42

ALPHA

Lab Number: L1534403 Report Date: 01/12/16

Alpha Sample ID L1534403-01	Client ID 163709	Matrix WATER	Sample Location BROCKTO	ОN		Collection Date/Time 12/30/15 08:20	Receive Date 12/30/15

Project Name:

Project Number:

DEWATERING

20488

Project Name: DEWATERING Project Number: 20488
 Lab Number:
 L1534403

 Report Date:
 01/12/16

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

A	Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
Ea.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
Eb.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES
A res	ponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO
1	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: DEWATERING Project Number: 20488

Lab Number: L1534403 Report Date: 01/12/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

ALPHA	CHAIN OF	= CU	STO	DY PA	GE	OF	Date R	ec'd in	Lab:		11	118	sle		ALPH	IA Jo	ob #:	1	15302	37
VICAL		Project	t Informatio	on		and and	Repo	rt Info	ormatio	on - D					Billin	g Info	ormat			
8 Walkup Drive Westboro, MA 0 Tel: 508-898-92		Project N	Name:	204	188		AD	Ex	,		JL.			J.	Sam	e as C	lient in	nfo	PO #:	
Client Informatio	n	Project L	ocation:			-	Regu	latory	Requ	ireme	nts	& 1	Proje	ct Inf	ormat	ion R	lequir	reme	nts	
Client: EH ?	ç	Project #	S .*	048	8		□ Yes □ Yes		MA MC	P Anal Soike F	ytical Require	Metho ed on	ds this SE) G? (Q Y Requir	ed for	No C	T RC	P Analytical Metherical	hods
Address:		Project N	Manager: (· Car	npis	and	Z Yes	No (GW1 S	tandar										
117 4th A	ve, Needhom M		Quote #:				Ves Othe				m					Criter	ia			1
Phone: / >	2175 - 273	Turn-	Around Tim	e				1	1	15	0	3/3	1	1	11	1	1	1	11	
	roject Information:	□ Stan Date I		RUSH (only o	onlimed if pre-a;	oprovedi)	78260 D 621	DABN DE24.2	METALS: DMCP 13 DMCP	EPH: DRanges & DRCRAB DRCP 15	Ranges & Targets D Ranges D	TPH: PCB DPEST Ranges Ont.	Goli Conty DFinon	JULIA - COLLOI	M				SAMPLE INI Filtration Field Lab to do Preservation Lab to do	
ALPHA Lab ID (Lab Use Only)	Sample ID	180	Colle	ction Time	Sample Matrix	Sampler Initials	Noc:	METAL .	META	EPH:	Hen	TPH:	13	1/	/	/	/)		ample Commen	
30237 -01	WW-L		11/18/6	10:15	WW 														Durd los	
												-				1		1		
Container Type P= Plastic	Preservative A= None				Conta	ainer Type					X	B			7					0
A= Amber glass V= Vial G= Glass	B= HCI C= HNO ₃				Pr	eservative					(Na	-52	27	1					
		Reling	uished By:	t	Dat 11/11 11/12 11/15/1	e/Time 8/15/12: 1/258 1/3 (33)	5	R	aceive	um	A	AL 11/	11/18		1215	Alp	ha's T	erms i	brnitted are subj and Conditions, de. ev. 12-Mar-2012)	

Serial_No:11251513:23

Page 12 of 12

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 8260C: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; lodomethane (methyl iodide) (soil); Methyl methacrylate (soil); Azobenzene.

EPA 8270D: Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 625: 4-Chloroaniline, 4-Methylphenol. SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

EPA 8270D: Biphenyl. EPA 2540D: TSS EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: AI,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,TI,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:11251513:23

Project Name: 20488 Project Number: 20488

Lab Number: L1530237 Report Date: 11/25/15

REFERENCES

30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:11251513:23

Project Name: 20488

Project Number: 20488

Lab Number: L1530237 Report Date: 11/25/15

Data Qualifiers

- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

CHARLEN READ AT MAN

k1.45. Best second with the second s second sec

Report Format: Data Usability Report

Project Name: 20488

Serial_No:11251513:23

Lab Number: L1530237

Project Number: 20488

Report Date: 11/25/15

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- NP Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
- STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
- TIC Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte applies to excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

Report Format: Data Usability Report

Serial_No:11251513:23

Lab Number: L1530237 Report Date: 11/25/15

Project Name: 20488 Project Number: 20488

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information Custody Seal Cooler A Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1530237-01A	Bacteria Cup Na2S2O3 preserved	А	N/A	3.3	Y	Absent	T-COLI-QT(.33)
L1530237-01B	Bacteria Cup Na2S2O3 preserved	А	N/A	3.3	Y	Absent	T-COLI-QT(.33)

Serial_No:11251513:23

Project Name:	20488	
Project Number:	20488	

 Lab Number:
 L1530237

 Report Date:
 11/25/15

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Microbiological Analysis	- Westborough Lab for	or sample(s):	01	Batch:	WG842100-1				
Coliform, Total (MPN)	<1	MPN/100ml	1	NA	1		11/18/15 15:30	30,9223B	KE

									Serial_No:11	201010.20	
Project N	lame:	20488						Lab N	lumber:	L1530237	
Project N	lumber:	20488						Repor	rt Date:	11/25/15	
				(SAMPLE	RESUL	ГS				
Lab ID:		L1530237-0	1					Date (Collected:	11/18/15 10:	15
Client ID:		WW-1						Date F	Received:	11/18/15	
Sample Lo	ocation:	Not Specified						Field F	Prep:	Not Specified	t
		Water									
Parameter		Result	Qualifier		RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys

1000

international and an and a second and a second

PERCENT. WE

INORGANICS & MISCELLANEOUS

100.0

to advect the AAP CARD, we had not have built

Bernschart, J. M. Marker, Leonard Stern Marker, A. Marker, M. Jan and Phys. Rev. B 40, 120 (1997) 1000 (1997). The analysis of the second system of the s

and the second beauty and the

contains and the second part of the local

Lab Number: L1530237 Report Date: 11/25/15

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

Project Name:

Project Number:

20488

20488

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

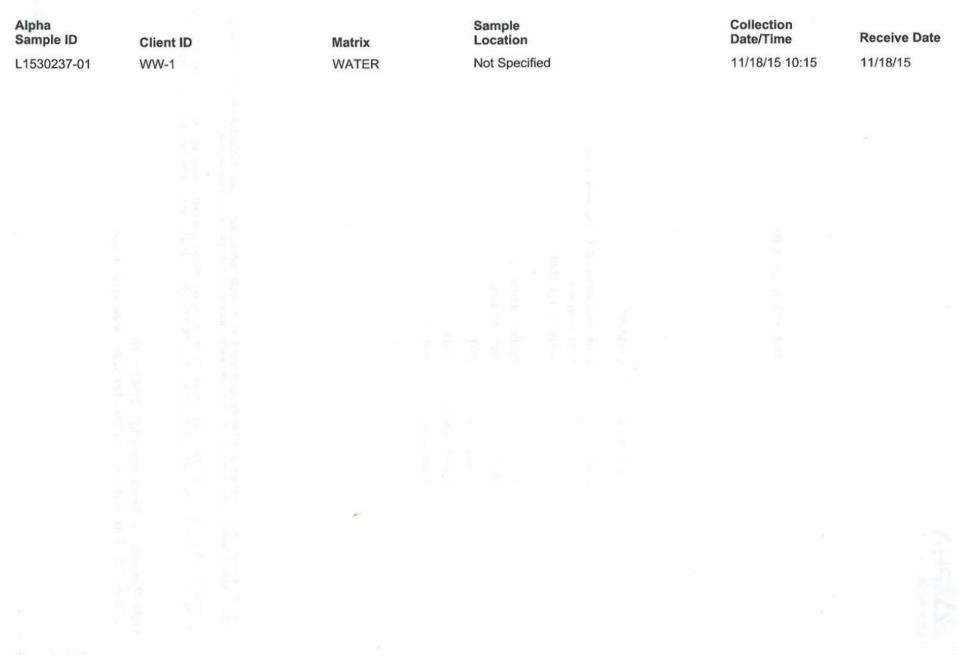
Please contact Client Services at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

609 Standow Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative


Date: 11/25/15

Serial_No:11251513:23

ALPHA

Lab Number: L1530237 Report Date: 11/25/15

Project Name:

Project Number:

20488

20488

ANALYTICAL REPORT

Lab Number:	L1530237
Client:	Environmental Health & Engineering Inc.
	117 Fourth Ave
	Needham, MA 02494
ATTN:	Cynthia Campisano
Phone:	(781) 247-4300
Project Name:	20488
Project Number:	20488
Report Date:	11/25/15

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

7A CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1534403

Instrument ID: Voal16.i	Calibration Date: 05-JAN-2016	Time: 05:21
Lab File ID: 0105A02	<pre>Init. Calib. Date(s): 29-DEC-2</pre>	29-DEC-2
Sample No: 8260 CCAL	Init. Calib. Times : 08:16	12:02

Compound	RRF	 RRF ======	MIN RRF	%D	MAX %D
sec-butylbenzene p-isopropyltoluene 1,3-dichlorobenzene 1,4-dichlorobenzene p-diethylbenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dibromo-3-chloropropane 1,3,5-trichlorobenzene hexachlorobutadiene 1,2,4-trichlorobenzene naphthalene 1,2,3-trichlorobenzene	2.0826 1.1731 1.1681 .50309 1.9371 1.0621 .74794 .06923 .86342 .36823 .73121	2.4123 2.0095 1.0987 1.0888 .51046 1.8681 .98438 .7462 .05649 .80488 .32799 .64917 1.0290	.05 .05 .05 .05 .05 .05	$ \begin{array}{c} -2 \\ -4 \\ -6 \\ -7 \\ 1 \\ -4 \\ -7 \\ 0 \\ -18 \\ -7 \\ -11 \\ -11 \\ -16 \\ \end{array} $	20 20 20 20 20 20 20 20 20 20 20 20 20 2
dibromofluoromethane 1,2-dichloroethane-d4 toluene-d8 4-bromofluorobenzene 	1.25421	.24753 .24153 1.1816 .81578	.05	-5 -3	

FORM VII MCP-8260-10

7A CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1534403

Instrument ID: Voall6.i	Calibration Date: 05-JAN-2016 Time: 05:21
Lab File ID: 0105A02	Init. Calib. Date(s): 29-DEC-2 29-DEC-2
Sample No: 8260 CCAL	Init. Calib. Times : 08:16 12:02

Compound	RRF	RRF	MIN RRF	 %D	MAX 8D	
<pre>methyl cyclohexane trichloroethene dibromomethane 1,2-dichloropropane bromodichloromethane 1,4-dioxane 2-chloroethylvinyl ether cis-1,3-dichloropropene toluene 4-methyl-2-pentanone tetrachloroethene trans-1,3-dichloropropene 1,1,2-trichloroethane ethyl-methacrylate chlorodibromomethane 1,3-dichloropropane 1,2-dibromoethane 2-hexanone chlorobenzene ethyl benzene 1,1,2-tetrachloroethane j/m xylene o xylene styrene bromoform isopropylbenzene n-propylbenzene 1,4-dichlorobutane 1,1,2,2,-tetrachloroethane 1,1,2,2,-tetrachloroethane 2-chlorotoluene</pre>	<pre> . 35309 . 21473 . 11678 . 22879 . 26387 . 00046 . 10515 . 33815 . 70714 . 100 . 30897 . 35912 . 18127 . 27451 . 26422 . 36993 . 21198 . 100 . 77486 1. 2481 . 26838 . 48807 . 44752 . 72727 . 32279 1. 2113 . 61184 2. 6657 . 63341 . 47098 . 93964 1. 7107 </pre>	.34703 .21004 .10829 .2227 .25089 .00036 .092 .34147 .6264 .84.169 .29852 .3211 .16597 .23406 .23893 .33761 .19203 .72.701 .73154 1.1958 .2516 .4762 .4762 .4762 .2782 1.1831 .5591 .55038 .41008 .96444 1.5299	RRF .01 .2 .05 .05 .05 .05 .2 .05 .05 .05 .1 .05 .05 .1 .05 .05 .05 .05 .05 .01 .05 .05 .05 .05 .05 .05 .05 .05	$\begin{array}{c} = = = = = \\ -2 \\ -7 \\ -3 \\ -5 \\ -21 \\ -13 \\ -11 \\ -16 \\ -31 \\ -11 \\ -16 \\ -31 \\ -11 \\ -99 \\ -27 \\ -6 \\ -27 \\ -64 \\ -62 \\ -32 \\ -14 \\ -29 \\ -13 \\ -11 \\ -13 \\ -11 \\ -13 \\ -11 \end{array}$	%D 30 20	
1,1,2,2,-tetrachloroethane4-ethyltoluene	<pre>.47098 .93964 1.7107 .37482 1.8894 .11401 1.6643 1.6319</pre>	.41008 .96444 1.5299 .32459 1.7790	.3 .05 .05 .05 .05 .05 .05	-13 3 -11 -13 -6 -21 -7 -5	20 20	 F

FORM VII MCP-8260-10

7A Volatile Organics CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1534403

Instrument ID: Voall6.i	Calibration Date: 05-JAN-2016	Time: 05:21
Lab File ID: 0105A02	Init. Calib. Date(s): 29-DEC-2	29-DEC-2
Sample No: 8260 CCAL	Init. Calib. Times : 08:16	12:02

Compound	RRF	 RRF ======	MIN RRF		MAX %D
dichlorodifluoromethane		.20364			
chloromethane		.21131			
vinyl chloride		.21281			
bromomethane	1.09075	.07618	.1		20
chloroethane	1.15349	.15349	.1	0	20
trichlorofluoromethane	1.33771	.33941	.1		
ethyl ether		.12215			
1,1,-dichloroethene	21521	.21029	.1		
carbon disulfide	67418	.63872	.1		
freon-113	1 21349	.21072	.1		
iodomethane	100	139			
acrolein	1 03191	.02672			20
methylene chloride	25774	.23368	.03		
acetone		86.519			
trans-1,2-dichloroethene		.23204			
methyl acetate	1 1038	.09099	.01		
methyl tert butyl ether	1 58134	.5241	.01		
tert-butyl alcohol		.00787			20
Diisopropyl Ether		.63087			
1,1-dichloroethane		.41627		-4	20
Halothane	1 10226	1.17711	.05		
acrylonitrile	1.06177	.0553	.05		
acryionitrile		.60073			
Ethyl-Tert-Butyl-Ether		.39502			20
vinyl acetate	1.44514	1.39302	.05		
cis-1,2-dichloroethene	1.2004/	.25852	.1		
2,2-dichloropropane	1.40258	.38931	.05		
cyclohexane		.33872			
oromochloromethane	.1032	.11091	.05		
chloroform		.33819			
ethyl acetate		.11322			
carbontetrachloride	1.27675	.27319	.1		
tetrahydrofuran	1 100	82.507	.05		
1,1,1-trichloroethane		.2939			
2-butanone	100	83.692	.1		
1,1-dichloropropene	.26776	.26185	.05		
benzene		.8036			
Tertiary-Amyl Methyl Ether		.45494			
1,2-dichloroethane	1.23778	.21248	.1	-11	20

FORM VII MCP-8260-10

			COC 0	dited 12/	31/2015	NI											5	Seria	al_No	:01121	613:42	
ALPHA	CHAIN	OF CU			.GE		Dat	e Rei	c'd in l	Lab:		nl	20/	5		AI	LPH	A Jo	b #:	U	53410	3
8 Walkup Drive	320 Forbes Blvd	Project	Informati	on			Re	port	Infor	mati	on - C)ata I	Deliv	erabl	es	В	illing	Info	ormat	ion		
Westboro, MA 0 Tel: 508-898-92	1581 Mansfield, MA 02048	Project N	Name:	EWATE	RING		ADEx EMAIL Same as Client info PO #: 2048%															
Client Informatio	n	Project L		Rock			Regulatory Requirements & Project Information Requirements															
Client: EH &	E	Project #		488			Yes □ No MA MCP Analytical Methods □ Yes □ No CT RCP Analytical Methods □ Yes □ No Matrix Spike Required on this SDG? (Required for MCP Inorganics)															
Address: 17 47		Project N	Manager: C	SAUNT	CAMPE	SANO	Yes D No GW1 Standards (Info Required for Metals & EPH with Targets) Yes D No NPDES RGP															
	an ma payay		Quote #:					22.2	State /	Fed	Progra	im				_		Criter	ia			
	Phone: 617-573-5412 Turn-Around Time								/ /	2	520	13	*	2	1	1	1	1	1	100	L	
	- @ Eker, сол	Date I	dard 🗆 Due: 7 2	RUSH (only o		provedý	ANAIN	0	PAH	METALS CANCP 13 DMCP BARD	EPH: DRanger DRCRAS DRCRAB COLOTS	Ranow Kargets D Rano	LAPCB DPFOR Range	PHI: Dought Only 6082 A	Sw Singerprint	disse in my	St a	02L & CLERCE 9251	HERAND RESERVAL ON	CHIKON	SAMPLE II Filtration G Field C Lab to de Preservatio	o e
ALPHA Lab ID	Sample ID		Colle		Sample	Sampler	Noc:	Noc.	ETAL	ETAL	Ha	PH:D	PCB	H.	ISS	E	H	5	XALL AL			
(Lab Use Only)	125	-	Date	Time	Matrix	Initials	1	-	1	-			2			1.		1	H	Sam	ple Comme	
34403 -01	163769		12/50/17	\$824	H20	ASB	3	2	N	-	-+-		~	+1	1	1	2			2	1-	13
·····		-					1-			-				+	+-	-	-		H	ardne	SS	
								,As,					_	-	+	+-	-	-				
						-			Cu.l		-lg,ℕ		_	-	1	_	-					
							,Ag	<u>, 7</u>	, Pb).												
İ																						
1																		-				-
			-																			
															1	1						
Container Type	Preservative		I	Г	Contr	ainer Type	A	Δ	P			1	A	P	P	D	A	P	2			-
P= Plastic A= Amber glass V= Vial	A= None B= HCl C= HNO ₃					eservative	B	A	C				A	A		++	11	A	A			
G= Glass B= Bacteria cup C= Cube	D= H ₂ SO ₄ E= NaOH	Relinquished Byzy Date/Time				1	1.11	/ Re	aceive	d By:				-	e/Tim	_	V	-				
C= Cube F= MeOH O= Other G= NaHSO. E= Encore H = Na ₂ S ₂ O.s D= BOD Bottle I= Ascorbic Acid J = NH ₄ Cl K= Zn Acetate Ofther Ofther	olys	B		12/30/	-	d	ante	10		-	AL	12	120	K	1414	All Se	pha's 1 e reve	Terms an erse side	d Condition	ns.		

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility EPA 524.2: 1.2-Dibromo-3-chloropropane, 1.2-Dibromoethane, m/p-xylene, o-xylene EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol, EPA 1010A: NPW: Ignitability EPA 6010C: NPW: Strontium; SCM: Strontium EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate (soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine. EPA 9010: NPW: Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: NPW: Sulfate EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3. SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

EPA 8270D: <u>NPW</u>: Biphenyl; <u>SCM</u>: Biphenyl EPA 2540D: TSS EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: AI,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,TI,Zn; EPA 200.7: AI,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Document Type: Form

Project Name: DEWATERING Project Number: 20488

Lab Number: L1534403 Report Date: 01/12/16

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.
- 74 Method 1664, Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

L1534403

Project Name:	D
---------------	---

EWATERING 20488

Data Qualifiers

Project Number:

Report Date:

Lab Number:

01/12/16

C - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.

D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.

E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

- G - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I - The lower value for the two columns has been reported due to obvious interference.
- M - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ - Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P - The RPD between the results for the two columns exceeds the method-specified criteria.
- Q - The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R - Analytical results are from sample re-analysis.
- RE - Analytical results are from sample re-extraction.
- S - Analytical results are from modified screening analysis.
- J - Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND - Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name: DEWATERING

Project Number: 20488

Lab Number: L1534403

Report Date: 01/12/16

GLOSSARY

Acronyms

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated EDL values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME). EPA - Environmental Protection Agency. LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. LCSD - Laboratory Control Sample Duplicate: Refer to LCS. - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes LFB or a material containing known and verified amounts of analytes. - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, MDL when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for MS which an independent estimate of target analyte concentration is available. MSD - Matrix Spike Sample Duplicate: Refer to MS. NA - Not Applicable. - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's NC reporting unit. - Not Ignitable. NI NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil. - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five

times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
- STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
- TIC Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

Report Format: Data Usability Report

Lab Number: L1534403 Report Date: 01/12/16

Project Name: DEWATERING Project Number: 20488

Sample Receipt and Container Information

Temp

deg C Pres Seal

YES Were project specific reporting limits specified?

Cooler Information Custody Seal Cooler A Absent

Container Information Container ID Container Type Cooler pH 1

L1534403-01A	Vial HCI preserved	Α	N/A	3.4	Y	Absent
L1534403-01B	Vial HCI preserved	А	N/A	3.4	Y	Absent
L1534403-01C	Vial HCI preserved	A	N/A	3.4	Y	Absent
L1534403-01D	Plastic 250ml HNO3 preserved	А	<2	3.4	Y	Absent

							e
L1534403-01D1	Plastic 250ml HNO3 preserved	А	<2	3.4	Y	Absent	-
L1534403-01E	Plastic 950ml unpreserved	A	7	3.4	Y	Absent	
L1534403-01F	Plastic 950ml unpreserved	А	7	3.4	Y	Absent	٦
L1534403-01G	Amber 1000ml unpreserved	А	7	3.4	Y	Absent	N
L1534403-01H	Amber 1000ml unpreserved	А	7	3.4	Y	Absent	N
L1534403-011	Amber 1000ml unpreserved	А	7	3.4	Y	Absent	N
L1534403-01J	Amber 1000ml unpreserved	А	7	3.4	Y	Absent	N
L1534403-01K	Amber 1000ml HCl preserved	А	N/A	3.4	Y	Absent	(
L1534403-01L	Amber 1000ml HCI preserved	А	N/A	3.4	Y	Absent	C

Analysis(*)

MCP-8260-10(14)

MCP-8260-10(14)

MCP-8260-10(14)

MCP-CR-6010T-10(180),MCP-FE-6010T-10(180),MCP-7470T-10(28), MCP-AS-6010T-10(180),MCP-CD-6010T-10(180), MCP-AG-6010T-10(180),MCP-CU-6010T-10(180),MCP-SB-6010T-10(180),MCP-ZN-6010T-10(180),MCP-ZN-6010T-10(180),HARDT(180),MCP-NI-6010T-10(180),MCP-PB-6010T-10(180)

CL-9251(28),TRC-4500(1),PH-4500(.01),MCP-HEXCR7196-10(1) TSS-2540(7) MCP-8082-10(365) MCP-8082-10(365)

MCP-8270-10(7)

MCP-8270-10(7)

OG-1664(28)

OG-1664(28)

Project Name:DEWATERINGProject Number:20488					Lab	Duplicate Batch Quality	Control	sis			Numb ort Da		L1534403 01/12/16
Parameter	Nati	ve S	amp	le		Duplicate S	ample	Units	RP	D	Qual	RPI) Limits
General Chemistry - Westborough Lab Associated sam	nple(s):	01	QC	Bato	h ID:	WG854030-3	QC Sa	mple: L1534	403-01	Client	t ID: 1	63709	
Chloride		860	1			870		mg/l	1				7
eneral Chemistry - Westborough Lab Associated sam	nple(s):	01	QC	Bato	h ID:	WG854031-3	QC Sa	mple: L1534	403-01	Client	t ID: 1	63709	
Chlorine, Total Residual		ND				ND		mg/l	N	С			20
General Chemistry - Westborough Lab Associated sam	nple(s):	01	QC	Bato	h ID:	WG854077-2	QC Sa	mple: L1534	403-01	Clien	t ID: 1	63709	
рН (Н)		6.1				6.1		SU	C)			5
			*										
Page 41 of 50													Дерна

Matrix Spike Analysis Batch Quality Control

Project Name:	DEWATERING
Project Number:	20488

 Lab Number:
 L1534403

 Report Date:
 01/12/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD (Qual	RPD Limits
General Chemistry - Westb	orough Lab Asso	ciated samp	ole(s): 01	QC Batch ID:	WG8540	30-4 Q	C Sample: L153	84403-01	1 Client ID	: 16370	09	
Chloride	860	20	860	0	Q	-			58-140	<i>(</i> -		7
General Chemistry - Westb	orough Lab Asso	ciated samp	ole(s): 01	QC Batch ID:	WG8541	80-4 Q	C Sample: L153	84403-01	1 Client ID	: 1637	09	
Oil & Grease, Hem-Grav	ND	40	39	97		-			78-114	-		18
					4							
		TC I										
												-

Project Name: DEWATERING Project Number: 20488 Lab Number: L1534403 Report Date: 01/12/16

Parameter	LCS %Recovery	Qua	LCSD I %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab	Associated sample(s)	: 01	Batch: WG854030-2						
Chloride	100		*		90-110	÷			
General Chemistry - Westborough Lab	Associated sample(s)	: 01	Batch: WG854031-2						
Chlorine, Total Residual	105				90-110				
General Chemistry - Westborough Lab	Associated sample(s)	: 01	Batch: WG854077-1						
рН	101				99-101			5	
ICP General Chemistry - Westboroug	h Lab Associated sam	ple(s): 01 Batch: WG854	096-2 W	3854096-3				
Chromium, Hexavalent	97		96		49-151	1		20	
General Chemistry - Westborough Lab	Associated sample(s)	: 01	Batch: WG854180-2						
Oil & Grease, Hem-Grav	98		8 -		78-114			18	

Project Name: DEWATERING Project Number: 20488

Lab Number: L1534403 Report Date: 01/12/16

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Nestborough Lab	for sam	ple(s): 01	Batch:	WG85	4030-1				
Chloride	ND		mg/l	1.0		1		12/30/15 17:59	1,9251	ML
General Chemistry - V	Westborough Lab	for sam	ple(s): 01	Batch:	WG85	4031-1				
Chlorine, Total Residual	ND		mg/l	0.02		1		12/30/15 16:39	30,4500CL-D	AS
MCP General Chemis	stry - Westborough	n Lab fo	or sample(s)): 01 E	Batch: \	NG854096-	1			
Chromium, Hexavalent	ND		mg/l	0.010		1	12/30/15 23:00	12/30/15 23:14	97,7196A	LH
General Chemistry - V	Vestborough Lab	for sam	ple(s): 01	Batch:	WG85	4150-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	3 8 8	12/31/15 12:00	30,2540D	DW
General Chemistry - V	Vestborough Lab	for sam	ple(s): 01	Batch:	WG85	4180-1				
Oil & Grease, Hem-Grav	ND		mg/l	4.0		1	12/31/15 07:49	12/31/15 08:49	74,1664A	кz

Project Name: Project Number:	DEWATERI 20488	NG						umber: t Date:	L1534403 01/12/16	
				SAMPLE	RESULT	rs				
Lab ID: Client ID: Sample Location: Matrix:	L1534403-0 163709 BROCKTON Water	t Histori Histori					Date F Field F	12	12/30/15 08:20 12/30/15 Not Specified	0
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP General Chemistry	- Westboroug	h Lab			Hi- L					Sec. 24
Chromium, Hexavalent	ND		mg/l	0.010	-	1	12/30/15 23:00	12/30/15 23:16	6 97,7196A	LH
General Chemistry - Wes	stborough Lab									
Solids, Total Suspended	ND		mg/l	5.0	NA	1		12/31/15 12:00	30,2540D	DW
Chlorine, Total Residual	ND		mg/l	0.02	-	1		12/30/15 16:39	30,4500CL-D	AS
Chloride	860		mg/l	10	-	10	the state	12/30/15 18:08	3 1,9251	ML
pH (H)	6.1		SU		NA	1	9 4 5	12/30/15 20:45	5 30,4500H+-B	AS
Oil & Grease, Hem-Grav	ND		mg/l	4.0	-	1	12/31/15 07:49	12/31/15 08:49	74,1664A	KZ

ALC: NOTE: N

Serial_No:01121613:42

INORGANICS & MISCELLANEOUS

Project Name: DEWATERING Project Number: 20488 Lab Number: L1534403 Report Date: 01/12/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Fotal Hardness by SM 2340B - Westborough Lab	Associated sa	mple(s): 01	Batch: WG854	4178-2				
Hardness	94				80-120			
MCP Total Metals - Westborough Lab Associated	d sample(s): 01	Batch: W	G854181-2 WG	6854181-3		R		
Antimony, Total	81		85		80-120	5		20
Arsenic, Total	108		110		80-120	2		20
Cadmium, Total	105		98		80-120	7		20
Chromium, Total	95		90		80-120	5		20
Copper, Total	102		94		80-120	8		20
Iron, Total	98		90		80-120	9		20
Lead, Total	105		105		80-120	0		20
Nickel, Total	99		92		80-120	7		20
Silver, Total	101		92		80-120	9		20
Zinc, Total	101		93		80-120	8		20
ICP Total Metals - Westborough Lab Associated	d sample(s): 01	Batch: W	G856240-2 WC	G856240-3				
Mercury, Total	115		116		80-120	1		20

Project Name:	DEWATERING
Project Number:	20488

 Lab Number:
 L1534403

 Report Date:
 01/12/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Hardness by S	M 2340B - Westborough	Lab for	sample(s	s): 01	Batch: WG	854178-1	WALL PROPERTY		1
Hardness	ND	mg/l	0.66	NA	1	12/31/15 08:40	12/31/15 14:32	1,6010C	PS

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifie	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Total Metals -	Westborough Lab for	sample(s):	01 Bat	ch: WG	854181-1	The state of the s			1200
Antimony, Total	ND	mg/l	0.050		1	12/31/15 08:40	01/06/16 00:37	97,6010C	JH
Arsenic, Total	ND	mg/l	0.005		1	12/31/15 08:40	01/06/16 00:37	97,6010C	JH
Cadmium, Total	ND	mg/l	0.004		1	12/31/15 08:40	01/06/16 00:37	97,6010C	JH
Chromium, Total	ND	mg/l	0.01		1	12/31/15 08:40	01/06/16 00:37	97,6010C	JH
Copper, Total	ND	mg/l	0.010		1	12/31/15 08:40	01/06/16 00:37	97,6010C	JH
Iron, Total	ND	mg/l	0.05	-	1	12/31/15 08:40	01/06/16 00:37	97,6010C	JH
Lead, Total	ND	mg/l	0.010	-	1	12/31/15 08:40	01/06/16 00:37	97,6010C	JH
Nickel, Total	ND	mg/l	0.025	1976	1	12/31/15 08:40	01/06/16 00:37	97,6010C	JH
Silver, Total	ND	mg/l	0.007		1	12/31/15 08:40	01/06/16 00:37	97,6010C	JH
Zinc, Total	ND	mg/l	0.050	-	1	12/31/15 08:40	01/06/16 00:37	97,6010C	JH

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Q	alifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	Analyst
MCP Total Metals -	Westborough La	b for sa	mple(s):	01 Bate	h: WG	856240-1				
Mercury, Total	ND		mg/l	0.0002	-	1	01/11/16 10:50	01/11/16 19:24	97,7470A	EA

Prep Information

Digestion Method: EPA 7470A

								Sena		013.42	
Project Name:	DEW	ATERING					Lab Nu	mber:	L15344	03	
Project Number:	20488	8					Report	Date:	01/12/1	6	
				SAMPL	E RES	ULTS	of the life				
Lab ID:	L1534	4403-01					Date Co	ollected:	12/30/1	5 08:20	
Client ID:	16370	09					Date Re	eceived:	12/30/1	5	
Sample Location:	BROO	CKTON					Field Pr	ep:	Not Spe	ecified	
Matrix:	Water	r .									
						Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Hardness by S	SM 23408	B - Westbor	rough La	b							
Hardness	320		mg/l	0.66	NA	1	12/31/15 08:40) 12/31/15 19:27	EPA 3005A	1,6010C	PS
MCP Total Metals -	Westbor	ough Lab									
Antimony, Total	ND		mg/l	0.050		1	12/31/15 08:40	01/06/16 01:39	EPA 3005A	97,6010C	JH
Arsenic, Total	ND		mg/l	0.005	-	1	12/31/15 08:40	01/06/16 01:39	EPA 3005A	97,6010C	JH
Cadmium, Total	ND		mg/l	0.004		1	12/31/15 08:40	01/06/16 01:39	EPA 3005A	97,6010C	JH
Chromium, Total	ND		mg/l	0.01		1	12/31/15 08:40	01/06/16 01:39	EPA 3005A	97,6010C	JH
Copper, Total	ND		mg/l	0.010		1	12/31/15 08:40	01/06/16 01:39	EPA 3005A	97,6010C	JH
Iron, Total	1.0		mg/l	0.05		1	12/31/15 08:40	01/06/16 01:39	EPA 3005A	97,6010C	JH
Lead, Totai	0.013		mg/l	0.010	-	1	12/31/15 08:40	01/06/16 01:39	EPA 3005A	97,6010C	JH
Mercury, Total	ND		mg/l	0.0002		1	01/11/16 10:50	01/11/16 19:29	EPA 7470A	97,7470A	EA
Nickel, Total	ND		mg/l	0.025		1	12/31/15 08:40	01/06/16 01:39	EPA 3005A	97,6010C	JH
Silver, Total	ND		mg/l	0.007		1	12/31/15 08:40	01/06/16 01:39	EPA 3005A	97,6010C	JH
Zinc, Total	ND		mg/l	0.050		1	12/31/15 08:40	01/06/16 01:39	EPA 3005A	97,6010C	JH

Adding adding to study in the second

Serial No:01121613:42

ŝ

Lab Control Sample Analysis Batch Quality Control

Project Name: DEWATERING

Project Number: 20488 Lab Number: L1534403 **Report Date:** 01/12/16

Parameter	LCS %Recovery	Qual	10000	LCSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
MCP Polychlorinated Biphenyls - Westboroug	h Lab Associat	ted sample(s):	01	Batch:	WG854420-2	WG854420-3				
Aroclor 1016	63			55		40-140	13		20	A
Aroclor 1260	74			64		40-140	15		20	A

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	80		68		30-150	A
Decachlorobiphenyl	90		77		30-150	A
2,4,5,6-Tetrachloro-m-xylene	85		76		30-150	в
Decachlorobiphenyl	88		78		30-150	В

01/02/16

Analytical Method:

Analytical Date:

Analyst:

Serial_No:01121613:42

Project Name:	DEWATERING
Project Number:	20488

97,8082A

01/03/16 03:26

JT

Method Blank Analysis Batch Quality Control

Lab Number: L1534403 Report Date: 01/12/16

Extraction Method:EPA 3510CExtraction Date:01/02/16 12:46Cleanup Method:EPA 3665ACleanup Date:01/02/16Cleanup Method:EPA 3660BCleanup Date:01/02/16

Result	Qualifier Units	RL	MDL	Column
- Westborough	h Lab for sample(s): 01 Batch:	WG854420-1	
ND	ug/l	0.250	-	А
ND	ug/l	0.250		А
ND	ug/l	0.250		А
ND	ug/l	0.250		А
ND	ug/l	0.250		А
ND	ug/l	0.250		А
ND	ug/l	0.250	1.000	А
ND	ug/l	0.250		А
ND	ug/l	0.250		А
ND	ug/l	0.250	-	А
	- Westborough ND ND ND ND ND ND ND ND ND ND	- Westborough Lab for sample(s ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l	ND ug/l 0.250 ND ug/l 0.250	ND ug/l 0.250 ND ug/l 0.250

		1	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	69		30-150	А
Decachlorobiphenyl	76		30-150	А
2,4,5,6-Tetrachloro-m-xylene	75		30-150	в
Decachlorobiphenyl	75		30-150	В

Page 30 of 50

			Serial_No	0:01121613:42	
Project Name:	DEWATERING		Lab Number:	L1534403	
Project Number:	20488	SAMPLE RESULTS	Report Date:	01/12/16	
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1534403-01 163709 BROCKTON Water 97,8082A 01/03/16 04:21 JT		Date Collected: Date Received: Field Prep: Extraction Method Extraction Date: Cleanup Method: Cleanup Date: Cleanup Method: Cleanup Date:	01/02/16 12:46 EPA 3665A 01/02/16	

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlo	rinated Biphenyls - Westbo	orough Lab	amin !!	window ()	1012	And St.	There experies	
Aroclor 1016		ND		ug/l	0.250	-	1	А
Aroclor 1221		ND		ug/l	0.250		1	А
Aroclor 1232		ND		ug/l	0.250		1	A
Aroclor 1242		ND		ug/l	0.250	-	1	А
Aroclor 1248		ND		ug/l	0.250	-	1	A
Aroclor 1254		ND		ug/l	0.250	-	1	A
Aroclor 1260		ND		ug/l	0.250		1	A
Aroclor 1262		ND		ug/l	0.250	-	1	A
Aroclor 1268		ND		ug/l	0.250		1	A
PCBs, Total		ND		ug/l	0.250		1	A

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	70		30-150	А
Decachlorobiphenyl	77		30-150	А
2,4,5,6-Tetrachloro-m-xylene	80		30-150	В
Decachlorobiphenyl	78		30-150	В

PCBS		
	1.000	Дерна

Project Name: DEWATERING

Project Number: 20488

Lab Number: L1534403

Report Date: 01/12/16

Parameter	LCS %Recovery	Qual		LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Semivolatile Organics - Westborough La	b Associated s	ample(s):	01	Batch: WG8	54238-2	WG854238-3			The last line	

	LCS		LCSD		Acceptance
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria
2-Fluorophenol	58		51		15-110
Phenol-d6	41		37		15-110
Nitrobenzene-d5	73		64		30-130
2-Fluorobiphenyl	95		86		30-130
2,4,6-Tribromophenol	130	Q	118	Q	15-110
4-Terphenyl-d14	105		96		30-130

Project Name: DEWATERING

Project Number: 20488

Lab Number: L1534403 Report Date: 01/12/16

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
CP Semivolatile Organics - Westbor	ough Lab Associated s	ample(s): 01	Batch: WG854	238-2	WG854238-3			
Dibenzofuran	96		87		40-140	10		20
2-Methylnaphthalene	89		80		40-140	11		20
Acetophenone	85		74		40-140	14		20
2,4,6-Trichlorophenol	102		91		30-130	11		20
2-Chlorophenol	82		72		30-130	13		20
2,4-Dichlorophenol	93		84		30-130	10		20
2,4-Dimethylphenol	85		77		30-130	10		20
2-Nitrophenol	82		72		30-130	13		20
4-Nitrophenol	49		45		30-130	9		20
2,4-Dinitrophenol	14	Q	30		30-130	73	Q	20
Pentachlorophenol	30		54		30-130	57	Q	20
Phenol	47		42		30-130	11		20
2-Methylphenol	80		72		30-130	11		20
3-Methylphenol/4-Methylphenol	78		71		30-130	9		20
2,4,5-Trichlorophenol	104		93		30-130	11		20

-15 OC. ALL PLAN

COMPANY AND A DESCRIPTION OF A DESCRIPTI

The problem

Project Name: DEWATERING

Project Number: 20488

Lab Number: L1534403 Report Date: 01/12/16

arameter	LCS %Recovery	Qual	LCSD %Recove		%Recovery Limits	RPD	Qual	RPD Limits	
ICP Semivolatile Organics - Westborough L	ab Associated s	ample(s): 0	1 Batch: 1	WG854238-2	WG854238-3				
Bis(2-Ethylhexyl)phthalate	94		80		40-140	16		20	
Butyl benzyl phthalate	91		80		40-140	13		20	
Di-n-butylphthalate	94		83		40-140	12		20	
Di-n-octylphthalate	85		73		40-140	15		20	
Diethyl phthalate	94		84		40-140	11		20	
Dimethyl phthalate	99		88		40-140	12		20	
Benzo(a)anthracene	99		89		40-140	11		20	
Benzo(a)pyrene	96		86		40-140	11		20	
Benzo(b)fluoranthene	92		83		40-140	10		20	
Benzo(k)fluoranthene	94		84		40-140	11		20	
Chrysene	98		91		40-140	7		20	
Acenaphthylene	96		87	12.00	40-140	10		20	
Anthracene	103		94		40-140	9		20	
Benzo(ghi)perylene	92		85		40-140	8		20	
Fluorene	97		87		40-140	11		20	
Phenanthrene	97		88		40-140	10		20	
Dibenzo(a,h)anthracene	94		87		40-140	8		20	
Indeno(1,2,3-cd)Pyrene	89		81		40-140	9		20	
Pyrene	100		91		40-140	9	1	20	
Aniline	60		50		40-140	18		20	
4-Chloroaniline	85		78		40-140	9		20	

Project Name: DEWATERING

Project Number: 20488

Lab Number: L1534403 Report Date: 01/12/16

arameter	LCS %Recovery	Qual	LCSI %Reco		%Recovery Limits	RPD	Qual	RPD Limits	
MCP Semivolatile Organics - Westborough La	b Associated	sample(s): 0	1 Batch:	WG854238-2	WG854238-3				
Acenaphthene	93		85		40-140	9		20	
1,2,4-Trichlorobenzene	80		73		40-140	9		20	
Hexachlorobenzene	111		99		40-140	11		20	
Bis(2-chloroethyl)ether	75		67		40-140	11		20	
2-Chloronaphthalene	94		85		40-140	10		20	
1,2-Dichlorobenzene	70		62		40-140	12		20	
1,3-Dichlorobenzene	66		58		40-140	13		20	
1,4-Dichlorobenzene	67		59		40-140	13		20	
3,3'-Dichlorobenzidine	62		54		40-140	14		20	
2,4-Dinitrotoluene	100		89		40-140	12		20	
2,6-Dinitrotoluene	101		90		40-140	12		20	
Azobenzene	85		76		40-140	11		20	
Fluoranthene	101		91		40-140	10		20	
4-Bromophenyl phenyl ether	109		98		40-140	11		20	
Bis(2-chloroisopropyl)ether	61		53		40-140	14		20	
Bis(2-chloroethoxy)methane	85		76		40-140	11		20	
Hexachlorobutadiene	80		72	113-11	40-140	11		20	
Hexachloroethane	62		55		40-140	12		20	
Isophorone	84		74		40-140	13		20	
Naphthalene	81		73		40-140	10		20	
Nitrobenzene	74		68		40-140	8		20	

ALPHA

Project Name: Project Number:	DEWATERING 20488		Lab Number: Report Date:	L1534403 01/12/16
		Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	97,8270D 01/02/16 14:40 AS		Extraction Method: Extraction Date:	EPA 3510C 12/31/15 10:41

Parameter	Result	Qualifier	Uni	ts	RL	MDL	
MCP Semivolatile Organics - Westb	orough La	ab for sample	e(s):	01	Batch:	WG854238-1	

		A	cceptance	
Surrogate	%Recovery	Qualifier	Criteria	
2-Fluorophenol	52		15-110	
Phenol-d6	34		15-110	13
Nitrobenzene-d5	64		30-130	
2-Fluorobiphenyl	85		30-130	
2,4,6-Tribromophenol	107		15-110	
4-Terphenyl-d14	94		30-130	

Project Name:	DEWATERING
Project Number:	20488

Lab Number: L1534403 Report Date: 01/12/16

Method Blank Analysis Batch Quality Control

Analytical Method:	97,8270D	
Analytical Date:	01/02/16 14:40	
Analyst:	AS	

Extraction Method: EPA 3510C Extraction Date: 12/31/15 10:41

arameter	Result	Qualifier Units	RL	MDL
ICP Semivolatile Organics - We	estborough Lal	o for sample(s): 01	Batch:	WG854238-1
Benzo(b)fluoranthene	ND	ug/l	2.0	
Benzo(k)fluoranthene	ND	ug/l	2.0	-
Chrysene	ND	ug/l	2.0	-
Acenaphthylene	ND	ug/l	2.0	
Anthracene	ND	ug/l	2.0	
Benzo(ghi)perylene	ND	ug/l	2.0	
Fluorene	ND	ug/l	2.0	
Phenanthrene	ND	ug/l	2.0	the second second
Dibenzo(a,h)anthracene	ND	ug/l	2.0	-
Indeno(1,2,3-cd)Pyrene	ND	ug/l	2.0	-
Pyrene	ND	ug/l	2.0	
Aniline	ND	ug/l	2.0	
4-Chloroaniline	ND	ug/l	5.0	
Dibenzofuran	ND	ug/l	2.0	
2-Methylnaphthalene	ND	ug/l	2.0	interpretation in a
Acetophenone	ND	ug/l	5.0	(Sectors) (Sectors) (Sec
2,4,6-Trichlorophenol	ND	ug/l	5.0	
2-Chlorophenol	ND	ug/l	2.0	
2,4-Dichlorophenol	ND	ug/l	5.0	 A statistical statistics
2,4-Dimethylphenol	ND	ug/l	5.0	ter state and
2-Nitrophenol	ND	ug/l	10	
4-Nitrophenol	ND	ug/l	10	
2,4-Dinitrophenol	ND	ug/l	20	
Pentachlorophenol	ND	ug/l	10	
Phenol	ND	ug/l	5.0	-
2-Methylphenol	ND	ug/l	5.0	
3-Methylphenol/4-Methylphenol	ND	ug/l	5.0	-
2,4,5-Trichlorophenol	ND	ug/l	5.0	

Project Name: DEWATERING Project Number: 20488
 Lab Number:
 L1534403

 Report Date:
 01/12/16

Method Blank Analysis Batch Quality Control

Analytical Method:	97,8270D
Analytical Date:	01/02/16 14:40
Analyst:	AS

Extraction Method: EPA 3510C Extraction Date: 12/31/15 10:41

arameter	Result	Qualifier Units	RL	MDL
ICP Semivolatile Organics	- Westborough La	b for sample(s): 01	Batch:	WG854238-1
Acenaphthene	ND	ug/l	2.0	
1,2,4-Trichlorobenzene	ND	ug/I	5.0	-
Hexachlorobenzene	ND	ug/l	2.0	-
Bis(2-chloroethyl)ether	ND	ug/l	2.0	-
2-Chloronaphthalene	ND	ug/l	2.0	-
1,2-Dichlorobenzene	ND	ug/l	2.0	77
1,3-Dichlorobenzene	ND	ug/l	2.0	-
1,4-Dichlorobenzene	ND	ug/l	2.0	-
3,3'-Dichlorobenzidine	ND	ug/l	5.0	and the second second
2,4-Dinitrotoluene	ND	ug/l	5.0	
2,6-Dinitrotoluene	ND	ug/l	5.0	-
Azobenzene	ND	ug/l	2.0	-
Fluoranthene	ND	ug/l	2.0	
4-Bromophenyl phenyl ether	ND	ug/l	2.0	-
Bis(2-chloroisopropyl)ether	ND	ug/l	2.0	ter 🙀 👘 en 👘
Bis(2-chloroethoxy)methane	ND	ug/l	5.0	-
Hexachlorobutadiene	ND	ug/l	2.0	-
Hexachloroethane	ND	ug/l	2.0	
Isophorone	ND ·	ug/l	5.0	-
Naphthalene	ND	ug/l	2.0	-
Nitrobenzene	ND	ug/l	2.0	
Bis(2-Ethylhexyl)phthalate	ND	ug/l	3.0	-
Butyl benzyl phthalate	ND	ug/l	5.0	-
Di-n-butylphthalate	ND	ug/l	5.0	
Di-n-octylphthalate	ND	ug/l	5.0	
Diethyl phthalate	ND	ug/l	5.0	100 million - 10
Dimethyl phthalate	ND	ug/l	5.0	
Benzo(a)anthracene	ND	ug/l	2.0	-
Benzo(a)pyrene	ND	ug/l	2.0	

						Serial_N	o:01121613:42	
Project Name:	DEWATERING				Lab Nu	umber:	L1534403	
Project Number:	20488				Report	t Date:	01/12/16	
n na ann ann ann Arthur ann 200 ann 61		SAMP	LE RESULT	S				
_ab ID: Client ID: Sample Location:	L1534403-01 163709 BROCKTON				Date Co Date Re Field Pre	ceived:	12/30/15 08:20 12/30/15 Not Specified	
Parameter	Director March 17	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Semivolatile	Organics - Westborough	Lab	AL THE R	R ARA	1.00	Laninet	in the second second	
Benzo(k)fluoranthene		ND		ug/l	2.0		1	
Chrysene		ND		ug/l	2.0		1	
Acenaphthylene		ND		ug/l	2.0	-	1	
Anthracene		ND		ug/l	2.0		1	
Benzo(ghi)perylene		ND		ug/l	2.0		1	
Fluorene		ND		ug/l	2.0		1	
Phenanthrene		ND		ug/l	2.0		1	
Dibenzo(a,h)anthracene		ND		ug/l	2.0		1	
ndeno(1,2,3-cd)Pyrene	э.	ND		ug/l	2.0	-	1	
Pyrene		ND		ug/l	2.0	-	1	
Aniline		ND		ug/l	2.0		1	
-Chloroaniline		ND		ug/l	5.0		1	
Dibenzofuran		ND		ug/l	2.0	-	1	
2-Methylnaphthalene		ND		ug/l	2.0	-	1	
Acetophenone		ND		ug/l	5.0	-	1	
2,4,6-Trichlorophenol		ND		ug/l	5.0		1	
2-Chlorophenol		ND		ug/l	2.0	1.00	1	
2,4-Dichlorophenol		ND		ug/I	5.0		1	
2,4-Dimethylphenol		ND		ug/l	5.0	-	1	
2-Nitrophenol		ND		ug/l	10	-	1	
4-Nitrophenol		ND		ug/l	10		1	
2,4-Dinitrophenol		ND		ug/l	20		1	
Pentachlorophenol		ND		ug/l	10		1	
Phenol		ND		ug/l	5.0	-	1	
2-Methylphenol		ND		ug/l	5.0		1	
3-Methylphenol/4-Methylp	henol	ND		ug/l	5.0		1	
2,4,5-Trichlorophenol		ND		ug/l	5.0		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	36		15-110	
Phenol-d6	23		15-110	
Nitrobenzene-d5	48		30-130	
2-Fluorobiphenyl	69		30-130	
2,4,6-Tribromophenol	91		15-110	
4-Terphenyl-d14	83		30-130	

				Serial_N	o:01121613:42	
Project Name:	DEWATERING			Lab Number:	L1534403	
Project Number:	20488			Report Date:	01/12/16	
		SAMP	LE RESULTS			
Lab ID:	L1534403-01			Date Collected:	12/30/15 08:20	
Client ID:	163709			Date Received:	12/30/15	
Sample Location:	BROCKTON			Field Prep:	Not Specified	
Matrix:	Water			Extraction Method	d:EPA 3510C	
Analytical Method:	97,8270D			Extraction Date:	12/31/15 10:41	
Analytical Date:	01/02/16 15:56					
Analyst:	AS					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile Organics - We	estborough Lab	19. 2. 21		No State	1 1 2 3	- Landard and a
Acenaphthene	ND		ug/l	2.0		1
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1
Hexachlorobenzene	ND		ug/l	2.0		1
Bis(2-chloroethyl)ether	ND		ug/l	2.0	-	1
2-Chloronaphthalene	ND		ug/l	2.0		1
1,2-Dichlorobenzene	ND		ug/l	2.0		1
1,3-Dichlorobenzene	ND		ug/l	2.0		1
1,4-Dichlorobenzene	ND		ug/l	2.0		1
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1
2,4-Dinitrotoluene	ND		ug/l	5.0	-	1
2,6-Dinitrotoluene	ND		ug/l	5.0	-	1
Azobenzene	ND		ug/l	2.0	-	1
Fluoranthene	ND		ug/l	2.0		1
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1
Hexachlorobutadiene	ND		ug/l	2.0		1
Hexachloroethane	ND		ug/l	2.0		1
sophorone	ND		ug/l	5.0		1
Naphthalene	ND		ug/l	2.0		1
Nitrobenzene	ND		ug/l	2.0		1
Bis(2-Ethylhexyl)phthalate	ND		ug/l	3.0	-	1
Butyl benzyl phthalate	ND		ug/l	5.0	· · · · · ·	1
Di-n-butylphthalate	ND		ug/l	5.0	-	1
Di-n-octylphthalate	ND		ug/l	5.0	-	1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0	-	1
Benzo(a)anthracene	ND		ug/l	2.0	_ <u></u>	1
Benzo(a)pyrene	ND		ug/l	2.0	-	1
Benzo(b)fluoranthene	ND		ug/l	2.0	-	1

SEMIVOLATILES

Page 18 of 50

Project Name: DEWATERING Project Number: 20488 Lab Number: L1534403 Report Date: 01/12/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Volatile Organics - Westborough Lab	Associated sampl	e(s): 01	Batch: WG854779	9-1 WG8	54779-2				
1,2,4-Trichlorobenzene	89		89		70-130	0		20	
1,3,5-Trimethylbenzene	94		95		70-130	1		20	
1,2,4-Trimethylbenzene	95		96		70-130	1		20	
Ethyl ether	93		92		70-130	1		20	
Isopropyl Ether	93		94		70-130	1		20	
Ethyl-Tert-Butyl-Ether	92		93		70-130	1		20	
Tertiary-Amyl Methyl Ether	91		92		70-130	1		20	
1,4-Dioxane	79		91		70-130	14		20	

	LCS		LCSD		Acceptance
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria
1,2-Dichloroethane-d4	95		93		70-130
Toluene-d8	97		97		70-130
4-Bromofluorobenzene	97		98		70-130
Dibromofluoromethane	100		100		70-130

Project Name: DEWATERING

Project Number: 20488

 Lab Number:
 L1534403

 Report Date:
 01/12/16

arameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
CP Volatile Organics - Westborough Lab	Associated sample(s): 01	Batch: WG854779-	1 WG854779-2			
4-Methyl-2-pentanone	84	80	70-130	5		20
2-Hexanone	73	73	70-130	0		20
Bromochloromethane	107	107	70-130	0		20
Tetrahydrofuran	82	76	70-130	8		20
2,2-Dichloropropane	97	96	70-130	1		20
1,2-Dibromoethane	91	91	70-130	0		20
1,3-Dichloropropane	91	91	70-130	0		20
1,1,1,2-Tetrachloroethane	94	93	70-130	1		20
Bromobenzene	91	92	70-130	1		20
n-Butylbenzene	96	96	70-130	0		20
sec-Butylbenzene	98	98	70-130	0		20
tert-Butylbenzene	95	96	70-130	1		20
o-Chlorotoluene	89	90	70-130	1		20
p-Chlorotoluene	93	93	70-130	0		20
1,2-Dibromo-3-chloropropane	82	82	70-130	0	Con A	20
Hexachlorobutadiene	89	91	70-130	2		20
Isopropylbenzene	98	98	70-130	0		20
p-Isopropyltoluene	96	98	70-130	2		20
Naphthalene	84	83	70-130	1	1.11	20
n-Propylbenzene	96	97	70-130	1		20
1,2,3-Trichlorobenzene	88	87	70-130	1		20

Project Name: DEWATERING Project Number: 20488
 Lab Number:
 L1534403

 Report Date:
 01/12/16

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated sample(s): 01	Batch: WG854779-	1 WG854779-2			
Chloromethane	97	97	70-130	0	20	
Bromomethane	84	86	70-130	2	20	
Vinyl chloride	97	96	70-130	1	20	
Chloroethane	100	100	70-130	0	20	
1,1-Dichloroethene	98	98	70-130	0	20	
trans-1,2-Dichloroethene	97	97	70-130	0	20	
Trichloroethene	98	98	70-130	0	20	
1,2-Dichlorobenzene	93	93	70-130	0	20	
1,3-Dichlorobenzene	94	94	70-130	0	20	
1,4-Dichlorobenzene	93	92	70-130	1	20	
Methyl tert butyl ether	90	90	70-130	0	20	
p/m-Xylene	98	97	70-130	1	20	
o-Xylene	97	96	70-130	1	20	
cis-1,2-Dichloroethene	97	96	70-130	1	20	
Dibromomethane	93	93	70-130	0	20	
1,2,3-Trichloropropane	87	87	70-130	0	20	
Styrene	98	98	70-130	0	20	
Dichlorodifluoromethane	98	97	70-130	1	20	
Acetone	86	85	70-130	1	20	
Carbon disulfide	95	94	70-130	1	20	
2-Butanone	84	84	70-130	0	20	

Project Name:	DEWATERING

Project Number: 20488

Lab Number: L1534403 Report Date: 01/12/16

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits	
MCP Volatile Organics - Westborough Lab	Associated sample(s): 0	1 Batch: WG854779-	1 WG854779-2				
Methylene chloride	91	91	70-130	0		20	
1,1-Dichloroethane	96	97	70-130	1		20	
Chloroform	96	96	70-130	0		20	
Carbon tetrachloride	99	98	70-130	1		20	
1,2-Dichloropropane	97	97	70-130	0		20	
Dibromochloromethane	90	91	70-130	1		20	
1,1,2-Trichloroethane	92	91	70-130	1		20	
Tetrachloroethene	97	97	70-130	0		20	
Chlorobenzene	94	95	70-130	1		20	
Trichlorofluoromethane	100	100	70-130	0		20	
1,2-Dichloroethane	89	91	70-130	2		20	
1,1,1-Trichloroethane	97	97	70-130	0		20	
Bromodichloromethane	95	96	70-130	1		20	
trans-1,3-Dichloropropene	89	89	70-130	0		20	
cis-1,3-Dichloropropene	101	98	70-130	3		20	
1,1-Dichloropropene	98	98	70-130	0		20	
Bromoform	86	87	70-130	1		20	
1,1,2,2-Tetrachloroethane	87	87	70-130	0		20	
Benzene	98	98	70-130	0		20	
Toluene	89	98	70-130	10		20	
Ethylbenzene	96	96	70-130	0		20	

Project Name:	DEWATERING	Lab Number:	L1534403
Project Number:	20488	Report Date:	01/12/16

Method Blank Analysis Batch Quality Control

Analytical Method:	97,82
Analytical Date:	01/05
Analyst:	MM

97,8260C 01/05/16 06:37 MM

Result	Qualifier	Units		RL	MDL	
orough Lab for	sample(s):	01	Batch:	WG854	779-3	1
ND		ug/l		2.0		
ND		ug/l		2.0		
ND		ug/l		0.60	2	
ND		ug/l		2.0	-	
ND		ug/l		2.0		
ND		ug/l		2.0	-	
ND		ug/l		2.0	-	
ND		ug/l		2.0	-	
ND		ug/l		2.0	1.11.	
ND		ug/l		2.0		
ND		ug/l		2.0	-	
ND		ug/l		2.0		
ND		ug/l		2.0	144	
ND		ug/l		2.0		
ND		ug/l		2.0	-	
ND		ug/l		250	-	
	Drough Lab for ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ug/l ND ug	ND ug/l ND	ND ug/l 2.0 ND ug/l 2.0	ND ug/l 2.0 ND ug/l 0.60 ND ug/l 2.0 ND ug/l 2.0

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	104		70-130	

Project Name: DEWATERING

Project Number:

20488

Lab Number: L1534403 **Report Date:** 01/12/16

Method Blank Analysis Batch Quality Control

Analytical Method:	97,8260C
Analytical Date:	01/05/16 06:37
Analyst:	MM

Result Qualifier Units RL MDL Parameter WG854779-3 MCP Volatile Organics - Westborough Lab for sample(s): 01 Batch: 1,2-Dichlorobenzene ND ug/l 1.0 1,3-Dichlorobenzene ND ug/l 1.0 ----ND 1,4-Dichlorobenzene ug/l 1.0 ----ND 2.0 Methyl tert butyl ether ug/l 1 p/m-Xylene ND ug/l 2.0 ----1.0 o-Xylene ND ug/l --ND 1.0 Xylene (Total) ug/l ----1.0 ND ug/l cis-1,2-Dichloroethene --1,2-Dichloroethene (total) ND ug/l 1.0 ___ 2.0 Dibromomethane ND ug/l ---ND 2.0 1,2,3-Trichloropropane ug/l ---ND 1.0 Styrene ug/l ---Dichlorodifluoromethane ND ug/l 2.0 5.0 ND ug/l Acetone Carbon disulfide ND ug/l 2.0 ---2-Butanone ND ug/l 5.0 ND ug/l 5.0 4-Methyl-2-pentanone ug/l 5.0 ND 2-Hexanone -Bromochloromethane ND ug/l 2.0 ----ND 2.0 Tetrahydrofuran ug/l ND ug/l 2.0 2,2-Dichloropropane 1,2-Dibromoethane ND ug/l 2.0 ----ND ug/l 2.0 1,3-Dichloropropane -1.0 ND 1,1,1,2-Tetrachloroethane ug/l -Bromobenzene ND ug/l 2.0 n-Butylbenzene ND ug/l 2.0 ---ND 2.0 sec-Butylbenzene ug/l ** 2.0 tert-Butylbenzene ND ug/l o-Chlorotoluene ND ug/l 2.0 -

Project Name: DE

DEWATERING

Project Number:

20488

 Lab Number:
 L1534403

 Report Date:
 01/12/16

Method Blank Analysis Batch Quality Control

Analytical Method:	3
Analytical Date:	
Analyst:	1

97,8260C 01/05/16 06:37 MM

Parameter	.01	Result	Qualifier	Units	s	RL	MDL
ICP Volatile Organics -	Westborou	gh Lab for	sample(s):	01	Batch:	WG854779-	3
Methylene chloride		ND		ug/	1	2.0	(-)
1,1-Dichloroethane		ND		ug/	1	1.0	new colored of the
Chloroform		ND		ug/	1	1.0	(***)
Carbon tetrachloride		ND		ug/	1	1.0	the state of the state
1,2-Dichloropropane		ND		ug/	1	1.0	-
Dibromochloromethane		ND		ug/	L	1.0	-
1,1,2-Trichloroethane		ND		ug/	I.	1.0	-
Tetrachloroethene		ND		ug/l	l .	1.0	-
Chlorobenzene		ND		ug/l	I	1.0	-
Trichlorofluoromethane		ND		ug/l	Ľ	2.0	
1,2-Dichloroethane		ND		ug/l	1	1.0	-
1,1,1-Trichloroethane		ND		ug/l	1	1.0	-
Bromodichloromethane		ND		ug/l		1.0	
trans-1,3-Dichloropropene		ND		ug/l	í .	0.50	-
cis-1,3-Dichloropropene		ND		ug/l	1	0.50	-
1,3-Dichloropropene, Total		ND		ug/l		0.50	20 pm - 10 m
1,1-Dichloropropene		ND		ug/l		2.0	-
Bromoform		ND		ug/l		2.0	-
1,1,2,2-Tetrachloroethane		ND		ug/l		1.0	1941
Benzene		ND		ug/l		0.50	- 10000
Toluene		ND		ug/l		1.0	-
Ethylbenzene		ND		ug/l		1.0	
Chloromethane		ND		ug/l		2.0	
Bromomethane		ND		ug/l		2.0	14 (M) (M)
Vinyl chloride		ND		ug/l		1.0	-
Chloroethane		ND		ug/l		2.0	-
1,1-Dichloroethene		ND		ug/l		1.0	
trans-1,2-Dichloroethene		ND		ug/l		1.0	
Trichloroethene		ND		ug/l		1.0	-

Project Name:	DEWATERING				Lab N	umber:	o:01121613:42 L1534403
Project Number:	20488					t Date:	01/12/16
roject Humber.	20400	SA	MPLE RE	SULTS	Repor	t Bato.	01/12/10
.ab ID: Client ID:	L1534403-01 163709 BROCKTON				Date Re	ollected: eceived:	12/30/15 08:20 12/30/15
Sample Location:	BROCKTON	Desult	0	lifier Units	Field Pr RL	ep. MDL	Not Specified Dilution Factor
Parameter	nics - Westborough	Result	Qua	lifier Units	RL	MDL	Dilution Factor
vice volatile organ	lics - westborough	Lau					
Ethyl ether		ND		ug/l	2.0		1
sopropyl Ether		ND		ug/l	2.0	3)	1
Ethyl-Tert-Butyl-Ether		ND		ug/l	2.0		1
Tertiary-Amyl Methyl Ethe	r	ND		ug/l	2.0		1
1,4-Dioxane		ND		ug/l	250	-	1
Surroga	ite	% Re	covery	Qualifier	Acceptance Criteria		1429-142
1,2-Dich	loroethane-d4		98		70-130		
Toluene			96		70-130		
4-Bromo	fluorobenzene		97		70-130		
Dibromo	fluoromethane		102		70-130		
							-
							ALPHA

Project Name:	DEWATERING				l ab Ne	Serial_N umber:	o:01121613:42 L1534403	
Project Number:	20488	SAMP	LE RESULT	S	Repor	t Date:	01/12/16	
Lab ID:	L1534403-01				Date Co	llected:	12/30/15 08:20	
Client ID:	163709				Date Re	ceived:	12/30/15	
Sample Location:	BROCKTON				Field Pr	ep:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organi	cs - Westborough La	ab	a la presidente de la competencia de la Competencia de la competencia de la comp		Marris Marris	Sel Bran	and the second second	17
1,3-Dichlorobenzene		ND		ug/l	1.0	-	1	
1,4-Dichlorobenzene		ND		ug/l	1.0		1	
Methyl tert butyl ether		ND		ug/l	2.0		1	
p/m-Xylene		ND		ug/l	2.0		1	
o-Xylene		ND		ug/l	1.0		1	
Xylene (Total)		ND		ug/l	1.0		1	
cis-1,2-Dichloroethene		ND		ug/l	1.0		1	
1,2-Dichloroethene (total)		ND		ug/l	1.0		1	
Dibromomethane		ND		ug/l	2.0		. 1	
1,2,3-Trichloropropane		ND		ug/l	2.0		1	
Styrene		ND		ug/l	1.0	-	1	
Dichlorodifluoromethane		ND		ug/l	2.0	-	1	
Acetone		ND		ug/l	5.0	-	1	
Carbon disulfide		ND			2.0	-	1	
2-Butanone		ND		ug/l	5.0	-	1	
				ug/l		-		
4-Methyl-2-pentanone 2-Hexanone		ND		ug/l	5.0	-	1	
				ug/l	5.0	77	1	
Bromochloromethane		ND		ug/l	2.0	-	1	
Tetrahydrofuran		ND		ug/l	2.0		1	
2,2-Dichloropropane		ND		ug/l	2.0		1	
1,2-Dibromoethane		ND		ug/l	2.0		1	
1,3-Dichloropropane		ND		ug/l	2.0		1	
1,1,1,2-Tetrachloroethane		ND		ug/l	1.0		1	
Bromobenzene		ND		ug/l	2.0		1	
n-Butylbenzene		ND		ug/l	2.0		1	
sec-Butylbenzene		ND		ug/l	2.0		1	
ert-Butylbenzene		ND		ug/l	2.0	-	1	
o-Chlorotoluene		ND		ug/l	2.0	-	1	
o-Chlorotoluene		ND		ug/l	2.0	<u> </u>	1	
1,2-Dibromo-3-chloropropan	e	ND		ug/l	2.0	-	1	
Hexachlorobutadiene		ND		ug/l	0.60		1	
sopropylbenzene		ND		ug/l	2.0	-	1	
o-Isopropyltoluene		ND		ug/l	2.0	0 <u>00</u> 75	1	
Naphthalene		ND		ug/l	2.0		1	
-Propylbenzene		ND		ug/l	2.0	-	1	
1,2,3-Trichlorobenzene		ND		ug/l	2.0	-	1	
1,2,4-Trichlorobenzene		ND		ug/l	2.0	-	1	
1,3,5-Trimethylbenzene		ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene		ND		ug/l	2.0		1	

			Serial_N	lo:01121613:42	
Project Name:	DEWATERING		Lab Number:	L1534403	
Project Number:	20488		Report Date:	01/12/16	
		SAMPLE RESULTS			
Lab ID:	L1534403-01		Date Collected:	12/30/15 08:20	
Client ID:	163709		Date Received:	12/30/15	
Sample Location:	BROCKTON		Field Prep:	Not Specified	
Matrix:	Water			and the second second	
Analytical Method:	97,8260C				
Analytical Date:	01/05/16 07:02				
Analyst:	MM				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab			ALC: NO	a state	Tenses.	
Methylene chloride	ND		ug/l	2.0	-	1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	1.1		ug/l	1.0	-	1
Carbon tetrachloride	ND		ug/l	1.0	2 2	1
1,2-Dichloropropane	ND		ug/l	1.0	-	1
Dibromochloromethane	ND		ug/l	1.0	-	1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0	-	1
Trichlorofluoromethane	ND		ug/l	2.0	-	1
1,2-Dichloroethane	ND		ug/l	1.0	-	1
1,1,1-Trichloroethane	ND		ug/l	1.0	-	1
Bromodichloromethane	ND		ug/l	1.0	-	1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1.77	1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.0	122	1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	6.470	1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0	-	1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/I	1.0	**	1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1

Make Make Proto V 2015 Junito V 2015

RUTHARS RELATED

Lab Victoria Incordo Santa Lab Victoria Incordo Santa Response Santa Incordo Santa

> Classical Lado Stractif Lado Stractif Lado

VOLATILES

A. J. S. Martin, J. S. Martin, Mark 200 (1997) 5.

ALPHA

Part of the Part o

depression available available

(c) the provident is glace that induces the \$100° stands in the provident frequent increasing the provident control of \$100° stands.

performance in the second second

A. 1995

ha area and beginner habited by more breathing and the education of a character of a care and a state of a second care of the second care of a second care of the sec

a state of the sta

ybucand in might and my salighter state. In briefs in the state of the state of the state of the state of the s

are MCP Mathematical Learnings

Receive -- dominanced Manufacture and a 1993 Statistical beareaning -- a 20 years decision and a picture of

An instance part when productive pairs, we consider an according to the list twent of an block of the merit as a pair of part of parts. The part of the set of the set of the set of the set of the merits of the set of the parts of the set o

And the providence of the

Called and a set of the set of th

Project Name: DEWATERING Project Number: 20488 Lab Number: L1534403 Report Date: 01/12/16

Case Narrative (continued)

Report Submission

This report replaces the report issued January 7, 2016, and includes the results of the Antimony, Arsenic, Cadmium, Chromium, Copper, Iron, Mercury, Lead, Nickel and Zinc analyses performed on L1534403-01.

MCP Related Narratives

Volatile Organics

In reference to question H:

The initial calibration, associated with L1534403-01, did not meet the method required minimum response factor on the lowest calibration standard for bromomethane (0.09484) and 1,4-dioxane (0.00051), as well as the average response factor for bromomethane and 1,4-dioxane. The initial calibration verification is outside acceptance criteria for dichlorodifluoromethane (144%), but within overall method criteria.

The continuing calibration standard, associated with L1534403-01, is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

Metals

In reference to question I:

All samples were analyzed for a subset of MCP analytes per the Chain of Custody.

Non-MCP Related Narratives

Chloride

The WG854030-4 MS recovery (0%), performed on L1534403-01, does not apply because the sample concentration is greater than four times the spike amount added.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Auchally M. Jhoma Michelle M. Morris

Title: Technical Director/Representative

Date: 01/12/16

